विनाशक (रिंग सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Ideal that maps to zero a subset of a module}}गणित में, रिंग के ऊपर [[मॉड्यूल (गणित)|मापांक (गणित)]] के उपसमुच्चय {{mvar|एस}}  का '''विनाशक''' रिंग के तत्वों द्वारा गठित [[आदर्श (रिंग सिद्धांत)]] होता है जो {{mvar|एस}}  के प्रत्येक तत्व से गुणा करने पर सदैव शून्य देता है।
{{Short description|Ideal that maps to zero a subset of a module}}गणित में, रिंग के ऊपर [[मॉड्यूल (गणित)|मापांक (गणित)]] के उपसमुच्चय {{mvar|एस}}  का '''विनाशक''' रिंग के तत्वों द्वारा गठित [[आदर्श (रिंग सिद्धांत)]] होता है जो {{mvar|एस}}  के प्रत्येक तत्व से गुणा करने पर सदैव शून्य देता है।


[[अभिन्न डोमेन]] पर, मापांक जिसमें गैर-शून्य विनाशक होता है वह [[मरोड़ मॉड्यूल|मरोड़ मापांक]] होता है, और [[अंतिम रूप से उत्पन्न मॉड्यूल|अंतिम रूप से उत्पन्न मापांक]] मरोड़ मापांक में गैर-शून्य विनाशक होता है।
[[अभिन्न डोमेन|अभिन्न कार्यक्षेत्र]] पर, मापांक जिसमें गैर-शून्य विनाशक होता है वह [[मरोड़ मॉड्यूल|मरोड़ मापांक]] होता है, और [[अंतिम रूप से उत्पन्न मॉड्यूल|अंतिम रूप से उत्पन्न मापांक]] मरोड़ मापांक में गैर-शून्य विनाशक होता है।


उपरोक्त परिभाषा [[नॉनकम्यूटेटिव रिंग]] के स्थिति में भी क्रियान्वित होती है, जहां बाएं मापांक का बायां संहारक बायां आदर्श है, और दाएं मापांक का दायां-विनाशक दायां आदर्श है।
उपरोक्त परिभाषा [[नॉनकम्यूटेटिव रिंग|गैर-अनुवांशिक रिंग]] की स्थिति में भी क्रियान्वित होती है, जहां बाएं मापांक का '''बायां-विनाशक''' बायां आदर्श है, और दाएं मापांक का '''दायां-विनाशक''' सही आदर्श होता है।


==परिभाषाएँ==
==परिभाषाएँ==
मान लीजिए कि R रिंग (गणित) है, और मान लीजिए कि M बायाँ R-मापांक (गणित) है। एम का [[खाली सेट|खाली समुच्चय]] | गैर-रिक्त उपसमुच्चय एस चुनें। एस का 'विनाशकारी', एन को दर्शाया गया है<sub>''R''</sub>(S), R में सभी तत्वों r का समुच्चय इस प्रकार है कि, S में सभी s के लिए, {{nowrap|1=''rs'' = 0}}.<ref>Pierce (1982), p. 23.</ref> समुच्चय अंकन में,
मान लीजिए कि आर रिंग (गणित) है, और मान लीजिए कि एम बायाँ आर-मापांक (गणित) है। इस प्रकार एम का गैर-रिक्त उपसमुच्चय एस चुनते है। एस का ''''विनाशकारी'''<nowiki/>', एन को <sub>आर</sub>(एस) के द्वारा दर्शाया गया है, अतः आर में सभी तत्वों आर का समुच्चय इस प्रकार होता है कि, एस में सभी एस के लिए, {{nowrap|1=''आरएस'' = 0}} होता है।<ref>Pierce (1982), p. 23.</ref> इस प्रकार समुच्चय अंकन में, {{nowrap|1=''rs'' = 0}} होता है।
:<math>\mathrm{Ann}_R(S)=\{r\in R\mid s\in S</math> तात्पर्य <math> rs=0 \}</math>
:<math>\mathrm{Ann}_R(S)=\{r\in R\mid s\in S</math> तात्पर्य <math> rs=0 \}</math>
यह R के सभी तत्वों का समुच्चय है जो S को नष्ट कर देता है (वे तत्व जिनके लिए S मरोड़ समुच्चय है)। संशोधन के पश्चात्, सही मापांक के उपसमुच्चय का भी उपयोग किया जा सकता है{{nowrap|1=''sr'' = 0}} परिभाषा में.
यह आर के सभी तत्वों का समुच्चय होता है जो एस को नष्ट कर देता है (वह तत्व जिनके लिए एस मरोड़ समुच्चय होता है)। इस प्रकार परिभाषा में {{nowrap|1=''एसआर'' = 0}} संशोधन के पश्चात्, सही मापांक के उपसमुच्चय का भी उपयोग किया जा सकता है।


