बीजगणित प्रतिनिधित्व: Difference between revisions
mNo edit summary |
No edit summary |
||
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{distinguish|बीजगणितीय प्रतिनिधित्व}} | {{distinguish|बीजगणितीय प्रतिनिधित्व}} | ||
[[अमूर्त बीजगणित]] में, साहचर्य बीजगणित का प्रतिनिधित्व उस बीजगणित के लिए एक [[मॉड्यूल (गणित)|मापांक (गणित)]] है। यहां एक [[साहचर्य बीजगणित]] एक (जरूरी नहीं कि [[इकाई बीजगणित]]) वलय है। यदि बीजगणित एकात्मक नहीं है, तो इसे मानक तरीके से बनाया जा सकता है (सहायक | [[अमूर्त बीजगणित]] में, साहचर्य बीजगणित का प्रतिनिधित्व उस बीजगणित के लिए एक [[मॉड्यूल (गणित)|मापांक (गणित)]] है। यहां एक [[साहचर्य बीजगणित]] एक (जरूरी नहीं कि [[इकाई बीजगणित]]) वलय है। यदि बीजगणित एकात्मक नहीं है, तो इसे मानक तरीके से बनाया जा सकता है (सहायक तथ्य पृष्ठ देखें); परिणामी इकाई वलय के लिए मापांक के बीच कोई आवश्यक अंतर नहीं है, जिसमें पहचान पहचान मानचित्रण और बीजगणित के प्रतिनिधित्व द्वारा कार्य करती है। अनंत-आयामी लाई (सुपर) बीजगणित, क्वांटम समूह और वर्टेक्स बीजगणित का प्रतिनिधित्व सिद्धांत अनुसंधान का एक सक्रिय क्षेत्र है जिसका गणित और भौतिकी के अन्य क्षेत्रों से गहरा संबंध है। | ||
== उदाहरण == | == उदाहरण == | ||
Line 6: | Line 6: | ||
===रेखीय जटिल संरचना === | ===रेखीय जटिल संरचना === | ||
{{main|रैखिक जटिल संरचना}} | {{main|रैखिक जटिल संरचना}} | ||
सबसे सरल गैर-तुच्छ उदाहरणों में से एक एक [[रैखिक जटिल संरचना]] है, जो [[जटिल संख्या]] C का प्रतिनिधित्व करती है, जिसे [[वास्तविक संख्या]] R पर एक सहयोगी बीजगणित के रूप में माना जाता है। इस बीजगणित को ठोस रूप से महसूस किया जाता है <math>\mathbb{C} = \mathbb{R}[x]/(x^2+1),</math> {{math|1={{mvar|i}}<sup>2</sup> = −1}} जो मेल खाता है| फिर C का प्रतिनिधित्व एक वास्तविक सदिश समष्टि ''V'' है, साथ में ''V'' (एक मानचित्र) पर C की क्रिया भी है <math>\mathbb{C} \to \mathrm{End}(V)</math>) | सबसे सरल गैर-तुच्छ उदाहरणों में से एक एक [[रैखिक जटिल संरचना]] है, जो [[जटिल संख्या]] C का प्रतिनिधित्व करती है, जिसे [[वास्तविक संख्या]] R पर एक सहयोगी बीजगणित के रूप में माना जाता है। इस बीजगणित को ठोस रूप से महसूस किया जाता है <math>\mathbb{C} = \mathbb{R}[x]/(x^2+1),</math> {{math|1={{mvar|i}}<sup>2</sup> = −1}} जो मेल खाता है| फिर C का प्रतिनिधित्व एक वास्तविक सदिश समष्टि ''V'' है, साथ में ''V'' (एक मानचित्र) पर C की क्रिया भी है <math>\mathbb{C} \to \mathrm{End}(V)</math>) | सीधे तौर पर, यह केवल i की एक क्रिया है, क्योंकि यह बीजगणित उत्पन्न करता है, और पहचान आव्यूह I के साथ भ्रम से बचने के लिए i (End(V) में i की छवि) का प्रतिनिधित्व करने वाले संचालिका को J दर्शाया जाता है। | ||
=== [[बहुपद बीजगणित]] === | === [[बहुपद बीजगणित]] === | ||
