परिमित वलय: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Abstract ring with finite number of elements}} गणित में, विशेष रूप से अमूर्त बीजगणित मे...")
 
No edit summary
Line 1: Line 1:
{{short description|Abstract ring with finite number of elements}}
{{short description|Abstract ring with finite number of elements}}
गणित में, विशेष रूप से [[अमूर्त बीजगणित]] में, एक परिमित वलय एक वलय (गणित) होता है जिसमें तत्वों की एक सीमित संख्या होती है।
गणित में, विशेष रूप से [[अमूर्त बीजगणित]] में, परिमित वलय वलय (गणित) होता है जिसमें तत्वों की सीमित संख्या होती है।
प्रत्येक [[परिमित क्षेत्र]] एक परिमित वलय का एक उदाहरण है, और प्रत्येक परिमित वलय का योगात्मक भाग एक [[एबेलियन समूह]] [[परिमित समूह]] का एक उदाहरण है, लेकिन अपने आप में परिमित वलय की अवधारणा का एक हालिया इतिहास है।
प्रत्येक [[परिमित क्षेत्र]] परिमित वलय का उदाहरण है, और प्रत्येक परिमित वलय का योगात्मक भाग [[एबेलियन समूह]] [[परिमित समूह]] का उदाहरण है, लेकिन अपने आप में परिमित वलय की अवधारणा का हालिया इतिहास है।


हालाँकि वलय में समूहों की तुलना में अधिक संरचना होती है, परिमित वलय का सिद्धांत परिमित समूहों की तुलना में सरल है। उदाहरण के लिए, [[परिमित सरल समूहों का वर्गीकरण]] 20वीं सदी के गणित की प्रमुख सफलताओं में से एक था, इसका प्रमाण हजारों जर्नल पृष्ठों में फैला है। दूसरी ओर, यह 1907 से ज्ञात है कि कोई भी परिमित सरल वलय वलय के समरूपी होता है <math>M_n(\mathbb{F}_q)</math> क्रम q के एक सीमित क्षेत्र पर n-by-n आव्यूहों का (वेडरबर्न के प्रमेयों के परिणामस्वरूप, नीचे वर्णित है)।
हालाँकि वलय में समूहों की तुलना में अधिक संरचना होती है, परिमित वलय का सिद्धांत परिमित समूहों की तुलना में सरल है। उदाहरण के लिए, [[परिमित सरल समूहों का वर्गीकरण]] 20वीं सदी के गणित की प्रमुख सफलताओं में से था, इसका प्रमाण हजारों जर्नल पृष्ठों में फैला है। दूसरी ओर, यह 1907 से ज्ञात है कि कोई भी परिमित सरल वलय वलय के समरूपी होता है <math>M_n(\mathbb{F}_q)</math> क्रम q के सीमित क्षेत्र पर n-by-n आव्यूहों का (वेडरबर्न के प्रमेयों के परिणामस्वरूप, नीचे वर्णित है)।


m तत्वों के साथ रिंगों की संख्या, m के लिए एक प्राकृतिक संख्या, नीचे सूचीबद्ध है {{OEIS2C|A027623}} पूर्णांक अनुक्रमों के ऑन-लाइन विश्वकोश में।
m तत्वों के साथ रिंगों की संख्या, m के लिए प्राकृतिक संख्या, नीचे सूचीबद्ध है {{OEIS2C|A027623}} पूर्णांक अनुक्रमों के ऑन-लाइन विश्वकोश में।