किसी तत्व x का संहारक सामान्यतः Ann लिखा जाता है<sub>''R''</sub>(x) ऐन के स्थान पर<sub>''R''</sub>({एक्स})यदि रिंग आर को संदर्भ से समझा जा सकता है, तब सबस्क्रिप्ट आर को छोड़ा जा सकता है।
किसी तत्व एक्स का विनाशक सामान्यतः एएनएन<sub>आर</sub>(एक्स) के अतिरिक्त एएनएन<sub>आर</sub>(एक्स) लिखा जाता है। यदि रिंग आर को संदर्भ से समझा जा सकता है, तब सबस्क्रिप्ट आर को छोड़ा जा सकता है।


चूँकि R अपने आप में मापांक है, S को स्वयं R का उपसमुच्चय माना जा सकता है, और चूँकि R दाएँ और बाएँ दोनों R मापांक है, इसलिए बाएँ या दाएँ पक्ष को इंगित करने के लिए अंकन को थोड़ा संशोधित किया जाना चाहिए। सामान्यतः <math>\ell.\!\mathrm{Ann}_R(S)\,</math> और <math>r.\!\mathrm{Ann}_R(S)\,</math> या यदि आवश्यक हो, तब बाएँ और दाएँ विनाशकों को भिन्न करने के लिए कुछ समान सबस्क्रिप्ट योजना का उपयोग किया जाता है।
चूँकि आर अपने आप में मापांक होता है, अतः एस को स्वयं आर का उपसमुच्चय माना जा सकता है, और चूँकि आर दाएँ और बाएँ दोनों आर मापांक है, इसलिए बाएँ या दाएँ पक्ष को इंगित करने के लिए अंकन को थोड़ा संशोधित किया जाता है। सामान्यतः <math>\ell.\!\mathrm{Ann}_R(S)\,</math> और <math>r.\!\mathrm{Ann}_R(S)\,</math> या यदि आवश्यक होता है, तब बाएँ और दाएँ विनाशकों को भिन्न करने के लिए कुछ समान सबस्क्रिप्ट योजना का उपयोग किया जाता है।


यदि एम आर-मापांक है और {{nowrap|1=Ann<sub>''R''</sub>(''M'') = 0}}, तब M को 'वफादार मापांक' कहा जाता है।
यदि एम, आर-मापांक होता है और {{nowrap|1=एएनएन<sub>''आर''</sub>(''एम'') = 0}}, तब एम को ''''वफादार मापांक'''<nowiki/>' कहा जाता है।


==गुण==
==गुण==
यदि S बाएँ R मापांक M का उपसमुच्चय है, तब Ann(S) बाएँ आदर्श (रिंग सिद्धांत)#R की परिभाषाएँ है।<ref>Proof: If ''a'' and ''b'' both annihilate ''S'', then for each ''s'' in ''S'', (''a''&nbsp;+&nbsp;''b'')''s'' = ''as''&nbsp;+&nbsp;''bs'' = 0, and for any ''r'' in ''R'', (''ra'')''s'' = ''r''(''as'') = ''r''0 = 0.</ref>
यदि एस बाएँ आर मापांक एम का उपसमुच्चय होता है, तब एएनएन(एस) बाएँ आदर्श (रिंग सिद्धांत) आर की परिभाषाएँ होती है।<ref>Proof: If ''a'' and ''b'' both annihilate ''S'', then for each ''s'' in ''S'', (''a''&nbsp;+&nbsp;''b'')''s'' = ''as''&nbsp;+&nbsp;''bs'' = 0, and for any ''r'' in ''R'', (''ra'')''s'' = ''r''(''as'') = ''r''0 = 0.</ref>
यदि S, M का मापांक_(गणित)#सबमापांक_और_समरूपता है, तब ऐन<sub>''R''</sub>(S) दोतरफा आदर्श भी है: (ac)s = a(cs) = 0, जिससे कि cs, S का अन्य तत्व है।<ref>Pierce (1982), p. 23, Lemma b, item (i).</ref>
यदि S, M का उपसमुच्चय है और N, S द्वारा उत्पन्न M का उपमापांक है, तब सामान्यतः ऐन<sub>''R''</sub>(एन) ऐन का उपसमुच्चय है<sub>''R''</sub>(एस), किन्तु वे आवश्यक रूप से समान नहीं हैं। यदि R [[क्रमविनिमेय वलय]] है, तब समानता कायम रहती है।


एम को आर/एन के रूप में भी देखा जा सकता है<sub>''R''</sub>(एम)-क्रिया का उपयोग करने वाला मापांक <math>\overline{r}m:=rm\,</math>. संयोग से, इस प्रकार से R मापांक को R/I मापांक में बनाना सदैव संभव नहीं होता है, किन्तु यदि आदर्श I, M के विनाशक का उपसमुच्चय है, तब यह क्रिया अच्छी प्रकार से परिभाषित है। आर/एन के रूप में माना जाता है<sub>''R''</sub>(एम)-मापांक, एम स्वचालित रूप से वफादार मापांक है।
यदि एस, एम का मापांक (गणित) उप मापांक और समरूपता है, तब एएनएन<sub>आर</sub>(एस) दोतरफा आदर्श भी होता है: (एसी)एस = ए(सीएस) = 0, जिससे कि सीएस, एस का अन्य तत्व होता है।<ref>Pierce (1982), p. 23, Lemma b, item (i).</ref>
 