उदाहरणों का एक अन्य महत्वपूर्ण बुनियादी वर्ग बहुपद बीजगणित, मुक्त [[क्रमविनिमेय बीजगणित]] का प्रतिनिधित्व है - ये क्रमविनिमेय बीजगणित और इसके ज्यामितीय समकक्ष, [[बीजगणितीय ज्यामिति]] में अध्ययन का एक केंद्रीय उद्देश्य बनाते हैं। क्षेत्र K पर k चरों में एक बहुपद बीजगणित का प्रतिनिधित्व ठोस रूप से k कम्यूटिंग संचालिका के साथ एक K- | उदाहरणों का एक अन्य महत्वपूर्ण बुनियादी वर्ग बहुपद बीजगणित, मुक्त [[क्रमविनिमेय बीजगणित]] का प्रतिनिधित्व है - ये क्रमविनिमेय बीजगणित और इसके ज्यामितीय समकक्ष, [[बीजगणितीय ज्यामिति]] में अध्ययन का एक केंद्रीय उद्देश्य बनाते हैं। क्षेत्र K पर k चरों में एक बहुपद बीजगणित का प्रतिनिधित्व ठोस रूप से k कम्यूटिंग संचालिका के साथ एक K-सदिश स्थान है, और इसे प्रायः दर्शाया जाता है <math>K[T_1,\dots,T_k],</math> जिसका अर्थ है अमूर्त बीजगणित का प्रतिनिधित्व <math>K[x_1,\dots,x_k]</math> है जहाँ <math>x_i \mapsto T_i.</math> | ||
ऐसे अभ्यावेदन के बारे में एक बुनियादी परिणाम यह है कि, बीजगणितीय रूप से बंद क्षेत्र पर, निरूपित [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] एक साथ त्रिकोणीय होते हैं। | ऐसे अभ्यावेदन के बारे में एक बुनियादी परिणाम यह है कि, बीजगणितीय रूप से बंद क्षेत्र पर, निरूपित [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] एक साथ त्रिकोणीय होते हैं। | ||
यहां तक कि एक ही चर में बहुपद बीजगणित के निरूपण का मामला भी दिलचस्प है - इसे इस प्रकार दर्शाया गया है <math>K[T]</math> और इसका उपयोग परिमित-आयामी | यहां तक कि एक ही चर में बहुपद बीजगणित के निरूपण का मामला भी दिलचस्प है - इसे इस प्रकार दर्शाया गया है <math>K[T]</math> और इसका उपयोग परिमित-आयामी सदिश स्थान पर एकल [[रैखिक ऑपरेटर|रैखिक संचालिका]] की संरचना को समझने में किया जाता है। विशेष रूप से, इस बीजगणित के लिए एक प्रमुख आदर्श डोमेन पर परिमित रूप से उत्पन्न मापांक के लिए संरचना प्रमेय को लागू करने से परिणाम के रूप में [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] के विभिन्न विहित रूप, जैसे कि [[जॉर्डन विहित रूप]], प्राप्त होते हैं। | ||
[[गैर-अनुवांशिक ज्यामिति]] के कुछ दृष्टिकोणों में, मुक्त गैर-अनुवांशिक बीजगणित (गैर-परिवर्तनीय चर में बहुपद) एक समान भूमिका निभाता है, लेकिन विश्लेषण बहुत अधिक कठिन है। | [[गैर-अनुवांशिक ज्यामिति]] के कुछ दृष्टिकोणों में, मुक्त गैर-अनुवांशिक बीजगणित (गैर-परिवर्तनीय चर में बहुपद) एक समान भूमिका निभाता है, लेकिन विश्लेषण बहुत अधिक कठिन है। | ||
Line 19: | Line 19: | ||
==वजन== | ==वजन== | ||
{{main|वजन (प्रतिनिधित्व सिद्धांत)}} | {{main|वजन (प्रतिनिधित्व सिद्धांत)}} | ||
