विविधताओं की गणना में प्रत्यक्ष विधि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Method for constructing existence proofs and calculating solutions in variational calculus}}
{{short description|Method for constructing existence proofs and calculating solutions in variational calculus}}
{{calculus|expanded=specialized}}
{{calculus|expanded=specialized}}
गणित में, विविधताओं की गणना में प्रत्यक्ष विधि किसी दिए गए [[कार्यात्मक (गणित)]] के लिए न्यूनतम के अस्तित्व का प्रमाण बनाने की सामान्य विधि है,<ref>Dacorogna, pp. 1&ndash;43.</ref> 1900 के आसपास स्टैनिस्लाव ज़रेम्बा (गणितज्ञ) | स्टैनिस्लाव ज़रेम्बा और [[डेविड हिल्बर्ट]] द्वारा पेश किया गया। यह विधि [[कार्यात्मक विश्लेषण]] और [[टोपोलॉजी]] के तरीकों पर निर्भर करती है। किसी समाधान के अस्तित्व को साबित करने के लिए उपयोग किए जाने के साथ-साथ, वांछित सटीकता के समाधान की गणना करने के लिए प्रत्यक्ष तरीकों का उपयोग किया जा सकता है।<ref>{{cite book |title=विविधताओं की गणना|author=I. M. Gelfand |author2=S. V. Fomin |year=1991 |publisher=Dover Publications |isbn=978-0-486-41448-5}}</ref>




गणित में, '''विविधताओं की गणना में प्रत्यक्ष विधि''' किसी दिए गए फलन [[कार्यात्मक (गणित)|(गणितीय)]] के लिए मिनिमाइज़र के अस्तित्व का प्रमाण बनाने की एक सामान्य विधि है,<ref>Dacorogna, pp. 1&ndash;43.</ref> जिसे 1900 के समीप स्टैनिस्लाव ज़रेम्बा और [[डेविड हिल्बर्ट]] द्वारा प्रस्तुत किया गया था। और यह विधि [[कार्यात्मक विश्लेषण]] और [[टोपोलॉजी]] के विधियों पर निर्भर करती है। किसी समाधान के अस्तित्व को प्रमाणित करने के लिए उपयोग किए जाने के साथ-साथ, वांछित स्पष्टतः के समाधान की गणना करने के लिए प्रत्यक्ष विधियों का उपयोग किया जा सकता है।<ref>{{cite book |title=विविधताओं की गणना|author=I. M. Gelfand |author2=S. V. Fomin |year=1991 |publisher=Dover Publications |isbn=978-0-486-41448-5}}</ref>
== विधि ==
== विधि ==
विविधताओं की गणना कार्यात्मकताओं से संबंधित है <math>J:V \to \bar{\mathbb{R}}</math>, कहाँ <math>V</math> कुछ [[कार्य स्थान]] है और <math>\bar{\mathbb{R}} = \mathbb{R} \cup \{\infty\}</math>. विषय का मुख्य हित ऐसे कार्यों, अर्थात् फ़ंक्शंस के लिए मिनिमाइज़र ढूंढना है <math>v \in V</math> ऐसा है कि:<math>J(v) \leq J(u)\forall u \in V. </math>
इस प्रकार से विविधताओं की कैलकुलस कार्यात्मकताओं फलन <math>J:V \to \bar{\mathbb{R}}</math> से संबंधित है जहां <math>V</math> कुछ [[कार्य स्थान|फलन समिष्ट]] है और <math>\bar{\mathbb{R}} = \mathbb{R} \cup \{\infty\}                                                                                                                                                     </math> विषय का मुख्य हित ऐसे फलन के लिए मिनिमाइज़र रूप से दर्शाना है, अर्थात फलन <math>v \in V</math> जैसे कि: <math>J(v) \leq J(u)\forall u \in V.\hat{a}                                                                                                                                                                    </math>
 
 
 


किसी फ़ंक्शन के मिनिमाइज़र होने के लिए आवश्यक शर्तें प्राप्त करने के लिए मानक उपकरण यूलर-लैग्रेंज समीकरण है। लेकिन इन्हें संतुष्ट करने वाले कार्यों के बीच मिनिमाइज़र की तलाश करने से गलत निष्कर्ष निकल सकते हैं यदि मिनिमाइज़र का अस्तित्व पहले से स्थापित नहीं है।
किसी फलन के मिनिमाइज़र होने के लिए आवश्यक नियम प्राप्त करने के लिए मानक उपकरण यूलर-लैग्रेंज समीकरण है। किन्तु इन्हें संतुष्ट करने वाले फलन के मध्य मिनिमाइज़र की खोज करने से असत्य निष्कर्ष निकल सकते हैं यदि मिनिमाइज़र का अस्तित्व पूर्व से स्थापित नहीं है।


कार्यात्मक <math>J</math> मिनिमाइज़र रखने के लिए इसे नीचे से बांधा जाना चाहिए। इसका मतलब यह है
इस प्रकार से कार्यात्मक <math>J</math> मिनिमाइज़र रखने के लिए इसे नीचे से सीमाबद्ध किया जाना चाहिए। इसका तथ्य यह है


:<math>\inf\{J(u)|u\in V\} > -\infty.\,</math>
:<math>\inf\{J(u)|u\in V\} > -\infty.\,</math>
यह स्थिति यह जानने के लिए पर्याप्त नहीं है कि मिनिमाइज़र मौजूद है, लेकिन यह न्यूनतम अनुक्रम के अस्तित्व को दर्शाता है, अर्थात अनुक्रम <math>(u_n)</math> में <math>V</math> ऐसा है कि <math>J(u_n) \to \inf\{J(u)|u\in V\}.</math>
चूंकि स्थिति को जानने के लिए पर्याप्त नहीं है कि मिनिमाइज़र उपस्तिथ है, किन्तु यह न्यूनतम अनुक्रम के अस्तित्व को दर्शाता है, अर्थात, <math>V</math> में अनुक्रम <math>(u_n)</math> जैसे कि <math>J(u_n) \to \inf\{J(u)|u\in V\}.                                                                                                                                                                               </math>