==परिमित क्षेत्र==
==परिमित क्षेत्र==
{{Main|Finite field|Finite field arithmetic}}
{{Main|Finite field|Finite field arithmetic}}
[[बीजगणितीय ज्यामिति]], गैलोज़ सिद्धांत और [[संख्या सिद्धांत]] के साथ घनिष्ठ संबंधों के कारण [[परिमित क्षेत्र]]ों का सिद्धांत शायद परिमित वलय सिद्धांत का सबसे महत्वपूर्ण पहलू है। सिद्धांत का एक महत्वपूर्ण, लेकिन काफी पुराना पहलू परिमित क्षेत्रों का वर्गीकरण है:<ref>{{Harv|Jacobson|1985|p=287}}</ref>
[[बीजगणितीय ज्यामिति]], गैलोज़ सिद्धांत और [[संख्या सिद्धांत]] के साथ घनिष्ठ संबंधों के कारण [[परिमित क्षेत्र]]ों का सिद्धांत शायद परिमित वलय सिद्धांत का सबसे महत्वपूर्ण पहलू है। सिद्धांत का महत्वपूर्ण, लेकिन काफी पुराना पहलू परिमित क्षेत्रों का वर्गीकरण है:<ref>{{Harv|Jacobson|1985|p=287}}</ref>
* किसी परिमित क्षेत्र के तत्वों का क्रम या संख्या p के बराबर होती है<sup>n</sup>, जहां p एक [[अभाज्य संख्या]] है जिसे क्षेत्र की [[विशेषता (बीजगणित)]] कहा जाता है, और n एक धनात्मक पूर्णांक है।
* किसी परिमित क्षेत्र के तत्वों का क्रम या संख्या p के बराबर होती है<sup>n</sup>, जहां p [[अभाज्य संख्या]] है जिसे क्षेत्र की [[विशेषता (बीजगणित)]] कहा जाता है, और n धनात्मक पूर्णांक है।
* प्रत्येक अभाज्य संख्या p और धनात्मक पूर्णांक n के लिए, p के साथ एक परिमित क्षेत्र मौजूद होता है<sup>n</sup>तत्व.
* प्रत्येक अभाज्य संख्या p और धनात्मक पूर्णांक n के लिए, p के साथ परिमित क्षेत्र मौजूद होता है<sup>n</sup>तत्व.
* समान क्रम वाले कोई भी दो परिमित क्षेत्र [[समरूपी]] होते हैं।
* समान क्रम वाले कोई भी दो परिमित क्षेत्र [[समरूपी]] होते हैं।


वर्गीकरण के बावजूद, परिमित क्षेत्र अभी भी अनुसंधान का एक सक्रिय क्षेत्र है, जिसमें काकेया अनुमान पर हाल के परिणाम और सबसे छोटे आदिम रूट मोडुलो एनएस (संख्या सिद्धांत में) के आकार के संबंध में खुली समस्याएं शामिल हैं।
वर्गीकरण के बावजूद, परिमित क्षेत्र अभी भी अनुसंधान का सक्रिय क्षेत्र है, जिसमें काकेया अनुमान पर हाल के परिणाम और सबसे छोटे आदिम रूट मोडुलो एनएस (संख्या सिद्धांत में) के आकार के संबंध में खुली समस्याएं शामिल हैं।


एक परिमित क्षेत्र F का उपयोग F के ऊपर n-आयामों का एक सदिश स्थान बनाने के लिए किया जा सकता है। F के तत्वों के साथ n × n मैट्रिक्स के [[मैट्रिक्स रिंग]] A का उपयोग [[गैलोइस ज्यामिति]] में किया जाता है, जिसमें [[प्रक्षेप्य रैखिक समूह]] A के [[गुणक समूह]] के रूप में कार्य करता है। .
परिमित क्षेत्र F का उपयोग F के ऊपर n-आयामों का सदिश स्थान बनाने के लिए किया जा सकता है। F के तत्वों के साथ n × n मैट्रिक्स के [[मैट्रिक्स रिंग]] A का उपयोग [[गैलोइस ज्यामिति]] में किया जाता है, जिसमें [[प्रक्षेप्य रैखिक समूह]] A के [[गुणक समूह]] के रूप में कार्य करता है। .


