सूचक फलन: Difference between revisions
No edit summary |
|||
Line 55: | Line 55: | ||
जब <math>|F|</math> की [[प्रमुखता]] है {{mvar|F}} यह समावेश-बहिष्करण के सिद्धांत का एक रूप है | जब <math>|F|</math> की [[प्रमुखता]] है {{mvar|F}} यह समावेश-बहिष्करण के सिद्धांत का एक रूप है | ||
जैसा कि पिछले उदाहरण | जैसा कि पिछले उदाहरण में बताया गया है कि संकेतन फलन [[साहचर्य]] में उपयोगी संकेतन उपकरण है इसमें अंकन का उपयोग अन्य स्थानों पर किया जाता है उदाहरण के लिए संभाव्यता सिद्धांत में यदि {{mvar|X}} संभाव्यता माप के साथ एक [[संभाव्यता स्थान]] है <math>\operatorname{P}</math> और {{mvar|A}} तो फिर एक [[माप (गणित)|माप गणित]] है <math>\mathbf{1}_A</math> एक यादृच्छिक चर बन जाता है जिसका अपेक्षित मान संभावना के बराबर होता है जैसे {{mvar|A}}: | ||
<math display=block>\operatorname{E}(\mathbf{1}_A)= \int_{X} \mathbf{1}_A(x)\,d\operatorname{P} = \int_{A} d\operatorname{P} = \operatorname{P}(A).</math> | <math display=block>\operatorname{E}(\mathbf{1}_A)= \int_{X} \mathbf{1}_A(x)\,d\operatorname{P} = \int_{A} d\operatorname{P} = \operatorname{P}(A).</math> | ||
इस पहचान का उपयोग मार्कोव की असमानता के सरल प्रमाण में किया जाता है | इस पहचान का उपयोग मार्कोव की असमानता के सरल प्रमाण में किया जाता है | ||
कई | कई स्थानों में जैसे कि आदेशित सिद्धांत, संकेतन फलन के व्युत्क्रम को परिभाषित किया जा सकता है इसे अधिकतर सामान्यीकृत फसन कहा जाता है प्राथमिक [[संख्या सिद्धांत]] मोबियस फलन में संकेतन व्युत्क्रम के सामान्यीकरण के रूप में शास्त्रीय पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ में दिया गया है। | ||
==माध्य, प्रसरण और सहप्रसरण== | ==माध्य, प्रसरण और सहप्रसरण== | ||
Line 70: | Line 70: | ||
==पुनरावर्तन सिद्धांत में अभिलक्षणिक कार्य | ==पुनरावर्तन सिद्धांत में अभिलक्षणिक कार्य और क्लेन का प्रतिनिधित्व कार्य== | ||
कर्ट गोडेल ने अपने 1934 के पेपर में औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर प्रतिनिधित्व | कर्ट गोडेल ने अपने 1934 के पेपर में औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर प्रतिनिधित्व फलन का वर्णन किया जिसमें तार्किक उलटा इंगित करता है <ref name=Martin-1965>{{cite book |pages=41–74 |editor-link=Martin Davis (mathematician) |editor-first=Martin |editor-last=Davis |year=1965 |title=अनिर्णीत|publisher=Raven Press Books |place=New York, NY}}</ref>{{rp|page=42}} | ||
{{blockquote}} | {{blockquote}} | ||
प्रत्येक वर्ग या संबंध आर के अनुरूप एक प्रतिनिधित्व करने वाला कार्य | प्रत्येक वर्ग या संबंध आर के अनुरूप एक प्रतिनिधित्व करने वाला कार्य होगा | ||
[[स्टीफन क्लेन]] एक | [[स्टीफन क्लेन]] एक फलन के रूप में [[आदिम पुनरावर्ती कार्य]] के संदर्भ में समान परिभाषा प्रस्तुत करते हैं {{mvar|φ}} एक विधेय का {{mvar|P}} मान ग्रहण करता है {{math|0}} यदि विधेय सत्य है और {{math|1}} यदि विधेय गलत है तो <ref name="Kleene1952">{{cite book |last=Kleene |first=Stephen |author-link=Stephen Kleene |year=1971 |orig-year=1952 |title=मेटामैथेमेटिक्स का परिचय|page=227 |publisher=Wolters-Noordhoff Publishing and North Holland Publishing Company |location=Netherlands |edition=Sixth reprint, with corrections}}</ref>उदाहरण के लिए विशिष्ट कार्यों का उत्पाद <math>\phi_1 * \phi_2 * \cdots * \phi_n = 0</math> जब भी कोई एक फलन के बराबर होता है तो {{math|0}} यह तार्किक OR: IF की भूमिका निभाता है <math>\phi_1 = 0</math> या <math>\phi_2 = 0</math> या या <math>\phi_n = 0</math> फिर उनका उत्पाद है {{math|0}}. आधुनिक पाठ को जो प्रतिनिधित्व करने वाले फलन के तार्किक व्युत्क्रम के रूप में दिखाई देता है जबकि यह प्रतिनिधित्व करने वाला फलन {{math|0}} है जब फलन {{mvar|R}} सत्य या संतुष्ट है तो कुल के तार्किक कार्यों OR, AND, और IMPLY की परिभाषा में उपयोगी भूमिका निभाता है <ref name="Kleene1952" />{{rp|228}} परिबद्ध-<ref name="Kleene1952" />{{rp|228}} और असीमित-<ref name="Kleene1952" />{{rp|279 ff}} चालक [[ऑपरेटर में|में]] और CASE फलन है।<ref name="Kleene1952" />{{rp|229}} | ||
==उपसमुच्चय समूह सिद्धांत में | ==उपसमुच्चय समूह सिद्धांत में फलन== | ||
शास्त्रीय गणित में समूह के विशिष्ट कार्य मान लेते हैं इसमें {{math|1}} सदस्य या {{math|0}} गैर-सदस्य उपसमुच्चय समूह सिद्धांत में वास्तविक इकाई अंतराल में मान लेने के लिए विशिष्ट कार्यों को सामान्यीकृत किया जाता है तथा {{closed-closed|0, 1}}या अधिक सामान्यतः कुछ [[सार्वभौमिक बीजगणित]] या [[संरचना (गणितीय तर्क)|संरचना गणितीय तर्क]] में अधिकतर कम से कम [[आंशिक रूप से ऑर्डर किया गया सेट|आंशिक रूप से आदेशित किया गया समूह]] या जाली आदेशित होना आवश्यक है ऐसे सामान्यीकृत विशिष्ट कार्यों को अधिकतर सदस्यता समारोह गणित कहा जाता है और संबंधित समूहों को उपसमुच्चय समूह कहा जाता है उपसमुच्चय समूह कई वास्तविक दुनिया [[विधेय (गणित)|विधेय गणित]] जैसे लंबा, गर्म आदि में देखी गई सदस्यता की घात में क्रमिक परिवर्तन का प्राप्त बनाते हैं। | शास्त्रीय गणित में समूह के विशिष्ट कार्य मान लेते हैं इसमें {{math|1}} सदस्य या {{math|0}} गैर-सदस्य उपसमुच्चय समूह सिद्धांत में वास्तविक इकाई अंतराल में मान लेने के लिए विशिष्ट कार्यों को सामान्यीकृत किया जाता है तथा {{closed-closed|0, 1}}या अधिक सामान्यतः कुछ [[सार्वभौमिक बीजगणित]] या [[संरचना (गणितीय तर्क)|संरचना गणितीय तर्क]] में अधिकतर कम से कम [[आंशिक रूप से ऑर्डर किया गया सेट|आंशिक रूप से आदेशित किया गया समूह]] या जाली आदेशित होना आवश्यक है ऐसे सामान्यीकृत विशिष्ट कार्यों को अधिकतर सदस्यता समारोह गणित कहा जाता है और संबंधित समूहों को उपसमुच्चय समूह कहा जाता है उपसमुच्चय समूह कई वास्तविक दुनिया [[विधेय (गणित)|विधेय गणित]] जैसे लंबा, गर्म आदि में देखी गई सदस्यता की घात में क्रमिक परिवर्तन का प्राप्त बनाते हैं। | ||
Revision as of 07:26, 17 July 2023
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (December 2009) (Learn how and when to remove this template message) |
गणित में एक संकेतन फलन या किसी समूह के उपसमुच्चय का एक ऐसा फलन होता है जो उपसमुच्चय के तत्वों को आलेखित करता है और अन्य सभी तत्वों को शून्य पर मानचित्र करता है अर्थात यदि A किसी समुच्चय का उपसमुच्चय है Xतब अगर और जहॉं सूचक फलन के लिए एक सामान्य संकेतन व अन्य सामान्य संकेतन और है
इसका सूचक कार्य A से संबंधित संपत्ति का संकेतक A है जो इस प्रकार है-
उदाहरण के लिए डिरिचलेट फलन वास्तविक संख्याओं के उपसमुच्चय के रूप में तर्कसंगत संख्याओं का संकेतक फलन है।
परिभाषा
किसी उपसमुच्चय का सूचक कार्य A एक समूह का X एक समारोह है
संकेतन में शब्दावली
