चिरैलिटी (रसायन विज्ञान): Difference between revisions
No edit summary |
No edit summary |
||
(26 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
{{redirect|L-form|the bacterial strains|L-form bacteria}} | {{redirect|L-form|the bacterial strains|L-form bacteria}} | ||
[[File:Chirality with hands.svg|upright=1.3|thumb| | [[File:Chirality with hands.svg|upright=1.3|thumb|जेनेरिक [[ एमिनो एसिड ]] के दो [[एनैन्टीओमर]] जो चिरल हैं]] | ||
[[File:Zwitterion-Alanine.png|thumb|upright=1.3|( | [[File:Zwitterion-Alanine.png|thumb|upright=1.3|(S)-अलैनिन (बाएं) और (R)-अलैनिन (दाएं) तटस्थ pH पर ज़्विटरियोनिक रूप में]]रसायन शास्त्र में अणु या आयन को चिरल ({{IPAc-en|ˈ|k|aɪ|r|əl}})कहा जाता है यदि इसे [[घूर्णन (ज्यामिति)]], [[अनुवाद (ज्यामिति)]] और कुछ गठनात्मक परिवर्तनों के किसी भी संयोजन द्वारा इसकी [[दर्पण छवि]] पर सुपरपोज़ नहीं किया जा सकता है। इस ज्यामितीय गुण को चिरैलिटी ({{IPAc-en|k|aɪ|ˈ|r|æ|l|ɪ|t|i}})कहा जाता है।<ref>''Organic Chemistry'' (4th Edition) Paula Y. Bruice. Pearson Educational Books. {{ISBN|9780131407480}}</ref><ref>''Organic Chemistry'' (3rd Edition) Marye Anne Fox, James K. Whitesell Jones & Bartlett Publishers (2004) | ||
{{ISBN|0763721972}}</ref><ref>{{GoldBookRef|title=Chirality|file=C01058}}</ref><ref>{{GoldBookRef|title=Superposability|file=S06144}}</ref> ये शब्द प्राचीन ग्रीक χείρ (cheir) 'हाथ' से लिए गए हैं | {{ISBN|0763721972}}</ref><ref>{{GoldBookRef|title=Chirality|file=C01058}}</ref><ref>{{GoldBookRef|title=Superposability|file=S06144}}</ref> ये शब्द प्राचीन ग्रीक χείρ (cheir) 'हाथ' से लिए गए हैं, जो इस गुण वाली किसी वस्तु का विहित उदाहरण है। | ||
एक चिरल अणु या आयन दो स्टीरियोइसोमर्स में | एक चिरल अणु या आयन दो स्टीरियोइसोमर्स में स्थित होता है जो एक दूसरे की दर्पण छवियां होते हैं, जिन्हें एनैन्टीओमर्स कहा जाता है उन्हें अधिकतर उनके [[पूर्ण विन्यास]] या किसी अन्य मानदंड के आधार पर "दाएँ हाथ" या "बाएँ हाथ" के रूप में पहचाना जाता है, अन्य चिरल यौगिकों के साथ प्रतिक्रिया को छोड़कर दो एनैन्टीओमर्स में समान रासायनिक गुण होते हैं। उनके भौतिक गुण भी समान हैं इसके अलावा उनमें अधिकतर विपरीत [[ऑप्टिकल गतिविधि|प्रकाशीय गतिविधियाँ]] होती है। समान भागों में दो एनैन्टीओमर्स के एक समरूप मिश्रण को रेसिमिक कहा जाता है और यह सामान्यतौर पर शुद्ध एनैन्टीओमर्स से रासायनिक और शारीरिक रूप से भिन्न होते है। | ||
चिरल अणुओं में | चिरल अणुओं में सामान्यतौर पर एक स्टीरियोजेनिक तत्व होता है जिससे चिरैलिटी उत्पन्न होती है। स्टीरियोजेनिक तत्व का सबसे सामान्य प्रकार स्टीरियोजेनिक केंद्र या स्टीरियोसेंटर है। कार्बनिक यौगिक स्थिति में स्टीरियोसेंटर अधिकतर एक कार्बन परमाणु का रूप लेते हैं, जिसके साथ टेट्राहेड्रल ज्यामिति में चार अलग-अलग समूह जुड़े होते हैं, दिए गए स्टीरियोसेंटर में दो संभावित विन्यास होते हैं जो एक या अधिक स्टीरियोसेंटर वाले अणुओं में [[डायस्टेरोमेर|स्टीरियोइसोमर्स]] (डायस्टेरेओमर और एनैन्टीओमर) को जन्म देते हैं। एक या अधिक स्टीरियोसेंटर वाले चिरल अणु के लिए एनैन्टीओमर [[स्टीरियोआइसोमर]] से मेल खाता है जिसमें प्रत्येक स्टीरियोसेंटर का विपरीत विन्यास होता है, केवल एक स्टीरियोजेनिक कार्बन वाला कार्बनिक यौगिक हमेशा चिरल होता है। दूसरी ओर, कई स्टीरियोजेनिक कार्बन वाला एक कार्बनिक यौगिक सामान्यतौर पर चिरल नहीं होता है। विशेष रूप से यदि स्टीरियोसेंटर को इस तरह से कॉन्फ़िगर किया गया है कि अणु समरूपता के तल या व्युत्क्रम बिंदु के साथ संरचना ले सकता है तो अणु अचिरल है और मेसो यौगिक के रूप में जाना जाता है। सामान्यतौर पर N, P, S और Si जैसे अन्य परमाणु भी स्टीरियोसेंटर के रूप में काम कर सकते हैं, लेकिन उनके साथ चार अलग-अलग प्रतिस्थापन (अकेले जोड़े इलेक्ट्रॉनों सहित) जुड़े है। | ||
एक या एक से अधिक स्टीरियोसेंटरों से उत्पन्न होने | एक या एक से अधिक स्टीरियोसेंटरों से उत्पन्न होने वाली चिरायता वाले अणुओं को केंद्रीय चिरैलिटी के रूप में वर्गीकृत किया जाता है। दो अन्य प्रकार के स्टीरियोजेनिक तत्व हैं जो चिरैलिटी को जन्म दे सकते हैं, स्टीरियोजेनिक अक्ष (अक्षीय चिरैलिटी) और स्टीरियोजेनिक प्लेन ([[तलीय चिरैलिटी|प्लानर चिरैलिटी]])। अंत में, एक अणु की अंतर्निहित वक्रता भी चिरलिटी (अंतर्निहित चिरलिटी) को जन्म दे सकती है। इस प्रकार की चिरैलिटी केंद्रीय चिरैलिटी की तुलना में कम सामान्य है। बिनोल एक अक्षीय चिरल अणु का विशिष्ट उदाहरण है, जबकि ट्रांस-साइक्लोक्टीन एक समतल चिरल अणु का सामान्य रूप से उद्धृत उदाहरण है। अंत में, [[हेलीसीन]] में कुंडलित चिरैलिटी होती है जो एक प्रकार की अंतर्निहित चिरैलिटी है। | ||
[[ त्रिविम ]] और [[जीव रसायन]] के लिए चिरैलिटी एक महत्वपूर्ण अवधारणा | [[ त्रिविम ]] और [[जीव रसायन]] के लिए चिरैलिटी एक महत्वपूर्ण अवधारणा है, जीव विज्ञान से संबंधित अधिकांश पदार्थ चिरल हैं जैसे [[कार्बोहाइड्रेट]] ([[शर्करा]], [[स्टार्च]] और [[सेल्यूलोज]]), अमीनो एसिड जो [[प्रोटीन]] के निर्माण खंड हैं और [[ न्यूक्लिक अम्ल ]]। प्राकृतिक रूप से पाए जाने वाले [[ट्राइग्लिसराइड|ट्राइग्लिसराइड्स]] अधिकतर चिरल होते हैं, लेकिन हमेशा नहीं। जीवित जीवों में, सामान्यतौर पर चिरल यौगिक में दो एनैन्टीओमर में से केवल एक ही पाया जाता है, उस कारण से जो जीव चिरल यौगिक का उपभोग करते हैं वे सामान्यतौर पर एक एनैन्टीओमर्स को मेटाबोलाइज कर सकते हैं। इसी कारण से एक चिरल [[दवा|फार्मास्युटिकल]] के दो एनैन्टीओमर्स में सामान्यतौर पर काफी भिन्न क्षमता (फार्माकोलॉजी) या प्रभाव होते हैं। | ||
== परिभाषा == | == परिभाषा == | ||
किसी अणु की चिरलिटी उसकी संरचना की [[आणविक समरूपता]] पर आधारित होती है। किसी अणु की संरचना चिरल होती है यदि वह | किसी अणु की चिरलिटी उसकी संरचना की [[आणविक समरूपता]] पर आधारित होती है। किसी अणु की संरचना चिरल होती है यदि वह C<sub>n</sub>, D<sub>n</sub>, T, O, I [[ बिंदु समूह ]] (चिरल बिंदु समूह)से संबंधित हो। हालाँकि, क्या अणु को स्वयं चिरल माना जाता है, यह इस बात पर निर्भर करता है कि क्या इसकी चिरल अनुरूपण लगातार आइसोमर्स हैं जिन्हें अलग-अलग एनैन्टीओमर्स के रूप में अलग किया जा सकता है, निम्न सिद्धांत रूप में या एनैन्टीओमेरिक अनुरूपकर्ता किसी दिए गए तापमान और कालक्रम पर कम-ऊर्जा गठनात्मक परिवर्तनों (अणु अचिरल का प्रतिपादन) के माध्यम से किसी दिए गए तापमान और समय-सीमा पर तेजी से परस्पर परिवर्तित होते हैं। उदाहरण के लिए C<sub>2</sub> बिंदु समूह से संबंधित चिरल गौचे अनुरूपकर्ता होने के बावजूद ब्यूटेन को कमरे के तापमान पर अचिरल माना जाता है क्योंकि केंद्रीय C-C बंधन के चारों ओर घूमने से एनैन्टीओमर्स (3.4 किलो कैलोरी/मोल बैरियर) तेजी से आपस में परिवर्तित हो जाते हैं। इसी तरह सीआईएस-1,2-डाइक्लोरोसाइक्लोहेक्सेन में [[साइक्लोहेक्सेन संरचना]] होती है जो गैर-समान दर्पण छवियां होती हैं, लेकिन दोनों साइक्लोहेक्सेन चेयर फ्लिप (~ 10 किलो कैलोरी/मोल बैरियर) के माध्यम से परस्पर परिवर्तित हो सकते हैं। एक अन्य उदाहरण के रूप में तीन अलग-अलग प्रतिस्थापनों (R) के साथ (R1R2R3N:) वाले एमाइन को अचिरल अणु के रूप में भी माना जाता है क्योंकि उनके एनैन्टीओमेरिक पिरामिड अनुरूप तेजी से पलटते हैं और एक तलीय संक्रमण अवस्था (~6 kcal/mol अवरोध) के माध्यम से परस्पर परिवर्तित होते हैं। | ||
हालाँकि, यदि प्रश्न में तापमान काफी कम है | हालाँकि, यदि प्रश्न में तापमान काफी कम है तो एनैन्टीओमेरिक चिरल अनुरूपणों को आपस में परिवर्तित करने वाली प्रक्रिया किसी दिए गए समय-सीमा की तुलना में धीमी हो जाती है, उस तापमान पर अणु को चिरल माना जाएगा। प्रासंगिक समय-सीमा कुछ हद तक स्वेच्छ ढंग से परिभाषित की गई है: कभी-कभी 1000 सेकंड का उपयोग किया जाता है क्योंकि इसे व्यावहारिक अर्थ में एनैन्टीओमर्स के रासायनिक या क्रोमैटोग्राफिक पृथक्करण के लिए आवश्यक समय की निचली सीमा माना जाता है। जो अणु कमरे के तापमान पर एक बंधन के चारों ओर प्रतिबंधित घूर्णन (रोटेशन में बाधा ≥ ca. 23 kcal/mol) के कारण चिरल होते हैं, उन्हें [[एट्रोपिसोमर|एट्रोपिसोमेरिज्म]] प्रदर्शित करने के लिए कहा जाता है। | ||