प्रत्यक्ष विधि को निम्नलिखित चरणों में विभाजित किया जा सकता है
इस प्रकार से प्रत्यक्ष विधि को निम्नलिखित चरणों में विभाजित किया जा सकता है
# न्यूनतम अनुक्रम लें <math>(u_n)</math> के लिए <math>J</math>.
#<math>J</math> के लिए न्यूनतम अनुक्रम <math>(u_n)</math> मान लीजिये
# बताते हैं कि <math>(u_n)</math> कुछ अनुवर्ती स्वीकार करता है <math>(u_{n_k})</math>, जो में परिवर्तित हो जाता है <math>u_0\in V</math> टोपोलॉजी के संबंध में <math>\tau</math> पर <math>V</math>.
#दिखाएँ गए <math>(u_n)</math> कुछ अनुवर्ती (u_{n_k}) को स्वीकार करता है, जो की <math>V</math> पर टोपोलॉजी <math>\tau</math> के संबंध में <math>u_0\in V</math> में परिवर्तित होता है।
# बताते हैं कि <math>J</math> टोपोलॉजी के संबंध में क्रमिक रूप से [[निचला अर्ध-निरंतर]] है <math>\tau</math>.
#मान लीजिये टोपोलॉजी <math>\tau</math> के संबंध में <math>J</math> क्रमिक रूप से [[निचला अर्ध-निरंतर]] है  .


यह देखने के लिए कि यह मिनिमाइज़र के अस्तित्व को दर्शाता है, क्रमिक रूप से निम्न-अर्ध-निरंतर कार्यों के निम्नलिखित लक्षण वर्णन पर विचार करें।
इस प्रकार से यह देखने के लिए मिनिमाइज़र के अस्तित्व को दर्शाता है, अतः क्रमिक रूप से निम्न-अर्ध-निरंतर कार्यों के निम्नलिखित लक्षण वर्णन पर विचार करें।
:कार्यक्रम <math>J</math> यदि क्रमिक रूप से निम्न-अर्धनिरंतर है
:फलन <math>J</math> यदि क्रमिक रूप से निम्न-अर्धनिरंतर है
::<math>\liminf_{n\to\infty} J(u_n) \geq J(u_0)</math> किसी भी अभिसरण अनुक्रम के लिए <math>u_n \to u_0</math> में <math>V</math>.
::मान लीजिये <math>V</math> में किसी भी अभिसरण अनुक्रम <math>u_n \to u_0</math> के लिए <math>\liminf_{n\to\infty} J(u_n) \geq J(u_0)</math> से निष्कर्ष निकलता है


से निष्कर्ष निकलता है
इस प्रकार से निष्कर्ष निकलता है:
:<math>\inf\{J(u)|u\in V\} = \lim_{n\to\infty} J(u_n) = \lim_{k\to \infty} J(u_{n_k}) \geq J(u_0) \geq \inf\{J(u)|u\in V\}</math>,
:<math>\inf\{J(u)|u\in V\} = \lim_{n\to\infty} J(u_n) = \lim_{k\to \infty} J(u_{n_k}) \geq J(u_0) \geq \inf\{J(u)|u\in V\}</math>,
दूसरे शब्दों में
:दूसरे शब्दों में जहाँ:
 
:<math>J(u_0) = \inf\{J(u)|u\in V\}</math>.
:<math>J(u_0) = \inf\{J(u)|u\in V\}</math>.


== विवरण ==
== विवरण ==


=== बनच रिक्त स्थान ===
=== बनच समष्टि ===
स्थान खाली होने पर प्रत्यक्ष विधि को अक्सर सफलता के साथ लागू किया जा सकता है <math>V</math> अलग करने योग्य स्पेस [[ प्रतिवर्ती स्थान |प्रतिवर्ती स्थान]] [[ बनच स्थान |बनच स्थान]] का उपसमुच्चय है <math>W</math>. इस मामले में बानाच-अलाओग्लू प्रमेय#अनुक्रमिक बानाच-अलाओग्लू प्रमेय|अनुक्रमिक बानाच-अलाओग्लू प्रमेय का तात्पर्य है कि कोई भी परिबद्ध अनुक्रम <math>(u_n)</math> में <math>V</math> अनुवर्ती है जो कुछ में परिवर्तित हो जाता है <math>u_0</math> में <math>W</math> [[कमजोर टोपोलॉजी]] के संबंध में. अगर <math>V</math> को क्रमिक रूप से बंद कर दिया गया है <math>W</math>, ताकि <math>u_0</math> में है <math>V</math>, प्रत्यक्ष विधि को किसी कार्यात्मक पर लागू किया जा सकता है <math>J:V\to\bar{\mathbb{R}}</math> दिखा कर
इस प्रकार से प्रत्यक्ष विधि को प्रायः सफलता के साथ प्रयुक्त किया जा सकता है जब समष्टि <math>V</math> एक अलग करने योग्य [[ प्रतिवर्ती स्थान |वियोज्य रिफ्लेक्सिव]] [[ बनच स्थान |बनच]] समष्टि <math>W</math> का एक उपसमूह होता है। इस स्तिथियों में अनुक्रमिक बनच-अलाओग्लू प्रमेय का तात्पर्य है कि <math>V</math> में किसी भी बंधे हुए अनुक्रम <math>(u_n)</math> का एक परिणाम होता है जो <math>W</math> में कुछ <math>u_0</math> में परिवर्तित हो जाता है। और [[कमजोर टोपोलॉजी|अशक्त टोपोलॉजी]] के संबंध में. यदि <math>V</math>, को <math>W</math>, में क्रमिक रूप से संवृत किया गया है, जिससे <math>u_0</math> <math>V</math> में हो, तब प्रत्यक्ष विधि को कार्यात्मक <math>J:V\to\bar{\mathbb{R}}</math> पर दिखाकर प्रयुक्त किया जा सकता है
# <math>J</math> नीचे से घिरा हुआ है,
 
