सदिश क्षेत्र: Difference between revisions
m (12 revisions imported from alpha:वेक्टर_फ़ील्ड) |
No edit summary |
||
Line 200: | Line 200: | ||
{{Manifolds}} | {{Manifolds}} | ||
{{DEFAULTSORT:Vector Field}} | {{DEFAULTSORT:Vector Field}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Vector Field]] | |||
[[Category:Collapse templates|Vector Field]] | |||
[[Category: | [[Category:Commons category link is locally defined|Vector Field]] | ||
[[Category:Created On 03/07/2023]] | [[Category:Created On 03/07/2023|Vector Field]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates|Vector Field]] | ||
[[Category:Machine Translated Page|Vector Field]] | |||
[[Category:Multi-column templates|Vector Field]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Vector Field]] | |||
[[Category:Pages using div col with small parameter|Vector Field]] | |||
[[Category:Pages with empty portal template|Vector Field]] | |||
[[Category:Pages with script errors|Vector Field]] | |||
[[Category:Portal templates with redlinked portals|Vector Field]] | |||
[[Category:Short description with empty Wikidata description|Vector Field]] | |||
[[Category:Sidebars with styles needing conversion|Vector Field]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Vector Field]] | |||
[[Category:Templates generating microformats|Vector Field]] | |||
[[Category:Templates that add a tracking category|Vector Field]] | |||
[[Category:Templates that are not mobile friendly|Vector Field]] | |||
[[Category:Templates that generate short descriptions|Vector Field]] | |||
[[Category:Templates using TemplateData|Vector Field]] | |||
[[Category:Templates using under-protected Lua modules|Vector Field]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:Wikipedia metatemplates|Vector Field]] | |||
[[Category:विभेदक टोपोलॉजी|Vector Field]] | |||
[[Category:वेक्टर कैलकुलस|फ़ील्ड]] |
Revision as of 15:02, 2 August 2023
सदिश कैलकुलस और भौतिकी में, सदिश क्षेत्र किसी स्थान के प्रत्येक बिंदु पर सदिश का असाइनमेंट होता है, सामान्यतः यूक्लिडियन स्थान होता है।[1] किसी समतल पर सदिश क्षेत्र को दिए गए परिमाण और दिशाओं वाले तीरों के संग्रह के रूप में देखा जा सकता है, जिनमें से प्रत्येक समतल पर बिंदु से जुड़ा होता है। सदिश क्षेत्र का उपयोग प्रायः मॉडल करने के लिए किया जाता है, उदाहरण के लिए, तीन आयामी समिष्ट में चलती तरल पदार्थ की गति और दिशा, जैसे कि वायु, या कुछ बल की शक्ति और दिशा, जैसे चुंबकीय क्षेत्र या गुरुत्वाकर्षण बल, क्योंकि यह एक बिंदु से दूसरे बिंदु तक परिवर्तित होता है।
