ब्रह्मांड का निर्माण: Difference between revisions
Line 124: | Line 124: | ||
==सापेक्ष रचनाशीलता== | ==सापेक्ष रचनाशीलता== | ||
कभी-कभी सेट सिद्धांत का एक | कभी-कभी सेट सिद्धांत का एक मॉडल ढूंढना वांछनीय होता है जो {{var|L}} की तरह संकीर्ण होता है, लेकिन इसमें एक ऐसा सेट शामिल होता है या उससे प्रभावित होता है जो रचनात्मक नहीं होता है। यह सापेक्ष रचनाशीलता की अवधारणा को जन्म देता है, जिसके दो स्वाद हैं, जिन्हें {{var|L}}({{var|A}}) और और {{var|L}}[{{var|A}}] द्वारा दर्शाया गया है। एक गैर-रचनात्मक सेट {{var|A}} के लिए वर्ग {{var|L}}({{var|A}}) सभी वर्गों का प्रतिच्छेदन है जो सेट सिद्धांत के मानक मॉडल हैं और इसमें {{var|A}} और सभी अध्यादेश शामिल हैं। | ||
{{var|L}}({{var|A}}) को ट्रांसफिनिट रिकर्सन द्वारा निम्नानुसार परिभाषित किया गया है: | {{var|L}}({{var|A}}) को ट्रांसफिनिट रिकर्सन द्वारा निम्नानुसार परिभाषित किया गया है: | ||
*{{var|L}}{{sub|0}}({{var|A}}) = सबसे छोटा सकर्मक | *{{var|L}}{{sub|0}}({{var|A}}) =एक तत्व के रूप में {{var|A}} युक्त सबसे छोटा सकर्मक सेट, अर्थात { {{var|A}} } का [[ सकर्मक समापन (सेट) |सकर्मक समापन (सेट)]] | ||
*{{var|L}}{{sub|{{var|α}}+1}}({{var|A}}) = डेफ़ ({{var|L}}{{sub|{{var|α}}}}({{var|A}})) | *{{var|L}}{{sub|{{var|α}}+1}}({{var|A}}) = डेफ़ ({{var|L}}{{sub|{{var|α}}}}({{var|A}})) | ||
* | *यदि {{var|λ}} एक सीमा क्रमसूचक है, तो <math>L_{\lambda}(A) = \bigcup_{\alpha < \lambda} L_{\alpha}(A) \! </math>. | ||
*<math>L(A) = \bigcup_{\alpha} L_{\alpha}(A) \! </math>. | *<math>L(A) = \bigcup_{\alpha} L_{\alpha}(A) \! </math>. | ||
यदि {{var|L}}({{var|A}}) में {{{var|A}}} के सकर्मक समापन का सुव्यवस्थित क्रम शामिल है, तो इसे {{var|L}}({{var|A}}) के सुव्यवस्थित क्रम तक बढ़ाया जा सकता है। अन्यथा, पसंद का सिद्धांत {{var|L}}({{var|A}}) में विफल हो जाएगा। | |||
एक सामान्य उदाहरण है <math>L(\mathbb{R})</math>, सबसे छोटा मॉडल जिसमें सभी वास्तविक संख्याएं शामिल हैं, जिसका उपयोग आधुनिक वर्णनात्मक सेट सिद्धांत में बड़े पैमाने पर किया जाता है। | |||
वर्ग {{var|L}}[{{var|A}}] सेटों का वह वर्ग है जिसका निर्माण ए से प्रभावित होता है, जहां {{var|A}} एक (संभवतः गैर-निर्माण योग्य) सेट या एक उचित वर्ग हो सकता है। इस वर्ग की परिभाषा Def{{sub|{{var|A}}}} ({{var|X}}) का उपयोग करती है, जो Def ({{var|X}}) के समान है, मॉडल ({{var|X}},∈) में सूत्र {{var|Φ}} की सच्चाई का मूल्यांकन करने के बजाय, कोई मॉडल ({{var|X}},∈,{{var|A}}) का उपयोग करता है {{var|A}} एक एकात्मक विधेय है। {{var|A}}({{var|y}}) की अभीष्ट व्याख्या {{var|y}} ∈ {{var|A}} है। तब {{var|L}}[{{var|A}}] की परिभाषा बिल्कुल {{var|L}} के समान है, जिसमें Def को Def{{sub|{{var|A}}}} द्वारा प्रतिस्थापित किया गया है। | |||
{{var|L}}[{{var|A}}] हमेशा पसंद के सिद्धांत का एक मॉडल होता है। भले ही {{var|A}} एक समुच्चय है, {{var|A}}जरूरी नहीं कि वह स्वयं इसका सदस्य हो {{var|L}}[{{var|A}}], हालांकि यह हमेशा यदि होता है {{var|A}} ऑर्डिनल्स का एक सेट है। | |||
में सेट {{var|L}}({{var|A}}) या {{var|L}}[{{var|A}}] आमतौर पर वास्तव में निर्माण योग्य नहीं होते हैं, और इन मॉडलों के गुण इनके गुणों से काफी भिन्न हो सकते हैं {{var|L}} अपने आप। | |||