[[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स]] को बीजगणित अभ्यावेदन के लिए सामान्यीकृत किया जा सकता है। | [[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स|आइगेनवैल्यूज़ एवं अभिलक्षणिक सदिश]] को बीजगणित अभ्यावेदन के लिए सामान्यीकृत किया जा सकता है। | ||
बीजगणित निरूपण के | बीजगणित निरूपण के अभिलाक्षणिक मानका सामान्यीकरण, एकल अदिश के सिवाय, एक आयामी प्रतिनिधित्व है <math>\lambda\colon A \to R</math> (अर्थात, बीजगणित से उसके अंतर्निहित वलय तक एक [[बीजगणित समरूपता]]: एक [[रैखिक कार्यात्मक]] जो गुणक भी है)।<sup>[नोट 1]</sup> इसे वजन(प्रतिनिधित्व सिद्धांत) के रूप में जाना जाता है, और एक आइजेनवेक्टर और आइजेनस्पेस के एनालॉग(अनुरूप) को वजन(प्रतिनिधित्व सिद्धांत) सदिश और वजन(प्रतिनिधित्व सिद्धांत) स्थान कहा जाता है। | ||
एकल संचालिका के | एकल संचालिका के अभिलाक्षणिक मानका मामला बीजगणित से मेल खाता है <math>R[T],</math> और बीजगणित का एक नक्शा <math>R[T] \to R</math> यह इस बात से निर्धारित होता है कि यह जनरेटर T को किस अदिश पर मानचित्रण करता है। बीजगणित प्रतिनिधित्व के लिए एक भार सदिश एक सदिश होता है जैसे कि बीजगणित का कोई भी तत्व इस सदिश को स्वयं के गुणक में मानचित्रण करता है - एक आयामी उपमॉड्यूल (उपप्रस्तुति)। जोड़ी के रूप में <math>A \times M \to M</math> [[द्विरेखीय मानचित्र]] है, जिसका गुणक A (एक बीजगणित मानचित्र A → R) का A-रैखिक कार्यात्मक है, अर्थात् वेट(प्रतिनिधित्व सिद्धांत) । प्रतीकों में, एक वेट सदिश एक सदिश होता है <math>m \in M</math> ऐसा है कि <math>am = \lambda(a)m</math> सभी तत्वों के लिए <math>a \in A,</math> कुछ रैखिक कार्यात्मकता के लिए <math>\lambda</math> - ध्यान दें कि बाईं ओर, गुणन बीजगणित क्रिया है, जबकि दाईं ओर, गुणन अदिश गुणन है। | ||
चूँकि भार एक [[क्रमविनिमेय वलय]] का मानचित्र है, इसलिए मानचित्र बीजगणित के एबेलियनाइजेशन के माध्यम से कारक बनता है <math>\mathcal{A}</math> - समान रूप से, यह व्युत्पन्न बीजगणित पर गायब हो जाता है - आव्यूह के संदर्भ में, यदि <math>v</math> संचालक का एक सामान्य आइजनवेक्टर <math>T</math> और <math>U</math> है, तब <math>T U v = U T v</math> (क्योंकि दोनों ही कारको में यह केवल अदिशों द्वारा गुणन है), इसलिए बीजगणित के सामान्य आइजनवेक्टर उस सेट में होने चाहिए जिस पर बीजगणित क्रमविनिमेय रूप से कार्य करता है (जो व्युत्पन्न बीजगणित द्वारा नष्ट हो जाता है)। इस प्रकार केंद्रीय रुचि मुक्त क्रमविनिमेय बीजगणित, अर्थात् बहुपद बीजगणित हैं। बहुपद बीजगणित के इस विशेष रूप से सरल और महत्वपूर्ण मामले में <math>\mathbf{F}[T_1,\dots,T_k]</math> कम्यूटिंग आव्यूह के एक सेट में, इस बीजगणित का एक वेट सदिश आव्यूह का [[एक साथ eigenvector|एक साथ आइजनवेक्टर]] है, जबकि इस बीजगणित का वजन(प्रतिनिधित्व सिद्धांत) केवल एक है <math>k</math>- अदिशों का समूह <math> \lambda = (\lambda_1,\dots,\lambda_k)</math> प्रत्येक आव्यूह के अभिलाक्षणिक मानके अनुरूप, और इसलिए ज्यामितीय रूप से एक बिंदु के अनुरूप <math>k</math>-स्थान। ये भार - विशेष रूप से उनकी ज्यामिति - लाई बीजगणित के प्रतिनिधित्व सिद्धांत को समझने में केंद्रीय महत्व के हैं, विशेष रूप से लाई बीजगणित के परिमित-आयामी निरूपण। | |||