# के लिए कोई भी न्यूनतम क्रम <math>J</math> घिरा हुआ है, और
# <math>J</math> नीचे से घिरा हुआ है,  
# <math>J</math> कमजोर रूप से क्रमिक रूप से कम अर्ध-निरंतर है, यानी, किसी भी कमजोर अभिसरण अनुक्रम के लिए <math>u_n \to u_0</math> यह उसे धारण करता है <math>\liminf_{n\to\infty} J(u_n) \geq J(u_0)</math>.
#<math>J</math> के लिए कोई भी न्यूनतम अनुक्रम परिबद्ध है,
दूसरा भाग आमतौर पर उसे दिखाकर पूरा किया जाता है <math>J</math> कुछ विकास स्थितियों को स्वीकार करता है। उदाहरण है
# <math>J</math> अशक्त रूप से क्रमिक रूप से कम अर्ध-निरंतर है, अर्थात , किसी भी अशक्त अभिसरण अनुक्रम <math>u_n \to u_0</math> के लिए यह <math>\liminf_{n\to\infty} J(u_n) \geq J(u_0)</math> रखता है.
दूसरा भाग सामान्यतः यह दिखाकर पूरा किया जाता है कि <math>J</math> कुछ विकास की स्थिति को स्वीकार करता है। इस प्रकार से उदाहरण है
:<math>J(x) \geq \alpha \lVert x \rVert^q - \beta</math> कुछ के लिए <math>\alpha > 0</math>, <math>q \geq 1</math> और <math>\beta \geq 0</math>.
:<math>J(x) \geq \alpha \lVert x \rVert^q - \beta</math> कुछ के लिए <math>\alpha > 0</math>, <math>q \geq 1</math> और <math>\beta \geq 0</math>.
इस संपत्ति के साथ कार्यात्मक को कभी-कभी जबरदस्ती कहा जाता है। प्रत्यक्ष विधि लागू करते समय अनुक्रमिक निचली अर्ध-निरंतरता दिखाना आमतौर पर सबसे कठिन हिस्सा होता है। कार्यात्मकताओं के सामान्य वर्ग के लिए कुछ प्रमेयों के लिए नीचे देखें।
इस गुण के साथ एक कार्यात्मक को कभी-कभी प्रमुख्य कहा जाता है। प्रत्यक्ष विधि प्रयुक्त करते समय अनुक्रमिक निचली अर्ध-निरंतरता दिखाना सामान्यतः अधिक समष्टि भाग होता है। कार्यात्मकताओं के सामान्य वर्ग के लिए कुछ प्रमेयों के लिए नीचे देखें


=== सोबोलेव रिक्त स्थान ===
=== सोबोलेव समष्टि ===
विविधताओं की गणना में विशिष्ट कार्यात्मकता प्रपत्र का अभिन्न अंग है
इस प्रकार से विविधताओं की गणना में विशिष्ट कार्यात्मकता प्रपत्र का अभिन्न अंग है
:<math>J(u) = \int_\Omega F(x, u(x), \nabla u(x))dx</math>
:<math>J(u) = \int_\Omega F(x, u(x), \nabla u(x))dx</math>
कहाँ <math>\Omega</math> का उपसमुच्चय है <math>\mathbb{R}^n</math> और <math>F</math> पर वास्तविक-मूल्यवान कार्य है <math>\Omega \times \mathbb{R}^m \times \mathbb{R}^{mn}</math>. का तर्क <math>J</math> भिन्न कार्य है <math>u:\Omega \to \mathbb{R}^m</math>, और इसका [[जैकोबियन मैट्रिक्स और निर्धारक]] <math>\nabla u(x)</math> ए से पहचाना जाता है <math>mn</math>-वेक्टर।
जहाँ <math>\Omega</math> का उपसमुच्चय <math>\mathbb{R}^n</math> है और <math>F</math> पर वास्तविक-मूल्यवान फलन <math>\Omega \times \mathbb{R}^m \times \mathbb{R}^{mn}</math> है. <math>J</math> का तर्क भिन्न फलन <math>u:\Omega \to \mathbb{R}^m</math> है , और इसका [[जैकोबियन मैट्रिक्स और निर्धारक|जैकोबियन <math>\nabla u(x)</math>]] को <math>mn</math>-सदिश से पहचाना जाता है।


यूलर-लैग्रेंज समीकरण प्राप्त करते समय, सामान्य दृष्टिकोण मान लेना है <math>\Omega</math> <math>C^2</math> सीमा और चलो परिभाषा के क्षेत्र के लिए <math>J</math> होना <math>C^2(\Omega, \mathbb{R}^m)</math>. सर्वोच्च मानदंड से संपन्न होने पर यह स्थान बैनाच स्थान है, लेकिन यह प्रतिवर्ती नहीं है। प्रत्यक्ष विधि को लागू करते समय, कार्यात्मकता को आमतौर पर [[सोबोलेव स्थान]] पर परिभाषित किया जाता है <math>W^{1,p}(\Omega, \mathbb{R}^m)</math> साथ <math>p > 1</math>, जो रिफ्लेक्सिव बानाच स्पेस है। के व्युत्पन्न <math>u</math> के लिए सूत्र में <math>J</math> फिर इसे [[कमजोर व्युत्पन्न]] के रूप में लिया जाना चाहिए।
यूलर-लैग्रेंज समीकरण प्राप्त करते समय, सामान्य दृष्टिकोण यह मान लेना है कि <math>\Omega</math> के पास <math>C^2</math> सीमा है और <math>J</math> के लिए परिभाषा का क्षेत्र <math>C^2(\Omega, \mathbb{R}^m)</math> है। सर्वोच्च मानदंड से संपन्न होने पर यह स्थान एक बनच समष्टि है, किन्तु यह प्रतिवर्ती नहीं है। प्रत्यक्ष विधि को प्रयुक्त करते समय, कार्यात्मकता को सामान्यतः [[सोबोलेव स्थान|सोबोलेव]] [[सोबोलेव स्थान|समष्टि]] <math>W^{1,p}(\Omega, \mathbb{R}^m)</math> पर <math>p > 1</math>, के साथ परिभाषित किया जाता है जो एक रिफ्लेक्सिव बानाच समष्टि है। <math>J</math> के सूत्र में <math>u</math> के व्युत्पन्न को तब [[कमजोर व्युत्पन्न|अशक्त व्युत्पन्न]] के रूप में लिया जाना चाहिए।