कक्षा {{var|L}}[{{var|A}}] सेटों का वह वर्ग है जिसका निर्माण प्रभावित होता है {{var|A}}, कहाँ {{var|A}} एक (संभवतः गैर-निर्माण योग्य) सेट या एक उचित वर्ग हो सकता है। इस वर्ग की परिभाषा Def का उपयोग करती है{{sub|{{var|A}}}} ({{var|X}}), जो Def के समान है ({{var|X}}) सूत्रों की सत्यता का मूल्यांकन करने के बजाय {{var|Φ}} मॉडल में ({{var|X}},∈), कोई मॉडल का उपयोग करता है ({{var|X}},∈,{{var|A}}) कहाँ {{var|A}} एक एकात्मक विधेय है. की इच्छित व्याख्या {{var|A}}({{var|y}}) है {{var|y}} ∈ {{var|A}}. फिर की परिभाषा {{var|L}}[{{var|A}}] बिलकुल वैसा ही है {{var|L}} केवल Def के साथ Def द्वारा प्रतिस्थापित किया गया{{sub|{{var|A}}}}. | कक्षा {{var|L}}[{{var|A}}] सेटों का वह वर्ग है जिसका निर्माण प्रभावित होता है {{var|A}}, कहाँ {{var|A}} एक (संभवतः गैर-निर्माण योग्य) सेट या एक उचित वर्ग हो सकता है। इस वर्ग की परिभाषा Def का उपयोग करती है{{sub|{{var|A}}}} ({{var|X}}), जो Def के समान है ({{var|X}}) सूत्रों की सत्यता का मूल्यांकन करने के बजाय {{var|Φ}} मॉडल में ({{var|X}},∈), कोई मॉडल का उपयोग करता है ({{var|X}},∈,{{var|A}}) कहाँ {{var|A}} एक एकात्मक विधेय है. की इच्छित व्याख्या {{var|A}}({{var|y}}) है {{var|y}} ∈ {{var|A}}. फिर की परिभाषा {{var|L}}[{{var|A}}] बिलकुल वैसा ही है {{var|L}} केवल Def के साथ Def द्वारा प्रतिस्थापित किया गया{{sub|{{var|A}}}}. |
Revision as of 14:01, 27 July 2023
गणित में, सेट सिद्धांत में, रचनात्मक ब्रह्मांड (या गोडेल का रचनात्मक ब्रह्मांड), जिसे L द्वारा दर्शाया गया है, सेटों (गणित) का एक विशेष वर्ग (सेट सिद्धांत) है जिसे पूरी तरह से सरल सेटों के संदर्भ में वर्णित किया जा सकता है। L रचनात्मक पदानुक्रम का Lα संघ है। इसे कर्ट गोडेल ने अपने 1938 के पेपर "द कंसिस्टेंसी ऑफ द एक्सिओम ऑफ चॉइस एंड ऑफ द जनरलाइज्ड कॉन्टिनम-हाइपोथिसिस" में पेश किया था।[1] इस पेपर में, उन्होंने साबित किया कि रचनात्मक ब्रह्मांड ZF सेट सिद्धांत का एक आंतरिक मॉडल है (अर्थात, ज़र्मेलो-फ्रेंकेल सेट सिद्धांत जिसमें पसंद के सिद्धांत को बाहर रखा गया है), और यह भी कि रचनात्मक ब्रह्मांड में पसंद के सिद्धांत और सामान्यीकृत सातत्य परिकल्पना सत्य हैं। इससे पता चलता है कि दोनों प्रस्ताव सेट सिद्धांत के मूल सिद्धांतों के अनुरूप हैं, यदि ZF स्वयं सुसंगत है। चूँकि कई अन्य प्रमेय केवल उन प्रणालियों में मान्य होते हैं जिनमें एक या दोनों प्रस्ताव सत्य होते हैं, उनकी स्थिरता एक महत्वपूर्ण परिणाम है।
क्या L है
L को वॉन न्यूमैन ब्रह्मांड, V के निर्माण के समान "चरणों" में बनाया गया माना जा सकता है। चरणों को क्रमसूचकों द्वारा अनुक्रमित किया जाता है। वॉन न्यूमैन के ब्रह्मांड में, उत्तराधिकारी चरण में, कोई Vα+1 को पिछले चरण, Vα के सभी सबसेट का सेट मानता है। इसके विपरीत, गोडेल के रचनात्मक ब्रह्मांड L में, कोई पिछले चरण के केवल उन सबसेट का उपयोग करता है जो हैं:
- सेट सिद्धांत की औपचारिक भाषा में एक सूत्र (गणितीय तर्क) द्वारा परिभाषित,
- पिछले चरण के मापदंडों के साथ और,
- क्वांटिफायर (तर्क) की व्याख्या पिछले चरण की सीमा के अनुसार की गई है।
अपने आप को केवल पहले से निर्मित किए गए सेटों के संदर्भ में परिभाषित सेटों तक सीमित करके, यह सुनिश्चित किया जाता है कि परिणामी सेटों का निर्माण इस तरह से किया जाएगा जो सेट सिद्धांत के आसपास के मॉडल की विशिष्टताओं से स्वतंत्र है और ऐसे किसी भी मॉडल में निहित है।
डीईएफ़ ऑपरेटर को परिभाषित करें:[2]
एल को ट्रांसफ़िनिट रिकर्सन द्वारा निम्नानुसार परिभाषित किया गया है:
- * अगर तो फिर, यह एक सीमा क्रमसूचक है यहाँ का अर्थ है क्रमसूचक संख्या और सीमा क्रमवाचक .