यदि एस, एम का उपसमुच्चय है और एन, एस द्वारा उत्पन्न एम का उपमापांक होता है, तब सामान्यतः एएनएन<sub>आर</sub>(एन), एएनएन<sub>आर</sub>(एस) का उपसमुच्चय है, किन्तु वह आवश्यक रूप से समान नहीं होता हैं। यदि आर [[क्रमविनिमेय वलय]] है, तब समानता कायम रहती है।
 
एम को क्रिया का उपयोग करके आर/एएनएन<sub>आर</sub>(एम) के रूप में भी देखा जा सकता है <math>\overline{r}m:=rm\,</math> संयोग से, इस प्रकार से आर मापांक को आर/आई मापांक में बनाना सदैव संभव नहीं होता है, किन्तु यदि आदर्श आई, एम के विनाशक का उपसमुच्चय है, तब यह क्रिया अच्छी प्रकार से परिभाषित होती है। इस प्रकार आर/एन<sub>आर</sub>(एम) के रूप में माना जाता है एम मापांक, स्वचालित रूप से वफादार मापांक होता है।


=== क्रमविनिमेय वलय के लिए ===
=== क्रमविनिमेय वलय के लिए ===
इस पूरे अनुभाग में, आइए <math>R</math> क्रमविनिमेय वलय बनें और <math>M</math> परिमित रूप से उत्पन्न मापांक (संक्षेप में, परिमित) <math>R</math>-मापांक।
इस पूर्ण अनुभाग में, आइए <math>R</math> क्रमविनिमेय वलय बनें और <math>M</math> परिमित रूप से उत्पन्न मापांक (संक्षेप में, परिमित) <math>R</math>-मापांक।


==== समर्थन से संबंध ====
==== समर्थन से संबंध ====
Line 31: Line 33:
फिर, जब मापांक अंतिम रूप से उत्पन्न होता है, तब संबंध होता है
फिर, जब मापांक अंतिम रूप से उत्पन्न होता है, तब संबंध होता है
:<math>V(\operatorname{Ann}_R(M)) = \operatorname{Supp}M</math>,
:<math>V(\operatorname{Ann}_R(M)) = \operatorname{Supp}M</math>,
कहाँ <math>V(\cdot)</math> उपसमुच्चय युक्त अभाज्य आदर्शों का समुच्चय है।<ref>{{Cite web|title=Lemma 10.39.5 (00L2)—The Stacks project|url=https://stacks.math.columbia.edu/tag/00L2|website=stacks.math.columbia.edu|access-date=2020-05-13}}</ref>
जहाँ <math>V(\cdot)</math> उपसमुच्चय युक्त अभाज्य आदर्शों का समुच्चय होता है।<ref>{{Cite web|title=Lemma 10.39.5 (00L2)—The Stacks project|url=https://stacks.math.columbia.edu/tag/00L2|website=stacks.math.columbia.edu|access-date=2020-05-13}}</ref>
==== [[संक्षिप्त सटीक क्रम|संक्षिप्त त्रुटिहीन क्रम]] ====
==== [[संक्षिप्त सटीक क्रम|संक्षिप्त त्रुटिहीन क्रम]] ====
मापांक के संक्षिप्त त्रुटिहीन अनुक्रम को देखते हुए,
मापांक के संक्षिप्त त्रुटिहीन अनुक्रम को देखते हुए,
Line 37: Line 39:
समर्थन संपत्ति
समर्थन संपत्ति
:<math>\operatorname{Supp}M = \operatorname{Supp}M' \cup \operatorname{Supp}M'',</math><ref>{{Cite web|title=Lemma 10.39.9 (00L3)—The Stacks project|url=https://stacks.math.columbia.edu/tag/00L3|website=stacks.math.columbia.edu|access-date=2020-05-13}}</ref>
:<math>\operatorname{Supp}M = \operatorname{Supp}M' \cup \operatorname{Supp}M'',</math><ref>{{Cite web|title=Lemma 10.39.9 (00L3)—The Stacks project|url=https://stacks.math.columbia.edu/tag/00L3|website=stacks.math.columbia.edu|access-date=2020-05-13}}</ref>
साथ ही संहारकर्ता से संबंध का तात्पर्य है
साथ ही विनाशकर्ता से संबंध का तात्पर्य होता है
:<math>V(\operatorname{Ann}_R(M)) = V(\operatorname{Ann}_R(M')) \cup V(\operatorname{Ann}_R(M'')).</math>
:<math>V(\operatorname{Ann}_R(M)) = V(\operatorname{Ann}_R(M')) \cup V(\operatorname{Ann}_R(M'')).</math>
अधिक विशेष रूप से, हमारे मध्य संबंध हैं
अधिक विशेष रूप से, हमारे मध्य संबंध होते हैं
:<math>\operatorname{Ann}_R(M') \cap \operatorname{Ann}_R(M'') \supseteq \operatorname{Ann}_R(M) \supseteq \operatorname{Ann}_R(M') \operatorname{Ann}_R(M''). </math>
:<math>\operatorname{Ann}_R(M') \cap \operatorname{Ann}_R(M'') \supseteq \operatorname{Ann}_R(M) \supseteq \operatorname{Ann}_R(M') \operatorname{Ann}_R(M''). </math>
यदि अनुक्रम विभाजित हो जाता है तब बाईं ओर की असमानता सदैव समानता होती है। वास्तव में यह मापांक के मापांक के मनमाने प्रत्यक्ष योग के लिए क्रियान्वित होता है
यदि अनुक्रम विभाजित हो जाता है तब बाईं ओर की असमानता सदैव समानता होती है। वास्तव में यह मापांक के मापांक के अनैतिक प्रत्यक्ष योग के लिए क्रियान्वित होता है
:<math>\operatorname{Ann}_R\left( \bigoplus_{i\in I} M_i \right) = \bigcap_{i\in I} \operatorname{Ann}_R(M_i).</math>
:<math>\operatorname{Ann}_R\left( \bigoplus_{i\in I} M_i \right) = \bigcap_{i\in I} \operatorname{Ann}_R(M_i).</math>
==== भागफल मापांक और संहारक ====
==== भागफल मापांक और विनाशक ====
आदर्श दिया <math>I \subseteq R</math> और जाने <math>M</math> परिमित मापांक हो, तब संबंध है
आदर्श दिया <math>I \subseteq R</math> और जाने <math>M</math> परिमित मापांक हो, तब संबंध है
:<math>\text{Supp}(M/IM) = \operatorname{Supp}M \cap V(I)</math>
:<math>\text{Supp}(M/IM) = \operatorname{Supp}M \cap V(I)</math>
समर्थन पर. सहारे के संबंध का प्रयोग करने से यह संहारक के साथ संबंध बताता है<ref>{{Cite web|title=Lemma 10.39.9 (00L3)—The Stacks project|url=https://stacks.math.columbia.edu/tag/00L3|website=stacks.math.columbia.edu|access-date=2020-05-13}}</ref>
समर्थन पर. सहारे के संबंध का प्रयोग करने से यह विनाशक के साथ संबंध बताता है<ref>{{Cite web|title=Lemma 10.39.9 (00L3)—The Stacks project|url=https://stacks.math.columbia.edu/tag/00L3|website=stacks.math.columbia.edu|access-date=2020-05-13}}</ref>
:<math>V(\text{Ann}_R(M/IM)) = V(\text{Ann}_R(M)) \cap V(I).</math>
:<math>V(\text{Ann}_R(M/IM)) = V(\text{Ann}_R(M)) \cap V(I).</math>
== उदाहरण ==
== उदाहरण ==