==वेडरबर्न के प्रमेय==
==वेडरबर्न के प्रमेय==
Line 22: Line 22:
वेडरबर्न की छोटी प्रमेय का दावा है कि कोई भी परिमित विभाजन वलय आवश्यक रूप से क्रमविनिमेय है:
वेडरबर्न की छोटी प्रमेय का दावा है कि कोई भी परिमित विभाजन वलय आवश्यक रूप से क्रमविनिमेय है:


: यदि परिमित वलय R के प्रत्येक अशून्य तत्व r में गुणात्मक व्युत्क्रम है, तो R क्रमविनिमेय है (और इसलिए एक परिमित क्षेत्र है)।
: यदि परिमित वलय R के प्रत्येक अशून्य तत्व r में गुणात्मक व्युत्क्रम है, तो R क्रमविनिमेय है (और इसलिए परिमित क्षेत्र है)।


[[नाथन जैकबसन]] ने बाद में एक और शर्त की खोज की जो रिंग की क्रमविनिमेयता की गारंटी देती है: यदि R के प्रत्येक तत्व r के लिए एक पूर्णांक मौजूद है {{nowrap|''n'' > 1}} ऐसा है कि {{nowrap|1=''r''&nbsp;<sup>n</sup> = ''r''}}, तो R क्रमविनिमेय है।<ref>{{Harvnb|Jacobson|1945}}</ref> अधिक सामान्य स्थितियाँ जो किसी रिंग की क्रमपरिवर्तनशीलता की गारंटी देती हैं, भी ज्ञात हैं।<ref>{{citation |first=J. |last=Pinter-Lucke |title=Commutativity conditions for rings: 1950–2005 |journal=Expositiones Mathematicae |volume=25 |issue=2 |pages=165–174 |date=May 2007 |doi=10.1016/j.exmath.2006.07.001 |doi-access=free }}</ref>
[[नाथन जैकबसन]] ने बाद में और शर्त की खोज की जो रिंग की क्रमविनिमेयता की गारंटी देती है: यदि R के प्रत्येक तत्व r के लिए पूर्णांक मौजूद है {{nowrap|''n'' > 1}} ऐसा है कि {{nowrap|1=''r''&nbsp;<sup>n</sup> = ''r''}}, तो R क्रमविनिमेय है।<ref>{{Harvnb|Jacobson|1945}}</ref> अधिक सामान्य स्थितियाँ जो किसी रिंग की क्रमपरिवर्तनशीलता की गारंटी देती हैं, भी ज्ञात हैं।<ref>{{citation |first=J. |last=Pinter-Lucke |title=Commutativity conditions for rings: 1950–2005 |journal=Expositiones Mathematicae |volume=25 |issue=2 |pages=165–174 |date=May 2007 |doi=10.1016/j.exmath.2006.07.001 |doi-access=free }}</ref>
वेडरबर्न का एक और प्रमेय, इसके परिणाम के रूप में, यह प्रदर्शित करता है कि परिमित सरल वलय का सिद्धांत प्रकृति में अपेक्षाकृत सीधा है। अधिक विशेष रूप से, कोई भी परिमित सरल वलय वलय के समरूपी होता है <math>M_n(\mathbb{F}_q)</math> क्रम q के एक परिमित क्षेत्र पर n बटा n आव्यूहों का। यह 1905 और 1907 में स्थापित [[जोसेफ वेडरबर्न]] के दो प्रमेयों (जिनमें से एक वेडरबर्न का छोटा प्रमेय है) से अनुसरण करता है।
वेडरबर्न का और प्रमेय, इसके परिणाम के रूप में, यह प्रदर्शित करता है कि परिमित सरल वलय का सिद्धांत प्रकृति में अपेक्षाकृत सीधा है। अधिक विशेष रूप से, कोई भी परिमित सरल वलय वलय के समरूपी होता है <math>M_n(\mathbb{F}_q)</math> क्रम q के परिमित क्षेत्र पर n बटा n आव्यूहों का। यह 1905 और 1907 में स्थापित [[जोसेफ वेडरबर्न]] के दो प्रमेयों (जिनमें से वेडरबर्न का छोटा प्रमेय है) से अनुसरण करता है।