एक चिरल यौगिक में घूर्णन की कोई अनुचित धुरी | एक चिरल यौगिक में घूर्णन की कोई अनुचित धुरी (S<sub>n</sub>) नहीं हो सकती है, जिसमें समरूपता और व्युत्क्रम केंद्र के तल सम्मिलित हैं। चिरल अणु असममित होते हैं(S<sub>n</sub> की कमी होती है) लेकिन हमेशा असममित नहीं होते हैं (तुच्छ पहचान को छोड़कर सभी समरूपता तत्वों का अभाव होता है) असममित अणु सदैव चिरल होते हैं।<ref>Cotton, F. A., "Chemical Applications of Group Theory," John Wiley & Sons: New York, 1990.</ref> | ||
निम्न तालिका अणु के [[तीन आयामों में बिंदु समूह]] | |||
निम्न तालिका अणु के [[तीन आयामों में बिंदु समूह|तीन आयामों में बिंदु समूहों]] के [[शॉनफ्लाइज़ संकेतन]] के साथ चिरल और अचिरल अणुओं के कुछ उदाहरण दिखाती है। अचिरल अणुओं में X और Y (बिना सबस्क्रिप्ट के) अचिरल समूहों का प्रतिनिधित्व करते हैं, जबकि X{{sub|R}} और X{{sub|S}} या Y{{sub|R}} और Y{{sub|S}} एनैन्टीओमर्स का प्रतिनिधित्व करते हैं। ध्यान दें कि S{{sub|2}} अक्ष के अभिविन्यास का कोई मतलब नहीं है, जो केवल एक व्युत्क्रम है। कोई भी अभिविन्यास तब तक काम करेगा जब तक वह व्युत्क्रमण के केंद्र से होकर गुजरता है। यह भी ध्यान दें कि चिरल और अचिरल अणुओं की उच्च समरूपताएं भी स्थित हैं और जो समरूपताएं तालिका में सम्मिलित नहीं हैं जैसे कि चिरल C{{sub|3}} या अचिरल S{{sub|4}} | |||
{| class="wikitable" style="text-align: center" | {| class="wikitable" style="text-align: center" | ||
|+ | |+ आणविक समरूपता और चिरायता | ||
|- | |- | ||
! Rotational<br>axis (''C<sub>n</sub>'') || colspan="3" | Improper rotational elements (''S<sub>n</sub>'') | ! Rotational<br>axis (''C<sub>n</sub>'') || colspan="3" | Improper rotational elements (''S<sub>n</sub>'') | ||
Line 33: | Line 34: | ||
| ''C''<sub>2</sub> || [[File:Chiral sym CCCXYXY.svg|154px]]<br>''C''{{sub|2}}<br>(Note: This molecule has only one ''C''{{sub|2}} axis:<br>perpendicular to line of three C, but not in the plane of the figure.)|| [[File:Chiral sym CHHXX.svg|63px]]<br>''C''{{sub|2''v''}} || [[File:Chiral sym CCXYXY.svg|102px]]<br>''C''{{sub|2h}}<br>Note: This also has a mirror plane. | | ''C''<sub>2</sub> || [[File:Chiral sym CCCXYXY.svg|154px]]<br>''C''{{sub|2}}<br>(Note: This molecule has only one ''C''{{sub|2}} axis:<br>perpendicular to line of three C, but not in the plane of the figure.)|| [[File:Chiral sym CHHXX.svg|63px]]<br>''C''{{sub|2''v''}} || [[File:Chiral sym CCXYXY.svg|102px]]<br>''C''{{sub|2h}}<br>Note: This also has a mirror plane. | ||
|} | |} | ||
अणु का एक उदाहरण जिसमें कोई दर्पण तल या व्युत्क्रम नहीं है और फिर भी उसे अचिरल माना जाएगा 1,1-डिफ्लुओरो-2,2-डाइक्लोरोसायक्लोहेक्सेन (या 1,1-डिफ्लुओरो-3,3-डाइक्लोरोसायक्लोहेक्सेन) है। यह कई अनुरूपकर्ता ([[गठनात्मक आइसोमर]]) में स्थित हो सकता है, लेकिन उनमें से किसी में भी दर्पण समतल नहीं है। एक दर्पण तल रखने के लिए [[ cyclohexane | साइक्लोहेक्सेन]] रिंग को समतल होना होगा, जो बंधन कोणों को चौड़ा करेगा और संरचना को बहुत अधिक ऊर्जा देगा, इस यौगिक को चिरल नहीं माना जाएगा क्योंकि चिरल अनुरूपक आसानी से परस्पर परिवर्तित हो जाते हैं। | |||
चिरल अनुरूपता वाला एक अचिरल अणु सैद्धांतिक रूप से दाएं हाथ और बाएं हाथ के क्रिस्टल का मिश्रण बना सकता है, जैसा कि | चिरल अनुरूपता वाला एक अचिरल अणु सैद्धांतिक रूप से दाएं हाथ और बाएं हाथ के क्रिस्टल का मिश्रण बना सकता है, जैसा कि अधिकतर चिरल अणुओं के [[रेस्मिक]] मिश्रण के साथ होता है (चिरल रिज़ॉल्यूशन स्पॉन्टेनियस रिज़ॉल्यूशन और संबंधित विशेष तकनीक देखें) या जब अचिरल तरल [[सिलिकॉन डाइऑक्साइड]] को चिरल [[क्वार्ट्ज]] बनने के बिंदु तक ठंडा किया जाता है। | ||
==स्टीरोजेनिक केंद्र== | ==स्टीरोजेनिक केंद्र== | ||
{{main article| | {{main article|मुख्य लेख: स्टीरियोजेनिक केंद्र}} | ||
[[File:Illustrate stereocenter.png|thumb|यहां, दो समूहों | [[File:Illustrate stereocenter.png|thumb|यहां, दो समूहों a और b की अदला-बदली से एक अणु बनता है जो मूल का एक स्टीरियोआइसोमर है (एनैन्टीओमर, यह मानते हुए कि अणु में कोई अन्य स्टीरियोजेनिक तत्व नहीं हैं) इसलिए, केंद्रीय कार्बन परमाणु एक स्टीरियोसेंटर है।]]स्टीरियोजेनिक केंद्र (या स्टीरियोसेंटर) एक ऐसा परमाणु है जो उस परमाणु पर दो लिगेंड (जुड़े हुए समूहों) की स्थिति को बदलने से एक अणु बनता है जो मूल के लिए स्टीरियोइसोमेरिक होता है। उदाहरण के लिए, एक सामान्य स्थिति एक [[टेट्राहेड्रल आणविक ज्यामिति|टेट्राहेड्रल]] कार्बन है जो चार अलग-अलग समूहों 'a', 'b', 'c' और 'd'(C'abcd) से जुड़ा हुआ है, जहां किन्हीं दो समूहों (उदाहरण के लिए Cbacd') की अदला-बदली से मूल का एक स्टीरियोआइसोमर बनता है इसलिए केंद्रीय C एक स्टीरियोसेंटर है। कई चिरल अणुओं में बिंदु चिरैलिटी होती है, अर्थात् एकल चिरल स्टीरियोजेनिक केंद्र जो एक परमाणु के साथ मेल खाता है। इस स्टीरियोजेनिक केंद्र में सामान्यतौर पर विभिन्न समूहों के लिए चार या अधिक बंधन होते हैं और यह कार्बन (कई जैविक अणुओं में) फॉस्फोरस (कई [[organophosphate|ऑर्गनोफॉस्फेट]] में) सिलिकॉन या एक धातु (कई चिरल [[समन्वय यौगिक|समन्वय]] यौगिकों में) हो सकता है। हालाँकि, एक स्टीरियोजेनिक केंद्र एक त्रिसंयोजी परमाणु भी हो सकता है जिसके बंधन एक ही तल में नहीं होते हैं, जैसे कि [[पी-चिरल फॉस्फीन]] (PRR′R″) में [[फास्फोरस]] और एस-चिरल सल्फोऑक्साइड (OSRR′) में सल्फर क्योंकि चौथे बंधन के बजाय इलेक्ट्रॉनों की एक अकेली जोड़ी स्थित होती है। | ||
इसी तरह, एक स्टीरियोजेनिक अक्ष (या | इसी तरह, एक स्टीरियोजेनिक अक्ष (या प्लेन) को अणु में एक अक्ष (या प्लेन) के रूप में परिभाषित किया जाता है, जैसे कि अक्ष (या प्लेन) से जुड़े किन्हीं दो लिगेंड की अदला-बदली एक स्टीरियोइसोमर को जन्म देती है। उदाहरण के लिए, C<sub>2</sub>-सममित प्रजातियाँ 1,1'-द्वि-2-नेफ्थोल (BINOL) और 1,3-डाइक्लोरोप्रोपैडीन में स्टीरियोजेनिक अक्ष होते हैं और अक्षीय चिरैलिटी प्रदर्शित करते हैं, जबकि (E)[[cyclooctene|साइक्लोऑक्टिन]] और दो या दो से अधिक प्रतिस्थापन वाले कई फेरोसिन डेरिवेटिव में स्टीरियोजेनिक तल होते हैं और प्लेनर चिरैलिटी प्रदर्शित होती है।[[File:R-BINOL-2D-skeletal.png|thumb|upright|1,1'-Bi-2-naphthol|1,1'-Bi-2-naphthol एक स्टीरियोजेनिक अक्ष वाले अणु का एक उदाहरण है।]]चिरायता परमाणुओं के बीच समस्थानिक अंतर से भी उत्पन्न हो सकती है, जैसे कि [[ड्यूटेरियम|ड्यूटेरेटेड]] [[बेंजाइल अल्कोहल]] PhCHDOH में जो चिरल और प्रकाशिक रूप से सक्रिय है ([α]<sub>D</sub> = 0.715°), भले ही गैर-ड्यूटेरेटेड यौगिक PhCH<sub>2OH</sub> नहीं है।<ref>{{note|Streitwieser}}{{cite journal |author1=Streitwieser, A., Jr. |author2=Wolfe, J. R., Jr. |author3=Schaeffer, W. D. | year = 1959 | title = Stereochemistry of the Primary Carbon. X. Stereochemical Configurations of Some Optically Active Deuterium Compounds | journal = Tetrahedron | volume = 6 | pages = 338–344 | doi = 10.1016/0040-4020(59)80014-4 | issue = 4}}</ref> | ||
यदि दो एनैन्टीओमर आसानी से आपस में परिवर्तित हो जाते हैं, तो शुद्ध एनैन्टीओमर को अलग करना व्यावहारिक रूप से असंभव हो सकता है | यदि दो एनैन्टीओमर आसानी से आपस में परिवर्तित हो जाते हैं, तो शुद्ध एनैन्टीओमर को अलग करना व्यावहारिक रूप से असंभव हो सकता है और केवल रेसमिक मिश्रण ही देखने योग्य होता है। उदाहरण के लिए, [[नाइट्रोजन व्युत्क्रमण]] के लिए कम [[सक्रियण ऊर्जा]] के कारण तीन अलग-अलग प्रतिस्थापन (NRR′R″) वाले अधिकांश एमाइन की यही स्थिति है। | ||
चिरल पदार्थ में स्टीरियोजेनिक तत्व होना आवश्यक नहीं है। उदाहरणों में कुछ हेलिसीन, [[calixarenes]] और [[फुलरीन]] | चिरल पदार्थ में स्टीरियोजेनिक तत्व होना आवश्यक नहीं है। उदाहरणों में कुछ हेलिसीन, [[calixarenes|कैलिक्सेरेन]] और [[फुलरीन]] सम्मिलित हैं जिनमें अंतर्निहित चिरायता है। इसके अलावा, एक अणु के लिए चिरलिटी का केंद्र होना संभव है जो ऐसी स्थिति में बैठता है जो परमाणु केंद्र (और इस प्रकार एक स्टीरियोसेंटर) के अनुरूप नहीं होता है। यह 1,3,5(,7)-प्रतिस्थापित एडमैंटेन के स्थिति में होता है (उदाहरण के लिए, (1S,3R,5R,7S)-3-मिथाइल-5-फेनिलडामैंटेन-1-कार्बोक्जिलिक एसिड साइड बॉक्स में दिखाया गया है)। | ||