=== पूर्णांकों पर ===
=== पूर्णांकों पर ===
ऊपर <math>\mathbb{Z}</math> किसी भी अंतिम रूप से उत्पन्न मापांक को एबेलियन समुच्चयों के मौलिक प्रमेय से उसके मरोड़ वाले भाग के साथ उसके मुक्त भाग के प्रत्यक्ष योग के रूप में पूर्ण प्रकार से वर्गीकृत किया गया है। फिर, परिमित मापांक का विनाशक केवल गैर-तुच्छ है यदि यह पूर्ण प्रकार से मरोड़ है। यह है जिससे कि
ऊपर <math>\mathbb{Z}</math> किसी भी अंतिम रूप से उत्पन्न मापांक को एबेलियन समुच्चयों के मौलिक प्रमेय से उसके मरोड़ वाले भाग के साथ उसके मुक्त भाग के प्रत्यक्ष योग के रूप में पूर्ण प्रकार से वर्गीकृत किया गया है। फिर, परिमित मापांक का विनाशक केवल गैर-तुच्छ होता है यदि यह पूर्ण प्रकार से मरोड़ है। जिससे कि
:<math>\text{Ann}_{\mathbb{Z}}(\mathbb{Z}^{\oplus k}) = \{ 0 \} = (0)</math>
:<math>\text{Ann}_{\mathbb{Z}}(\mathbb{Z}^{\oplus k}) = \{ 0 \} = (0)</math>
चूंकि एकमात्र तत्व प्रत्येक को मार रहा है <math>\mathbb{Z}</math> है <math>0</math>. उदाहरण के लिए, का संहारक <math>\mathbb{Z}/2 \oplus \mathbb{Z}/3</math> है
चूंकि एकमात्र तत्व <math>\mathbb{Z}</math> प्रत्येक <math>0</math> को मार रहा है। उदाहरण के लिए, <math>\mathbb{Z}/2 \oplus \mathbb{Z}/3</math> का विनाशक होता है।
:<math>\text{Ann}_\mathbb{Z}(\mathbb{Z}/2 \oplus \mathbb{Z}/3) = (6) = (\text{lcm}(2,3)),</math>
:<math>\text{Ann}_\mathbb{Z}(\mathbb{Z}/2 \oplus \mathbb{Z}/3) = (6) = (\text{lcm}(2,3)),</math>
द्वारा उत्पन्न आदर्श <math>(6)</math>. वास्तव में मरोड़ मापांक का विनाशक
द्वारा उत्पन्न आदर्श <math>(6)</math> होता है, वास्तव में मरोड़ मापांक का विनाशक
:<math>M \cong \bigoplus_{i=1}^n (\mathbb{Z}/a_i)^{\oplus k_i}</math>
:<math>M \cong \bigoplus_{i=1}^n (\mathbb{Z}/a_i)^{\oplus k_i}</math>
उनके लघुत्तम समापवर्त्य से उत्पन्न आदर्श के [[समरूपी]] है, <math>(\operatorname{lcm}(a_1, \ldots, a_n))</math>. इससे पता चलता है कि संहारकों को आसानी से पूर्णांकों में वर्गीकृत किया जा सकता है।
उनके लघुत्तम समापवर्त्य से उत्पन्न आदर्श के [[समरूपी]] है, <math>(\operatorname{lcm}(a_1, \ldots, a_n))</math>. इससे पता चलता है कि विनाशकों को सरलता से पूर्णांकों में वर्गीकृत किया जा सकता है।