==गणना==
==गणना==
(चेतावनी: इस खंड की गणना में वे छल्ले शामिल हैं जिनकी आवश्यक रूप से गुणात्मक पहचान नहीं होती है, जिन्हें कभी-कभी [[आरएनजी (बीजगणित)]] एस कहा जाता है।) 1964 में [[डेविड सिंगमास्टर]] ने [[अमेरिकी गणितीय मासिक]] में निम्नलिखित समस्या का प्रस्ताव रखा: (1) का क्रम क्या है पहचान वाली सबसे छोटी गैर-तुच्छ अंगूठी जो फ़ील्ड नहीं है? इस न्यूनतम ऑर्डर के साथ ऐसी दो अंगूठियां ढूंढें। क्या और भी हैं? (2) क्रम चार की कितनी अंगूठियां हैं?
(चेतावनी: इस खंड की गणना में वे छल्ले शामिल हैं जिनकी आवश्यक रूप से गुणात्मक पहचान नहीं होती है, जिन्हें कभी-कभी [[आरएनजी (बीजगणित)]] एस कहा जाता है।) 1964 में [[डेविड सिंगमास्टर]] ने [[अमेरिकी गणितीय मासिक]] में निम्नलिखित समस्या का प्रस्ताव रखा: (1) का क्रम क्या है पहचान वाली सबसे छोटी गैर-तुच्छ अंगूठी जो फ़ील्ड नहीं है? इस न्यूनतम ऑर्डर के साथ ऐसी दो अंगूठियां ढूंढें। क्या और भी हैं? (2) क्रम चार की कितनी अंगूठियां हैं?
इसका समाधान डी.एम. से मिल सकता है। दो पेज के प्रमाण में ब्लूम<ref>{{citation |first1=David |last1=Singmaster |first2=D. M. |last2=Bloom |title=E1648 |journal=American Mathematical Monthly |volume=71 |issue=8 |pages=918–920 |date=October 1964 |jstor=2312421 |doi=10.2307/2312421}}</ref> क्रम 4 के ग्यारह वलय हैं, जिनमें से चार की गुणात्मक पहचान है। दरअसल, चार-तत्व के छल्ले विषय की जटिलता का परिचय देते हैं। [[चक्रीय समूह]] C के ऊपर तीन वलय हैं<sub>4</sub> और क्लेन चार-समूह के ऊपर आठ रिंग। ग्रेगरी ड्रेसडेन के व्याख्यान नोट्स में भेदभावपूर्ण उपकरणों ([[निलपोटेंट]], शून्य-विभाजक, इडेम्पोटेंट (रिंग सिद्धांत), और बाएं- और दाएं-पहचान) का एक दिलचस्प प्रदर्शन है।<ref>{{citation |first=Gregory |last=Dresden |title=Rings with four elements |year=2005 |url=http://home.wlu.edu/~dresdeng/smallrings/handnotes.html |access-date=2009-07-28 |archive-url=https://web.archive.org/web/20100802050414/http://home.wlu.edu/~dresdeng/smallrings/handnotes.html |archive-date=2010-08-02 |url-status=dead }}</ref>
इसका समाधान डी.एम. से मिल सकता है। दो पेज के प्रमाण में ब्लूम<ref>{{citation |first1=David |last1=Singmaster |first2=D. M. |last2=Bloom |title=E1648 |journal=American Mathematical Monthly |volume=71 |issue=8 |pages=918–920 |date=October 1964 |jstor=2312421 |doi=10.2307/2312421}}</ref> क्रम 4 के ग्यारह वलय हैं, जिनमें से चार की गुणात्मक पहचान है। दरअसल, चार-तत्व के छल्ले विषय की जटिलता का परिचय देते हैं। [[चक्रीय समूह]] C के ऊपर तीन वलय हैं<sub>4</sub> और क्लेन चार-समूह के ऊपर आठ रिंग। ग्रेगरी ड्रेसडेन के व्याख्यान नोट्स में भेदभावपूर्ण उपकरणों ([[निलपोटेंट]], शून्य-विभाजक, इडेम्पोटेंट (रिंग सिद्धांत), और बाएं- और दाएं-पहचान) का दिलचस्प प्रदर्शन है।<ref>{{citation |first=Gregory |last=Dresden |title=Rings with four elements |year=2005 |url=http://home.wlu.edu/~dresdeng/smallrings/handnotes.html |access-date=2009-07-28 |archive-url=https://web.archive.org/web/20100802050414/http://home.wlu.edu/~dresdeng/smallrings/handnotes.html |archive-date=2010-08-02 |url-status=dead }}</ref>
परिमित छल्लों में गैर-क्रमविनिमेयता की घटना का वर्णन किया गया था {{harv|Eldridge|1968}} दो प्रमेयों में: यदि 1 के साथ एक परिमित वलय के क्रम m में घन-मुक्त गुणनखंडन है, तो यह [[क्रमविनिमेय वलय]] है। और यदि 1 के साथ एक [[गैर क्रमविनिमेय वलय]] | गैर-कम्यूटेटिव परिमित रिंग में प्राइम क्यूब का क्रम है, तो रिंग प्राइम के गैलोइस फ़ील्ड पर ऊपरी त्रिकोणीय 2 × 2 मैट्रिक्स रिंग के लिए आइसोमोर्फिक है।
परिमित छल्लों में गैर-क्रमविनिमेयता की घटना का वर्णन किया गया था {{harv|Eldridge|1968}} दो प्रमेयों में: यदि 1 के साथ परिमित वलय के क्रम m में घन-मुक्त गुणनखंडन है, तो यह [[क्रमविनिमेय वलय]] है। और यदि 1 के साथ [[गैर क्रमविनिमेय वलय]] | गैर-कम्यूटेटिव परिमित रिंग में प्राइम क्यूब का क्रम है, तो रिंग प्राइम के गैलोइस फ़ील्ड पर ऊपरी त्रिकोणीय 2 × 2 मैट्रिक्स रिंग के लिए आइसोमोर्फिक है।
अभाज्य घन के क्रम के छल्लों के अध्ययन को और अधिक विकसित किया गया {{harv|Raghavendran|1969}} और {{harv|Gilmer|Mott|1973}}. नेक्स्ट फ्लोर और वेसेनबाउर (1975) ने क्यूब-ऑफ-ए-प्राइम मामले में सुधार किया। समरूपता वर्गों पर निश्चित कार्य आया {{harv|Antipkin|Elizarov|1982}} यह सिद्ध करते हुए कि p > 2 के लिए, वर्गों की संख्या 3p + 50 है।
अभाज्य घन के क्रम के छल्लों के अध्ययन को और अधिक विकसित किया गया {{harv|Raghavendran|1969}} और {{harv|Gilmer|Mott|1973}}. नेक्स्ट फ्लोर और वेसेनबाउर (1975) ने क्यूब-ऑफ-ए-प्राइम मामले में सुधार किया। समरूपता वर्गों पर निश्चित कार्य आया {{harv|Antipkin|Elizarov|1982}} यह सिद्ध करते हुए कि p > 2 के लिए, वर्गों की संख्या 3p + 50 है।