[[File:Chiral-adamantane-derivative.png|thumb|यह एडामेंटेन ऑर्ग से व्युत्पन्न है। प्रोक. रेस. देव. '2023', 10.1021/acs.oprd.2c00305 एक स्टीरियोजेनिक केंद्र के बिना एक प्रकार के चिरल अणु को दर्शाता है। अणु में चिरायता का एक केंद्र होता है जो इसके किसी भी परमाणु से मेल नहीं खाता है, जिसे काले बिंदु द्वारा दर्शाया गया है। ध्यान दें कि 'चिरालिटी का केंद्र' और 'स्टीरियोजेनिक | [[File:Chiral-adamantane-derivative.png|thumb|यह एडामेंटेन ऑर्ग से व्युत्पन्न है। प्रोक. रेस. देव. '2023', 10.1021/acs.oprd.2c00305 एक स्टीरियोजेनिक केंद्र के बिना एक प्रकार के चिरल अणु को दर्शाता है। अणु में चिरायता का एक केंद्र होता है जो इसके किसी भी परमाणु से मेल नहीं खाता है, जिसे काले बिंदु द्वारा दर्शाया गया है। ध्यान दें कि 'चिरालिटी का केंद्र' और 'स्टीरियोजेनिक केंद्र (स्टीरियोसेंटर)' गैर-समान अवधारणाएं हैं।<ref>{{Cite journal |last=Mislow |first=Kurt |last2=Siegel |first2=Jay |date=May 1984 |title=स्टीरियोइसोमेरिज़्म और स्थानीय चिरायता|url=https://pubs.acs.org/doi/abs/10.1021/ja00323a043 |journal=Journal of the American Chemical Society |language=en |volume=106 |issue=11 |pages=3319–3328 |doi=10.1021/ja00323a043 |issn=0002-7863}}</ref>]]जब एक एनैन्टीओमर के लिए प्रकाशीय [[लेवोरोटेशन और डेक्सट्रोटेशन|रोटेशन और]] व्यावहारिक माप बहुत कम होता है, तो प्रजाति को [[क्रिप्टोकरेंसी|क्रिप्टोचिरालिटी]] प्रदर्शित करने के लिए कहा जाता है। | ||
चिरैलिटी एक अणु की पहचान का एक आंतरिक हिस्सा है, इसलिए [[व्यवस्थित नाम]] में पूर्ण विन्यास ( | चिरैलिटी एक अणु की पहचान का एक आंतरिक हिस्सा है, इसलिए [[व्यवस्थित नाम]] में पूर्ण विन्यास (R/S ।<small>D/L</small> या अन्य पदनाम) का विवरण सम्मिलित है। | ||
==चिरलिटी की अभिव्यक्तियाँ== | ==चिरलिटी की अभिव्यक्तियाँ== | ||
* स्वाद: [[कृत्रिम स्वीटनर]] [[ aspartame ]] में दो एनैन्टीओमर होते हैं। <small>L</small>-एस्पार्टेम का स्वाद मीठा होता है <small>D</small>-एस्पार्टेम स्वादहीन होता है।<ref name=gal12>{{cite journal|last=Gal|first=Joseph|title=The Discovery of Stereoselectivity at Biological Receptors: Arnaldo Piutti and the Taste of the Asparagine Enantiomers-History and Analysis on the 125th Anniversary|journal=Chirality|year=2012|volume=24|issue=12|pages=959–976|doi=10.1002/chir.22071|pmid=23034823}}</ref> | * स्वाद: [[कृत्रिम स्वीटनर]] [[ aspartame | एस्पार्टेम]] में दो एनैन्टीओमर होते हैं। <small>L</small>-एस्पार्टेम का स्वाद मीठा होता है जबकि <small>D</small>-एस्पार्टेम स्वादहीन होता है।<ref name=gal12>{{cite journal|last=Gal|first=Joseph|title=The Discovery of Stereoselectivity at Biological Receptors: Arnaldo Piutti and the Taste of the Asparagine Enantiomers-History and Analysis on the 125th Anniversary|journal=Chirality|year=2012|volume=24|issue=12|pages=959–976|doi=10.1002/chir.22071|pmid=23034823}}</ref> | ||
* गंध: '' | * गंध: ''R''-(-)-[[कार्वोन]] की गंध पुदीना जैसी होती है जबकि ''S''-(+)-कार्वोन की गंध [[जीरा]] जैसी होती है।<ref name=leitereg71>{{cite journal | doi = 10.1021/jf60176a035 | title=एनैन्टीओमेरिक कार्वोन की गंध के बीच अंतर का समर्थन करने वाला रासायनिक और संवेदी डेटा|author1=Theodore J. Leitereg |author2=Dante G. Guadagni |author3=Jean Harris |author4=Thomas R. Mon |author5=Roy Teranishi | journal=[[J. Agric. Food Chem.]] | volume=19 | issue=4 | year=1971 | pages=785–787}}</ref> | ||
* दवा की प्रभावशीलता: अवसादरोधी दवा [[सीतालोप्राम]] | * दवा की प्रभावशीलता: अवसादरोधी दवा [[सीतालोप्राम|सिटालोप्राम रेसमिक]] मिश्रण के रूप में बेचा जाता है। हालाँकि, अध्ययनों से पता चला है कि दवा के लाभकारी प्रभावों के लिए केवल (''S'')-(+) एनैन्टीओमर जिम्मेदार है।<ref name="pmid15107657">{{cite journal |vauthors=Lepola U, Wade A, Andersen HF | title = Do equivalent doses of escitalopram and citalopram have similar efficacy? A pooled analysis of two positive placebo-controlled studies in major depressive disorder | journal = Int Clin Psychopharmacol | volume = 19 | issue = 3 | pages = 149–55 |date=May 2004 | pmid = 15107657 | doi = 10.1097/00004850-200405000-00005 | s2cid = 36768144 }}</ref><ref name=hyttel92>{{cite journal|last=Hyttel|first=J.|author2=Bøgesø, K. P. |author3=Perregaard, J. |author4= Sánchez, C. |title=सीतालोप्राम का औषधीय प्रभाव (''एस'')-(+)-एनैन्टीओमर में रहता है|journal=Journal of Neural Transmission|year=1992|volume=88|issue=2|pages=157–160|doi=10.1007/BF01244820|pmid=1632943|s2cid=20110906}}</ref> * दवा सुरक्षा: <small>D</small>-पेनिसिलमाइन का उपयोग [[केलेशन थेरेपी]] और रुमेटीइड गठिया के उपचार के लिए किया जाता हैं जबकि <small>L</small>-पेनिसिलिन विषैला होता है क्योंकि यह [[ख़तम|पाइरिडोक्सिन]], एक आवश्यक विटामिन बी की क्रिया को रोकता है।<ref name=jaffe64>{{cite journal|last=JAFFE|first=IA|author2=ALTMAN, K |author3=MERRYMAN, P |title=मनुष्य में पेनिसिलिन का एंटीपायरिडोक्सिन प्रभाव।|journal=The Journal of Clinical Investigation|date=Oct 1964|volume=43|issue=10|pages=1869–73|pmid=14236210|doi=10.1172/JCI105060|pmc=289631}}</ref> | ||
==जैव रसायन में== | ==जैव रसायन में== | ||
कई जैविक रूप से सक्रिय अणु चिरल हैं, जिनमें प्राकृतिक रूप से पाए जाने वाले अमीनो एसिड (प्रोटीन के निर्माण खंड) और शर्करा | कई जैविक रूप से सक्रिय अणु चिरल हैं, जिनमें प्राकृतिक रूप से पाए जाने वाले अमीनो एसिड (प्रोटीन के निर्माण खंड) और शर्करा सम्मिलित हैं। | ||
जीव विज्ञान में इस [[समरूपता]] की उत्पत्ति बहुत | जीव विज्ञान में इस [[समरूपता]] की उत्पत्ति बहुत चर्चा का विषय है।<ref name=Meierhenrich08>{{cite book | author= Meierhenrich, Uwe J. | year= 2008 | title= अमीनो एसिड और जीवन की विषमता| location = Berlin, GER | publisher = Springer | isbn= 978-3540768852 }}</ref> अधिकांश वैज्ञानिकों का मानना है कि पृथ्वी पर जीवन के लिए चिरैलिटी का चुनाव पूरी तरह से यादृच्छिक था और यदि कार्बन-आधारित जीवन रूप ब्रह्मांड में कहीं और स्थित हैं, तो उनकी रसायन शास्त्र सैद्धांतिक रूप से विपरीत चिरैलिटी हो सकती है। हालाँकि, कुछ सुझाव हैं कि प्रारंभिक अमीनो एसिड धूमकेतु की धूल में बने होंगे। इस स्थिति में गोलाकार रूप से ध्रुवीकृत विकिरण (जो तारकीय विकिरण का 17% बनाता है) अमीनो एसिड की एक चिरलिटी के चयनात्मक विनाश का कारण बन सकता है, जिससे चयन पूर्वाग्रह पैदा हो सकता है जिसके परिणामस्वरूप अंततः पृथ्वी पर सभी जीवन होमोचिरल हो सकते हैं।<ref>{{cite magazine|last=McKee |first=Maggie |url=https://www.newscientist.com/article/dn7895-space-radiation-may-select-amino-acids-for-life.html |title=अंतरिक्ष विकिरण जीवन के लिए अमीनो एसिड का चयन कर सकता है|magazine=New Scientist |date=2005-08-24 |access-date=2016-02-05}}</ref><ref>{{cite journal | author = Meierhenrich Uwe J., Nahon Laurent, Alcaraz Christian, Hendrik Bredehöft Jan, Hoffmann Søren V., Barbier Bernard, Brack André | year = 2005 | title = ठोस अवस्था में अमीनो एसिड ल्यूसीन का असममित वैक्यूम यूवी फोटोलिसिस| journal = Angew. Chem. Int. Ed. | volume = 44 | issue = 35| pages = 5630–5634 | doi = 10.1002/anie.200501311 | pmid = 16035020 }}</ref> | ||
[[ एनजाइम |एंजाइम]] जो चिरल होते हैं, अधिकतर चिरल सब्सट्रेट के दो एनैन्टीओमर्स के बीच अंतर करते हैं। कोई कल्पना कर सकता है कि एक एंजाइम में दस्ताने जैसी गुहा होती है जो सब्सट्रेट को बांधती है। यदि यह दस्ताना दाएं हाथ का है, तो एक एनैन्टीओमर अंदर फिट हो जाएगा और बंध जाएगा जबकि दूसरा एनैन्टीओमर ठीक से फिट नहीं होगा और उसके बंधने की संभावना नहीं है। | |||