विभेदक और अभिन्न कलन के तत्व स्वाभाविक रूप से सदिश क्षेत्रों तक विस्तारित होते हैं। जब सदिश क्षेत्र बल का प्रतिनिधित्व करता है, तो सदिश क्षेत्र का रेखा अभिन्न अंग पथ के साथ चलने वाले बल द्वारा किए गए कार्य का प्रतिनिधित्व करता है, और इस व्याख्या के अंतर्गत ऊर्जा के संरक्षण को कैलकुलस के मौलिक प्रमेय की विशेष स्थिति के रूप में प्रदर्शित किया जाता है। सदिश क्षेत्र को उपयोगी रूप से समिष्ट में गतिशील प्रवाह के वेग का प्रतिनिधित्व करने के रूप में सोचा जा सकता है, और यह भौतिक अंतर्ज्ञान विचलन (जो प्रवाह की मात्रा में परिवर्तन की दर का प्रतिनिधित्व करता है) और कर्ल (जो प्रतिनिधित्व करता है) जैसी धारणाओं की ओर ले जाता है।
सदिश क्षेत्र वेक्टर-वैल्यू फ़ंक्शन की विशेष स्थिति है, जिसके डोमेन के आयाम का इसकी सीमा के आयाम से कोई संबंध नहीं है; उदाहरण के लिए, किसी समिष्ट वक्र की स्थिति सदिश को केवल परिवेशीय स्थान के छोटे उपसमुच्चय के लिए परिभाषित किया गया है। इसी प्रकार, n निर्देशांक, n-आयामी यूक्लिडियन स्थान में डोमेन पर सदिश क्षेत्र को वेक्टर-वैल्यू फ़ंक्शन के रूप में दर्शाया जा सकता है जो डोमेन के प्रत्येक बिंदु पर वास्तविक संख्याओं के n-टुपल को जोड़ता है। सदिश क्षेत्र का यह प्रतिनिधित्व समन्वय प्रणाली पर निर्भर करता है, और एक समन्वय प्रणाली से दूसरे में जाने में उचित प्रकार से परिभाषित परिवर्तन नियम (सदिश का सहप्रसरण और विरोधाभास) होता है।
सदिश क्षेत्र का वर्णन प्रायः यूक्लिडियन स्थान के विवृत उपसमुच्चय पर की जाती है, किन्तु यह सतहों जैसे अन्य उपसमुच्चय पर भी समझ में आता है, जहां वे प्रत्येक बिंदु पर सतह पर स्पर्शरेखा वाले तीर को जोड़ते हैं (वक्रों की विभेदक ज्यामिति)। सामान्यतः, सदिश क्षेत्र को भिन्न-भिन्न मैनिफोल्ड्स पर परिभाषित किया जाता है, जो ऐसे स्थान होते हैं जो छोटे स्तर पर यूक्लिडियन स्थान के जैसे दिखते हैं, किन्तु बड़े स्तर पर अधिक जटिल संरचना हो सकती है। इस सेटिंग में, सदिश क्षेत्र मैनिफोल्ड के प्रत्येक बिंदु पर स्पर्शरेखा सदिश देता है (अर्थात, मैनिफोल्ड के स्पर्शरेखा बंडल का खंड)। सदिश क्षेत्र एक प्रकार का टेंसर क्षेत्र है।
परिभाषा
यूक्लिडियन स्थान के उपसमुच्चय पर सदिश क्षेत्र
Rn के उपसमुच्चय S को देखते हुए, सदिश क्षेत्र को मानक कार्टेशियन निर्देशांक में (x1, …, xn) में वेक्टर-वैल्यू फ़ंक्शन V: S → Rn द्वारा दर्शाया जाता है। यदि V का प्रत्येक घटक सतत है तो V सतत सदिश क्षेत्र है। सुचारू सदिश क्षेत्र पर ध्यान केंद्रित करना सामान्य विषय है, जिसका अर्थ है कि प्रत्येक घटक सुचारू कार्य है (किसी भी संख्या में भिन्न हो सकता है)। सदिश क्षेत्र को n-आयामी स्थान के अंदर भिन्न-भिन्न बिंदुओं पर सदिश निर्दिष्ट करने के रूप में देखा जा सकता है।[1]
मानक संकेतन निर्देशांक दिशाओं में इकाई सदिशों के लिए लिखना है। इन शब्दों में, प्रत्येक सहज सदिश क्षेत्र विवृत उपसमुच्चय पर को के रूप में लिखा जा सकता है:
कुछ सुचारु कार्यों के लिए पर है।[2] इस अंकन का कारण यह है कि सदिश क्षेत्र सुचारु कार्यों के स्थान से स्वयं तक रेखीय मानचित्र निर्धारित करता है, , सदिश क्षेत्र की दिशा में अंतर करके दिया गया है।