=== क्रमविनिमेय वलय के ऊपर R ===
=== क्रमविनिमेय वलय के ऊपर R ===
वास्तव में, ऐसी ही गणना है जो क्रमविनिमेय वलय पर किसी भी परिमित मापांक के लिए की जा सकती है <math>R</math>. याद रखें कि परिमितता की परिभाषा <math>M</math> तात्पर्य यह है कि सही-त्रुटिहीन अनुक्रम उपस्तिथ है, जिसे प्रेजेंटेशन कहा जाता है
वास्तव में, ऐसी ही गणना होती है जो क्रमविनिमेय '''वलय पर किसी भी परिमित मापां'''क के लिए की जा सकती है <math>R</math>. याद रखें कि परिमितता की परिभाषा <math>M</math> तात्पर्य यह है कि सही-त्रुटिहीन अनुक्रम उपस्तिथ है, जिसे प्रेजेंटेशन कहा जाता है
:<math>R^{\oplus l} \xrightarrow{\phi} R^{\oplus k} \to M \to 0</math>
:<math>R^{\oplus l} \xrightarrow{\phi} R^{\oplus k} \to M \to 0</math>
कहाँ <math>\phi</math> में है <math>\text{Mat}_{k,l}(R)</math>. लिखना <math>\phi</math> स्पष्ट रूप से [[मैट्रिक्स (गणित)|आव्युह (गणित)]] के रूप में इसे देता है
कहाँ <math>\phi</math> में है <math>\text{Mat}_{k,l}(R)</math>. लिखना <math>\phi</math> स्पष्ट रूप से [[मैट्रिक्स (गणित)|आव्युह (गणित)]] के रूप में इसे देता है
Line 74: Line 76:
फिर आदर्श <math>I</math> द्वारा दिए गए
फिर आदर्श <math>I</math> द्वारा दिए गए
:<math>V(I) = \bigcup^{n}_{i=1}V(I_i)</math>
:<math>V(I) = \bigcup^{n}_{i=1}V(I_i)</math>
संहारक प्रस्तुत करता है.
विनाशक प्रस्तुत करता है.


=== k[x,y] से अधिक ===
=== k[x,y] से अधिक ===
Line 81: Line 83:
आदर्श द्वारा दिया जाता है
आदर्श द्वारा दिया जाता है
:<math>\text{Ann}_{k[x,y]}(M) = ((x^2 - y)(y - 3)).</math>
:<math>\text{Ann}_{k[x,y]}(M) = ((x^2 - y)(y - 3)).</math>
==संहारक आदर्शों पर श्रृंखला की स्थितियाँ==
==विनाशक आदर्शों पर श्रृंखला की स्थितियाँ==
स्वरूप के आदर्शों की जाली (क्रम)। <math>\ell.\!\mathrm{Ann}_R(S)</math> जहां S, R का उपसमुच्चय है, जब आंशिक रूप से उपसमुच्चय द्वारा क्रमबद्ध किया जाता है, तब इसमें [[पूर्ण जाली]] सम्मिलित होती है। उन छल्लों का अध्ययन करना रोचक है जिनके लिए यह जाली (या इसका दायां समकक्ष) आरोही श्रृंखला स्थिति या [[अवरोही श्रृंखला स्थिति]] को संतुष्ट करता है।
स्वरूप के आदर्शों की जाली (क्रम)। <math>\ell.\!\mathrm{Ann}_R(S)</math> जहां S, R का उपसमुच्चय है, जब आंशिक रूप से उपसमुच्चय द्वारा क्रमबद्ध किया जाता है, तब इसमें [[पूर्ण जाली]] सम्मिलित होती है। उन छल्लों का अध्ययन करना रोचक है जिनके लिए यह जाली (या इसका दायां समकक्ष) आरोही श्रृंखला स्थिति या [[अवरोही श्रृंखला स्थिति]] को संतुष्ट करता है।