परिमित छल्लों के विषय में पहले भी संदर्भ मौजूद हैं, जैसे रॉबर्ट बैलियू<ref>{{citation |first=Robert |last=Ballieu |title=Anneaux finis; systèmes hypercomplexes de rang trois sur un corps commutatif |journal=Ann. Soc. Sci. Bruxelles |series=Série I |volume=61 |pages=222–7 |year=1947 |mr=0022841 |zbl=0031.10802}}</ref> और उत्साह.<ref>{{harvnb|Scorza|1935}}, see review of Ballieu by [[Irving Kaplansky]] in [[Mathematical Reviews]]</ref>
परिमित छल्लों के विषय में पहले भी संदर्भ मौजूद हैं, जैसे रॉबर्ट बैलियू<ref>{{citation |first=Robert |last=Ballieu |title=Anneaux finis; systèmes hypercomplexes de rang trois sur un corps commutatif |journal=Ann. Soc. Sci. Bruxelles |series=Série I |volume=61 |pages=222–7 |year=1947 |mr=0022841 |zbl=0031.10802}}</ref> और उत्साह.<ref>{{harvnb|Scorza|1935}}, see review of Ballieu by [[Irving Kaplansky]] in [[Mathematical Reviews]]</ref>
ये कुछ तथ्य हैं जो किसी दिए गए क्रम के परिमित छल्लों की संख्या (जरूरी नहीं कि एकता के साथ) के बारे में ज्ञात हों (मान लीजिए कि पी और क्यू अलग-अलग अभाज्य संख्याओं का प्रतिनिधित्व करते हैं):
ये कुछ तथ्य हैं जो किसी दिए गए क्रम के परिमित छल्लों की संख्या (जरूरी नहीं कि ता के साथ) के बारे में ज्ञात हों (मान लीजिए कि पी और क्यू अलग-अलग अभाज्य संख्याओं का प्रतिनिधित्व करते हैं):
*पी क्रम के दो परिमित वलय हैं।
*पी क्रम के दो परिमित वलय हैं।
*pq क्रम के चार परिमित वलय हैं।
*pq क्रम के चार परिमित वलय हैं।
Line 51: Line 51:
==टिप्पणियाँ==
==टिप्पणियाँ==
{{reflist}}
{{reflist}}
<!--
The Jacobson citation may be one of these, some who knows the domain could resolve it.
{{citation |last=Jacobson |first=Nathan |title=Structure theory of algebras of bounded degree |journal=Ann. Math. |volume=46 |issue=2 |pages=695–707 |year=1945 |jstor=1969205 |zbl=0060.07501}}
{{citation |last=Jacobson |first=Nathan |title=A topology for the set of primitive ideals in an arbitrary ring |journal=Proc. Natl. Acad. Sci. USA |volume=31 |issue=10 |pages=333–8 |year=1945 |doi=10.1073/pnas.31.10.333 |zbl=0060.07402 |pmid=16588704 |pmc=1078836}}
{{citation |last=Jacobson |first=Nathan |title=Structure theory of simple rings without finiteness assumptions |journal=Trans. Am. Math. Soc. |volume=57 |pages=228–245 |year=1945 |doi=10.2307/1990204 |zbl=0060.07401}}
-->