इस ज्यामिति के अनुप्रयोग के रूप में, एक बीजगणित दिया गया है जो एक बहुपद बीजगणित का भागफल है <math>k</math> जेनरेटर, यह ज्यामितीय रूप से [[बीजगणितीय विविधता]] से मेल खाता है <math>k</math>-आयामी स्थान, और भार विविधता पर पड़ना चाहिए - अर्थात, यह विविधता के लिए परिभाषित समीकरणों को संतुष्ट करता है। यह इस तथ्य को सामान्यीकृत करता है कि | इस ज्यामिति के अनुप्रयोग के रूप में, एक बीजगणित दिया गया है जो एक बहुपद बीजगणित का भागफल है <math>k</math> जेनरेटर, यह ज्यामितीय रूप से [[बीजगणितीय विविधता]] से मेल खाता है <math>k</math>-आयामी स्थान, और भार विविधता पर पड़ना चाहिए - अर्थात, यह विविधता के लिए परिभाषित समीकरणों को संतुष्ट करता है। यह इस तथ्य को सामान्यीकृत करता है कि अभिलाक्षणिक मान एक चर में आव्यूह के [[विशेषता बहुपद]] को संतुष्ट करते हैं। | ||
==यह भी देखें== | ==यह भी देखें== | ||
*[[प्रतिनिधित्व सिद्धांत]] | *[[प्रतिनिधित्व सिद्धांत]] | ||
*[[आपस में गुँथने वाला]] | *[[आपस में गुँथने वाला]] | ||
*[[हॉपफ बीजगणित का प्रतिनिधित्व सिद्धांत]] | *[[हॉपफ बीजगणित का प्रतिनिधित्व सिद्धांत|हॉपफ(Hopf) बीजगणित का प्रतिनिधित्व सिद्धांत]] | ||
*[[झूठ बीजगणित प्रतिनिधित्व]] | *[[झूठ बीजगणित प्रतिनिधित्व|बीजगणित निरूपण लाई(झूठ)]] | ||
*शूर की लेम्मा | *शूर की लेम्मा | ||
*[[जैकबसन घनत्व प्रमेय]] | *[[जैकबसन घनत्व प्रमेय]] | ||
*[[डबल कम्यूटेंट प्रमेय]] | *[[डबल कम्यूटेंट प्रमेय|दोहरी कम्यूटेंट(क्रमपरिवर्ती) प्रमेय]] | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 47: | Line 47: | ||
* Richard S. Pierce. ''Associative algebras''. Graduate texts in mathematics, Vol. 88, Springer-Verlag, 1982, {{ISBN|978-0-387-90693-5}} | * Richard S. Pierce. ''Associative algebras''. Graduate texts in mathematics, Vol. 88, Springer-Verlag, 1982, {{ISBN|978-0-387-90693-5}} | ||
{{refend}} | {{refend}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 19/07/2023]] | [[Category:Created On 19/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:अल्जेब्रास]] | |||
[[Category:प्रतिनिधित्व सिद्धांत]] | |||
[[Category:मॉड्यूल सिद्धांत]] |
Latest revision as of 11:51, 7 August 2023