आदेशित चरणों के संदर्भ में भी चिरैलिटी महत्वपूर्ण है, उदाहरण के लिए एक नेमैटिक चरण (एक चरण जिसमें अणुओं की लंबी दूरी | अमीनो एसिड के {{smallcaps all|L}}-रूप स्वादहीन होते हैं, जबकि {{smallcaps all|D}}-रूपों का स्वाद मीठा होता है।<ref name=Meierhenrich08/>पुदीना की पत्तियों में रासायनिक कार्वोन या R-(-)-कार्वोन का L-एनैन्टीओमर होता है और कैरवे के बीज में D-एनैन्टीओमर या S-(+)- कार्वोन होता है।।<ref>{{cite journal | doi = 10.1021/jf60176a035 | title=एनैन्टीओमेरिक कार्वोन की गंध के बीच अंतर का समर्थन करने वाला रासायनिक और संवेदी डेटा|author1=Theodore J. Leitereg |author2=Dante G. Guadagni |author3=Jean Harris |author4=Thomas R. Mon |author5=Roy Teranishi | journal=[[J. Agric. Food Chem.]] | volume=19 | issue=4 | year=1971 | pages=785–787}}</ref> अधिकांश लोगों के लिए दोनों की गंध अलग-अलग होती है क्योंकि हमारे घ्राण [[संवेदी रिसेप्टर|रिसेप्टर]] चिरल होते हैं। | ||
आदेशित चरणों के संदर्भ में भी चिरैलिटी महत्वपूर्ण है, उदाहरण के लिए एक नेमैटिक चरण (एक चरण जिसमें अणुओं की लंबी दूरी का ओरिएंटेशनल क्रम होता है) में प्रकाशत: सक्रिय अणु की एक छोटी मात्रा जोड़ने से वह चरण एक चिरल नेमैटिक चरण (या कोलेस्टेरिक चरण) में बदल जाता है। इस संदर्भ में बहुलक तरल पदार्थों में ऐसे चरणों के संदर्भ में चिरलिटी का भी अध्ययन किया गया है।<ref name=Srinivasarao>{{cite journal | author= Srinivasarao, M. | year = 1999 | title= चिरैलिटी और पॉलिमर| journal = Current Opinion in Colloid & Interface Science | volume = 4 | issue = 5 | pages = 369–376 | doi = 10.1016/S1359-0294(99)00024-2}} {{full citation needed|date=February 2016}}</ref> | |||
== अकार्बनिक रसायन शास्त्र में == | == अकार्बनिक रसायन शास्त्र में == | ||
[[File:Delta-ruthenium-tris(bipyridine)-cation-3D-balls.png|thumb|डेल्टा-रूथेनियम-ट्रिस (बिपिरिडीन) धनायन]] | [[File:Delta-ruthenium-tris(bipyridine)-cation-3D-balls.png|thumb|डेल्टा-रूथेनियम-ट्रिस (बिपिरिडीन) धनायन]] | ||
{{main article| | {{main article|मुख्य लेख: कॉम्प्लेक्स (रसायन विज्ञान): आइसोमेरिज्म}} | ||
चिरैलिटी एक | चिरैलिटी एक समरूपित गुण है, आवर्त सारणी के किसी भाग का गुण नहीं है। इस प्रकार कई अकार्बनिक पदार्थ, अणु और आयन चिरल हैं। क्वार्ट्ज़ खनिज साम्राज्य का एक उदाहरण है, ऐसी गैरकेंद्रित सामग्रियां गैररेखीय प्रकाशिकी में अनुप्रयोगों के लिए रुचिकर हैं। | ||
समन्वय रसायन विज्ञान और [[ऑर्गेनोमेटेलिक रसायन विज्ञान]] के क्षेत्रों में | समन्वय रसायन विज्ञान और [[ऑर्गेनोमेटेलिक रसायन विज्ञान]] के क्षेत्रों में चिरलिटी व्यापक और व्यवहार का महत्व है। एक प्रसिद्ध उदाहरण ट्रिस (बाइपिरिडीन) रूथेनियम (II) सम्मिश्र है जिसमें तीन बाइपिरिडीन लिगैंड एक चिरल प्रोपेलर जैसी व्यवस्था अपनाते हैं।<ref>von Zelewsky, A. (1995). ''Stereochemistry of Coordination Compounds.'' Chichester: John Wiley.. {{ISBN|047195599X}}.</ref> [Ru(2,2′-bipyridine)<sub>3</sub>]<sup>2+</sup> जैसे सम्मिश्र के दो एनैन्टीओमर्स को लिगेंड्स द्वारा वर्णित प्रोपेलर के बाएं हाथ के मोड़ के लिए Λ (कैपिटल [[लैम्ब्डा]], एल का ग्रीक संस्करण) के रूप में नामित किया जा सकता है और दाएं हाथ के ट्विस्ट के लिए Δ (कैपिटल [[डेल्टा (पत्र)|डेल्टा]], ग्रीक डी) (चित्रित) के रूप में नामित किया जा सकता है। इसके अलावा सी.एफ. डेक्सट्रो- और लेवो- (लेवो-)। | ||
चिरल लिगेंड एक धातु परिसर को चिरलिटी प्रदान करते हैं, जैसा कि धातु-अमीनो एसिड | चिरल लिगेंड एक धातु परिसर को चिरलिटी प्रदान करते हैं, जैसा कि धातु-अमीनो एसिड सम्मिश्र द्वारा दर्शाया गया है। यदि धातु उत्प्रेरक गुण प्रदर्शित करती है, तो चिरल लिगैंड के साथ इसका संयोजन [[असममित उत्प्रेरण]] का आधार है।<ref>Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis; University Science Books: New York, 2010. {{ISBN|189138953X}}</ref> | ||
==तरीके और अभ्यास== | ==तरीके और अभ्यास== | ||
प्रकाशीय गतिविधि शब्द ध्रुवीकृत प्रकाश के साथ चिरल सामग्रियों की परस्पर क्रिया से लिया गया है। एक विलयन में प्रकाशीय आइसोमर का (-)-रूप या [[ लीवरोरेटरी ]] रूप , [[रैखिक ध्रुवीकरण|रैखिक]] रूप से ध्रुवीकृत प्रकाश की किरण के तल को वामावर्त घुमाता है। प्रकाशीय आइसोमर का (+)-रूप या [[डेक्सट्रोटोटेट्री]] रूप इसके विपरीत कार्य करता है। प्रकाश के घूर्णन को [[ध्रुवमापी]] का उपयोग करके मापा जाता है और इसे प्रकाशीय घूर्णन के रूप में व्यक्त किया जाता है। | |||
एनैन्टीओमर्स को [[चिरल संकल्प]] द्वारा अलग किया जा सकता है। इसमें | एनैन्टीओमर्स को [[चिरल संकल्प|चिरल रिज़ॉल्यूशन]] द्वारा अलग किया जा सकता है। इसमें अधिकतर प्राकृतिक रूप से पाए जाने वाले चिरल यौगिकों, जैसे कि मैलिक एसिड या अमीन ब्रुसीन के तथाकथित [[चिरल पूल]] से एक एनैन्टीओमर्स और एक एसिड या बेस से बने नमक के क्रिस्टल बनाना सम्मिलित होता है। कुछ रेसमिक मिश्रण स्वचालित रूप से दाएं हाथ और बाएं हाथ के क्रिस्टल में क्रिस्टलीकृत हो जाते हैं जिन्हें हाथ से अलग किया जा सकता है। [[लुई पास्चर]] ने 1849 में बाएं हाथ और दाएं हाथ के सोडियम अमोनियम टार्ट्रेट क्रिस्टल को अलग करने के लिए इस विधि का उपयोग किया था। कभी-कभी दाएं हाथ और बाएं हाथ के क्रिस्टल के साथ रेसमिक घोल को बीजना संभव होता है ताकि प्रत्येक एक बड़े क्रिस्टल में विकसित हो जाए। | ||
तरल क्रोमैटोग्राफी (एचपीएलसी और टीएलसी) का उपयोग एनैन्टीओमर्स के सीधे पृथक्करण और एनैन्टीओमेरिक शुद्धता के नियंत्रण के लिए एक विश्लेषणात्मक विधि के रूप में भी किया जा सकता है, उदाहरण के लिए सक्रिय फार्मास्युटिकल सामग्री ([[एपीआई]]) जो चिरल हैं।<ref>[[Ravi Bhushan|Bhushan, R.]]; Tanwar, S. ''[[J. Chromatogr. A]]'' '''2010''', 1395–1398. ({{doi|10.1016/j.chroma.2009.12.071}})</ref><ref>Ravi Bhushan ''Chem. Rec.'' '''2022''', e102100295. ({{doi|10.1002/tcr.202100295}})</ref> | तरल क्रोमैटोग्राफी (एचपीएलसी और टीएलसी) का उपयोग एनैन्टीओमर्स के सीधे पृथक्करण और एनैन्टीओमेरिक शुद्धता के नियंत्रण के लिए एक विश्लेषणात्मक विधि के रूप में भी किया जा सकता है, उदाहरण के लिए सक्रिय फार्मास्युटिकल सामग्री ([[एपीआई]]) जो चिरल हैं।<ref>[[Ravi Bhushan|Bhushan, R.]]; Tanwar, S. ''[[J. Chromatogr. A]]'' '''2010''', 1395–1398. ({{doi|10.1016/j.chroma.2009.12.071}})</ref><ref>Ravi Bhushan ''Chem. Rec.'' '''2022''', e102100295. ({{doi|10.1002/tcr.202100295}})</ref> | ||
Line 86: | Line 88: | ||
==विविध नामकरण== | ==विविध नामकरण== | ||
* किसी भी गैर-रेसेमिक | * किसी भी गैर-रेसेमिक चिरल पदार्थ को स्केलेमिक कहा जाता है, स्केलेमिक सामग्री एनैन्टीओप्योर या एनैन्टीओएनरिच्ड हो सकती है।<ref name=EllielChir97>{{cite journal | author = Eliel, E.L. | year = 1997 | title = अप्रभावी स्टीरियोकेमिकल नामकरण| journal = Chirality | volume = 9 | issue = 56 | pages = 428–430 | url = https://www.uottawa.ca/publications/interscientia/inter.4/eliel/eliel.html | access-date = 5 February 2016 | doi = 10.1002/(sici)1520-636x(1997)9:5/6<428::aid-chir5>3.3.co;2-e | archive-url = https://web.archive.org/web/20160303230750/http://www.uottawa.ca/publications/interscientia/inter.4/eliel/eliel.html | archive-date = 3 March 2016 | url-status = dead }}</ref> | ||
* एक | * एक चिरल पदार्थ एनैन्टीओप्योर होता है जब दो संभावित एनैन्टीओमर्स में से केवल एक स्थित होता है ताकि एक नमूने के भीतर सभी अणुओं में एक ही चिरलिटी भावना हो। पर्यायवाची के रूप में होमोचिरल का उपयोग दृढ़ता से हतोत्साहित किया जाता है।<ref>{{GoldBookRef|title=asymmetric synthesis| file = E02072}}</ref> * एक चिरल पदार्थ एनैन्टियोएनरिच्ड या हेटेरोचिरल होता है जब इसका एनैन्टीओमेरिक अनुपात 50:50 से अधिक लेकिन 100:0 से कम होता है।<ref>{{GoldBookRef|title=enantiomerically enriched (enantioenriched)| file = E02071}}</ref> * [[एनैन्टीओमेरिक अतिरिक्त]] या ई.ई. दूसरे की तुलना में एक एनैन्टीओमर कितना उपस्थित है, इसके बीच का अंतर है। उदाहरण के लिए 40% यानी एक नमूना ''R'' में 70% ''R'' और 30% ''S'' (70% − 30% = 40%) होता है।<ref>{{GoldBookRef|title=enantiomer excess (enantiomeric excess)| file = E02070}}</ref> | ||
