व्याख्या (मॉडल सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{distinguish|व्याख्या फलन}}
{{distinguish|व्याख्या फलन}}
[[मॉडल सिद्धांत|'''मॉडल सिद्धांत''']] में, संरचना ([[गणितीय तर्क]]) ''M'' की दूसरी संरचना ''N'' (सामान्यतः भिन्न [[हस्ताक्षर (तर्क)]] की व्याख्या तकनीकी धारणा करती है जो ''N'' के अंदर ''M'' का प्रतिनिधित्व करने के विचार का अनुमान लगाती है। उदाहरण के लिए, किसी संरचना ''N'' के प्रत्येक डिडक्शन या निश्चित विस्तार की ''N'' में व्याख्या होती है।
[[मॉडल सिद्धांत|'''मॉडल सिद्धांत''']] में, संरचना ([[गणितीय तर्क]]) ''M'' की दूसरी संरचना ''N'' (सामान्यतः भिन्न [[हस्ताक्षर (तर्क)]] की व्याख्या तकनीकी धारणा करती है जो ''N'' के अंदर ''M'' का प्रतिनिधित्व करने के विचार का अनुमान लगाती है। इसमें उदाहरण के लिए, किसी संरचना ''N'' के प्रत्येक डिडक्शन या निश्चित विस्तार की ''N'' में व्याख्या होती है।


अनेक मॉडल-सैद्धांतिक गुणों को व्याख्यात्मकता के अनुसार संरक्षित किया गया है। उदाहरण के लिए, यदि ''N'' का सिद्धांत [[स्थिर सिद्धांत]] है और ''N'' की व्याख्या ''N'' में की जा सकती है, तब ''M'' का सिद्धांत भी स्थिर होता है।
अनेक मॉडल-सैद्धांतिक गुणों को व्याख्यात्मकता के अनुसार संरक्षित किया गया है। उदाहरण के लिए, यदि ''N'' का सिद्धांत [[स्थिर सिद्धांत]] है और ''N'' की व्याख्या ''N'' से की जा सकती है, तब ''M'' का सिद्धांत भी स्थिर होता है।


ध्यान दें कि गणितीय तर्क के अन्य क्षेत्रों में, "व्याख्या" शब्द यहां परिभाषित अर्थ में उपयोग किए जाने के अतिरिक्त संरचना, <ref>
ध्यान दें कि गणितीय तर्क के अन्य क्षेत्रों में, "व्याख्या" शब्द यहां परिभाषित अर्थ में उपयोग किए जाने के अतिरिक्त संरचना, <ref>
Line 24: Line 24:
==द्वि-व्याख्यात्मकता==
==द्वि-व्याख्यात्मकता==


यदि एल, एम और एन तीन संरचनाएं हैं, तब एल की व्याख्या एम में की जाती है,
यदि ''L'', ''M'' और ''N'' तीन संरचनाएं हैं, और ''L'' की व्याख्या ''M'' से की जाती है, और ''M'' की व्याख्या ''N'' में की जाती है, तब कोई स्वाभाविक रूप से ''N'' में ''L'' की समग्र व्याख्या का निर्माण कर सकता है। यदि दो संरचनाएं ''M'' और ''N'' की एक दूसरे से व्याख्या की जाती है, तब व्याख्याओं को दो संभावित विधियों से संयोजित करने पर, व्यक्ति अपने आप में दोनों संरचनाओं में से प्रत्येक की व्याख्या प्राप्त कर लेता है। यह अवलोकन किसी को संरचनाओं के मध्य तुल्यता संबंध को परिभाषित करने की अनुमति देता है, जो इसमें [[टोपोलॉजिकल स्पेस]] स्थान के मध्य होमोटॉपी तुल्यता का स्मरण कराता है।
और एम की व्याख्या एन में की जाती है, तब कोई स्वाभाविक रूप से एन में एल की समग्र व्याख्या बना सकता है।
यदि दो संरचनाओं एम और एन की एक-दूसरे में व्याख्या की जाती है, तब व्याख्याओं को दो संभावित तरीकों से जोड़कर, व्यक्ति अपने आप में दोनों संरचनाओं में से प्रत्येक की व्याख्या प्राप्त कर सकता है।
यह अवलोकन किसी को संरचनाओं के बीच तुल्यता संबंध को परिभाषित करने की अनुमति देता है, जो [[टोपोलॉजिकल स्पेस]] स्थान के बीच होमोटॉपी तुल्यता की याद दिलाता है।