अमूर्त बीजगणित में, साहचर्य बीजगणित का प्रतिनिधित्व उस बीजगणित के लिए एक मापांक (गणित) है। यहां एक साहचर्य बीजगणित एक (जरूरी नहीं कि इकाई बीजगणित) वलय है। यदि बीजगणित एकात्मक नहीं है, तो इसे मानक तरीके से बनाया जा सकता है (सहायक तथ्य पृष्ठ देखें); परिणामी इकाई वलय के लिए मापांक के बीच कोई आवश्यक अंतर नहीं है, जिसमें पहचान पहचान मानचित्रण और बीजगणित के प्रतिनिधित्व द्वारा कार्य करती है। अनंत-आयामी लाई (सुपर) बीजगणित, क्वांटम समूह और वर्टेक्स बीजगणित का प्रतिनिधित्व सिद्धांत अनुसंधान का एक सक्रिय क्षेत्र है जिसका गणित और भौतिकी के अन्य क्षेत्रों से गहरा संबंध है।
उदाहरण
रेखीय जटिल संरचना
सबसे सरल गैर-तुच्छ उदाहरणों में से एक एक रैखिक जटिल संरचना है, जो जटिल संख्या C का प्रतिनिधित्व करती है, जिसे वास्तविक संख्या R पर एक सहयोगी बीजगणित के रूप में माना जाता है। इस बीजगणित को ठोस रूप से महसूस किया जाता है i2 = −1 जो मेल खाता है| फिर C का प्रतिनिधित्व एक वास्तविक सदिश समष्टि V है, साथ में V (एक मानचित्र) पर C की क्रिया भी है ) | सीधे तौर पर, यह केवल i की एक क्रिया है, क्योंकि यह बीजगणित उत्पन्न करता है, और पहचान आव्यूह I के साथ भ्रम से बचने के लिए i (End(V) में i की छवि) का प्रतिनिधित्व करने वाले संचालिका को J दर्शाया जाता है।
बहुपद बीजगणित
उदाहरणों का एक अन्य महत्वपूर्ण बुनियादी वर्ग बहुपद बीजगणित, मुक्त क्रमविनिमेय बीजगणित का प्रतिनिधित्व है - ये क्रमविनिमेय बीजगणित और इसके ज्यामितीय समकक्ष, बीजगणितीय ज्यामिति में अध्ययन का एक केंद्रीय उद्देश्य बनाते हैं। क्षेत्र K पर k चरों में एक बहुपद बीजगणित का प्रतिनिधित्व ठोस रूप से k कम्यूटिंग संचालिका के साथ एक K-सदिश स्थान है, और इसे प्रायः दर्शाया जाता है जिसका अर्थ है अमूर्त बीजगणित का प्रतिनिधित्व है जहाँ
ऐसे अभ्यावेदन के बारे में एक बुनियादी परिणाम यह है कि, बीजगणितीय रूप से बंद क्षेत्र पर, निरूपित आव्यूह (गणित) एक साथ त्रिकोणीय होते हैं।
यहां तक कि एक ही चर में बहुपद बीजगणित के निरूपण का मामला भी दिलचस्प है - इसे इस प्रकार दर्शाया गया है और इसका उपयोग परिमित-आयामी सदिश स्थान पर एकल रैखिक संचालिका की संरचना को समझने में किया जाता है। विशेष रूप से, इस बीजगणित के लिए एक प्रमुख आदर्श डोमेन पर परिमित रूप से उत्पन्न मापांक के लिए संरचना प्रमेय को लागू करने से परिणाम के रूप में आव्यूह (गणित) के विभिन्न विहित रूप, जैसे कि जॉर्डन विहित रूप, प्राप्त होते हैं।
गैर-अनुवांशिक ज्यामिति के कुछ दृष्टिकोणों में, मुक्त गैर-अनुवांशिक बीजगणित (गैर-परिवर्तनीय चर में बहुपद) एक समान भूमिका निभाता है, लेकिन विश्लेषण बहुत अधिक कठिन है।
वजन
आइगेनवैल्यूज़ एवं अभिलक्षणिक सदिश को बीजगणित अभ्यावेदन के लिए सामान्यीकृत किया जा सकता है।
बीजगणित निरूपण के अभिलाक्षणिक मानका सामान्यीकरण, एकल अदिश के सिवाय, एक आयामी प्रतिनिधित्व है (अर्थात, बीजगणित से उसके अंतर्निहित वलय तक एक बीजगणित समरूपता: एक रैखिक कार्यात्मक जो गुणक भी है)।[नोट 1] इसे वजन(प्रतिनिधित्व सिद्धांत) के रूप में जाना जाता है, और एक आइजेनवेक्टर और आइजेनस्पेस के एनालॉग(अनुरूप) को वजन(प्रतिनिधित्व सिद्धांत) सदिश और वजन(प्रतिनिधित्व सिद्धांत) स्थान कहा जाता है।