उदाहरण: सदिश क्षेत्र में मूल के चारों ओर वामावर्त घुमाव का वर्णन करता है यह दिखाने के लिए कि फ़ंक्शन घूर्णी रूप से अपरिवर्तनीय है, गणना करें:
दिए गए सदिश क्षेत्र V, W पर परिभाषित किया गया S और सुचारू कार्य f पर S परिभाषित किया गया अदिश गुणन और सदिश जोड़ की संक्रियाएँ,
समन्वय परिवर्तन नियम
भौतिकी में, यूक्लिडियन सदिश को अतिरिक्त रूप से इस विषय से भिन्न किया जाता है कि जब कोई एक ही सदिश को भिन्न पृष्ठभूमि समन्वय प्रणाली के संबंध में मापता है तो उसके निर्देशांक कैसे परिवर्तित होते हैं। सदिश के परिवर्तन गुण सदिश को अदिश की साधारण सूची से, या कोवेक्टर से ज्यामितीय रूप से भिन्न इकाई के रूप में भिन्न करते हैं।
इस प्रकार, मान लीजिये (x1, ..., xn) कार्टेशियन निर्देशांक का विकल्प है, जिसके संदर्भ में सदिश V के घटक होते हैं:
|
(1) |
ऐसे परिवर्तन नियम को सदिशों का सहप्रसरण और प्रतिप्रसरण कहा जाता है। समान परिवर्तन नियम भौतिकी में सदिश क्षेत्रों की विशेषता बताता है: विशेष रूप से, सदिश क्षेत्र परिवर्तन नियम के अधीन प्रत्येक समन्वय प्रणाली में n फलन का विनिर्देश है (1) विभिन्न समन्वय प्रणालियों से संबंधित है।
इस प्रकार सदिश क्षेत्र की तुलना अदिश क्षेत्र से की जाती है, जो स्थान में प्रत्येक बिंदु पर संख्या या स्केलर को जोड़ती है, और स्केलर क्षेत्र की सरल सूचियों से भी विपरीत होती है, जो समन्वय परिवर्तनों के अंतर्गत परिवर्तित नहीं होती हैं।
मैनिफ़ोल्ड पर सदिश फ़ील्ड
भिन्न विविधता दी गई है, सदिश क्षेत्र पर प्रत्येक बिंदु के लिए स्पर्शरेखा सदिश का असाइनमेंट है।[2] अधिक त्रुटिहीन रूप से, सदिश क्षेत्र से मानचित्र है स्पर्शरेखा बंडल में जिससे कि पहचान मानचित्रण है जहां से प्रक्षेपण को द्वारा दर्शाता है। दूसरे शब्दों में, सदिश क्षेत्र स्पर्शरेखा बंडल का खंड है।
वैकल्पिक परिभाषा: सहज सदिश क्षेत्र मैनिफोल्ड पर रेखीय मानचित्र है ऐसा है कि व्युत्पत्ति (विभेदक बीजगणित) है: सभी के लिए है।[3]
यदि मैनिफोल्ड सुचारू या विश्लेषणात्मक कार्य है - अर्थात, निर्देशांक का परिवर्तन सुचारू (विश्लेषणात्मक) है - तब कोई सुचारू (विश्लेषणात्मक) सदिश क्षेत्रों की धारणा को समझ सकता है। स्मूथ मैनिफोल्ड पर सभी स्मूथ सदिश फ़ील्ड्स का संग्रह प्रायः या द्वारा दर्शाया जाता है (विशेषकर जब सदिश क्षेत्र को अनुभाग (फाइबर बंडल) के रूप में सोचते हैं); सभी सुचारु सदिश क्षेत्रों के संग्रह को भी इसके (फ्रैक्टुर (टाइपफेस उप-वर्गीकरण) एक्स) द्वारा निरूपित किया जाता है।
उदाहरण
* पृथ्वी पर वायु की गति के लिए सदिश क्षेत्र पृथ्वी की सतह पर प्रत्येक बिंदु के लिए वायु की गति और उस बिंदु की दिशा के साथ सदिश को संबद्ध करेगा। इसे वायु का प्रतिनिधित्व करने के लिए तीरों का उपयोग करके खींचा जा सकता है; तीर की लंबाई (परिमाण) वायु की गति का संकेत होगी। सामान्य बैरोमीटर के दबाव मानचित्र पर "उच्च" तब स्रोत के रूप में कार्य करेगा (तीर दूर कीओर संकेत करता है) और "निम्न" सिंक (तीर की ओर संकेत करता है) होगा, क्योंकि वायु उच्च दबाव वाले क्षेत्रों से कम दबाव वाले क्षेत्रों की ओर बढ़ती है।