अन्य सामान्य फ़ंक्शन स्पेस है <math>W^{1,p}_g(\Omega, \mathbb{R}^m)</math> जो कि एफ़िन उप-स्थान है <math>W^{1,p}(\Omega, \mathbb{R}^m)</math> उन फ़ंक्शंस का जिनका [[ट्रेस ऑपरेटर]] कुछ निश्चित फ़ंक्शन है <math>g</math> ट्रेस ऑपरेटर की छवि में. यह प्रतिबंध फ़ंक्शनल के मिनिमाइज़र खोजने की अनुमति देता है <math>J</math> जो कुछ वांछित सीमा शर्तों को पूरा करता है। यह डिरिचलेट सीमा शर्तों के साथ यूलर-लैग्रेंज समीकरण को हल करने के समान है। इसके अतिरिक्त ऐसी सेटिंग्स भी हैं जिनमें मिनिमाइज़र हैं <math>W^{1,p}_g(\Omega, \mathbb{R}^m)</math> लेकिन अंदर नहीं <math>W^{1,p}(\Omega, \mathbb{R}^m)</math>.
एक अन्य सामान्य फलन समिष्ट <math>W^{1,p}_g(\Omega, \mathbb{R}^m)</math> है जो फलन के <math>W^{1,p}(\Omega, \mathbb{R}^m)</math> का एफ़िन सब समिष्ट है जिसका ट्रेस [[ट्रेस ऑपरेटर]]की छवि में कुछ निश्चित फलन <math>g</math> है। यह प्रतिबंध कार्यात्मक <math>J</math> के न्यूनतमकर्ताओं को खोजने की अनुमति देता है जो कुछ वांछित सीमा नियम को पूर्ण करते हैं। यह डिरिचलेट सीमा नियम के साथ यूलर-लैग्रेंज समीकरण को हल करने के समान है। इसके अतिरिक्त ऐसी पतिस्थिति हैं जिनमें <math>W^{1,p}_g(\Omega, \mathbb{R}^m)</math> में मिनिमाइज़र हैं किन्तु <math>W^{1,p}(\Omega, \mathbb{R}^m)</math> में नहीं हैं। सीमा पर मूल्यों को सीमित करते हुए न्यूनतमकरण समस्याओं को हल करने के विचार को फलन समिष्ट को देखकर और अधिक सामान्यीकृत किया जा सकता है जहां ट्रेस केवल सीमा के एक भाग पर तय किया गया है, और अन्य पर अनेैतिक रूप से हो सकता है.


सीमा पर मूल्यों को सीमित करते हुए न्यूनतमकरण समस्याओं को हल करने के विचार को फ़ंक्शन रिक्त स्थान को देखकर और अधिक सामान्यीकृत किया जा सकता है जहां ट्रेस केवल सीमा के हिस्से पर तय किया गया है, और बाकी पर मनमाना हो सकता है।
सीमा पर मूल्यों को सीमित करते हुए न्यूनतमकरण समस्याओं को हल करने के विचार को फलन समष्टि को देखकर और अधिक सामान्यीकृत किया जा सकता है जहां ट्रेस केवल सीमा के भाग पर तय किया गया है, और अनेैतिक रूप से हो सकता है।


अगला भाग उपरोक्त प्रकार के कार्यों की कमजोर अनुक्रमिक निचली अर्ध-निरंतरता के संबंध में प्रमेय प्रस्तुत करता है।
इस प्रकार से अगला भाग उपरोक्त प्रकार के फलन की अशक्त अनुक्रमिक निचली अर्ध-निरंतरता के संबंध में प्रमेय प्रस्तुत करता है।


== अभिन्नों की अनुक्रमिक निचली अर्ध-निरंतरता ==
== अभिन्नों की अनुक्रमिक निचली अर्ध-निरंतरता ==
विभिन्नताओं के कलन में जितने प्रकार्य हैं, वे उसी प्रकार के हैं
विभिन्नताओं के कलन में जितने प्रकार्य हैं, वे उसी प्रकार के हैं
:<math>J(u) = \int_\Omega F(x, u(x), \nabla u(x))dx</math>,
:<math>J(u) = \int_\Omega F(x, u(x), \nabla u(x))dx</math>,
कहाँ <math>\Omega \subseteq \mathbb{R}^n</math> खुला है, कार्यों को दर्शाने वाले प्रमेय <math>F</math> जिसके लिए <math>J</math> में कमजोर रूप से क्रमिक रूप से निचला-अर्धनिरंतर है <math>W^{1,p}(\Omega, \mathbb{R}^m)</math> साथ <math>p \geq 1</math> बहुत महत्व है.
जहां <math>\Omega \subseteq \mathbb{R}^n</math> विवृत है, फलन <math>F</math> को दर्शाने करने वाले प्रमेय जिसके लिए <math>J</math>, <math>p \geq 1</math> के साथ <math>W^{1,p}(\Omega, \mathbb{R}^m)</math> में अशक्त रूप से क्रमिक रूप से निम्न-अर्धनिरंतर है, अधिक महत्वपूर्ण है।