Line 91: Line 93:
जब R क्रमविनिमेय है और M R-मापांक है, तब हम ऐन का वर्णन कर सकते हैं<sub>''R''</sub>(एम) एक्शन मानचित्र के [[कर्नेल (बीजगणित)]] के रूप में {{nowrap|''R'' → End<sub>''R''</sub>(''M'')}} [[पहचान मानचित्र]] के एडजंक्शन (श्रेणी सिद्धांत) द्वारा निर्धारित किया जाता है {{nowrap|''M'' → ''M''}} [[होम-टेंसर एडजंक्शन]] के साथ।
जब R क्रमविनिमेय है और M R-मापांक है, तब हम ऐन का वर्णन कर सकते हैं<sub>''R''</sub>(एम) एक्शन मानचित्र के [[कर्नेल (बीजगणित)]] के रूप में {{nowrap|''R'' → End<sub>''R''</sub>(''M'')}} [[पहचान मानचित्र]] के एडजंक्शन (श्रेणी सिद्धांत) द्वारा निर्धारित किया जाता है {{nowrap|''M'' → ''M''}} [[होम-टेंसर एडजंक्शन]] के साथ।


अधिक सामान्यतः, मापांक का [[द्विरेखीय मानचित्र]] दिया गया है <math>F\colon M \times N \to P</math>, उपसमुच्चय का संहारक <math>S \subseteq M</math> में सभी तत्वों का समुच्चय है <math>N</math> जो सर्वनाश कर दे <math>S</math>:
अधिक सामान्यतः, मापांक का [[द्विरेखीय मानचित्र]] दिया गया है <math>F\colon M \times N \to P</math>, उपसमुच्चय का विनाशक <math>S \subseteq M</math> में सभी तत्वों का समुच्चय है <math>N</math> जो सर्वनाश कर दे <math>S</math>:
:<math>\operatorname{Ann}(S) := \{ n \in N \mid \forall s \in S: F(s,n) = 0 \} .</math>
:<math>\operatorname{Ann}(S) := \{ n \in N \mid \forall s \in S: F(s,n) = 0 \} .</math>
इसके विपरीत, दिया गया <math>T \subseteq N</math>, कोई संहारक को इसके उपसमुच्चय के रूप में परिभाषित कर सकता है <math>M</math>.
इसके विपरीत, दिया गया <math>T \subseteq N</math>, कोई विनाशक को इसके उपसमुच्चय के रूप में परिभाषित कर सकता है <math>M</math>.


संहारक उपसमुच्चय के मध्य [[गैलोइस कनेक्शन]] देता है <math>M</math> और <math>N</math>, और संबंधित [[ बंद करने वाला ऑपरेटर |बंद करने वाला ऑपरेटर]] स्पैन से अधिक शक्तिशाली है।
विनाशक उपसमुच्चय के मध्य [[गैलोइस कनेक्शन]] देता है <math>M</math> और <math>N</math>, और संबंधित [[ बंद करने वाला ऑपरेटर |बंद करने वाला ऑपरेटर]] स्पैन से अधिक शक्तिशाली है।
विशेष रूप से:
विशेष रूप से:
* विनाशक सबमापांक हैं
* विनाशक सबमापांक हैं

Revision as of 23:41, 20 July 2023

गणित में, रिंग के ऊपर मापांक (गणित) के उपसमुच्चय एस का विनाशक रिंग के तत्वों द्वारा गठित आदर्श (रिंग सिद्धांत) होता है जो एस के प्रत्येक तत्व से गुणा करने पर सदैव शून्य देता है।

अभिन्न कार्यक्षेत्र पर, मापांक जिसमें गैर-शून्य विनाशक होता है वह मरोड़ मापांक होता है, और अंतिम रूप से उत्पन्न मापांक मरोड़ मापांक में गैर-शून्य विनाशक होता है।

उपरोक्त परिभाषा गैर-अनुवांशिक रिंग की स्थिति में भी क्रियान्वित होती है, जहां बाएं मापांक का बायां-विनाशक बायां आदर्श है, और दाएं मापांक का दायां-विनाशक सही आदर्श होता है।

परिभाषाएँ

मान लीजिए कि आर रिंग (गणित) है, और मान लीजिए कि एम बायाँ आर-मापांक (गणित) है। इस प्रकार एम का गैर-रिक्त उपसमुच्चय एस चुनते है। एस का 'विनाशकारी', एन को आर(एस) के द्वारा दर्शाया गया है, अतः आर में सभी तत्वों आर का समुच्चय इस प्रकार होता है कि, एस में सभी एस के लिए, आरएस = 0 होता है।[1] इस प्रकार समुच्चय अंकन में, rs = 0 होता है।

तात्पर्य

यह आर के सभी तत्वों का समुच्चय होता है जो एस को नष्ट कर देता है (वह तत्व जिनके लिए एस मरोड़ समुच्चय होता है)। इस प्रकार परिभाषा में एसआर = 0 संशोधन के पश्चात्, सही मापांक के उपसमुच्चय का भी उपयोग किया जा सकता है।

किसी तत्व एक्स का विनाशक सामान्यतः एएनएनआर(एक्स) के अतिरिक्त एएनएनआर(एक्स) लिखा जाता है। यदि रिंग आर को संदर्भ से समझा जा सकता है, तब सबस्क्रिप्ट आर को छोड़ा जा सकता है।