दो संरचनाएं एम और एन 'द्वि-व्याख्यात्मक' हैं यदि एन में एम की व्याख्या और एम में एन की व्याख्या मौजूद है जैसे कि एम की स्वयं में और एन की समग्र व्याख्याएं क्रमशः एम और एन में निश्चित हैं (मिश्रित व्याख्याओं को एम और एन पर संचालन के रूप में देखा जा रहा है)।
दो संरचनाएं ''M'' और ''N'' 'द्वि-व्याख्यात्मक' होते हैं यदि ''N'' में ''M'' की व्याख्या और ''M'' में ''N'' की व्याख्या उपस्तिथ है तब जैसे कि ''M'' की स्वयं में और ''N'' की समग्र व्याख्याएं क्रमशः ''M'' और ''N'' में निश्चित होती हैं | ( इन मिश्रित व्याख्याओं को ''M'' और ''N'' पर संचालन के रूप में देखा जा रहा है)।


==उदाहरण==
==उदाहरण==

Revision as of 21:48, 3 August 2023

मॉडल सिद्धांत में, संरचना (गणितीय तर्क) M की दूसरी संरचना N (सामान्यतः भिन्न हस्ताक्षर (तर्क) की व्याख्या तकनीकी धारणा करती है जो N के अंदर M का प्रतिनिधित्व करने के विचार का अनुमान लगाती है। इसमें उदाहरण के लिए, किसी संरचना N के प्रत्येक डिडक्शन या निश्चित विस्तार की N में व्याख्या होती है।

अनेक मॉडल-सैद्धांतिक गुणों को व्याख्यात्मकता के अनुसार संरक्षित किया गया है। उदाहरण के लिए, यदि N का सिद्धांत स्थिर सिद्धांत है और N की व्याख्या N से की जा सकती है, तब M का सिद्धांत भी स्थिर होता है।

ध्यान दें कि गणितीय तर्क के अन्य क्षेत्रों में, "व्याख्या" शब्द यहां परिभाषित अर्थ में उपयोग किए जाने के अतिरिक्त संरचना, [1] [2] को संदर्भित कर सकता है। "व्याख्या" की यह दो धारणाएँ इससे संबंधित हैं किंतु फिर भी यह भिन्न होते हैं।

परिभाषा

संरचना N में मापदंडों के साथ (या क्रमशः मापदंडों के बिना) संरचना M की व्याख्या जोड़ी होती है जहां n प्राकृतिक संख्या है और Nn के उपसमुच्चय से विशेषण मानचित्र (गणित) M है इस प्रकार के प्रत्येक समुच्चय XMk का -प्रीइमेज (अधिक स्पष्ट रूप से -प्रीइमेज) बिना मापदंडों के पूर्व-ऑर्डर फॉर्मूला द्वारा M में परिभाषित किया जा सकता है | और (N में) पूर्व-ऑर्डर फॉर्मूले द्वारा इसको निश्चित समुच्चय किया जा सकता है। मापदंड (या क्रमशः मापदंड के बिना) होता हैं। चूँकि व्याख्या के लिए n का मान अधिकांशतः संदर्भ से स्पष्ट होता है, मानचित्र को ही व्याख्या भी कहा जाता है।

यह सत्यापित करने के लिए कि M में समुच्चय किए गए प्रत्येक निश्चित (मापदंड के बिना) इसकी प्रीइमेज N (मापदंड के साथ या इसके बिना) इसमें यह निश्चित होता है, यह निम्नलिखित निश्चित समुच्चय की प्रीइमेज की जांच करने के लिए पर्याप्त होता है |

  • M का डोमेन।
  • M2 का विकर्ण या ज्यामिति
  • M के हस्ताक्षर में प्रत्येक संबंध।
  • M के हस्ताक्षर में प्रत्येक फलन का ग्राफ़।