सामान्य तौर पर किसी के पास निम्नलिखित होते हैं:<ref>Dacorogna, pp. 74&ndash;79.</ref>
सामान्य किसी के पास निम्नलिखित होते हैं:<ref>Dacorogna, pp. 74&ndash;79.</ref>
:ये मान लीजिए <math>F</math> फ़ंक्शन है जिसमें निम्नलिखित गुण हैं:
:मान लीजिए <math>F</math> फलन है जिसमें निम्नलिखित गुण हैं:
:# कार्यक्रम <math>F</math> कैराथिओडोरी फ़ंक्शन है।
:# फलन <math>F</math> कैराथिओडोरी फलन है।
:# वहां है <math>a\in L^q(\Omega, \mathbb{R}^{mn})</math> होल्डर संयुग्म के साथ <math>q = \tfrac{p}{p-1}</math> और <math>b \in L^1(\Omega)</math> इस प्रकार कि निम्नलिखित असमानता लगभग हर के लिए सत्य है <math>x \in \Omega</math> और हर <math>(y, A) \in \mathbb{R}^m \times \mathbb{R}^{mn}</math>: <math>F(x, y, A) \geq \langle a(x) ,  A \rangle + b(x)</math>. यहाँ, <math>\langle a(x) ,  A \rangle</math> फ्रोबेनियस के आंतरिक उत्पाद को दर्शाता है <math>a(x)</math> और <math>A</math> में <math>\mathbb{R}^{mn}</math>).
:# होल्डर संयुग्मित <math>q = \tfrac{p}{p-1}</math> और <math>b \in L^1(\Omega)</math> के साथ <math>a\in L^q(\Omega, \mathbb{R}^{mn})</math> इस प्रकार उपस्तिथ है कि निम्नलिखित असमानता लगभग सभी <math>x \in \Omega</math> और <math>(y, A) \in \mathbb{R}^m \times \mathbb{R}^{mn}</math> के लिए सही है, जहाँ <math>F(x, y, A) \geq \langle a(x) ,  A \rangle + b(x)</math>, <math>A</math> में <math>\mathbb{R}^{mn}</math> <math>\langle a(x) ,  A \rangle</math> और <math>a(x)</math> के फ्रोबेनियस आंतरिक उत्पाद को दर्शाता है।
:यदि फ़ंक्शन <math>A \mapsto F(x, y, A)</math> लगभग हर के लिए उत्तल है <math>x \in \Omega</math> और हर <math>y\in \mathbb{R}^m</math>,
:यदि फलन <math>A \mapsto F(x, y, A)</math> लगभग सभी के लिए उत्तल है <math>x \in \Omega</math> और हर <math>y\in \mathbb{R}^m</math>,
:तब <math>J</math> क्रमिक रूप से कमजोर रूप से कम अर्ध-निरंतर है।
:तब <math>J</math> क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है।


कब <math>n = 1</math> या <math>m = 1</math> निम्नलिखित व्युत्क्रम-जैसा प्रमेय मान्य है<ref>Dacorogna, pp. 66&ndash;74.</ref>
जब <math>n = 1</math> या <math>m = 1</math> निम्नलिखित व्युत्क्रम-जैसा प्रमेय मान्य है<ref>Dacorogna, pp. 66&ndash;74.</ref>
:ये मान लीजिए <math>F</math> निरंतर है और संतुष्ट करता है
:मान लीजिए <math>F</math> निरंतर है और संतुष्ट करता है
::<math>| F(x, y, A) | \leq a(x, | y |, | A |)</math>
::<math>| F(x, y, A) | \leq a(x, | y |, | A |)</math>
:हर के लिए <math>(x, y, A)</math>, और निश्चित कार्य <math>a(x, |y|, |A|)</math> में बढ़ रहा है <math>|y|</math> और <math>|A|</math>, और स्थानीय रूप से ीकृत <math>x</math>. अगर <math>J</math> किसी भी दिए गए के लिए क्रमिक रूप से कमजोर रूप से कम अर्ध-निरंतर है <math>(x, y) \in \Omega \times \mathbb{R}^m</math> कार्यक्रम <math>A \mapsto F(x, y, A)</math> उत्तल है.
:मान लीजिये प्रत्येक <math>(x, y, A)</math>और निश्चित फलन <math>a(x, |y|, |A|)</math> के लिए <math>|y|</math>और <math>|A|</math> में बढ़ रहा है और <math>x</math> में स्थानीय रूप से पूर्णांकित है यदि <math>J</math> क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है, तो किसी दिए गए <math>(x, y) \in \Omega \times \mathbb{R}^m</math> के लिए फलन <math>A \mapsto F(x, y, A)</math> उत्तल है।
:
निष्कर्षतः, जब <math>m = 1</math> या <math>n = 1</math>, कार्यात्मक <math>J</math>, उचित विकास और सीमा <math>F</math> को मानते हुए , अशक्त रूप से क्रमिक रूप से कम अर्ध-निरंतर है यदि, और केवल यदि फलन <math>A \mapsto F(x, y, A)</math> उत्तल है.


निष्कर्षतः, कब <math>m = 1</math> या <math>n = 1</math>, कार्यात्मक <math>J</math>, उचित विकास और सीमा को मानते हुए <math>F</math>, कमजोर रूप से क्रमिक रूप से कम अर्ध-निरंतर है यदि, और केवल यदि फ़ंक्शन <math>A \mapsto F(x, y, A)</math> उत्तल है.
चूंकि , ऐसे अनेक रोचक स्तिथि हैं जहाँ कोई यह नहीं मान सकता कि <math>F</math> उत्तल है. निम्नलिखित प्रमेय<ref>Acerbi-Fusco</ref> उत्तलता की अशक्त धारणा का उपयोग करके अनुक्रमिक निम्न अर्ध-निरंतरता प्रमाणित करता है:  
 