चूँकि आर अपने आप में मापांक होता है, अतः एस को स्वयं आर का उपसमुच्चय माना जा सकता है, और चूँकि आर दाएँ और बाएँ दोनों आर मापांक है, इसलिए बाएँ या दाएँ पक्ष को इंगित करने के लिए अंकन को थोड़ा संशोधित किया जाता है। सामान्यतः और या यदि आवश्यक होता है, तब बाएँ और दाएँ विनाशकों को भिन्न करने के लिए कुछ समान सबस्क्रिप्ट योजना का उपयोग किया जाता है।

यदि एम, आर-मापांक होता है और एएनएनआर(एम) = 0, तब एम को 'वफादार मापांक' कहा जाता है।

गुण

यदि एस बाएँ आर मापांक एम का उपसमुच्चय होता है, तब एएनएन(एस) बाएँ आदर्श (रिंग सिद्धांत) आर की परिभाषाएँ होती है।[2]

यदि एस, एम का मापांक (गणित) उप मापांक और समरूपता है, तब एएनएनआर(एस) दोतरफा आदर्श भी होता है: (एसी)एस = ए(सीएस) = 0, जिससे कि सीएस, एस का अन्य तत्व होता है।[3]

यदि एस, एम का उपसमुच्चय है और एन, एस द्वारा उत्पन्न एम का उपमापांक होता है, तब सामान्यतः एएनएनआर(एन), एएनएनआर(एस) का उपसमुच्चय है, किन्तु वह आवश्यक रूप से समान नहीं होता हैं। यदि आर क्रमविनिमेय वलय है, तब समानता कायम रहती है।

एम को क्रिया का उपयोग करके आर/एएनएनआर(एम) के रूप में भी देखा जा सकता है संयोग से, इस प्रकार से आर मापांक को आर/आई मापांक में बनाना सदैव संभव नहीं होता है, किन्तु यदि आदर्श आई, एम के विनाशक का उपसमुच्चय है, तब यह क्रिया अच्छी प्रकार से परिभाषित होती है। इस प्रकार आर/एनआर(एम) के रूप में माना जाता है एम मापांक, स्वचालित रूप से वफादार मापांक होता है।

क्रमविनिमेय वलय के लिए

इस पूर्ण अनुभाग में, आइए क्रमविनिमेय वलय बनें और परिमित रूप से उत्पन्न मापांक (संक्षेप में, परिमित) -मापांक।

समर्थन से संबंध

याद रखें कि मापांक के समर्थन को इस प्रकार परिभाषित किया गया है

फिर, जब मापांक अंतिम रूप से उत्पन्न होता है, तब संबंध होता है

,

जहाँ उपसमुच्चय युक्त अभाज्य आदर्शों का समुच्चय होता है।[4]

संक्षिप्त त्रुटिहीन क्रम

मापांक के संक्षिप्त त्रुटिहीन अनुक्रम को देखते हुए,

समर्थन संपत्ति

[5]

साथ ही विनाशकर्ता से संबंध का तात्पर्य होता है

अधिक विशेष रूप से, हमारे मध्य संबंध होते हैं

यदि अनुक्रम विभाजित हो जाता है तब बाईं ओर की असमानता सदैव समानता होती है। वास्तव में यह मापांक के मापांक के अनैतिक प्रत्यक्ष योग के लिए क्रियान्वित होता है

भागफल मापांक और विनाशक

आदर्श दिया और जाने परिमित मापांक हो, तब संबंध है

समर्थन पर. सहारे के संबंध का प्रयोग करने से यह विनाशक के साथ संबंध बताता है[6]

उदाहरण

पूर्णांकों पर

ऊपर किसी भी अंतिम रूप से उत्पन्न मापांक को एबेलियन समुच्चयों के मौलिक प्रमेय से उसके मरोड़ वाले भाग के साथ उसके मुक्त भाग के प्रत्यक्ष योग के रूप में पूर्ण प्रकार से वर्गीकृत किया गया है। फिर, परिमित मापांक का विनाशक केवल गैर-तुच्छ होता है यदि यह पूर्ण प्रकार से मरोड़ है। जिससे कि

चूंकि एकमात्र तत्व प्रत्येक को मार रहा है। उदाहरण के लिए, का विनाशक होता है।

द्वारा उत्पन्न आदर्श होता है, वास्तव में मरोड़ मापांक का विनाशक

उनके लघुत्तम समापवर्त्य से उत्पन्न आदर्श के समरूपी है, . इससे पता चलता है कि विनाशकों को सरलता से पूर्णांकों में वर्गीकृत किया जा सकता है।

क्रमविनिमेय वलय के ऊपर R

वास्तव में, ऐसी ही गणना होती है जो क्रमविनिमेय वलय पर किसी भी परिमित मापांक के लिए की जा सकती है . याद रखें कि परिमितता की परिभाषा तात्पर्य यह है कि सही-त्रुटिहीन अनुक्रम उपस्तिथ है, जिसे प्रेजेंटेशन कहा जाता है