मॉडल सिद्धांत में निश्चित शब्द अधिकांशतः मापदंडों के साथ निश्चितता को संदर्भित करता है | यदि इस कन्वेंशन का उपयोग किया जाता है, तब मापदंडों के बिना निश्चितता को 0-परिभाषित शब्द द्वारा व्यक्त किया जाता है। इसी प्रकार, मापदंडों के साथ व्याख्या को केवल व्याख्या के रूप में संदर्भित किया जा सकता है, और मापदंडों के बिना व्याख्या को '0-व्याख्या' के रूप में संदर्भित किया जा सकता है।

द्वि-व्याख्यात्मकता

यदि L, M और N तीन संरचनाएं हैं, और L की व्याख्या M से की जाती है, और M की व्याख्या N में की जाती है, तब कोई स्वाभाविक रूप से N में L की समग्र व्याख्या का निर्माण कर सकता है। यदि दो संरचनाएं M और N की एक दूसरे से व्याख्या की जाती है, तब व्याख्याओं को दो संभावित विधियों से संयोजित करने पर, व्यक्ति अपने आप में दोनों संरचनाओं में से प्रत्येक की व्याख्या प्राप्त कर लेता है। यह अवलोकन किसी को संरचनाओं के मध्य तुल्यता संबंध को परिभाषित करने की अनुमति देता है, जो इसमें टोपोलॉजिकल स्पेस स्थान के मध्य होमोटॉपी तुल्यता का स्मरण कराता है।

दो संरचनाएं M और N 'द्वि-व्याख्यात्मक' होते हैं यदि N में M की व्याख्या और M में N की व्याख्या उपस्तिथ है तब जैसे कि M की स्वयं में और N की समग्र व्याख्याएं क्रमशः M और N में निश्चित होती हैं | ( इन मिश्रित व्याख्याओं को M और N पर संचालन के रूप में देखा जा रहा है)।

उदाहरण

'Z' × 'Z' से 'Q' पर आंशिक मानचित्र f जो (x, y) को x/y पर मैप करता है यदि y ≠ 0 पूर्णांकों के रिंग (गणित) 'Z' में तर्कसंगत संख्याओं के क्षेत्र (गणित) 'Q' की व्याख्या प्रदान करता है (स्पष्ट होने के लिए, व्याख्या (2, f) है)। वास्तव में, इस विशेष व्याख्या का उपयोग अधिकांशतः तर्कसंगत संख्याओं को परिभाषित करने के लिए किया जाता है। यह देखने के लिए कि यह व्याख्या है (मापदंड के बिना), किसी को 'Q' में निश्चित समुच्चयों की निम्नलिखित पूर्वछवियों की जांच करने की आवश्यकता है:

  • 'Q' की पूर्वछवि को ¬ (y = 0) द्वारा दिए गए सूत्र φ(x, y) द्वारा परिभाषित किया गया है |
  • 'Q' के विकर्ण की पूर्वछवि को x1 × y2 = x2 × y1 द्वारा दिए गए सूत्र φ(x1, y1, x2, y2) द्वारा परिभाषित किया गया है |
  • 0 और 1 की पूर्वछवियाँ x = 0 और x = y द्वारा दिए गए सूत्र φ(x, y) द्वारा परिभाषित की जाती हैं |
  • जोड़ के ग्राफ की पूर्वछवि को x1×y2×y3 + x2×y1×y3 =x3×y1×y2 द्वारा दिए गए सूत्र φ(x1, y1, x2, y2, x3, y3) द्वारा परिभाषित किया गया है |
  • गुणन के ग्राफ की पूर्वछवि को x1×x2×y3 = x3×y1×y2 द्वारा दिए गए सूत्र φ(x1, y1, x2, y2, x3, y3) द्वारा परिभाषित किया गया है।

संदर्भ

  1. Goldblatt, Robert (2006). "11.2 Formal Language and Semantics". Topoi : the categorial analysis of logic (2nd ed.). Mineola, N.Y.: Dover Publications. ISBN 978-0-486-31796-0. OCLC 853624133.
  2. Hodges, Wilfrid (2009). "Functional Modelling and Mathematical Models". In Meijers, Anthonie (ed.). Philosophy of technology and engineering sciences. Handbook of the Philosophy of Science. Vol. 9. Elsevier. ISBN 978-0-444-51667-1.