:मान लीजिए <math>F: \Omega \times \mathbb{R}^m \times \mathbb{R}^{mn} \to [0, \infty)</math> फलन है जिसमें निम्नलिखित गुण हैं:
हालाँकि, ऐसे कई दिलचस्प मामले हैं जहाँ कोई यह नहीं मान सकता <math>F</math> उत्तल है. निम्नलिखित प्रमेय<ref>Acerbi-Fusco</ref> उत्तलता की कमजोर धारणा का उपयोग करके अनुक्रमिक निम्न अर्ध-निरंतरता साबित करता है:
:# फलन <math>F</math> कैराथिओडोरी फलन है।
:ये मान लीजिए <math>F: \Omega \times \mathbb{R}^m \times \mathbb{R}^{mn} \to [0, \infty)</math> फ़ंक्शन है जिसमें निम्नलिखित गुण हैं:
:#फलन <math>F</math> में कुछ <math>p>1</math> के लिए <math>p</math>-वृद्धि है, एक स्थिर <math>C</math> उपस्तिथ है जैसे कि प्रत्येक <math>y \in \mathbb{R}^m</math> के लिए और [[लगभग हर|लगभग]] प्रत्येक '''<math>x \in \Omega</math> <math>| F(x, y, A) | \leq C(1+|y|^p + |A|^p)</math>''' के लिए है,
:# कार्यक्रम <math>F</math> कैराथिओडोरी फ़ंक्शन है।
:#प्रत्येक <math>y \in \mathbb{R}^m</math> के लिए और लगभग प्रत्येक <math>x \in \Omega</math> के लिए फलन <math>A \mapsto F(x, y, A) </math> क्वासिकोनवेक्स है: जहाँ घन <math>D \subseteq \mathbb{R}^n</math> उपस्तिथ है जैसे कि प्रत्येक <math>A \in \mathbb{R}^{mn}, \varphi \in W^{1,\infty}_0(\Omega, \mathbb{R}^m)</math> के लिए यह धारण करता है:
:# कार्यक्रम <math>F</math> है <math>p</math>-कुछ के लिए विकास <math>p>1</math>: स्थिरांक मौजूद है <math>C</math> ऐसा कि हर किसी के लिए <math>y \in \mathbb{R}^m</math> और [[लगभग हर]] के लिए <math>x \in \Omega</math> <math>| F(x, y, A) | \leq C(1+|y|^p + |A|^p)</math>.
:# हर के लिए <math>y \in \mathbb{R}^m</math> और लगभग हर के लिए <math>x \in \Omega</math>, कार्यक्रम <math>A \mapsto F(x, y, A) </math> Quasiconvexity_(Calculus_of_Variations) है: वहाँ घन मौजूद है <math>D \subseteq \mathbb{R}^n</math> ऐसा कि हर किसी के लिए <math>A \in \mathbb{R}^{mn}, \varphi \in W^{1,\infty}_0(\Omega, \mathbb{R}^m)</math> उसके पास होता है:
<math display=block> F(x, y, A) \leq |D|^{-1} \int_D F(x, y, A+ \nabla \varphi (z))dz </math>
<math display=block> F(x, y, A) \leq |D|^{-1} \int_D F(x, y, A+ \nabla \varphi (z))dz </math>
:::कहाँ <math>|D|</math> का [[आयतन]] है <math>D</math>.
:::जहाँ <math>|D|</math> का [[आयतन]] <math>D</math> है .
:तब <math>J</math> क्रमिक रूप से कमजोर रूप से कम अर्ध-निरंतर है <math> W^{1,p}(\Omega,\mathbb{R}^m) </math>.
:जब <math>J</math>, <math> W^{1,p}(\Omega,\mathbb{R}^m) </math> में क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है .


इस मामले में व्युत्क्रम जैसा प्रमेय निम्नलिखित है:<ref>Dacorogna, pp. 156.</ref>
इस स्तिथियों में व्युत्क्रम जैसा प्रमेय निम्नलिखित है:<ref>Dacorogna, pp. 156.</ref>
:ये मान लीजिए <math>F</math> निरंतर है और संतुष्ट करता है
:मान लीजिए <math>F</math> निरंतर है और संतुष्ट करता है
::<math>| F(x, y, A) | \leq a(x, | y |, | A |)</math>
::<math>| F(x, y, A) | \leq a(x, | y |, | A |)</math>
:हर के लिए <math>(x, y, A)</math>, और निश्चित कार्य <math>a(x, |y|, |A|)</math> में बढ़ रहा है <math>|y|</math> और <math>|A|</math>, और स्थानीय रूप से ीकृत <math>x</math>. अगर <math>J</math> किसी भी दिए गए के लिए क्रमिक रूप से कमजोर रूप से कम अर्ध-निरंतर है <math>(x, y) \in \Omega \times \mathbb{R}^m</math> कार्यक्रम <math>A \mapsto F(x, y, A)</math> Quasiconvexity_(Calculus_of_Variations) है। दोनों होने पर भी दावा सत्य है <math>m, n</math> से बड़े हैं <math>1</math> और जब पिछले दावे से मेल खाता है <math>m = 1</math> या <math>n = 1</math>, तब से quasiconvexity उत्तलता के बराबर है।
:प्रत्येक <math>(x, y, A)</math> और <math>|y|</math>, में बढ़ते हुए एक निश्चित फलन <math>a(x, |y|, |A|)</math> के लिए और <math>|A|</math> और <math>x</math> में स्थानीय रूप से एकीकृत यदि <math>J</math> क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है, जब किसी दिए गए <math>(x, y) \in \Omega \times \mathbb{R}^m</math> के लिए फलन <math>A \mapsto F(x, y, A)</math> क्वासिकोनवेक्स है। यह प्रमाणित तब भी सत्य है जब दोनों <math>m, n</math> से बड़े <math>1</math> हों और पूर्व के पश्चात से मेल खाते हों जब <math>m = 1</math> या <math>n = 1</math>, हो तब से quasiconvexity उत्तलता के समान है।


== टिप्पणियाँ ==
== टिप्पणियाँ ==
Line 100: Line 109:
श्रेणी:विविधताओं की गणना
श्रेणी:विविधताओं की गणना


 
[[Category:Created On 10/07/2023|Direct Method In The Calculus Of Variations]]
[[Category: Machine Translated Page]]
[[Category:Lua-based templates|Direct Method In The Calculus Of Variations]]
[[Category:Created On 10/07/2023]]
[[Category:Machine Translated Page|Direct Method In The Calculus Of Variations]]
[[Category:Pages using sidebar with the child parameter|Direct Method In The Calculus Of Variations]]
[[Category:Pages with script errors|Direct Method In The Calculus Of Variations]]
[[Category:Templates Vigyan Ready|Direct Method In The Calculus Of Variations]]
[[Category:Templates that add a tracking category|Direct Method In The Calculus Of Variations]]
[[Category:Templates that generate short descriptions|Direct Method In The Calculus Of Variations]]
[[Category:Templates using TemplateData|Direct Method In The Calculus Of Variations]]

Latest revision as of 12:17, 31 July 2023



गणित में, विविधताओं की गणना में प्रत्यक्ष विधि किसी दिए गए फलन (गणितीय) के लिए मिनिमाइज़र के अस्तित्व का प्रमाण बनाने की एक सामान्य विधि है,[1] जिसे 1900 के समीप स्टैनिस्लाव ज़रेम्बा और डेविड हिल्बर्ट द्वारा प्रस्तुत किया गया था। और यह विधि कार्यात्मक विश्लेषण और टोपोलॉजी के विधियों पर निर्भर करती है। किसी समाधान के अस्तित्व को प्रमाणित करने के लिए उपयोग किए जाने के साथ-साथ, वांछित स्पष्टतः के समाधान की गणना करने के लिए प्रत्यक्ष विधियों का उपयोग किया जा सकता है।[2]