== इतिहास == | == इतिहास == | ||
चिरल पदार्थों द्वारा समतल ध्रुवीकृत प्रकाश का घूर्णन पहली बार 1812 में [[जीन-बैप्टिस्ट बायोट]] द्वारा देखा गया था<ref>{{cite journal | last=Frankel |first=Eugene | title=Corpuscular Optics and the Wave Theory of Light: The Science and Politics of a Revolution in Physics |journal=Social Studies of Science |volume=6 |issue=2 |pages=147–154|publisher=Sage Publications Inc. | year=1976|doi=10.1177/030631277600600201 |jstor=284930 |s2cid=122887123 |url=https://www.jstor.org/stable/284930 }}</ref> और [[चीनी उद्योग]] विश्लेषणात्मक रसायन विज्ञान और फार्मास्यूटिकल्स में काफी महत्व प्राप्त किया। लुई पाश्चर ने 1848 में यह निष्कर्ष निकाला कि इस घटना का आणविक आधार है।<ref>{{cite journal | author= Pasteur, L. | title=Researches on the molecular asymmetry of natural organic products, English translation of French original, published by Alembic Club Reprints (Vol. 14, pp. 1–46) in 1905, facsimile reproduction by SPIE in a 1990 book | year=1848}}</ref><ref>{{cite book |author1= Eliel, Ernest Ludwig |author2=Wilen, Samuel H. |author3=Mander, Lewis N. | year = 1994 | title = कार्बनिक यौगिकों की स्टीरियोकैमिस्ट्री| edition = 1st | chapter = Chirality in Molecules Devoid of Chiral Centers (Chapter 14) | location = New York, NY, USA | publisher = Wiley & Sons | chapter-url = https://books.google.com/books?id=IyfwAAAAMAAJ | access-date = 2 February 2016 | isbn =978-0471016700 }}</ref> चिरैलिटी शब्द स्वयं [[लॉर्ड केल्विन]] द्वारा 1894 में बनाया गया था।<ref>{{cite journal | author= Bentley, Ronald | year = 1995 | title = From Optical Activity in Quartz to Chiral Drugs: Molecular Handedness in Biology and Medicine. | journal=[[Perspectives in Biology and Medicine|Perspect. Biol. Med.]] | volume=38 |issue=2 |pages=188–229 | doi=10.1353/pbm.1995.0069 | pmid = 7899056 | s2cid = 46514372 }}</ref> किसी यौगिक के विभिन्न एनैन्टीओमर्स या डायस्टेरोमर्स को उनके अलग-अलग प्रकाशीय गुणों के कारण पहले प्रकाशीय आइसोमर्स कहा जाता था।<ref>{{GoldBookRef|title=Optical isomers|file=O04308}}</ref> एक समय में चिरायता को कार्बनिक रसायन विज्ञान तक ही सीमित माना जाता था, लेकिन 1911 में [[अल्फ्रेड वर्नर]] द्वारा विशुद्ध रूप से अकार्बनिक यौगिक, [[हेक्सोल]] नामक कोबाल्ट सम्मिश्र के विलयन से इस गलत धारणा को खत्म कर दिया गया था।<ref>{{Cite journal|last=Werner|first=A.|date=May 1911|title=असममित कोबाल्ट परमाणु के ज्ञान पर। मैं|url=http://doi.wiley.com/10.1002/cber.19110440297|journal=Berichte der Deutschen Chemischen Gesellschaft|language=de|volume=44|issue=2|pages=1887–1898|doi=10.1002/cber.19110440297}}</ref> | |||
1970 के दशक | |||
1970 के दशक के प्रारंभ में विभिन्न समूहों ने स्थापित किया कि [[मानव घ्राण अंग]] चिरल यौगिकों को अलग करने में सक्षम है।<ref name="leitereg71" /><ref name="friedman71">{{cite journal |doi=10.1126/science.172.3987.1044|title=गंध असंगति और चिरायता|year=1971|last1=Friedman|first1=L.|last2=Miller|first2=J. G.|journal=Science|volume=172|issue=3987|pages=1044–1046|pmid=5573954|bibcode=1971Sci...172.1044F|s2cid=25725148}}</ref><ref name="ohloff80">{{cite journal |doi=10.1002/hlca.19800630721|title=एनेंटिओमेरिक एम्बरग्रीस सुगंध में स्टीरियोकेमिस्ट्री-गंध संबंध|year=1980|last1=Ohloff|first1=Günther|last2=Vial|first2=Christian|last3=Wolf|first3=Hans Richard|last4=Job|first4=Kurt|last5=Jégou|first5=Elise|last6=Polonsky|first6=Judith|last7=Lederer|first7=Edgar|journal=Helvetica Chimica Acta|volume=63|issue=7|pages=1932–1946}}</ref> | |||
Line 133: | Line 137: | ||
{{chiral synthesis}} | {{chiral synthesis}} | ||
{{DEFAULTSORT:Chirality (Chemistry)}} | {{DEFAULTSORT:Chirality (Chemistry)}} | ||
[[Category: | [[Category:All articles with incomplete citations]] | ||
[[Category:Created On 09/07/2023]] | [[Category:Articles with hatnote templates targeting a nonexistent page|Chirality (Chemistry)]] | ||
[[Category:Articles with incomplete citations from February 2016]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:CS1 Deutsch-language sources (de)]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 errors]] | |||
[[Category:CS1 maint]] | |||
[[Category:Citation Style 1 templates|M]] | |||
[[Category:Collapse templates|Chirality (Chemistry)]] | |||
[[Category:Commons category link is locally defined|Chirality (Chemistry)]] | |||
[[Category:Created On 09/07/2023|Chirality (Chemistry)]] | |||
[[Category:Lua-based templates|Chirality (Chemistry)]] | |||
[[Category:Machine Translated Page|Chirality (Chemistry)]] | |||
[[Category:Missing redirects|Chirality (Chemistry)]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Chirality (Chemistry)]] | |||
[[Category:Pages with script errors|Chirality (Chemistry)]] | |||
[[Category:Short description with empty Wikidata description|Chirality (Chemistry)]] | |||
[[Category:Sidebars with styles needing conversion|Chirality (Chemistry)]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Chirality (Chemistry)]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite magazine]] | |||
[[Category:Templates generating microformats|Chirality (Chemistry)]] | |||
[[Category:Templates that add a tracking category|Chirality (Chemistry)]] | |||
[[Category:Templates that are not mobile friendly|Chirality (Chemistry)]] | |||
[[Category:Templates that generate short descriptions|Chirality (Chemistry)]] | |||
[[Category:Templates using TemplateData|Chirality (Chemistry)]] | |||
[[Category:Wikipedia fully protected templates|Cite magazine]] | |||
[[Category:Wikipedia metatemplates|Chirality (Chemistry)]] | |||
[[Category:औषध|Chirality (Chemistry)]] | |||
[[Category:जीव रसायन|Chirality (Chemistry)]] | |||
[[Category:जीवन की उत्पत्ति|Chirality (Chemistry)]] | |||
[[Category:त्रिविम|Chirality (Chemistry)]] | |||
[[Category:दाहिनी ओर|Chirality (Chemistry)]] | |||
[[Category:ध्रुवीकरण (तरंगें)|Chirality (Chemistry)]] | |||
[[Category:रासायनिक नामकरण|Chirality (Chemistry)]] |
Latest revision as of 16:44, 8 August 2023
रसायन शास्त्र में अणु या आयन को चिरल (/ˈkaɪrəl/)कहा जाता है यदि इसे घूर्णन (ज्यामिति), अनुवाद (ज्यामिति) और कुछ गठनात्मक परिवर्तनों के किसी भी संयोजन द्वारा इसकी दर्पण छवि पर सुपरपोज़ नहीं किया जा सकता है। इस ज्यामितीय गुण को चिरैलिटी (/kaɪˈrælɪti/)कहा जाता है।[1][2][3][4] ये शब्द प्राचीन ग्रीक χείρ (cheir) 'हाथ' से लिए गए हैं, जो इस गुण वाली किसी वस्तु का विहित उदाहरण है।
एक चिरल अणु या आयन दो स्टीरियोइसोमर्स में स्थित होता है जो एक दूसरे की दर्पण छवियां होते हैं, जिन्हें एनैन्टीओमर्स कहा जाता है उन्हें अधिकतर उनके पूर्ण विन्यास या किसी अन्य मानदंड के आधार पर "दाएँ हाथ" या "बाएँ हाथ" के रूप में पहचाना जाता है, अन्य चिरल यौगिकों के साथ प्रतिक्रिया को छोड़कर दो एनैन्टीओमर्स में समान रासायनिक गुण होते हैं। उनके भौतिक गुण भी समान हैं इसके अलावा उनमें अधिकतर विपरीत प्रकाशीय गतिविधियाँ होती है। समान भागों में दो एनैन्टीओमर्स के एक समरूप मिश्रण को रेसिमिक कहा जाता है और यह सामान्यतौर पर शुद्ध एनैन्टीओमर्स से रासायनिक और शारीरिक रूप से भिन्न होते है।