 
== संदर्भ ==
==संदर्भ==
{{refbegin}}
{{refbegin}}
* {{citation |first1=V. G. |last1=Antipkin |first2=V. P. |last2=Elizarov |title=Rings of order p<sup>3</sup> |journal=Siberian Mathematical Journal |volume=23 |issue=4 |pages=457–464 |year=1982 |doi=10.1007/BF00968650 |s2cid=121484642 }}
* {{citation |first1=V. G. |last1=Antipkin |first2=V. P. |last2=Elizarov |title=Rings of order p<sup>3</sup> |journal=Siberian Mathematical Journal |volume=23 |issue=4 |pages=457–464 |year=1982 |doi=10.1007/BF00968650 |s2cid=121484642 }}

Revision as of 17:45, 20 July 2023

गणित में, विशेष रूप से अमूर्त बीजगणित में, परिमित वलय वलय (गणित) होता है जिसमें तत्वों की सीमित संख्या होती है। प्रत्येक परिमित क्षेत्र परिमित वलय का उदाहरण है, और प्रत्येक परिमित वलय का योगात्मक भाग एबेलियन समूह परिमित समूह का उदाहरण है, लेकिन अपने आप में परिमित वलय की अवधारणा का हालिया इतिहास है।

हालाँकि वलय में समूहों की तुलना में अधिक संरचना होती है, परिमित वलय का सिद्धांत परिमित समूहों की तुलना में सरल है। उदाहरण के लिए, परिमित सरल समूहों का वर्गीकरण 20वीं सदी के गणित की प्रमुख सफलताओं में से था, इसका प्रमाण हजारों जर्नल पृष्ठों में फैला है। दूसरी ओर, यह 1907 से ज्ञात है कि कोई भी परिमित सरल वलय वलय के समरूपी होता है क्रम q के सीमित क्षेत्र पर n-by-n आव्यूहों का (वेडरबर्न के प्रमेयों के परिणामस्वरूप, नीचे वर्णित है)।

m तत्वों के साथ रिंगों की संख्या, m के लिए प्राकृतिक संख्या, नीचे सूचीबद्ध है OEISA027623 पूर्णांक अनुक्रमों के ऑन-लाइन विश्वकोश में।

परिमित क्षेत्र

बीजगणितीय ज्यामिति, गैलोज़ सिद्धांत और संख्या सिद्धांत के साथ घनिष्ठ संबंधों के कारण परिमित क्षेत्रों का सिद्धांत शायद परिमित वलय सिद्धांत का सबसे महत्वपूर्ण पहलू है। सिद्धांत का महत्वपूर्ण, लेकिन काफी पुराना पहलू परिमित क्षेत्रों का वर्गीकरण है:[1]