विधि

इस प्रकार से विविधताओं की कैलकुलस कार्यात्मकताओं फलन से संबंधित है जहां कुछ फलन समिष्ट है और विषय का मुख्य हित ऐसे फलन के लिए मिनिमाइज़र रूप से दर्शाना है, अर्थात फलन जैसे कि:



किसी फलन के मिनिमाइज़र होने के लिए आवश्यक नियम प्राप्त करने के लिए मानक उपकरण यूलर-लैग्रेंज समीकरण है। किन्तु इन्हें संतुष्ट करने वाले फलन के मध्य मिनिमाइज़र की खोज करने से असत्य निष्कर्ष निकल सकते हैं यदि मिनिमाइज़र का अस्तित्व पूर्व से स्थापित नहीं है।

इस प्रकार से कार्यात्मक मिनिमाइज़र रखने के लिए इसे नीचे से सीमाबद्ध किया जाना चाहिए। इसका तथ्य यह है

चूंकि स्थिति को जानने के लिए पर्याप्त नहीं है कि मिनिमाइज़र उपस्तिथ है, किन्तु यह न्यूनतम अनुक्रम के अस्तित्व को दर्शाता है, अर्थात, में अनुक्रम जैसे कि

इस प्रकार से प्रत्यक्ष विधि को निम्नलिखित चरणों में विभाजित किया जा सकता है

  1. के लिए न्यूनतम अनुक्रम मान लीजिये
  2. दिखाएँ गए कुछ अनुवर्ती (u_{n_k}) को स्वीकार करता है, जो की पर टोपोलॉजी के संबंध में में परिवर्तित होता है।
  3. मान लीजिये टोपोलॉजी के संबंध में क्रमिक रूप से निचला अर्ध-निरंतर है  .

इस प्रकार से यह देखने के लिए मिनिमाइज़र के अस्तित्व को दर्शाता है, अतः क्रमिक रूप से निम्न-अर्ध-निरंतर कार्यों के निम्नलिखित लक्षण वर्णन पर विचार करें।

फलन यदि क्रमिक रूप से निम्न-अर्धनिरंतर है
मान लीजिये में किसी भी अभिसरण अनुक्रम के लिए से निष्कर्ष निकलता है

इस प्रकार से निष्कर्ष निकलता है:

,
दूसरे शब्दों में जहाँ:
.

विवरण

बनच समष्टि

इस प्रकार से प्रत्यक्ष विधि को प्रायः सफलता के साथ प्रयुक्त किया जा सकता है जब समष्टि एक अलग करने योग्य वियोज्य रिफ्लेक्सिव बनच समष्टि का एक उपसमूह होता है। इस स्तिथियों में अनुक्रमिक बनच-अलाओग्लू प्रमेय का तात्पर्य है कि में किसी भी बंधे हुए अनुक्रम का एक परिणाम होता है जो में कुछ में परिवर्तित हो जाता है। और अशक्त टोपोलॉजी के संबंध में. यदि , को , में क्रमिक रूप से संवृत किया गया है, जिससे में हो, तब प्रत्यक्ष विधि को कार्यात्मक पर दिखाकर प्रयुक्त किया जा सकता है

  1. नीचे से घिरा हुआ है,
  2. के लिए कोई भी न्यूनतम अनुक्रम परिबद्ध है,
  3. अशक्त रूप से क्रमिक रूप से कम अर्ध-निरंतर है, अर्थात , किसी भी अशक्त अभिसरण अनुक्रम के लिए यह रखता है.

दूसरा भाग सामान्यतः यह दिखाकर पूरा किया जाता है कि कुछ विकास की स्थिति को स्वीकार करता है। इस प्रकार से उदाहरण है

कुछ के लिए , और .

इस गुण के साथ एक कार्यात्मक को कभी-कभी प्रमुख्य कहा जाता है। प्रत्यक्ष विधि प्रयुक्त करते समय अनुक्रमिक निचली अर्ध-निरंतरता दिखाना सामान्यतः अधिक समष्टि भाग होता है। कार्यात्मकताओं के सामान्य वर्ग के लिए कुछ प्रमेयों के लिए नीचे देखें

सोबोलेव समष्टि

इस प्रकार से विविधताओं की गणना में विशिष्ट कार्यात्मकता प्रपत्र का अभिन्न अंग है

जहाँ का उपसमुच्चय है और पर वास्तविक-मूल्यवान फलन है. का तर्क भिन्न फलन है , और इसका जैकोबियन को -सदिश से पहचाना जाता है।

यूलर-लैग्रेंज समीकरण प्राप्त करते समय, सामान्य दृष्टिकोण यह मान लेना है कि के पास सीमा है और के लिए परिभाषा का क्षेत्र है। सर्वोच्च मानदंड से संपन्न होने पर यह स्थान एक बनच समष्टि है, किन्तु यह प्रतिवर्ती नहीं है। प्रत्यक्ष विधि को प्रयुक्त करते समय, कार्यात्मकता को सामान्यतः सोबोलेव समष्टि पर , के साथ परिभाषित किया जाता है जो एक रिफ्लेक्सिव बानाच समष्टि है। के सूत्र में के व्युत्पन्न को तब अशक्त व्युत्पन्न के रूप में लिया जाना चाहिए।

एक अन्य सामान्य फलन समिष्ट है जो फलन के का एफ़िन सब समिष्ट है जिसका ट्रेस ट्रेस ऑपरेटरकी छवि में कुछ निश्चित फलन है। यह प्रतिबंध कार्यात्मक के न्यूनतमकर्ताओं को खोजने की अनुमति देता है जो कुछ वांछित सीमा नियम को पूर्ण करते हैं। यह डिरिचलेट सीमा नियम के साथ यूलर-लैग्रेंज समीकरण को हल करने के समान है। इसके अतिरिक्त ऐसी पतिस्थिति हैं जिनमें में मिनिमाइज़र हैं किन्तु में नहीं हैं। सीमा पर मूल्यों को सीमित करते हुए न्यूनतमकरण समस्याओं को हल करने के विचार को फलन समिष्ट को देखकर और अधिक सामान्यीकृत किया जा सकता है जहां ट्रेस केवल सीमा के एक भाग पर तय किया गया है, और अन्य पर अनेैतिक रूप से हो सकता है.