- यहां ऑर्ड सभी ऑर्डिनल्स के वर्ग (सेट सिद्धांत) को दर्शाता है।
अगर का एक तत्व है , फिर .[3] इसलिए का एक उपसमुच्चय है , जो Lα के पावर सेट का एक उपसमुच्चय है। लेकिन L स्वयं एक सकर्मक समुच्चय है। L के तत्वों को "रचनात्मक" सेट कहा जाता है; और L स्वयं "रचनात्मक ब्रह्मांड" है। "रचनात्मकता का सिद्धांत", उर्फ "V = L ,", कहता है कि प्रत्येक सेट (V का) ) रचनात्मक है, अर्थात् L में।
सेट के बारे में अतिरिक्त तथ्य Lα
के लिए एक समतुल्य परिभाषा Lα है:
किसी भी परिमित क्रम के लिए n, सेट Ln और Vn वही हैं (चाहे V बराबर है L या नहीं), और इस प्रकार Lω = Vω: उनके तत्व बिल्कुल आनुवंशिक रूप से सीमित सेट हैं। इस बिंदु से आगे समानता नहीं टिकती। यहां तक कि ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के मॉडल में भी V बराबर है L, Lω+1 का एक उचित उपसमुच्चय है Vω+1, और उसके बाद Lα+1 के पावर सेट का एक उचित उपसमुच्चय है Lα सभी के लिए α > ω. वहीं दूसरी ओर, V = L इसका तात्पर्य यह है Vα बराबर है Lα अगर α = ωα, उदाहरण के लिए यदि α अप्राप्य है. आम तौर पर अधिक, V = L का तात्पर्य वंशानुगत गणनीय समुच्चय से है|Hα = Lα सभी अनंत कार्डिनल्स के लिए α.
अगर α एक अनंत क्रमसूचक है तो बीच में एक आक्षेप है Lα और α, और आक्षेप रचनात्मक है। तो ये सेट सेट सिद्धांत के किसी भी मॉडल में समतुल्य हैं जिसमें ये शामिल हैं।
जैसा कि ऊपर बताया गया है, Def(X) के उपसमुच्चय का समुच्चय है X Δ द्वारा परिभाषित0 सूत्र (लेवी पदानुक्रम के संबंध में, यानी, सेट सिद्धांत के सूत्र जिसमें केवल बंधे हुए क्वांटिफायर होते हैं) जो केवल पैरामीटर के रूप में उपयोग करते हैं X और उसके तत्व।[4] गोडेल के कारण एक और परिभाषा, प्रत्येक की विशेषता बताती है Lα+1 की शक्ति सेट के प्रतिच्छेदन के रूप में Lα के बंद होने के साथ गोडेल संचालन के समान, नौ स्पष्ट कार्यों के संग्रह के तहत। यह परिभाषा निश्चितता का कोई संदर्भ नहीं देती है।
के सभी अंकगणितीय पदानुक्रम उपसमुच्चय ω और संबंध चालू ω के संबंधित Lω+1 (क्योंकि अंकगणितीय परिभाषा एक देती है Lω+1). इसके विपरीत, का कोई उपसमुच्चय ω से संबंधित Lω+1 अंकगणितीय है (क्योंकि के तत्व Lω को प्राकृतिक संख्याओं द्वारा इस तरह से कोडित किया जा सकता है कि ∈ निश्चित है, यानी, अंकगणित)। वहीं दूसरी ओर, Lω+2 में पहले से ही कुछ गैर-अंकगणितीय उपसमुच्चय शामिल हैं ω, जैसे कि (प्राकृतिक संख्या कोडिंग) सही अंकगणितीय कथनों का सेट (इसे इससे परिभाषित किया जा सकता है Lω+1 तो यह अंदर है Lω+2).
के सभी हाइपर अंकगणितीय पदानुक्रम उपसमुच्चय ω और संबंध चालू ω के संबंधित (कहाँ चर्च-क्लीन ऑर्डिनल के लिए खड़ा है), और इसके विपरीत किसी भी उपसमुच्चय के लिए ω वह का है अति अंकगणितीय है.[5]
== L ZFC == का एक मानक आंतरिक मॉडल है
एक मानक मॉडल है, यानी एल एक संक्रमणीय वर्ग है और व्याख्या वास्तविक तत्व संबंध का उपयोग करती है, इसलिए यह अच्छी तरह से स्थापित संबंध है|अच्छी तरह से स्थापित है। L एक आंतरिक मॉडल है, यानी इसमें सभी क्रमिक संख्याएं शामिल हैं V और इसमें इनके अलावा कोई अतिरिक्त सेट नहीं है V. हालाँकि L एक उचित उपवर्ग हो सकता है V. L ज़र्मेलो-फ्रेंकेल सेट सिद्धांत का एक मॉडल है, जिसका अर्थ है कि यह निम्नलिखित सिद्धांतों को संतुष्ट करता है:
- नियमितता का सिद्धांत: प्रत्येक गैर-रिक्त सेट x में कुछ तत्व शामिल हैं y ऐसा है कि x और y असंयुक्त समुच्चय हैं।
- (L,∈) की एक उपसंरचना हैV,∈), जो अच्छी तरह से स्थापित है, इसलिए L अच्छी तरह से स्थापित है. विशेषकर, यदि y ∈ x ∈ L, फिर की परिवर्तनशीलता द्वारा L, y ∈ L. अगर हम इसी का उपयोग करते हैं y के रूप में V, तो यह अभी भी असंयुक्त है x क्योंकि हम समान तत्व संबंध का उपयोग कर रहे हैं और कोई नया सेट नहीं जोड़ा गया है।
- विस्तारात्मकता का सिद्धांत: दो सेट समान हैं यदि उनके तत्व समान हैं।
- अगर x और y में हैं L और उनमें समान तत्व हैं L, तब तक L की परिवर्तनशीलता, उनके पास समान तत्व हैं (में V). अत: वे बराबर (में) हैं V और इस प्रकार में L).