- किसी गतिशील तरल पदार्थ का वेग क्षेत्र इस स्थिति में, द्रव में प्रत्येक बिंदु से वेग सदिश जुड़ा होता है।
- स्ट्रीमलाइन्स, स्ट्रीकलाइन्स और पाथलाइन्स 3 प्रकार की रेखाएं हैं जिन्हें (समय-निर्भर) सदिश क्षेत्र से बनाया जा सकता है। वे हैं:
- स्ट्रीकलाइन्स: विभिन्न समयों में विशिष्ट निश्चित बिंदु से निकलने वाले कणों द्वारा निर्मित रेखा है।
- पथरेखाएँ: वह पथ दिखाती हैं जिसका कोई दिया गया कण (शून्य द्रव्यमान का) अनुसरण करेगा।
- स्ट्रीमलाइन (या फील्डलाइन): तात्कालिक क्षेत्र से प्रभावित कण का पथ (अर्थात, यदि क्षेत्र को स्थिर रखा जाता है तो कण का पथ) होता है।
- चुंबकीय क्षेत्र: छोटे लोहे के बुरादे का उपयोग करके फ़ील्डलाइन को प्रकट किया जा सकता है।
- मैक्सवेल के समीकरण हमें यूक्लिडियन स्थान में प्रत्येक बिंदु के लिए, उस बिंदु पर चार्ज किए गए परीक्षण कण द्वारा अनुभव किए गए बल के लिए परिमाण और दिशा निकालने के लिए प्रारंभिक और सीमा स्थितियों के दिए गए सेट का उपयोग करने की अनुमति देते हैं; परिणामी सदिश क्षेत्र विद्युत चुम्बकीय क्षेत्र है।
- किसी भी विशाल वस्तु द्वारा उत्पन्न गुरुत्वाकर्षण क्षेत्र भी सदिश क्षेत्र होता है। उदाहरण के लिए, गोलाकार रूप से सममित पिंड के लिए गुरुत्वाकर्षण क्षेत्र के सभी सदिश गोले के केंद्र की ओर प्रदर्शित करेंगे और पिंड से रेडियल दूरी बढ़ने पर सदिशों का परिमाण कम हो जाएगा।
यूक्लिडियन स्थानों में प्रवणता क्षेत्र
प्रवणता ऑपरेटर (डेल: ∇ द्वारा चिह्नित) का उपयोग करके अदिश क्षेत्र से सदिश क्षेत्र का निर्माण किया जा सकता है।[4]
विवृत समुच्चय S पर परिभाषित सदिश क्षेत्र V को 'प्रवणता क्षेत्र' या 'रूढ़िवादी क्षेत्र' कहा जाता है यदि S पर कोई वास्तविक-मूल्य फ़ंक्शन (अदिश क्षेत्र) f उपस्थित है जैसे कि;
रूढ़िवादी क्षेत्र में किसी भी संवृत वक्र γ (γ(0) = γ(1)) के साथ अभिन्न पथ शून्य है:
यूक्लिडियन स्थानों में केंद्रीय क्षेत्र
Rn \ {0} पर C∞-सदिश क्षेत्र को केंद्रीय क्षेत्र कहा जाता है यदि;
बिंदु 0 को क्षेत्र का केंद्र कहा जाता है।
चूंकि लंबकोणीय परिवर्तन वास्तव में घूर्णन और प्रतिबिंब हैं, अपरिवर्तनीय स्थितियों का तात्पर्य है कि केंद्रीय क्षेत्र के सदिश सदैव 0 की ओर या उससे दूर निर्देशित होते हैं; यह वैकल्पिक (और सरल) परिभाषा है। केंद्रीय क्षेत्र सदैव प्रवणता क्षेत्र होता है, क्योंकि इसे अर्ध-अक्ष पर परिभाषित करने और एकीकृत करने से एंटीग्रेडिएंट मिलता है।
सदिश क्षेत्र पर संचालन
रेखा समाकलन
भौतिकी में सामान्य प्रौद्योगिकी सदिश क्षेत्र को वक्रों की विभेदक ज्यामिति के साथ एकीकृत करना है, जिसे इसकी रेखा समाकलन का निर्धारण भी कहा जाता है। सहज रूप से यह सभी सदिश घटकों को वक्र की स्पर्शरेखाओं के अनुरूप सारांशित करता है, जिसे उनके अदिश उत्पादों के रूप में व्यक्त किया जाता है। उदाहरण के लिए, बल क्षेत्र (जैसे गुरुत्वाकर्षण) में कण दिया गया है, जहां स्थान में किसी बिंदु पर प्रत्येक सदिश कण पर कार्यरत बल का प्रतिनिधित्व करता है, निश्चित पथ के साथ अभिन्न रेखा कण पर किया गया कार्य है, जब यह यात्रा करता है इस पथ पर सहज रूप से, यह बल सदिश के अदिश उत्पादों और वक्र के प्रत्येक बिंदु पर छोटे स्पर्शरेखा सदिश का योग है।