कहाँ में है . लिखना स्पष्ट रूप से आव्युह (गणित) के रूप में इसे देता है

इस प्रकार प्रत्यक्ष योग अपघटन है

यदि हम इनमें से प्रत्येक आदर्श को इस प्रकार लिखें

फिर आदर्श द्वारा दिए गए

विनाशक प्रस्तुत करता है.

k[x,y] से अधिक

क्रमविनिमेय वलय के ऊपर क्षेत्र के लिए (गणित) , मापांक का विनाशक

आदर्श द्वारा दिया जाता है

विनाशक आदर्शों पर श्रृंखला की स्थितियाँ

स्वरूप के आदर्शों की जाली (क्रम)। जहां S, R का उपसमुच्चय है, जब आंशिक रूप से उपसमुच्चय द्वारा क्रमबद्ध किया जाता है, तब इसमें पूर्ण जाली सम्मिलित होती है। उन छल्लों का अध्ययन करना रोचक है जिनके लिए यह जाली (या इसका दायां समकक्ष) आरोही श्रृंखला स्थिति या अवरोही श्रृंखला स्थिति को संतुष्ट करता है।

आर के बाएं विनाशक आदर्शों की जाली को निरूपित करें और आर के सही विनाशक आदर्शों की जाली . ह ज्ञात है कि ए.सी.सी. को संतुष्ट करता है यदि और केवल यदि डी.सी.सी. को संतुष्ट करता है, और सममित रूप से ए.सी.सी. को संतुष्ट करता है यदि और केवल यदि डी.सी.सी. को संतुष्ट करता है यदि किसी भी जाली में इनमें से कोई भी श्रृंखला स्थिति है, तब आर के पास इडेम्पोटेंट (रिंग सिद्धांत) का कोई अनंत ऑर्थोगोनल समुच्चय नहीं है। [7][8]

यदि R वलय है जिसके लिए ए.सी.सी. को संतुष्ट करता है और RR में मापांक का परिमित यूनिफ़ॉर्म मापांक # यूनिफ़ॉर्म आयाम होता है, तब R को लेफ्ट गोल्डी अंगूठी कहा जाता है।[8]

क्रमविनिमेय वलय के लिए श्रेणी-सैद्धांतिक विवरण

जब R क्रमविनिमेय है और M R-मापांक है, तब हम ऐन का वर्णन कर सकते हैंR(एम) एक्शन मानचित्र के कर्नेल (बीजगणित) के रूप में R → EndR(M) पहचान मानचित्र के एडजंक्शन (श्रेणी सिद्धांत) द्वारा निर्धारित किया जाता है MM होम-टेंसर एडजंक्शन के साथ।

अधिक सामान्यतः, मापांक का द्विरेखीय मानचित्र दिया गया है , उपसमुच्चय का विनाशक में सभी तत्वों का समुच्चय है जो सर्वनाश कर दे :

इसके विपरीत, दिया गया , कोई विनाशक को इसके उपसमुच्चय के रूप में परिभाषित कर सकता है .

विनाशक उपसमुच्चय के मध्य गैलोइस कनेक्शन देता है और , और संबंधित बंद करने वाला ऑपरेटर स्पैन से अधिक शक्तिशाली है। विशेष रूप से:

  • विनाशक सबमापांक हैं

महत्वपूर्ण विशेष मामला सदिश स्थान पर गैर-अपक्षयी रूप की उपस्थिति है, विशेष रूप से आंतरिक उत्पाद: फिर मानचित्र से जुड़ा विनाशक ऑर्थोगोनल पूरक कहा जाता है।

छल्लों के अन्य गुणों से संबंध

नोथेरियन अंगूठी कम्यूटेटिव रिंग आर पर मापांक एम को देखते हुए, आर का प्रमुख आदर्श जो एम के गैर-शून्य तत्व का विनाशक है, उसे एम का संबद्ध प्राइम कहा जाता है।

(यहां हम शून्य को शून्य भाजक मानते हैं।)
विशेष रूप से डीRआर के (बाएं) शून्य विभाजक का समुच्चय है जो एस = आर लेता है और आर खुद पर बाएं आर-मापांक के रूप में कार्य करता है।
  • जब R क्रमविनिमेय और नोथेरियन वलय है, तब समुच्चय आर-मापांक आर के संबंधित अभाज्यों के संघ (समुच्चय सिद्धांत) के बिल्कुल सामान्तर है।

यह भी देखें

टिप्पणियाँ

  1. Pierce (1982), p. 23.
  2. Proof: If a and b both annihilate S, then for each s in S, (a + b)s = as + bs = 0, and for any r in R, (ra)s = r(as) = r0 = 0.
  3. Pierce (1982), p. 23, Lemma b, item (i).
  4. "Lemma 10.39.5 (00L2)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-05-13.
  5. "Lemma 10.39.9 (00L3)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-05-13.
  6. "Lemma 10.39.9 (00L3)—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-05-13.
  7. Anderson & Fuller 1992, p. 322.
  8. 8.0 8.1 Lam 1999.


संदर्भ