एकल संचालिका के अभिलाक्षणिक मानका मामला बीजगणित से मेल खाता है और बीजगणित का एक नक्शा यह इस बात से निर्धारित होता है कि यह जनरेटर T को किस अदिश पर मानचित्रण करता है। बीजगणित प्रतिनिधित्व के लिए एक भार सदिश एक सदिश होता है जैसे कि बीजगणित का कोई भी तत्व इस सदिश को स्वयं के गुणक में मानचित्रण करता है - एक आयामी उपमॉड्यूल (उपप्रस्तुति)। जोड़ी के रूप में द्विरेखीय मानचित्र है, जिसका गुणक A (एक बीजगणित मानचित्र A → R) का A-रैखिक कार्यात्मक है, अर्थात् वेट(प्रतिनिधित्व सिद्धांत) । प्रतीकों में, एक वेट सदिश एक सदिश होता है ऐसा है कि सभी तत्वों के लिए कुछ रैखिक कार्यात्मकता के लिए - ध्यान दें कि बाईं ओर, गुणन बीजगणित क्रिया है, जबकि दाईं ओर, गुणन अदिश गुणन है।
चूँकि भार एक क्रमविनिमेय वलय का मानचित्र है, इसलिए मानचित्र बीजगणित के एबेलियनाइजेशन के माध्यम से कारक बनता है - समान रूप से, यह व्युत्पन्न बीजगणित पर गायब हो जाता है - आव्यूह के संदर्भ में, यदि संचालक का एक सामान्य आइजनवेक्टर और है, तब (क्योंकि दोनों ही कारको में यह केवल अदिशों द्वारा गुणन है), इसलिए बीजगणित के सामान्य आइजनवेक्टर उस सेट में होने चाहिए जिस पर बीजगणित क्रमविनिमेय रूप से कार्य करता है (जो व्युत्पन्न बीजगणित द्वारा नष्ट हो जाता है)। इस प्रकार केंद्रीय रुचि मुक्त क्रमविनिमेय बीजगणित, अर्थात् बहुपद बीजगणित हैं। बहुपद बीजगणित के इस विशेष रूप से सरल और महत्वपूर्ण मामले में कम्यूटिंग आव्यूह के एक सेट में, इस बीजगणित का एक वेट सदिश आव्यूह का एक साथ आइजनवेक्टर है, जबकि इस बीजगणित का वजन(प्रतिनिधित्व सिद्धांत) केवल एक है - अदिशों का समूह प्रत्येक आव्यूह के अभिलाक्षणिक मानके अनुरूप, और इसलिए ज्यामितीय रूप से एक बिंदु के अनुरूप -स्थान। ये भार - विशेष रूप से उनकी ज्यामिति - लाई बीजगणित के प्रतिनिधित्व सिद्धांत को समझने में केंद्रीय महत्व के हैं, विशेष रूप से लाई बीजगणित के परिमित-आयामी निरूपण।
इस ज्यामिति के अनुप्रयोग के रूप में, एक बीजगणित दिया गया है जो एक बहुपद बीजगणित का भागफल है जेनरेटर, यह ज्यामितीय रूप से बीजगणितीय विविधता से मेल खाता है -आयामी स्थान, और भार विविधता पर पड़ना चाहिए - अर्थात, यह विविधता के लिए परिभाषित समीकरणों को संतुष्ट करता है। यह इस तथ्य को सामान्यीकृत करता है कि अभिलाक्षणिक मान एक चर में आव्यूह के विशेषता बहुपद को संतुष्ट करते हैं।
यह भी देखें
- प्रतिनिधित्व सिद्धांत
- आपस में गुँथने वाला
- हॉपफ(Hopf) बीजगणित का प्रतिनिधित्व सिद्धांत
- बीजगणित निरूपण लाई(झूठ)
- शूर की लेम्मा
- जैकबसन घनत्व प्रमेय
- दोहरी कम्यूटेंट(क्रमपरिवर्ती) प्रमेय
टिप्पणियाँ
संदर्भ
- Richard S. Pierce. Associative algebras. Graduate texts in mathematics, Vol. 88, Springer-Verlag, 1982, ISBN 978-0-387-90693-5