रेखा समाकलन का निर्माण रीमैन समाकलन के अनुरूप किया जाता है और यह तब उपस्थित होता है जब वक्र सुधार योग्य होता है (परिमित लंबाई होती है) और सदिश क्षेत्र निरंतर होता है।
सदिश क्षेत्र दिया गया है V और वक्र γ को देखते हुए, [a, b] में t द्वारा पैरामीट्रिक समीकरण (जहाँ a और b वास्तविक संख्याएँ हैं), रेखा समाकलन को इस प्रकार परिभाषित किया गया है:
विचलन
यूक्लिडियन स्थान पर सदिश क्षेत्र का विचलन फलन (या अदिश क्षेत्र) है। तीन-आयामों में, विचलन को परिभाषित किया गया है:
विचलन को रीमैनियन मैनिफोल्ड पर भी परिभाषित किया जा सकता है, अर्थात, रीमैनियन मीट्रिक के साथ मैनिफोल्ड जो सदिश की लंबाई को मापता है।
तीन आयामों में कर्ल
कर्ल ऑपरेशन है जो सदिश क्षेत्र लेता है और अन्य सदिश क्षेत्र त्पन्न करता है। कर्ल को केवल तीन आयामों में परिभाषित किया गया है, किन्तु कर्ल के कुछ गुणों को बाहरी व्युत्पन्न के साथ उच्च आयामों में कैप्चर किया जा सकता है। इसे तीन आयामों में परिभाषित किया गया है;
सदिश क्षेत्र का सूचकांक
सदिश क्षेत्र का सूचकांक पूर्णांक होता है जो पृथक शून्य (अर्थात, क्षेत्र की पृथक विलक्षणता) के निकट सदिश क्षेत्र के व्यवहार का वर्णन करने में सहायता करता है। समतल में, सूचकांक सैडल विलक्षणता पर मान -1 लेता है किन्तु स्रोत या सिंक विलक्षणता पर +1 लेता है।
मान लीजिए n उस मैनिफ़ोल्ड का आयाम है जिस पर सदिश क्षेत्र परिभाषित है। शून्य के चारों ओर संवृत सतह ((n-1)-गोले के लिए होमियोमोर्फिक) S लें, जिससे कि कोई अन्य शून्य S के आंतरिक भाग में न हो। इस क्षेत्र से आयाम n -1 के इकाई क्षेत्र तक मानचित्र का निर्माण किया जा सकता है इस गोले पर प्रत्येक सदिश को उसकी लंबाई से विभाजित करके इकाई लंबाई सदिश बनाया जाता है, जो इकाई क्षेत्र Sn−1 पर बिंदु है। यह S से Sn−1 तक सतत मानचित्र को परिभाषित करता है। बिंदु पर सदिश क्षेत्र का सूचकांक इस मानचित्र की डिग्री है। यह दिखाया जा सकता है कि यह पूर्णांक S की रूचि पर निर्भर नहीं है, और इसलिए केवल सदिश क्षेत्र पर ही निर्भर करता है।
सूचकांक को किसी भी गैर-एकवचन बिंदु (अर्थात, बिंदु जहां सदिश गैर-शून्य है) पर परिभाषित नहीं किया गया है। यह स्रोत के चारों ओर +1 के समान है, और सामान्यतः काठी के चारों ओर (−1)k के समान है जिसमें k संकुचन आयाम और n−k विस्तार आयाम हैं।
संपूर्ण सदिश क्षेत्र का सूचकांक तब परिभाषित किया जाता है जब इसमें अत्यधिक शून्य होते हैं। इस स्थिति में, सभी शून्य भिन्न-भिन्न हैं, और सदिश क्षेत्र के सूचकांक को सभी शून्यों पर सूचकांकों के योग के रूप में परिभाषित किया गया है।
त्रि-आयामी स्थान में साधारण (2-आयामी) क्षेत्र के लिए, यह दिखाया जा सकता है कि गोले पर किसी भी सदिश क्षेत्र का सूचकांक 2 होना चाहिए। इससे ज्ञात होता है कि ऐसे प्रत्येक सदिश क्षेत्र में शून्य होना चाहिए। इसका तात्पर्य हेयरी बॉल प्रमेय से है।