चिरल अणुओं में सामान्यतौर पर एक स्टीरियोजेनिक तत्व होता है जिससे चिरैलिटी उत्पन्न होती है। स्टीरियोजेनिक तत्व का सबसे सामान्य प्रकार स्टीरियोजेनिक केंद्र या स्टीरियोसेंटर है। कार्बनिक यौगिक स्थिति में स्टीरियोसेंटर अधिकतर एक कार्बन परमाणु का रूप लेते हैं, जिसके साथ टेट्राहेड्रल ज्यामिति में चार अलग-अलग समूह जुड़े होते हैं, दिए गए स्टीरियोसेंटर में दो संभावित विन्यास होते हैं जो एक या अधिक स्टीरियोसेंटर वाले अणुओं में स्टीरियोइसोमर्स (डायस्टेरेओमर और एनैन्टीओमर) को जन्म देते हैं। एक या अधिक स्टीरियोसेंटर वाले चिरल अणु के लिए एनैन्टीओमर स्टीरियोआइसोमर से मेल खाता है जिसमें प्रत्येक स्टीरियोसेंटर का विपरीत विन्यास होता है, केवल एक स्टीरियोजेनिक कार्बन वाला कार्बनिक यौगिक हमेशा चिरल होता है। दूसरी ओर, कई स्टीरियोजेनिक कार्बन वाला एक कार्बनिक यौगिक सामान्यतौर पर चिरल नहीं होता है। विशेष रूप से यदि स्टीरियोसेंटर को इस तरह से कॉन्फ़िगर किया गया है कि अणु समरूपता के तल या व्युत्क्रम बिंदु के साथ संरचना ले सकता है तो अणु अचिरल है और मेसो यौगिक के रूप में जाना जाता है। सामान्यतौर पर N, P, S और Si जैसे अन्य परमाणु भी स्टीरियोसेंटर के रूप में काम कर सकते हैं, लेकिन उनके साथ चार अलग-अलग प्रतिस्थापन (अकेले जोड़े इलेक्ट्रॉनों सहित) जुड़े है।
एक या एक से अधिक स्टीरियोसेंटरों से उत्पन्न होने वाली चिरायता वाले अणुओं को केंद्रीय चिरैलिटी के रूप में वर्गीकृत किया जाता है। दो अन्य प्रकार के स्टीरियोजेनिक तत्व हैं जो चिरैलिटी को जन्म दे सकते हैं, स्टीरियोजेनिक अक्ष (अक्षीय चिरैलिटी) और स्टीरियोजेनिक प्लेन (प्लानर चिरैलिटी)। अंत में, एक अणु की अंतर्निहित वक्रता भी चिरलिटी (अंतर्निहित चिरलिटी) को जन्म दे सकती है। इस प्रकार की चिरैलिटी केंद्रीय चिरैलिटी की तुलना में कम सामान्य है। बिनोल एक अक्षीय चिरल अणु का विशिष्ट उदाहरण है, जबकि ट्रांस-साइक्लोक्टीन एक समतल चिरल अणु का सामान्य रूप से उद्धृत उदाहरण है। अंत में, हेलीसीन में कुंडलित चिरैलिटी होती है जो एक प्रकार की अंतर्निहित चिरैलिटी है।
त्रिविम और जीव रसायन के लिए चिरैलिटी एक महत्वपूर्ण अवधारणा है, जीव विज्ञान से संबंधित अधिकांश पदार्थ चिरल हैं जैसे कार्बोहाइड्रेट (शर्करा, स्टार्च और सेल्यूलोज), अमीनो एसिड जो प्रोटीन के निर्माण खंड हैं और न्यूक्लिक अम्ल । प्राकृतिक रूप से पाए जाने वाले ट्राइग्लिसराइड्स अधिकतर चिरल होते हैं, लेकिन हमेशा नहीं। जीवित जीवों में, सामान्यतौर पर चिरल यौगिक में दो एनैन्टीओमर में से केवल एक ही पाया जाता है, उस कारण से जो जीव चिरल यौगिक का उपभोग करते हैं वे सामान्यतौर पर एक एनैन्टीओमर्स को मेटाबोलाइज कर सकते हैं। इसी कारण से एक चिरल फार्मास्युटिकल के दो एनैन्टीओमर्स में सामान्यतौर पर काफी भिन्न क्षमता (फार्माकोलॉजी) या प्रभाव होते हैं।
परिभाषा
किसी अणु की चिरलिटी उसकी संरचना की आणविक समरूपता पर आधारित होती है। किसी अणु की संरचना चिरल होती है यदि वह Cn, Dn, T, O, I बिंदु समूह (चिरल बिंदु समूह)से संबंधित हो। हालाँकि, क्या अणु को स्वयं चिरल माना जाता है, यह इस बात पर निर्भर करता है कि क्या इसकी चिरल अनुरूपण लगातार आइसोमर्स हैं जिन्हें अलग-अलग एनैन्टीओमर्स के रूप में अलग किया जा सकता है, निम्न सिद्धांत रूप में या एनैन्टीओमेरिक अनुरूपकर्ता किसी दिए गए तापमान और कालक्रम पर कम-ऊर्जा गठनात्मक परिवर्तनों (अणु अचिरल का प्रतिपादन) के माध्यम से किसी दिए गए तापमान और समय-सीमा पर तेजी से परस्पर परिवर्तित होते हैं। उदाहरण के लिए C2 बिंदु समूह से संबंधित चिरल गौचे अनुरूपकर्ता होने के बावजूद ब्यूटेन को कमरे के तापमान पर अचिरल माना जाता है क्योंकि केंद्रीय C-C बंधन के चारों ओर घूमने से एनैन्टीओमर्स (3.4 किलो कैलोरी/मोल बैरियर) तेजी से आपस में परिवर्तित हो जाते हैं। इसी तरह सीआईएस-1,2-डाइक्लोरोसाइक्लोहेक्सेन में साइक्लोहेक्सेन संरचना होती है जो गैर-समान दर्पण छवियां होती हैं, लेकिन दोनों साइक्लोहेक्सेन चेयर फ्लिप (~ 10 किलो कैलोरी/मोल बैरियर) के माध्यम से परस्पर परिवर्तित हो सकते हैं। एक अन्य उदाहरण के रूप में तीन अलग-अलग प्रतिस्थापनों (R) के साथ (R1R2R3N:) वाले एमाइन को अचिरल अणु के रूप में भी माना जाता है क्योंकि उनके एनैन्टीओमेरिक पिरामिड अनुरूप तेजी से पलटते हैं और एक तलीय संक्रमण अवस्था (~6 kcal/mol अवरोध) के माध्यम से परस्पर परिवर्तित होते हैं।
हालाँकि, यदि प्रश्न में तापमान काफी कम है तो एनैन्टीओमेरिक चिरल अनुरूपणों को आपस में परिवर्तित करने वाली प्रक्रिया किसी दिए गए समय-सीमा की तुलना में धीमी हो जाती है, उस तापमान पर अणु को चिरल माना जाएगा। प्रासंगिक समय-सीमा कुछ हद तक स्वेच्छ ढंग से परिभाषित की गई है: कभी-कभी 1000 सेकंड का उपयोग किया जाता है क्योंकि इसे व्यावहारिक अर्थ में एनैन्टीओमर्स के रासायनिक या क्रोमैटोग्राफिक पृथक्करण के लिए आवश्यक समय की निचली सीमा माना जाता है। जो अणु कमरे के तापमान पर एक बंधन के चारों ओर प्रतिबंधित घूर्णन (रोटेशन में बाधा ≥ ca. 23 kcal/mol) के कारण चिरल होते हैं, उन्हें एट्रोपिसोमेरिज्म प्रदर्शित करने के लिए कहा जाता है।
एक चिरल यौगिक में घूर्णन की कोई अनुचित धुरी (Sn) नहीं हो सकती है, जिसमें समरूपता और व्युत्क्रम केंद्र के तल सम्मिलित हैं। चिरल अणु असममित होते हैं(Sn की कमी होती है) लेकिन हमेशा असममित नहीं होते हैं (तुच्छ पहचान को छोड़कर सभी समरूपता तत्वों का अभाव होता है) असममित अणु सदैव चिरल होते हैं।[5]
निम्न तालिका अणु के तीन आयामों में बिंदु समूहों के शॉनफ्लाइज़ संकेतन के साथ चिरल और अचिरल अणुओं के कुछ उदाहरण दिखाती है। अचिरल अणुओं में X और Y (बिना सबस्क्रिप्ट के) अचिरल समूहों का प्रतिनिधित्व करते हैं, जबकि XR और XS या YR और YS एनैन्टीओमर्स का प्रतिनिधित्व करते हैं। ध्यान दें कि S2 अक्ष के अभिविन्यास का कोई मतलब नहीं है, जो केवल एक व्युत्क्रम है। कोई भी अभिविन्यास तब तक काम करेगा जब तक वह व्युत्क्रमण के केंद्र से होकर गुजरता है। यह भी ध्यान दें कि चिरल और अचिरल अणुओं की उच्च समरूपताएं भी स्थित हैं और जो समरूपताएं तालिका में सम्मिलित नहीं हैं जैसे कि चिरल C3 या अचिरल S4
अणु का एक उदाहरण जिसमें कोई दर्पण तल या व्युत्क्रम नहीं है और फिर भी उसे अचिरल माना जाएगा 1,1-डिफ्लुओरो-2,2-डाइक्लोरोसायक्लोहेक्सेन (या 1,1-डिफ्लुओरो-3,3-डाइक्लोरोसायक्लोहेक्सेन) है। यह कई अनुरूपकर्ता (गठनात्मक आइसोमर) में स्थित हो सकता है, लेकिन उनमें से किसी में भी दर्पण समतल नहीं है। एक दर्पण तल रखने के लिए साइक्लोहेक्सेन रिंग को समतल होना होगा, जो बंधन कोणों को चौड़ा करेगा और संरचना को बहुत अधिक ऊर्जा देगा, इस यौगिक को चिरल नहीं माना जाएगा क्योंकि चिरल अनुरूपक आसानी से परस्पर परिवर्तित हो जाते हैं।
चिरल अनुरूपता वाला एक अचिरल अणु सैद्धांतिक रूप से दाएं हाथ और बाएं हाथ के क्रिस्टल का मिश्रण बना सकता है, जैसा कि अधिकतर चिरल अणुओं के रेस्मिक मिश्रण के साथ होता है (चिरल रिज़ॉल्यूशन स्पॉन्टेनियस रिज़ॉल्यूशन और संबंधित विशेष तकनीक देखें) या जब अचिरल तरल सिलिकॉन डाइऑक्साइड को चिरल क्वार्ट्ज बनने के बिंदु तक ठंडा किया जाता है।
स्टीरोजेनिक केंद्र
स्टीरियोजेनिक केंद्र (या स्टीरियोसेंटर) एक ऐसा परमाणु है जो उस परमाणु पर दो लिगेंड (जुड़े हुए समूहों) की स्थिति को बदलने से एक अणु बनता है जो मूल के लिए स्टीरियोइसोमेरिक होता है। उदाहरण के लिए, एक सामान्य स्थिति एक टेट्राहेड्रल कार्बन है जो चार अलग-अलग समूहों 'a', 'b', 'c' और 'd'(C'abcd) से जुड़ा हुआ है, जहां किन्हीं दो समूहों (उदाहरण के लिए Cbacd') की अदला-बदली से मूल का एक स्टीरियोआइसोमर बनता है इसलिए केंद्रीय C एक स्टीरियोसेंटर है। कई चिरल अणुओं में बिंदु चिरैलिटी होती है, अर्थात् एकल चिरल स्टीरियोजेनिक केंद्र जो एक परमाणु के साथ मेल खाता है। इस स्टीरियोजेनिक केंद्र में सामान्यतौर पर विभिन्न समूहों के लिए चार या अधिक बंधन होते हैं और यह कार्बन (कई जैविक अणुओं में) फॉस्फोरस (कई ऑर्गनोफॉस्फेट में) सिलिकॉन या एक धातु (कई चिरल समन्वय यौगिकों में) हो सकता है। हालाँकि, एक स्टीरियोजेनिक केंद्र एक त्रिसंयोजी परमाणु भी हो सकता है जिसके बंधन एक ही तल में नहीं होते हैं, जैसे कि पी-चिरल फॉस्फीन (PRR′R″) में फास्फोरस और एस-चिरल सल्फोऑक्साइड (OSRR′) में सल्फर क्योंकि चौथे बंधन के बजाय इलेक्ट्रॉनों की एक अकेली जोड़ी स्थित होती है। इसी तरह, एक स्टीरियोजेनिक अक्ष (या प्लेन) को अणु में एक अक्ष (या प्लेन) के रूप में परिभाषित किया जाता है, जैसे कि अक्ष (या प्लेन) से जुड़े किन्हीं दो लिगेंड की अदला-बदली एक स्टीरियोइसोमर को जन्म देती है। उदाहरण के लिए, C2-सममित प्रजातियाँ 1,1'-द्वि-2-नेफ्थोल (BINOL) और 1,3-डाइक्लोरोप्रोपैडीन में स्टीरियोजेनिक अक्ष होते हैं और अक्षीय चिरैलिटी प्रदर्शित करते हैं, जबकि (E)साइक्लोऑक्टिन और दो या दो से अधिक प्रतिस्थापन वाले कई फेरोसिन डेरिवेटिव में स्टीरियोजेनिक तल होते हैं और प्लेनर चिरैलिटी प्रदर्शित होती है।