संकेतन इसका उपयोग उत्तल विश्लेषण में विशेष फलन विश्लेषण को दर्शाने के लिए किया जाता है जिसे संकेतन फलन की मानक परिभाषा के गुणक व्युत्क्रम का उपयोग करके परिभाषित किया जाता है।
सांख्यिकी में एक संबंधित अवधारणा एक वास्तविक परिवर्तन शील सांख्यिकी की है इसे वास्तविक परिवर्तन शील के साथ भ्रमित नहीं किया जाना चाहिए क्योंकि यह शब्द अधिकतर गणित में उपयोग किया जाता है जिसे मुक्त चर और बाध्य चर भी कहा जाता है
विशेषत फलन संभावना सिद्धांत शब्द का असंबंधित अर्थ है इस कारण से संभाव्यवादियों की सूची यहां परिभाषित है जो फलन के लिए संकेतन शब्द का उपयोग करती है जबकि अन्य क्षेत्रों में गणितज्ञ फलन शब्द का उपयोग करने की अधिक संभावना रखते हैं [lower-alpha 1] उस फसन का वर्णन करने के लिए जो किसी समूह में सदस्यता को इंगित करता है
धुंधला तर्क और अनेक-मूल्यवान तर्क आधुनिक मूल्यवान तर्क में विधेय संभाव्यता वितरण के विशिष्ट कार्य संभावना सिद्धांत हैं अर्थात् विधेय के सत्य/गलत मूल्यांकन को सत्य की घात के रूप में व्याख्या की गई मात्रा से बदल दिया जाता है।
बुनियादी गुण
किसी उपसमुच्चय का सूचक या चारित्रिक कार्य गणित A कुछ समूह का X मानचित्र गणित के तत्व X किसी फलन की सीमा तक है
यह मानचित्रण केवल तभी धनात्मक होता है जब A एक गैर-रिक्त उचित उपसमुच्चय हो तथा X. अगर तब इसी तरह के तर्क से यदि तब निम्नलिखित बिंदु गुणन का प्रतिनिधित्व करता है तो आदि + और − जोड़ और घटाव का प्रतिनिधित्व करते हैं तथा इसमें औरक्रमशः प्रतिच्छेदन और मिलन बिन्दु हैं
अगर और के दो उपसमुच्चय हैं तब
जैसा कि पिछले उदाहरण में बताया गया है कि संकेतन फलन साहचर्य में उपयोगी संकेतन उपकरण है इसमें अंकन का उपयोग अन्य स्थानों पर किया जाता है उदाहरण के लिए संभाव्यता सिद्धांत में यदि X संभाव्यता माप के साथ एक संभाव्यता स्थान है और A तो फिर एक माप गणित है एक यादृच्छिक चर बन जाता है जिसका अपेक्षित मान संभावना के बराबर होता है जैसे A:
कई स्थानों में जैसे कि आदेशित सिद्धांत, संकेतन फलन के व्युत्क्रम को परिभाषित किया जा सकता है इसे अधिकतर सामान्यीकृत फसन कहा जाता है प्राथमिक संख्या सिद्धांत मोबियस फलन में संकेतन व्युत्क्रम के सामान्यीकरण के रूप में शास्त्रीय पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ में दिया गया है।
माध्य, प्रसरण और सहप्रसरण
एक संभाव्यता स्थान दिया गया है साथ सूचक यादृच्छिक चर द्वारा परिभाषित किया गया है अगर अन्यथा
- अर्थ
- मौलिक पुल भी कहा जाता है
- विचरण
- सहप्रसरण
पुनरावर्तन सिद्धांत में अभिलक्षणिक कार्य और क्लेन का प्रतिनिधित्व कार्य
कर्ट गोडेल ने अपने 1934 के पेपर में औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर प्रतिनिधित्व फलन का वर्णन किया जिसमें तार्किक उलटा इंगित करता है [1]: 42
Error: No text given for quotation (or equals sign used in the actual argument to an unnamed parameter)
प्रत्येक वर्ग या संबंध आर के अनुरूप एक प्रतिनिधित्व करने वाला कार्य होगा
स्टीफन क्लेन एक फलन के रूप में आदिम पुनरावर्ती कार्य के संदर्भ में समान परिभाषा प्रस्तुत करते हैं φ एक विधेय का P मान ग्रहण करता है 0 यदि विधेय सत्य है और 1 यदि विधेय गलत है तो [2]उदाहरण के लिए विशिष्ट कार्यों का उत्पाद जब भी कोई एक फलन के बराबर होता है तो 0 यह तार्किक OR: IF की भूमिका निभाता है या या या फिर उनका उत्पाद है 0. आधुनिक पाठ को जो प्रतिनिधित्व करने वाले फलन के तार्किक व्युत्क्रम के रूप में दिखाई देता है जबकि यह प्रतिनिधित्व करने वाला फलन 0 है जब फलन R सत्य या संतुष्ट है तो कुल के तार्किक कार्यों OR, AND, और IMPLY की परिभाषा में उपयोगी भूमिका निभाता है [2]: 228 परिबद्ध-[2]: 228 और असीमित-[2]: 279 ff चालक में और CASE फलन है।[2]: 229