सीमित संख्या में शून्य वाले कॉम्पैक्ट मैनिफोल्ड पर सदिश क्षेत्र के लिए, पोंकारे-हॉप प्रमेय बताता है कि सदिश क्षेत्र का सूचकांक मैनिफोल्ड की यूलर विशेषता है।
शारीरिक अंतर्ज्ञान
माइकल फैराडे ने बल की रेखाओं की अपनी अवधारणा में इस विषय पर जोर दिया कि क्षेत्र स्वयं अध्ययन का उद्देश्य होना चाहिए, जो कि क्षेत्र सिद्धांत के रूप में संपूर्ण भौतिकी में बन गया है।
चुंबकीय क्षेत्र के अतिरिक्त, फैराडे द्वारा प्रतिरूपित की गई अन्य घटनाओं में विद्युत क्षेत्र और प्रकाश क्षेत्र सम्मिलित हैं।
वर्तमान के दशकों में भौतिकी में अपरिवर्तनीय गतिशीलता और विकास समीकरणों के कई घटनात्मक सूत्रीकरण, जटिल तरल पदार्थ और ठोस के यांत्रिकी से लेकर रासायनिक कैनेटीक्स और क्वांटम थर्मोडायनामिक्स तक, सतत सार्वभौमिक मॉडलिंग प्रारूप के रूप में तीव्र एन्ट्रापी चढ़ाई या ढाल प्रवाह के ज्यामितीय विचार की ओर एकत्रित हुए हैं जो कि ऊष्मप्रवैगिकी के दूसरे नियम के साथ अनुकूलता की आश्वासन देता है और सुप्रसिद्ध निकट-संतुलन परिणामों जैसे कि ऑनसेगर पारस्परिकता को दूर-गैर-संतुलन क्षेत्र तक विस्तारित करता है।[5]
प्रवाह वक्र
अंतरिक्ष के क्षेत्र से होकर तरल पदार्थ के प्रवाह पर विचार करें। किसी भी समय, द्रव के किसी भी बिंदु के साथ विशेष वेग जुड़ा होता है; इस प्रकार किसी भी प्रवाह से जुड़ा सदिश क्षेत्र होता है। इसका विपरीत भी सत्य है: किसी प्रवाह को उस सदिश क्षेत्र से जोड़ना संभव है, जिसका वेग उस सदिश क्षेत्र के रूप में हो।
सदिश क्षेत्र दिया गया है पर परिभाषित , वक्र परिभाषित करता है पर ऐसा कि प्रत्येक के लिए अंतराल में है,
विशिष्ट अनुप्रयोग द्रव, जियोडेसिक प्रवाह और एक-पैरामीटर उपसमूहों में पथ रेखाएं और लाई समूहों में घातीय मानचित्र हैं।
पूर्ण सदिश क्षेत्र
परिभाषा के अनुसार, सदिश क्षेत्र पर पूर्ण कहा जाता है यदि इसका प्रत्येक प्रवाह वक्र सदैव विद्यमान रहता है।[6] विशेष रूप से, मैनिफोल्ड पर कॉम्पैक्ट रूप से समर्थित सदिश क्षेत्र पूर्ण हैं। यदि पर पूर्ण सदिश क्षेत्र है, फिर प्रवाह द्वारा उत्पन्न भिन्नताओं का एक-पैरामीटर समूह प्रत्येक समय उपस्थित है; इसका वर्णन सहज मानचित्रण द्वारा किया गया है:
सीमा के बिना कॉम्पैक्ट मैनिफोल्ड पर, प्रत्येक स्मूथ सदिश क्षेत्र पूर्ण है। अपूर्ण सदिश क्षेत्र का उदाहरण वास्तविक रेखा पर द्वारा दिया गया है। विभेदक समीकरण के लिए, प्रारंभिक स्थिति के साथ , इसका अनूठा समाधान है यदि (और सभी के लिए यदि ) है इसलिए , पर अपरिभाषित है इसलिए सभी मानों के लिए परिभाषित नहीं किया जा सकता है।
लाई कोष्ठक
दो सदिश क्षेत्रों से जुड़े प्रवाह को एक दूसरे के साथ क्रमविनिमेय गुण की आवश्यकता नहीं है। आवागमन में उनकी विफलता को दो सदिश क्षेत्र के लाई कोष्ठक द्वारा वर्णित किया गया है, जो पुनः सदिश क्षेत्र है। सुचारू कार्यों पर सदिश क्षेत्र की कार्रवाई के संदर्भ में लाई कोष्ठक की सरल परिभाषा है :
f-संबद्धता
मैनिफोल्ड्स के मध्य सुचारू कार्य को देखते हुए, , व्युत्पन्न स्पर्शरेखा बंडलों पर प्रेरित मानचित्र है, दिए गए सदिश क्षेत्र और हैं, हम ऐसा कहते हैं है -संबंधित यदि समीकरण धारण करता है।