- रिक्त समुच्चय का अभिगृहीत: {} एक समुच्चय है।
- , जो इसमें है . इसलिए . चूँकि तत्व संबंध समान है और कोई नया तत्व नहीं जोड़ा गया है, यह खाली सेट है .
- युग्म का अभिगृहीत: यदि , तो, सेट हैं एक सेट है.
- अगर और , फिर कुछ क्रम है ऐसा है कि और . फिर {x,y} = {<नोविकी/>s | s ∈ Lα और (s = x या s = y)} ∈ Lα+1. इस प्रकार {x,y} ∈ L और इसका वही अर्थ है L से संबंधित V.
- मिलन का अभिगृहीत: किसी भी समुच्चय के लिए x एक सेट है y जिनके तत्व बिल्कुल तत्वों के तत्व हैं x.
- अगर , तो उसके तत्व अंदर हैं और उनके तत्व भी अंदर हैं . इसलिए का एक उपसमुच्चय है . y = {<नोविकी/>s | s ∈ Lα और वहाँ मौजूद है z ∈ x ऐसा है कि s ∈ z} ∈ Lα+1. इस प्रकार .
- अनंत का अभिगृहीत: एक समुच्चय मौजूद है ऐसा है कि में है और जब भी में है , तो संघ है .
- प्रत्येक क्रमसूचक को दिखाने के लिए ट्रांसफिनिट इंडक्शन का उपयोग किया जा सकता है α ∈ Lα+1. विशेष रूप से, ω ∈ Lω+1 और इस तरह ω ∈ L.
- पृथक्करण का अभिगृहीत: किसी भी समुच्चय को देखते हुए S और कोई भी प्रस्ताव P(x,z1,...,zn), {<नोविकी/>x | x ∈ S और P(x,z1,...,zn)} एक समुच्चय है.
- के उपसूत्रों पर प्रेरण द्वारा P, कोई दिखा सकता है कि वहाँ एक है α ऐसा है कि Lα रोकना S और z1,...,zn और (P में सत्य है Lα अगर और केवल अगर में सच है ), बाद वाले को प्रतिबिंब सिद्धांत कहा जाता है)। तो {x | x ∈ S and P(x,z1,...,zn) holds in L} = {<नोविकी/>x | x ∈ Lα और x ∈ S और P(x,z1,...,zn) धारण करता है Lα} ∈ Lα+1. इस प्रकार उपसमुच्चय अंदर है L.[6]
- प्रतिस्थापन का सिद्धांत: कोई भी सेट दिया गया S और कोई भी मानचित्रण (औपचारिक रूप से एक प्रस्ताव के रूप में परिभाषित किया गया है P(x,y) कहाँ P(x,y) और पी(x,z) तात्पर्य y = z), {<नोविकी/>y | वहां मौजूद x ∈ S ऐसा है कि P(x,y)} एक सेट है.
- होने देना Q(x,y) वह सूत्र हो जो सापेक्ष बनाता है P को L, यानी सभी क्वांटिफायर P तक सीमित हैं L. Q की तुलना में कहीं अधिक जटिल सूत्र है P, लेकिन यह अभी भी एक सीमित सूत्र है, और तब से P एक मैपिंग ओवर था L, Q एक मैपिंग ओवर होना चाहिए V; इस प्रकार हम इसमें प्रतिस्थापन लागू कर सकते हैं V को Q. तो {y | y ∈ L और वहाँ मौजूद है x ∈ S ऐसा है कि P(x,y) धारण करता है L<नोविकी/>} = {<नोविकी/>y | वहां मौजूद x ∈ S ऐसा है कि Q(x,y)} एक सेट है V और का एक उपवर्ग L. फिर से प्रतिस्थापन के सिद्धांत का उपयोग करना V, हम दिखा सकते हैं कि एक होना ही चाहिए α जैसे कि यह समुच्चय इसका एक उपसमुच्चय है Lα ∈ Lα+1. तब कोई अलगाव के सिद्धांत का उपयोग कर सकता है L यह दिखाने के लिए कि यह एक तत्व है L.
- पावर सेट का सिद्धांत: किसी भी सेट के लिए x वहां एक सेट मौजूद है y, जैसे कि के तत्व y सटीक रूप से उपसमुच्चय हैं x.
- सामान्य तौर पर, एक सेट के कुछ उपसमुच्चय Lअंदर नहीं होगा L. तो एक सेट की पूरी शक्ति सेट में L आमतौर पर अंदर नहीं होगा L. यहां हमें यह दिखाने की जरूरत है कि शक्ति का प्रतिच्छेदन किससे निर्धारित होता है L में है L. में प्रतिस्थापन का प्रयोग करें V यह दिखाने के लिए कि एक α ऐसा है कि प्रतिच्छेदन इसका एक उपसमुच्चय है Lα. फिर प्रतिच्छेदन { हैz | z ∈ Lα और z का एक उपसमुच्चय है x} ∈ Lα+1. इस प्रकार आवश्यक सेट अंदर है L.
- पसंद का सिद्धांत: एक सेट दिया गया है x परस्पर असंयुक्त अरिक्त समुच्चयों का एक समुच्चय होता है y (के लिए एक विकल्प सेट x) के प्रत्येक सदस्य से बिल्कुल एक तत्व शामिल है x.