चिरायता परमाणुओं के बीच समस्थानिक अंतर से भी उत्पन्न हो सकती है, जैसे कि ड्यूटेरेटेड बेंजाइल अल्कोहल PhCHDOH में जो चिरल और प्रकाशिक रूप से सक्रिय है ([α]D = 0.715°), भले ही गैर-ड्यूटेरेटेड यौगिक PhCH2OH नहीं है।[6]
यदि दो एनैन्टीओमर आसानी से आपस में परिवर्तित हो जाते हैं, तो शुद्ध एनैन्टीओमर को अलग करना व्यावहारिक रूप से असंभव हो सकता है और केवल रेसमिक मिश्रण ही देखने योग्य होता है। उदाहरण के लिए, नाइट्रोजन व्युत्क्रमण के लिए कम सक्रियण ऊर्जा के कारण तीन अलग-अलग प्रतिस्थापन (NRR′R″) वाले अधिकांश एमाइन की यही स्थिति है।
चिरल पदार्थ में स्टीरियोजेनिक तत्व होना आवश्यक नहीं है। उदाहरणों में कुछ हेलिसीन, कैलिक्सेरेन और फुलरीन सम्मिलित हैं जिनमें अंतर्निहित चिरायता है। इसके अलावा, एक अणु के लिए चिरलिटी का केंद्र होना संभव है जो ऐसी स्थिति में बैठता है जो परमाणु केंद्र (और इस प्रकार एक स्टीरियोसेंटर) के अनुरूप नहीं होता है। यह 1,3,5(,7)-प्रतिस्थापित एडमैंटेन के स्थिति में होता है (उदाहरण के लिए, (1S,3R,5R,7S)-3-मिथाइल-5-फेनिलडामैंटेन-1-कार्बोक्जिलिक एसिड साइड बॉक्स में दिखाया गया है)।
जब एक एनैन्टीओमर के लिए प्रकाशीय रोटेशन और व्यावहारिक माप बहुत कम होता है, तो प्रजाति को क्रिप्टोचिरालिटी प्रदर्शित करने के लिए कहा जाता है।
चिरैलिटी एक अणु की पहचान का एक आंतरिक हिस्सा है, इसलिए व्यवस्थित नाम में पूर्ण विन्यास (R/S ।D/L या अन्य पदनाम) का विवरण सम्मिलित है।
चिरलिटी की अभिव्यक्तियाँ
- स्वाद: कृत्रिम स्वीटनर एस्पार्टेम में दो एनैन्टीओमर होते हैं। L-एस्पार्टेम का स्वाद मीठा होता है जबकि D-एस्पार्टेम स्वादहीन होता है।[8]
- गंध: R-(-)-कार्वोन की गंध पुदीना जैसी होती है जबकि S-(+)-कार्वोन की गंध जीरा जैसी होती है।[9]
- दवा की प्रभावशीलता: अवसादरोधी दवा सिटालोप्राम रेसमिक मिश्रण के रूप में बेचा जाता है। हालाँकि, अध्ययनों से पता चला है कि दवा के लाभकारी प्रभावों के लिए केवल (S)-(+) एनैन्टीओमर जिम्मेदार है।[10][11] * दवा सुरक्षा: D-पेनिसिलमाइन का उपयोग केलेशन थेरेपी और रुमेटीइड गठिया के उपचार के लिए किया जाता हैं जबकि L-पेनिसिलिन विषैला होता है क्योंकि यह पाइरिडोक्सिन, एक आवश्यक विटामिन बी की क्रिया को रोकता है।[12]
जैव रसायन में
कई जैविक रूप से सक्रिय अणु चिरल हैं, जिनमें प्राकृतिक रूप से पाए जाने वाले अमीनो एसिड (प्रोटीन के निर्माण खंड) और शर्करा सम्मिलित हैं।
जीव विज्ञान में इस समरूपता की उत्पत्ति बहुत चर्चा का विषय है।[13] अधिकांश वैज्ञानिकों का मानना है कि पृथ्वी पर जीवन के लिए चिरैलिटी का चुनाव पूरी तरह से यादृच्छिक था और यदि कार्बन-आधारित जीवन रूप ब्रह्मांड में कहीं और स्थित हैं, तो उनकी रसायन शास्त्र सैद्धांतिक रूप से विपरीत चिरैलिटी हो सकती है। हालाँकि, कुछ सुझाव हैं कि प्रारंभिक अमीनो एसिड धूमकेतु की धूल में बने होंगे। इस स्थिति में गोलाकार रूप से ध्रुवीकृत विकिरण (जो तारकीय विकिरण का 17% बनाता है) अमीनो एसिड की एक चिरलिटी के चयनात्मक विनाश का कारण बन सकता है, जिससे चयन पूर्वाग्रह पैदा हो सकता है जिसके परिणामस्वरूप अंततः पृथ्वी पर सभी जीवन होमोचिरल हो सकते हैं।[14][15]
एंजाइम जो चिरल होते हैं, अधिकतर चिरल सब्सट्रेट के दो एनैन्टीओमर्स के बीच अंतर करते हैं। कोई कल्पना कर सकता है कि एक एंजाइम में दस्ताने जैसी गुहा होती है जो सब्सट्रेट को बांधती है। यदि यह दस्ताना दाएं हाथ का है, तो एक एनैन्टीओमर अंदर फिट हो जाएगा और बंध जाएगा जबकि दूसरा एनैन्टीओमर ठीक से फिट नहीं होगा और उसके बंधने की संभावना नहीं है।
अमीनो एसिड के L-रूप स्वादहीन होते हैं, जबकि D-रूपों का स्वाद मीठा होता है।[13]पुदीना की पत्तियों में रासायनिक कार्वोन या R-(-)-कार्वोन का L-एनैन्टीओमर होता है और कैरवे के बीज में D-एनैन्टीओमर या S-(+)- कार्वोन होता है।।[16] अधिकांश लोगों के लिए दोनों की गंध अलग-अलग होती है क्योंकि हमारे घ्राण रिसेप्टर चिरल होते हैं।
आदेशित चरणों के संदर्भ में भी चिरैलिटी महत्वपूर्ण है, उदाहरण के लिए एक नेमैटिक चरण (एक चरण जिसमें अणुओं की लंबी दूरी का ओरिएंटेशनल क्रम होता है) में प्रकाशत: सक्रिय अणु की एक छोटी मात्रा जोड़ने से वह चरण एक चिरल नेमैटिक चरण (या कोलेस्टेरिक चरण) में बदल जाता है। इस संदर्भ में बहुलक तरल पदार्थों में ऐसे चरणों के संदर्भ में चिरलिटी का भी अध्ययन किया गया है।[17]
अकार्बनिक रसायन शास्त्र में
चिरैलिटी एक समरूपित गुण है, आवर्त सारणी के किसी भाग का गुण नहीं है। इस प्रकार कई अकार्बनिक पदार्थ, अणु और आयन चिरल हैं। क्वार्ट्ज़ खनिज साम्राज्य का एक उदाहरण है, ऐसी गैरकेंद्रित सामग्रियां गैररेखीय प्रकाशिकी में अनुप्रयोगों के लिए रुचिकर हैं।
समन्वय रसायन विज्ञान और ऑर्गेनोमेटेलिक रसायन विज्ञान के क्षेत्रों में चिरलिटी व्यापक और व्यवहार का महत्व है। एक प्रसिद्ध उदाहरण ट्रिस (बाइपिरिडीन) रूथेनियम (II) सम्मिश्र है जिसमें तीन बाइपिरिडीन लिगैंड एक चिरल प्रोपेलर जैसी व्यवस्था अपनाते हैं।[18] [Ru(2,2′-bipyridine)3]2+ जैसे सम्मिश्र के दो एनैन्टीओमर्स को लिगेंड्स द्वारा वर्णित प्रोपेलर के बाएं हाथ के मोड़ के लिए Λ (कैपिटल लैम्ब्डा, एल का ग्रीक संस्करण) के रूप में नामित किया जा सकता है और दाएं हाथ के ट्विस्ट के लिए Δ (कैपिटल डेल्टा, ग्रीक डी) (चित्रित) के रूप में नामित किया जा सकता है। इसके अलावा सी.एफ. डेक्सट्रो- और लेवो- (लेवो-)।
चिरल लिगेंड एक धातु परिसर को चिरलिटी प्रदान करते हैं, जैसा कि धातु-अमीनो एसिड सम्मिश्र द्वारा दर्शाया गया है। यदि धातु उत्प्रेरक गुण प्रदर्शित करती है, तो चिरल लिगैंड के साथ इसका संयोजन असममित उत्प्रेरण का आधार है।[19]
तरीके और अभ्यास
प्रकाशीय गतिविधि शब्द ध्रुवीकृत प्रकाश के साथ चिरल सामग्रियों की परस्पर क्रिया से लिया गया है। एक विलयन में प्रकाशीय आइसोमर का (-)-रूप या लीवरोरेटरी रूप , रैखिक रूप से ध्रुवीकृत प्रकाश की किरण के तल को वामावर्त घुमाता है। प्रकाशीय आइसोमर का (+)-रूप या डेक्सट्रोटोटेट्री रूप इसके विपरीत कार्य करता है। प्रकाश के घूर्णन को ध्रुवमापी का उपयोग करके मापा जाता है और इसे प्रकाशीय घूर्णन के रूप में व्यक्त किया जाता है।
एनैन्टीओमर्स को चिरल रिज़ॉल्यूशन द्वारा अलग किया जा सकता है। इसमें अधिकतर प्राकृतिक रूप से पाए जाने वाले चिरल यौगिकों, जैसे कि मैलिक एसिड या अमीन ब्रुसीन के तथाकथित चिरल पूल से एक एनैन्टीओमर्स और एक एसिड या बेस से बने नमक के क्रिस्टल बनाना सम्मिलित होता है। कुछ रेसमिक मिश्रण स्वचालित रूप से दाएं हाथ और बाएं हाथ के क्रिस्टल में क्रिस्टलीकृत हो जाते हैं जिन्हें हाथ से अलग किया जा सकता है। लुई पास्चर ने 1849 में बाएं हाथ और दाएं हाथ के सोडियम अमोनियम टार्ट्रेट क्रिस्टल को अलग करने के लिए इस विधि का उपयोग किया था। कभी-कभी दाएं हाथ और बाएं हाथ के क्रिस्टल के साथ रेसमिक घोल को बीजना संभव होता है ताकि प्रत्येक एक बड़े क्रिस्टल में विकसित हो जाए।
तरल क्रोमैटोग्राफी (एचपीएलसी और टीएलसी) का उपयोग एनैन्टीओमर्स के सीधे पृथक्करण और एनैन्टीओमेरिक शुद्धता के नियंत्रण के लिए एक विश्लेषणात्मक विधि के रूप में भी किया जा सकता है, उदाहरण के लिए सक्रिय फार्मास्युटिकल सामग्री (एपीआई) जो चिरल हैं।[20][21]
विविध नामकरण
- किसी भी गैर-रेसेमिक चिरल पदार्थ को स्केलेमिक कहा जाता है, स्केलेमिक सामग्री एनैन्टीओप्योर या एनैन्टीओएनरिच्ड हो सकती है।[22]