सीमा पर मूल्यों को सीमित करते हुए न्यूनतमकरण समस्याओं को हल करने के विचार को फलन समष्टि को देखकर और अधिक सामान्यीकृत किया जा सकता है जहां ट्रेस केवल सीमा के भाग पर तय किया गया है, और अनेैतिक रूप से हो सकता है।

इस प्रकार से अगला भाग उपरोक्त प्रकार के फलन की अशक्त अनुक्रमिक निचली अर्ध-निरंतरता के संबंध में प्रमेय प्रस्तुत करता है।

अभिन्नों की अनुक्रमिक निचली अर्ध-निरंतरता

विभिन्नताओं के कलन में जितने प्रकार्य हैं, वे उसी प्रकार के हैं

,

जहां विवृत है, फलन को दर्शाने करने वाले प्रमेय जिसके लिए , के साथ में अशक्त रूप से क्रमिक रूप से निम्न-अर्धनिरंतर है, अधिक महत्वपूर्ण है।

सामान्य किसी के पास निम्नलिखित होते हैं:[3]

मान लीजिए फलन है जिसमें निम्नलिखित गुण हैं:
  1. फलन कैराथिओडोरी फलन है।
  2. होल्डर संयुग्मित और के साथ इस प्रकार उपस्तिथ है कि निम्नलिखित असमानता लगभग सभी और के लिए सही है, जहाँ , में और के फ्रोबेनियस आंतरिक उत्पाद को दर्शाता है।
यदि फलन लगभग सभी के लिए उत्तल है और हर ,
तब क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है।

जब या निम्नलिखित व्युत्क्रम-जैसा प्रमेय मान्य है[4]

मान लीजिए निरंतर है और संतुष्ट करता है
मान लीजिये प्रत्येक और निश्चित फलन के लिए और में बढ़ रहा है और में स्थानीय रूप से पूर्णांकित है यदि क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है, तो किसी दिए गए के लिए फलन उत्तल है।

निष्कर्षतः, जब या , कार्यात्मक , उचित विकास और सीमा को मानते हुए , अशक्त रूप से क्रमिक रूप से कम अर्ध-निरंतर है यदि, और केवल यदि फलन उत्तल है.

चूंकि , ऐसे अनेक रोचक स्तिथि हैं जहाँ कोई यह नहीं मान सकता कि उत्तल है. निम्नलिखित प्रमेय[5] उत्तलता की अशक्त धारणा का उपयोग करके अनुक्रमिक निम्न अर्ध-निरंतरता प्रमाणित करता है:

मान लीजिए फलन है जिसमें निम्नलिखित गुण हैं:
  1. फलन कैराथिओडोरी फलन है।
  2. फलन में कुछ के लिए -वृद्धि है, एक स्थिर उपस्तिथ है जैसे कि प्रत्येक के लिए और लगभग प्रत्येक के लिए है,
  3. प्रत्येक के लिए और लगभग प्रत्येक के लिए फलन क्वासिकोनवेक्स है: जहाँ घन उपस्तिथ है जैसे कि प्रत्येक के लिए यह धारण करता है:

जहाँ का आयतन है .
जब , में क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है .

इस स्तिथियों में व्युत्क्रम जैसा प्रमेय निम्नलिखित है:[6]

मान लीजिए निरंतर है और संतुष्ट करता है
प्रत्येक और , में बढ़ते हुए एक निश्चित फलन के लिए और और में स्थानीय रूप से एकीकृत यदि क्रमिक रूप से अशक्त रूप से कम अर्ध-निरंतर है, जब किसी दिए गए के लिए फलन क्वासिकोनवेक्स है। यह प्रमाणित तब भी सत्य है जब दोनों से बड़े हों और पूर्व के पश्चात से मेल खाते हों जब या , हो तब से quasiconvexity उत्तलता के समान है।

टिप्पणियाँ

  1. Dacorogna, pp. 1–43.
  2. I. M. Gelfand; S. V. Fomin (1991). विविधताओं की गणना. Dover Publications. ISBN 978-0-486-41448-5.
  3. Dacorogna, pp. 74–79.
  4. Dacorogna, pp. 66–74.
  5. Acerbi-Fusco
  6. Dacorogna, pp. 156.


सन्दर्भ और आगे पढ़ना

  • Dacorogna, Bernard (1989). विविधताओं की गणना में प्रत्यक्ष विधियाँ. Springer-Verlag. ISBN 0-387-50491-5.
  • Fonseca, Irene; Giovanni Leoni (2007). विविधताओं की गणना में आधुनिक तरीके: रिक्त स्थान. Springer. ISBN 978-0-387-35784-3.
  • मोरे, सी. बी., जूनियर: विविधताओं के कैलकुलस में ाधिक इंटीग्रल्स। स्प्रिंगर, 1966 (2008 में पुनर्मुद्रित), बर्लिन ISBN 978-3-540-69915-6.
  • जिंदरिच नेकस: अण्डाकार समीकरणों के सिद्धांत में प्रत्यक्ष विधियाँ। (ए.कुफनर और जी.ट्रोनेल द्वारा फ्रेंच मूल 1967 से अनुवाद), स्प्रिंगर, 2012, ISBN 978-3-642-10455-8.
  • T. Roubíček (2000). "परवलयिक समस्याओं के लिए सीधी विधि". Adv. Math. Sci. Appl. Vol. 10. pp. 57–65. MR 1769181.
  • एसरबी एमिलियो, फुस्को निकोला। विविधताओं की गणना में अर्धनिरंतरता की समस्याएं। तर्कसंगत यांत्रिकी और विश्लेषण के लिए पुरालेख 86.2 (1984): 125-145


श्रेणी:विविधताओं की गणना