- कोई यह दिखा सकता है कि निश्चित रूप से सुव्यवस्थित है L, विशेष रूप से सभी सेटों को ऑर्डर करने पर आधारित उनकी परिभाषाओं और जिस रैंक पर वे आते हैं, उसके अनुसार। तो प्रत्येक सदस्य का सबसे छोटा तत्व चुनता है x रूप देना y मिलन और अलगाव के सिद्धांतों का उपयोग करना L.
ध्यान दें कि इसका प्रमाण L ZFC का एक मॉडल है केवल इसकी आवश्यकता है V ZF का एक मॉडल बनें, यानी हम यह नहीं मानते हैं कि पसंद का सिद्धांत कायम है V.
एल पूर्ण और न्यूनतम है
अगर ZF का कोई भी मानक मॉडल समान क्रम-क्रम साझा करता है , फिर में परिभाषित किया गया है के समान ही है में परिभाषित किया गया है . विशेष रूप से, में वही है और , किसी भी क्रमसूचक के लिए . और वही सूत्र और पैरामीटर समान रचनात्मक सेट तैयार करें .
इसके अलावा, तब से का एक उपवर्ग है और, इसी तरह, का एक उपवर्ग है , सभी ऑर्डिनल्स वाला सबसे छोटा वर्ग है जो ZF का एक मानक मॉडल है। वास्तव में, ऐसे सभी वर्गों का प्रतिच्छेदन है।
अगर कोई सेट है में यह ZF का आंतरिक मॉडल और क्रमसूचक है यह क्रमादेशों का समूह है जो घटित होता है , तब है का . यदि कोई ऐसा सेट है जो ZF का मानक मॉडल है, तो ऐसा सबसे छोटा सेट है . इस सेट को ZFC का न्यूनतम मॉडल (सेट सिद्धांत) कहा जाता है। अधोमुखी लोवेनहेम-स्कोलेम प्रमेय का उपयोग करके, कोई यह दिखा सकता है कि न्यूनतम मॉडल (यदि यह मौजूद है) एक गणनीय सेट है।
बेशक, किसी भी सुसंगत सिद्धांत में एक मॉडल होना चाहिए, इसलिए सेट सिद्धांत के न्यूनतम मॉडल के भीतर भी ऐसे सेट हैं जो ZF के मॉडल हैं (यह मानते हुए कि ZF सुसंगत है)। हालाँकि, वे सेट मॉडल गैर-मानक हैं। विशेष रूप से, वे सामान्य तत्व संबंध का उपयोग नहीं करते हैं और वे अच्छी तरह से स्थापित नहीं हैं।
क्योंकि दोनों भीतर निर्मित और भीतर निर्मित वास्तविक परिणाम , और दोनों का और यह का असली हैं , हमें वह मिल गया में सच है और किसी में भी यह ZF का एक मॉडल है. हालाँकि, ZF के किसी अन्य मानक मॉडल में नहीं है।
एल और बड़े कार्डिनल
तब से Ord ⊂ L ⊆ V, ऑर्डिनल्स के गुण जो किसी फ़ंक्शन या अन्य संरचना की अनुपस्थिति पर निर्भर करते हैं (यानी Π1ZF सूत्र) से नीचे जाने पर संरक्षित रहते हैं V को L. इसलिए कार्डिनल्स के प्रारंभिक क्रम प्रारंभिक ही रहते हैं L. नियमित क्रम-क्रम नियमित रहते हैं L. कमजोर सीमा कार्डिनल सीमा मजबूत सीमा वाले कार्डिनल बन जाते हैं L क्योंकि सामान्यीकृत सातत्य परिकल्पना कायम है L. कमजोर रूप से [[बड़ा कार्डिनल]] दृढ़ता से दुर्गम हो जाते हैं। कमजोर कार्डिनल आँखें मजबूती से महलो बन जाते हैं। और अधिक सामान्यतः, कोई भी बड़ी कार्डिनल संपत्ति ज़ीरो शार्प|0 से कमज़ोर होती है# (बड़ी कार्डिनल संपत्तियों की सूची देखें) में बरकरार रखा जाएगा L.
हालाँकि, 0# में गलत है L भले ही सत्य हो V. तो सभी बड़े कार्डिनल जिनका अस्तित्व 0 दर्शाता है# उन बड़े कार्डिनल गुणों को बंद कर दें, लेकिन 0 से कमजोर गुणों को बरकरार रखें# जो उनके पास भी है. उदाहरण के लिए, मापने योग्य कार्डिनल मापने योग्य नहीं रह जाते हैं लेकिन महलो बने रहते हैं L.
यदि 0# धारण करता है V, फिर वहां ऑर्डिनल्स का एक क्लब सेट है जो अविवेकी है L. जबकि इनमें से कुछ प्रारंभिक क्रम-क्रम भी नहीं हैं V, उनके पास सभी बड़े कार्डिनल गुण 0 से कमज़ोर हैं# में L. इसके अलावा, किसी भी सख्ती से बढ़ते वर्ग फ़ंक्शन को अविभाज्य वर्ग से स्वयं के प्राथमिक एम्बेडिंग के लिए एक अनूठे तरीके से बढ़ाया जा सकता है L में L.[citation needed] यह देता है L दोहराए जाने वाले खंडों की एक अच्छी संरचना।
L सुव्यवस्थित किया जा सकता है
सुव्यवस्थित करने के विभिन्न तरीके हैं L. इनमें से कुछ में गोडेल ऑपरेशन शामिल है| की उत्तम संरचना L, जिसका वर्णन पहली बार रोनाल्ड जेन्सेन ने अपने 1972 के पेपर में किया था जिसका शीर्षक था रचनात्मक पदानुक्रम की उत्कृष्ट संरचना। बारीक संरचना की व्याख्या करने के बजाय, हम कैसे की रूपरेखा देंगे L को केवल ऊपर दी गई परिभाषा का उपयोग करके सुव्यवस्थित किया जा सकता है।
कल्पना करना x और y दो अलग-अलग सेट हैं L और हम यह निर्धारित करना चाहते हैं कि क्या x < y या x > y. अगर x सबसे पहले दिखाई देता है Lα+1 और y सबसे पहले दिखाई देता है Lβ+1 और β से भिन्न α, तो करने दें x < y अगर और केवल अगर α < β. अब से, हम ऐसा मानते हैं β = α.