यदि है -संदर्भ के , , फिर लाई ब्रैकेट है -संदर्भ के है।
सामान्यीकरण
सदिशों को p-सदिश(सदिश की pth बाह्य शक्ति) द्वारा प्रतिस्थापित करने से p-सदिश क्षेत्र प्राप्त होते हैं; दोहरे स्थान और बाहरी शक्तियों को लेने से विभेदक k-रूप प्राप्त होते हैं, और इन्हें संयोजित करने से सामान्य टेंसर क्षेत्र प्राप्त होते हैं।
बीजगणितीय रूप से, सदिश क्षेत्रों को मैनिफोल्ड पर सुचारु कार्यों के बीजगणित की व्युत्पत्ति के रूप में चित्रित किया जा सकता है, जो क्रमविनिमेय बीजगणित पर सदिश क्षेत्र को बीजगणित पर व्युत्पत्ति के रूप में परिभाषित करने की ओर ले जाता है, जिसे क्रमविनिमेय बीजगणित पर विभेदक कलन के सिद्धांत में विकसित किया गया है।
यह भी देखें
- ईसेनबड-लेविन-खिमशियाश्विली हस्ताक्षर सूत्र
- फ़ील्ड लाइन
- फील्ड की छमता
- वायुमंडलीय गतिशीलता में क्रमिक प्रवाह और संतुलित प्रवाह
- लाई व्युत्पन्न
- अदिश क्षेत्र
- समय-निर्भर सदिश क्षेत्र
- बेलनाकार और गोलाकार निर्देशांक में सदिश क्षेत्र
- टेंसर क्षेत्र
संदर्भ
- ↑ 1.0 1.1 Galbis, Antonio; Maestre, Manuel (2012). वेक्टर विश्लेषण बनाम वेक्टर कैलकुलस. Springer. p. 12. ISBN 978-1-4614-2199-3.
- ↑ 2.0 2.1 Tu, Loring W. (2010). "Vector fields". मैनिफोल्ड्स का एक परिचय. Springer. p. 149. ISBN 978-1-4419-7399-3.
- ↑ Lerman, Eugene (August 19, 2011). "विभेदक ज्यामिति का एक परिचय" (PDF). Definition 3.23.
- ↑ Dawber, P.G. (1987). वेक्टर और वेक्टर ऑपरेटर. CRC Press. p. 29. ISBN 978-0-85274-585-4.
- ↑ Beretta, Gian Paolo (2020-05-01). "The fourth law of thermodynamics: steepest entropy ascent". Philosophical Transactions of the Royal Society A. 378 (2170): 20190168. arXiv:1908.05768. Bibcode:2020RSPTA.37890168B. doi:10.1098/rsta.2019.0168. ISSN 1471-2962. S2CID 201058607.
- ↑ Sharpe, R. (1997). विभेदक ज्यामिति. Springer-Verlag. ISBN 0-387-94732-9.
ग्रन्थसूची
- Hubbard, J. H.; Hubbard, B. B. (1999). Vector calculus, linear algebra, and differential forms. A unified approach. Upper Saddle River, NJ: Prentice Hall. ISBN 0-13-657446-7.
- Warner, Frank (1983) [1971]. Foundations of differentiable manifolds and Lie groups. New York-Berlin: Springer-Verlag. ISBN 0-387-90894-3.
- Boothby, William (1986). An introduction to differentiable manifolds and Riemannian geometry. Pure and Applied Mathematics, volume 120 (second ed.). Orlando, FL: Academic Press. ISBN 0-12-116053-X.
बाहरी संबंध
- Online Vector Field Editor
- "Vector field", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Vector field — Mathworld
- Vector field — PlanetMath
- 3D Magnetic field viewer
- Vector fields and field lines
- Vector field simulation An interactive application to show the effects of vector fields