उपसमुच्चय समूह सिद्धांत में फलन
शास्त्रीय गणित में समूह के विशिष्ट कार्य मान लेते हैं इसमें 1 सदस्य या 0 गैर-सदस्य उपसमुच्चय समूह सिद्धांत में वास्तविक इकाई अंतराल में मान लेने के लिए विशिष्ट कार्यों को सामान्यीकृत किया जाता है तथा [0, 1]या अधिक सामान्यतः कुछ सार्वभौमिक बीजगणित या संरचना गणितीय तर्क में अधिकतर कम से कम आंशिक रूप से आदेशित किया गया समूह या जाली आदेशित होना आवश्यक है ऐसे सामान्यीकृत विशिष्ट कार्यों को अधिकतर सदस्यता समारोह गणित कहा जाता है और संबंधित समूहों को उपसमुच्चय समूह कहा जाता है उपसमुच्चय समूह कई वास्तविक दुनिया विधेय गणित जैसे लंबा, गर्म आदि में देखी गई सदस्यता की घात में क्रमिक परिवर्तन का प्राप्त बनाते हैं।
सूचक समारोह के व्युत्पन्न
एक विशेष संकेतक समारोह हेविसाइड कदम समारोह है
यह भी देखें
- डिराक माप।
- सूचक का रंग।
- डिराक डेल्टा।
- विस्तार विधेय तर्क।
- मुक्त चर और बाध्य चर।
- हेविसाइड कदम समारोह।
- पहचान समारोह।
- इवरसन कोष्ठक।
- डेल्टा एक समारोह पहचान के लिए एक संकेतक के रूप में देखा जा सकता है।
- मैकाले कोष्ठक।
- बहुरंग समूह।
- स। दस्यता समारोह
- सरल कार्य।
- वास्तविक परिवर्तन सांख्यिकी।
- सांख्यिकीय वर्गीकरण।
- शून्य-एक हानि समारोह।
टिप्पणियाँ
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedχαρακτήρ
संदर्भ
- ↑ Davis, Martin, ed. (1965). अनिर्णीत. New York, NY: Raven Press Books. pp. 41–74.
- ↑ 2.0 2.1 2.2 2.3 2.4 Kleene, Stephen (1971) [1952]. मेटामैथेमेटिक्स का परिचय (Sixth reprint, with corrections ed.). Netherlands: Wolters-Noordhoff Publishing and North Holland Publishing Company. p. 227.
- ↑ Lange, Rutger-Jan (2012). "संभावित सिद्धांत, पथ इंटीग्रल और संकेतक का लाप्लासियन". Journal of High Energy Physics. 2012 (11): 29–30. arXiv:1302.0864. Bibcode:2012JHEP...11..032L. doi:10.1007/JHEP11(2012)032. S2CID 56188533.
स्रोत
- Folland, G.B. (1999). वास्तविक विश्लेषण: आधुनिक तकनीकें और उनके अनुप्रयोग (Second ed.). John Wiley & Sons, Inc. ISBN 978-0-471-31716-6.
- Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). "Section 5.2: Indicator random variables". एल्गोरिदम का परिचय (Second ed.). MIT Press and McGraw-Hill. pp. 94–99. ISBN 978-0-262-03293-3.
- Davis, Martin, ed. (1965). अनिर्णीत. New York, NY: Raven Press Books.
- Kleene, Stephen (1971) [1952]. मेटामैथेमेटिक्स का परिचय (Sixth reprint, with corrections ed.). Netherlands: Wolters-Noordhoff Publishing and North Holland Publishing Company.
- Boolos, George; Burgess, John P.; Jeffrey, Richard C. (2002). कम्प्यूटेबिलिटी और तर्क. Cambridge UK: Cambridge University Press. ISBN 978-0-521-00758-0.
- Lua error in Module:Cite_Q at line 435: attempt to index field '?' (a nil value).
- Goguen, Joseph (1967). "एल-फजी सेट". Journal of Mathematical Analysis and Applications. 18 (1): 145–174. doi:10.1016/0022-247X(67)90189-8. hdl:10338.dmlcz/103980.
श्रेणी:माप सिद्धांत श्रेणी:अभिन्न कलन श्रेणी:वास्तविक विश्लेषण श्रेणी:गणितीय तर्क श्रेणी:सेट सिद्धांत में बुनियादी अवधारणाएँ श्रेणी:संभावना सिद्धांत श्रेणी:कार्यों के प्रकार