मंच Lα+1 = Def (Lα) से पैरामीटर वाले फ़ार्मुलों का उपयोग करता है Lα सेट को परिभाषित करने के लिए x और y. यदि कोई (फिलहाल) मापदंडों को छूट देता है, तो सूत्रों को प्राकृतिक संख्याओं द्वारा एक मानक गोडेल नंबरिंग दी जा सकती है। अगर Φ सबसे छोटी गोडेल संख्या वाला सूत्र है जिसका उपयोग परिभाषित करने के लिए किया जा सकता है x, और Ψ सबसे छोटी गोडेल संख्या वाला सूत्र है जिसका उपयोग परिभाषित करने के लिए किया जा सकता है y, और Ψ से भिन्न Φ, तो करने दें x < y अगर और केवल अगर Φ < Ψ गोडेल नंबरिंग में। अब से, हम ऐसा मानते हैं Ψ = Φ.
लगता है कि Φ उपयोग करता है n से पैरामीटर Lα. कल्पना करना z1,...,zn उन पैरामीटरों का क्रम है जिनका उपयोग किया जा सकता है Φ परिभाषित करने के लिए x, और w1,...,wn के लिए भी ऐसा ही करता है y. तो करने दें x < y यदि और केवल यदि दोनों में से कोई एक zn < wn या (zn = wn और ) या (zn = wn और और ) आदि। इसे रिवर्स शब्दकोषीय क्रम कहा जाता है; यदि मापदंडों के कई क्रम हैं जो किसी एक सेट को परिभाषित करते हैं, तो हम इस क्रम के तहत सबसे कम एक को चुनते हैं। यह समझा जा रहा है कि प्रत्येक पैरामीटर के संभावित मानों को क्रम के प्रतिबंध के अनुसार क्रमबद्ध किया गया है L को Lα, इसलिए इस परिभाषा में ट्रांसफिनिट रिकर्सन शामिल है α.
एकल मापदंडों के मूल्यों का सुव्यवस्थित क्रम ट्रांसफ़िनिट इंडक्शन की आगमनात्मक परिकल्पना द्वारा प्रदान किया जाता है। के मूल्य n-उत्पाद ऑर्डरिंग द्वारा पैरामीटर्स के टुपल्स को अच्छी तरह से क्रमबद्ध किया जाता है। मापदंडों वाले सूत्र सु-क्रमों के क्रमबद्ध योग (गोडेल संख्याओं द्वारा) द्वारा सुव्यवस्थित होते हैं। और L आदेशित राशि द्वारा सुव्यवस्थित है (द्वारा अनुक्रमित)। α) के आदेश पर Lα+1.
ध्यान दें कि इस सुव्यवस्थितता को भीतर परिभाषित किया जा सकता है L स्वयं सेट सिद्धांत के एक सूत्र द्वारा, जिसमें कोई पैरामीटर नहीं है, केवल मुक्त-चर हैं x और y. और यह सूत्र समान सत्य मान देता है, भले ही इसका मूल्यांकन किया गया हो L, V, या W (समान ऑर्डिनल्स के साथ ZF का कुछ अन्य मानक मॉडल) और हम मान लेंगे कि सूत्र गलत है यदि दोनों में से कोई भी x या y इसमें नहीं है L.
यह सर्वविदित है कि पसंद का सिद्धांत प्रत्येक सेट को अच्छी तरह से व्यवस्थित करने की क्षमता के बराबर है। उचित कक्षा को सुव्यवस्थित करने में सक्षम होना V (जैसा कि हमने यहां किया है L) वैश्विक पसंद के सिद्धांत के समतुल्य है, जो पसंद के सामान्य सिद्धांत से अधिक शक्तिशाली है क्योंकि इसमें गैर-रिक्त सेटों के उचित वर्गों को भी शामिल किया गया है।
==L एक प्रतिबिंब सिद्धांत == है यह साबित करना कि अलगाव का सिद्धांत, प्रतिस्थापन का सिद्धांत, और पसंद का सिद्धांत कायम है L के लिए प्रतिबिंब सिद्धांत के उपयोग की आवश्यकता है (कम से कम जैसा कि ऊपर दिखाया गया है)। L. यहां हम ऐसे सिद्धांत का वर्णन करते हैं।
पर प्रेरण द्वारा n < ω, हम ZF का उपयोग कर सकते हैं V किसी भी क्रमसूचक के लिए इसे साबित करने के लिए α, एक क्रमसूचक है β > α ऐसा कि किसी भी वाक्य के लिए P(z1,...,zk) साथ z1,...,zk में Lβ और से कम युक्त n प्रतीक (के एक तत्व के लिए एक स्थिर प्रतीक की गिनती Lβ एक प्रतीक के रूप में) हमें वह मिलता है P(z1,...,zk) धारण करता है Lβ यदि और केवल यदि यह कायम रहता है L.