  • किसी परिमित क्षेत्र के तत्वों का क्रम या संख्या p के बराबर होती हैn, जहां p अभाज्य संख्या है जिसे क्षेत्र की विशेषता (बीजगणित) कहा जाता है, और n धनात्मक पूर्णांक है।
  • प्रत्येक अभाज्य संख्या p और धनात्मक पूर्णांक n के लिए, p के साथ परिमित क्षेत्र मौजूद होता हैnतत्व.
  • समान क्रम वाले कोई भी दो परिमित क्षेत्र समरूपी होते हैं।

वर्गीकरण के बावजूद, परिमित क्षेत्र अभी भी अनुसंधान का सक्रिय क्षेत्र है, जिसमें काकेया अनुमान पर हाल के परिणाम और सबसे छोटे आदिम रूट मोडुलो एनएस (संख्या सिद्धांत में) के आकार के संबंध में खुली समस्याएं शामिल हैं।

परिमित क्षेत्र F का उपयोग F के ऊपर n-आयामों का सदिश स्थान बनाने के लिए किया जा सकता है। F के तत्वों के साथ n × n मैट्रिक्स के मैट्रिक्स रिंग A का उपयोग गैलोइस ज्यामिति में किया जाता है, जिसमें प्रक्षेप्य रैखिक समूह A के गुणक समूह के रूप में कार्य करता है। .

वेडरबर्न के प्रमेय

वेडरबर्न की छोटी प्रमेय का दावा है कि कोई भी परिमित विभाजन वलय आवश्यक रूप से क्रमविनिमेय है:

यदि परिमित वलय R के प्रत्येक अशून्य तत्व r में गुणात्मक व्युत्क्रम है, तो R क्रमविनिमेय है (और इसलिए परिमित क्षेत्र है)।

नाथन जैकबसन ने बाद में और शर्त की खोज की जो रिंग की क्रमविनिमेयता की गारंटी देती है: यदि R के प्रत्येक तत्व r के लिए पूर्णांक मौजूद है n > 1 ऐसा है कि r n = r, तो R क्रमविनिमेय है।[2] अधिक सामान्य स्थितियाँ जो किसी रिंग की क्रमपरिवर्तनशीलता की गारंटी देती हैं, भी ज्ञात हैं।[3] वेडरबर्न का और प्रमेय, इसके परिणाम के रूप में, यह प्रदर्शित करता है कि परिमित सरल वलय का सिद्धांत प्रकृति में अपेक्षाकृत सीधा है। अधिक विशेष रूप से, कोई भी परिमित सरल वलय वलय के समरूपी होता है क्रम q के परिमित क्षेत्र पर n बटा n आव्यूहों का। यह 1905 और 1907 में स्थापित जोसेफ वेडरबर्न के दो प्रमेयों (जिनमें से वेडरबर्न का छोटा प्रमेय है) से अनुसरण करता है।