सामान्यीकृत सातत्य परिकल्पना कायम है L
होने देना , और जाने T का कोई भी रचनात्मक उपसमुच्चय हो S. फिर कुछ है β साथ , इसलिए , कुछ सूत्र के लिए Φ और कुछ से खींचा . नीचे की ओर लोवेनहेम-स्कोलेम प्रमेय और मोस्टोव्स्की पतन लेम्मा के अनुसार, कुछ सकर्मक सेट होना चाहिए K युक्त और कुछ , और प्रथम-क्रम सिद्धांत के समान ही है साथ के लिए प्रतिस्थापित ; और इस K के समान ही कार्डिनल होगा . तब से में सच है , यह सच भी है K, इसलिए कुछ के लिए γ के समान कार्डिनल होना α. और क्योंकि और एक ही सिद्धांत है. इसलिए T वास्तव में में है .
अतः अनंत समुच्चय के सभी रचनात्मक उपसमुच्चय S की रैंक (अधिकतम) एक ही कार्डिनल के साथ है κ के पद के रूप में S; यह इस प्रकार है कि यदि δ के लिए प्रारंभिक क्रमसूचक है κ+, तब के पावर सेट के रूप में कार्य करता है S अंदर L. इस प्रकार यह शक्ति निर्धारित हुई . और बदले में इसका मतलब है कि पावर सेट S में अधिकतम कार्डिनल है ||δ||. यह मानते हुए Sस्वयं में कार्डिनल है κ, पावर सेट में बिल्कुल कार्डिनल होना चाहिए κ+. लेकिन यह बिल्कुल सामान्यीकृत सातत्य परिकल्पना है जो सापेक्ष है L.
निर्माण योग्य सेट ऑर्डिनल्स से निश्चित हैं
समुच्चय सिद्धांत का एक सूत्र है जो इस विचार को व्यक्त करता है X = Lα. इसके लिए केवल निःशुल्क चर हैं X और α. इसका उपयोग करके हम प्रत्येक रचनात्मक सेट की परिभाषा का विस्तार कर सकते हैं। अगर s ∈ Lα+1, तब s = {<नोविकी/>y | y ∈ Lα और Φ(y,z1,...,zn) में रखता है (Lα,∈)} कुछ सूत्र के लिए Φ और कुछ z1,...,zn में Lα. यह यह कहने के बराबर है: सभी के लिए y, y ∈ s यदि और केवल यदि [वहाँ मौजूद है X ऐसा है कि X =Lα और y ∈ X और Ψ(X,y,z1,...,zn)] कहाँ Ψ(X,...) प्रत्येक क्वांटिफायर को प्रतिबंधित करने का परिणाम है Φ(...) को X. ध्यान दें कि प्रत्येक zk ∈ Lβ+1 कुछ के लिए β < α. के लिए सूत्रों को संयोजित करें z के लिए सूत्र के साथ है s और इसके ऊपर अस्तित्वगत परिमाणक लागू करें z के बाहर और एक सूत्र मिलता है जो रचनात्मक सेट को परिभाषित करता है s केवल क्रमसूचकों का उपयोग करना α जो जैसे भावों में प्रकट होते हैं X = Lα पैरामीटर के रूप में।
उदाहरण: सेट {5,ω} रचनात्मक है। यह अनोखा सेट है s जो सूत्र को संतुष्ट करता है:
कहाँ इसके लिए संक्षिप्त है:
दरअसल, इस जटिल सूत्र को भी पहले पैराग्राफ में दिए गए निर्देशों के आधार पर सरल बनाया गया है। लेकिन मुद्दा यह है कि सेट सिद्धांत का एक सूत्र है जो केवल वांछित रचनात्मक सेट के लिए सत्य है s और इसमें केवल ऑर्डिनल्स के लिए पैरामीटर शामिल हैं।
सापेक्ष रचनाशीलता
कभी-कभी सेट सिद्धांत का एक मॉडल ढूंढना वांछनीय होता है जो L की तरह संकीर्ण होता है, लेकिन इसमें एक ऐसा सेट शामिल होता है या उससे प्रभावित होता है जो रचनात्मक नहीं होता है। यह सापेक्ष रचनाशीलता की अवधारणा को जन्म देता है, जिसके दो स्वाद हैं, जिन्हें L(A) और और L[A] द्वारा दर्शाया गया है। एक गैर-रचनात्मक सेट A के लिए वर्ग L(A) सभी वर्गों का प्रतिच्छेदन है जो सेट सिद्धांत के मानक मॉडल हैं और इसमें A और सभी अध्यादेश शामिल हैं।
L(A) को ट्रांसफिनिट रिकर्सन द्वारा निम्नानुसार परिभाषित किया गया है:
- L0(A) =एक तत्व के रूप में A युक्त सबसे छोटा सकर्मक सेट, अर्थात { A } का सकर्मक समापन (सेट)
- Lα+1(A) = डेफ़ (Lα(A))
- यदि λ एक सीमा क्रमसूचक है, तो .
- .