गणना

(चेतावनी: इस खंड की गणना में वे छल्ले शामिल हैं जिनकी आवश्यक रूप से गुणात्मक पहचान नहीं होती है, जिन्हें कभी-कभी आरएनजी (बीजगणित) एस कहा जाता है।) 1964 में डेविड सिंगमास्टर ने अमेरिकी गणितीय मासिक में निम्नलिखित समस्या का प्रस्ताव रखा: (1) का क्रम क्या है पहचान वाली सबसे छोटी गैर-तुच्छ अंगूठी जो फ़ील्ड नहीं है? इस न्यूनतम ऑर्डर के साथ ऐसी दो अंगूठियां ढूंढें। क्या और भी हैं? (2) क्रम चार की कितनी अंगूठियां हैं? इसका समाधान डी.एम. से मिल सकता है। दो पेज के प्रमाण में ब्लूम[4] क्रम 4 के ग्यारह वलय हैं, जिनमें से चार की गुणात्मक पहचान है। दरअसल, चार-तत्व के छल्ले विषय की जटिलता का परिचय देते हैं। चक्रीय समूह C के ऊपर तीन वलय हैं4 और क्लेन चार-समूह के ऊपर आठ रिंग। ग्रेगरी ड्रेसडेन के व्याख्यान नोट्स में भेदभावपूर्ण उपकरणों (निलपोटेंट, शून्य-विभाजक, इडेम्पोटेंट (रिंग सिद्धांत), और बाएं- और दाएं-पहचान) का दिलचस्प प्रदर्शन है।[5] परिमित छल्लों में गैर-क्रमविनिमेयता की घटना का वर्णन किया गया था (Eldridge 1968) दो प्रमेयों में: यदि 1 के साथ परिमित वलय के क्रम m में घन-मुक्त गुणनखंडन है, तो यह क्रमविनिमेय वलय है। और यदि 1 के साथ गैर क्रमविनिमेय वलय | गैर-कम्यूटेटिव परिमित रिंग में प्राइम क्यूब का क्रम है, तो रिंग प्राइम के गैलोइस फ़ील्ड पर ऊपरी त्रिकोणीय 2 × 2 मैट्रिक्स रिंग के लिए आइसोमोर्फिक है। अभाज्य घन के क्रम के छल्लों के अध्ययन को और अधिक विकसित किया गया (Raghavendran 1969) और (Gilmer & Mott 1973). नेक्स्ट फ्लोर और वेसेनबाउर (1975) ने क्यूब-ऑफ-ए-प्राइम मामले में सुधार किया। समरूपता वर्गों पर निश्चित कार्य आया (Antipkin & Elizarov 1982) यह सिद्ध करते हुए कि p > 2 के लिए, वर्गों की संख्या 3p + 50 है।

परिमित छल्लों के विषय में पहले भी संदर्भ मौजूद हैं, जैसे रॉबर्ट बैलियू[6] और उत्साह.[7] ये कुछ तथ्य हैं जो किसी दिए गए क्रम के परिमित छल्लों की संख्या (जरूरी नहीं कि ता के साथ) के बारे में ज्ञात हों (मान लीजिए कि पी और क्यू अलग-अलग अभाज्य संख्याओं का प्रतिनिधित्व करते हैं):

  • पी क्रम के दो परिमित वलय हैं।
  • pq क्रम के चार परिमित वलय हैं।
  • पी क्रम के ग्यारह परिमित वलय हैं2.
  • पी क्रम के बाईस परिमित वलय हैं2q.
  • आठवें क्रम के बावन परिमित वलय हैं।
  • क्रम p के 3p + 50 परिमित वलय हैं3, पी > 2.

n तत्वों वाले छल्लों की संख्या (साथ) है a(0) = 1)

1, 1, 2, 2, 11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4, 4, 390, 2, 22, 2, 22, 4, 4, 2, 104, 11, 4, 59, 22, 2, 8, 2, >18590, 4, 4, 4, 121, 2, 4, 4, 104, 2, 8, 2, 22, 22, 4, 2, 780, 11, 22, ... (sequence A027623 in the OEIS)

यह भी देखें

  • गैलोज़ वलय, परिमित क्रमविनिमेय वलय जो सामान्यीकरण करते हैं और परिमित क्षेत्र
  • Projective line over a ring § Over discrete rings

टिप्पणियाँ

  1. (Jacobson 1985, p. 287)
  2. Jacobson 1945
  3. Pinter-Lucke, J. (May 2007), "Commutativity conditions for rings: 1950–2005", Expositiones Mathematicae, 25 (2): 165–174, doi:10.1016/j.exmath.2006.07.001
  4. Singmaster, David; Bloom, D. M. (October 1964), "E1648", American Mathematical Monthly, 71 (8): 918–920, doi:10.2307/2312421, JSTOR 2312421
  5. Dresden, Gregory (2005), Rings with four elements, archived from the original on 2010-08-02, retrieved 2009-07-28
  6. Ballieu, Robert (1947), "Anneaux finis; systèmes hypercomplexes de rang trois sur un corps commutatif", Ann. Soc. Sci. Bruxelles, Série I, 61: 222–7, MR 0022841, Zbl 0031.10802
  7. Scorza 1935, see review of Ballieu by Irving Kaplansky in Mathematical Reviews

संदर्भ


बाहरी संबंध