यदि L(A) में A के सकर्मक समापन का सुव्यवस्थित क्रम शामिल है, तो इसे L(A) के सुव्यवस्थित क्रम तक बढ़ाया जा सकता है। अन्यथा, पसंद का सिद्धांत L(A) में विफल हो जाएगा।
एक सामान्य उदाहरण है , सबसे छोटा मॉडल जिसमें सभी वास्तविक संख्याएं शामिल हैं, जिसका उपयोग आधुनिक वर्णनात्मक सेट सिद्धांत में बड़े पैमाने पर किया जाता है।
वर्ग L[A] सेटों का वह वर्ग है जिसका निर्माण ए से प्रभावित होता है, जहां A एक (संभवतः गैर-निर्माण योग्य) सेट या एक उचित वर्ग हो सकता है। इस वर्ग की परिभाषा DefA (X) का उपयोग करती है, जो Def (X) के समान है, मॉडल (X,∈) में सूत्र Φ की सच्चाई का मूल्यांकन करने के बजाय, कोई मॉडल (X,∈,A) का उपयोग करता है A एक एकात्मक विधेय है। A(y) की अभीष्ट व्याख्या y ∈ A है। तब L[A] की परिभाषा बिल्कुल L के समान है, जिसमें Def को DefA द्वारा प्रतिस्थापित किया गया है।
L[A] हमेशा पसंद के सिद्धांत का एक मॉडल होता है। भले ही A एक समुच्चय है, Aजरूरी नहीं कि वह स्वयं इसका सदस्य हो L[A], हालांकि यह हमेशा यदि होता है A ऑर्डिनल्स का एक सेट है।
में सेट L(A) या L[A] आमतौर पर वास्तव में निर्माण योग्य नहीं होते हैं, और इन मॉडलों के गुण इनके गुणों से काफी भिन्न हो सकते हैं L अपने आप।
कक्षा L[A] सेटों का वह वर्ग है जिसका निर्माण प्रभावित होता है A, कहाँ A एक (संभवतः गैर-निर्माण योग्य) सेट या एक उचित वर्ग हो सकता है। इस वर्ग की परिभाषा Def का उपयोग करती हैA (X), जो Def के समान है (X) सूत्रों की सत्यता का मूल्यांकन करने के बजाय Φ मॉडल में (X,∈), कोई मॉडल का उपयोग करता है (X,∈,A) कहाँ A एक एकात्मक विधेय है. की इच्छित व्याख्या A(y) है y ∈ A. फिर की परिभाषा L[A] बिलकुल वैसा ही है L केवल Def के साथ Def द्वारा प्रतिस्थापित किया गयाA.
L[A] हमेशा पसंद के सिद्धांत का एक मॉडल होता है। भले ही A एक समुच्चय है, Aजरूरी नहीं कि वह स्वयं इसका सदस्य हो L[A], हालांकि यह हमेशा यदि होता है A ऑर्डिनल्स का एक सेट है।
में सेट L(A) या L[A] आमतौर पर वास्तव में निर्माण योग्य नहीं होते हैं, और इन मॉडलों के गुण इनके गुणों से काफी भिन्न हो सकते हैं L अपने आप।
यह भी देखें
- रचनाशीलता का सिद्धांत
- L में कथन सत्य हैं
- परावर्तन सिद्धांत
- स्वयंसिद्ध समुच्चय सिद्धांत
- सकर्मक समुच्चय
- एल(आर)
- सामान्य निश्चित
टिप्पणियाँ
- ↑ Gödel 1938.
- ↑ K. J. Devlin, "An introduction to the fine structure of the constructible hierarchy" (1974). Accessed 20 February 2023.
- ↑ K. J. Devlin, Constructibility (1984), ch. 2, "The Constructible Universe, p.58. Perspectives in Mathematical Logic, Springer-Verlag.
- ↑ K. Devlin 1975, An Introduction to the Fine Structure of the Constructible Hierarchy (p.2). Accessed 2021-05-12.
- ↑ Barwise 1975, page 60 (comment following proof of theorem 5.9)
- ↑ P. Odifreddi, Classical Recursion Theory, pp.427. Studies in Logic and the Foundations of Mathematics
संदर्भ
- बारवाइज़, जॉन (1975). अड्मिसबल सेट और संरचनाएँ. बर्लिन: स्प्रिंगर-वेरलाग. ISBN 0-387-07451-1.
- डेवलिन, कीथ जे. (1984). रचनाशीलता. बर्लिन: स्प्रिंगर-वेरलाग. ISBN 0-387-13258-9.
- फेल्गनर, उलरिच (1971). जेडएफ-सेट थ्योरी के मॉडल. गणित में व्याख्यान नोट्स. स्प्रिंगर-वेरलाग. ISBN 3-540-05591-6.
- गोडेल, कर्ट (1938). "पसंद के सिद्धांत और सामान्यीकृत सातत्य-परिकल्पना की संगति". संयुक्त राज्य अमेरिका की राष्ट्रीय विज्ञान अकादमी की कार्यवाही. राष्ट्रीय विज्ञान अकादमी. 24 (12): 556–557. Bibcode:1938PNAS...24..556G. doi:10.1073/pnas.24.12.556. JSTOR 87239. PMC 1077160. PMID 16577857.
- गोडेल, कर्ट (1940). सातत्य परिकल्पना की संगति. गणित अध्ययन के इतिहास. Vol. 3. प्रिंसटन, एन.जे.: प्रिंसटन यूनिवर्सिटी प्रेस. ISBN 978-0-691-07927-1. MR 0002514.
- जेच, थॉमस (2002). समुच्चय सिद्धान्त. गणित में स्प्रिंगर मोनोग्राफ (तीसरी सहस्राब्दी ed.). कोंपल. ISBN 3-540-44085-2.