- एक चिरल पदार्थ एनैन्टीओप्योर होता है जब दो संभावित एनैन्टीओमर्स में से केवल एक स्थित होता है ताकि एक नमूने के भीतर सभी अणुओं में एक ही चिरलिटी भावना हो। पर्यायवाची के रूप में होमोचिरल का उपयोग दृढ़ता से हतोत्साहित किया जाता है।[23] * एक चिरल पदार्थ एनैन्टियोएनरिच्ड या हेटेरोचिरल होता है जब इसका एनैन्टीओमेरिक अनुपात 50:50 से अधिक लेकिन 100:0 से कम होता है।[24] * एनैन्टीओमेरिक अतिरिक्त या ई.ई. दूसरे की तुलना में एक एनैन्टीओमर कितना उपस्थित है, इसके बीच का अंतर है। उदाहरण के लिए 40% यानी एक नमूना R में 70% R और 30% S (70% − 30% = 40%) होता है।[25]
इतिहास
चिरल पदार्थों द्वारा समतल ध्रुवीकृत प्रकाश का घूर्णन पहली बार 1812 में जीन-बैप्टिस्ट बायोट द्वारा देखा गया था[26] और चीनी उद्योग विश्लेषणात्मक रसायन विज्ञान और फार्मास्यूटिकल्स में काफी महत्व प्राप्त किया। लुई पाश्चर ने 1848 में यह निष्कर्ष निकाला कि इस घटना का आणविक आधार है।[27][28] चिरैलिटी शब्द स्वयं लॉर्ड केल्विन द्वारा 1894 में बनाया गया था।[29] किसी यौगिक के विभिन्न एनैन्टीओमर्स या डायस्टेरोमर्स को उनके अलग-अलग प्रकाशीय गुणों के कारण पहले प्रकाशीय आइसोमर्स कहा जाता था।[30] एक समय में चिरायता को कार्बनिक रसायन विज्ञान तक ही सीमित माना जाता था, लेकिन 1911 में अल्फ्रेड वर्नर द्वारा विशुद्ध रूप से अकार्बनिक यौगिक, हेक्सोल नामक कोबाल्ट सम्मिश्र के विलयन से इस गलत धारणा को खत्म कर दिया गया था।[31]
1970 के दशक के प्रारंभ में विभिन्न समूहों ने स्थापित किया कि मानव घ्राण अंग चिरल यौगिकों को अलग करने में सक्षम है।[9][32][33]
यह भी देखें
- चिरैलिटी (विद्युत चुंबकत्व)
- चिरैलिटी (गणित)
- चिरैलिटी (भौतिकी)
- एनैन्टिओप्योर औषधि
- एनेंटियोसेलेक्टिव संश्लेषण
- हैंडेडनेस_(बहुविकल्पी)
- अभिविन्यास (वेक्टर स्थान)
- फ़िफ़र प्रभाव
- सामान्य तौर पर स्टीरियोकेमिस्ट्री के अवलोकन के लिए स्टीरियोकेमिस्ट्री
- स्टीरियोइसोमेरिज़्म
- सुपरमॉलेक्यूलर चिरैलिटी
संदर्भ
- ↑ Organic Chemistry (4th Edition) Paula Y. Bruice. Pearson Educational Books. ISBN 9780131407480
- ↑ Organic Chemistry (3rd Edition) Marye Anne Fox, James K. Whitesell Jones & Bartlett Publishers (2004) ISBN 0763721972
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Chirality". doi:10.1351/goldbook.C01058
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Superposability". doi:10.1351/goldbook.S06144
- ↑ Cotton, F. A., "Chemical Applications of Group Theory," John Wiley & Sons: New York, 1990.
- ↑ ^ Streitwieser, A., Jr.; Wolfe, J. R., Jr.; Schaeffer, W. D. (1959). "Stereochemistry of the Primary Carbon. X. Stereochemical Configurations of Some Optically Active Deuterium Compounds". Tetrahedron. 6 (4): 338–344. doi:10.1016/0040-4020(59)80014-4.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Mislow, Kurt; Siegel, Jay (May 1984). "स्टीरियोइसोमेरिज़्म और स्थानीय चिरायता". Journal of the American Chemical Society (in English). 106 (11): 3319–3328. doi:10.1021/ja00323a043. ISSN 0002-7863.
- ↑ Gal, Joseph (2012). "The Discovery of Stereoselectivity at Biological Receptors: Arnaldo Piutti and the Taste of the Asparagine Enantiomers-History and Analysis on the 125th Anniversary". Chirality. 24 (12): 959–976. doi:10.1002/chir.22071. PMID 23034823.
- ↑ 9.0 9.1 Theodore J. Leitereg; Dante G. Guadagni; Jean Harris; Thomas R. Mon; Roy Teranishi (1971). "एनैन्टीओमेरिक कार्वोन की गंध के बीच अंतर का समर्थन करने वाला रासायनिक और संवेदी डेटा". J. Agric. Food Chem. 19 (4): 785–787. doi:10.1021/jf60176a035.
- ↑ Lepola U, Wade A, Andersen HF (May 2004). "Do equivalent doses of escitalopram and citalopram have similar efficacy? A pooled analysis of two positive placebo-controlled studies in major depressive disorder". Int Clin Psychopharmacol. 19 (3): 149–55. doi:10.1097/00004850-200405000-00005. PMID 15107657. S2CID 36768144.
- ↑ Hyttel, J.; Bøgesø, K. P.; Perregaard, J.; Sánchez, C. (1992). "सीतालोप्राम का औषधीय प्रभाव (एस)-(+)-एनैन्टीओमर में रहता है". Journal of Neural Transmission. 88 (2): 157–160. doi:10.1007/BF01244820. PMID 1632943. S2CID 20110906.
- ↑ JAFFE, IA; ALTMAN, K; MERRYMAN, P (Oct 1964). "मनुष्य में पेनिसिलिन का एंटीपायरिडोक्सिन प्रभाव।". The Journal of Clinical Investigation. 43 (10): 1869–73. doi:10.1172/JCI105060. PMC 289631. PMID 14236210.
- ↑ 13.0 13.1 Meierhenrich, Uwe J. (2008). अमीनो एसिड और जीवन की विषमता. Berlin, GER: Springer. ISBN 978-3540768852.
- ↑ McKee, Maggie (2005-08-24). "अंतरिक्ष विकिरण जीवन के लिए अमीनो एसिड का चयन कर सकता है". New Scientist. Retrieved 2016-02-05.
- ↑ Meierhenrich Uwe J., Nahon Laurent, Alcaraz Christian, Hendrik Bredehöft Jan, Hoffmann Søren V., Barbier Bernard, Brack André (2005). "ठोस अवस्था में अमीनो एसिड ल्यूसीन का असममित वैक्यूम यूवी फोटोलिसिस". Angew. Chem. Int. Ed. 44 (35): 5630–5634. doi:10.1002/anie.200501311. PMID 16035020.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Theodore J. Leitereg; Dante G. Guadagni; Jean Harris; Thomas R. Mon; Roy Teranishi (1971). "एनैन्टीओमेरिक कार्वोन की गंध के बीच अंतर का समर्थन करने वाला रासायनिक और संवेदी डेटा". J. Agric. Food Chem. 19 (4): 785–787. doi:10.1021/jf60176a035.
- ↑ Srinivasarao, M. (1999). "चिरैलिटी और पॉलिमर". Current Opinion in Colloid & Interface Science. 4 (5): 369–376. doi:10.1016/S1359-0294(99)00024-2.[full citation needed]
- ↑ von Zelewsky, A. (1995). Stereochemistry of Coordination Compounds. Chichester: John Wiley.. ISBN 047195599X.
- ↑ Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis; University Science Books: New York, 2010. ISBN 189138953X
- ↑ Bhushan, R.; Tanwar, S. J. Chromatogr. A 2010, 1395–1398. (doi:10.1016/j.chroma.2009.12.071)
- ↑ Ravi Bhushan Chem. Rec. 2022, e102100295. (doi:10.1002/tcr.202100295)
- ↑ Eliel, E.L. (1997). "अप्रभावी स्टीरियोकेमिकल नामकरण". Chirality. 9 (56): 428–430. doi:10.1002/(sici)1520-636x(1997)9:5/6<428::aid-chir5>3.3.co;2-e. Archived from the original on 3 March 2016. Retrieved 5 February 2016.
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "asymmetric synthesis". doi:10.1351/goldbook.E02072
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "enantiomerically enriched (enantioenriched)". doi:10.1351/goldbook.E02071
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "enantiomer excess (enantiomeric excess)". doi:10.1351/goldbook.E02070
- ↑ Frankel, Eugene (1976). "Corpuscular Optics and the Wave Theory of Light: The Science and Politics of a Revolution in Physics". Social Studies of Science. Sage Publications Inc. 6 (2): 147–154. doi:10.1177/030631277600600201. JSTOR 284930. S2CID 122887123.
- ↑ Pasteur, L. (1848). "Researches on the molecular asymmetry of natural organic products, English translation of French original, published by Alembic Club Reprints (Vol. 14, pp. 1–46) in 1905, facsimile reproduction by SPIE in a 1990 book".
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Eliel, Ernest Ludwig; Wilen, Samuel H.; Mander, Lewis N. (1994). "Chirality in Molecules Devoid of Chiral Centers (Chapter 14)". कार्बनिक यौगिकों की स्टीरियोकैमिस्ट्री (1st ed.). New York, NY, USA: Wiley & Sons. ISBN 978-0471016700. Retrieved 2 February 2016.
- ↑ Bentley, Ronald (1995). "From Optical Activity in Quartz to Chiral Drugs: Molecular Handedness in Biology and Medicine". Perspect. Biol. Med. 38 (2): 188–229. doi:10.1353/pbm.1995.0069. PMID 7899056. S2CID 46514372.
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Optical isomers". doi:10.1351/goldbook.O04308
- ↑ Werner, A. (May 1911). "असममित कोबाल्ट परमाणु के ज्ञान पर। मैं". Berichte der Deutschen Chemischen Gesellschaft (in Deutsch). 44 (2): 1887–1898. doi:10.1002/cber.19110440297.
- ↑ Friedman, L.; Miller, J. G. (1971). "गंध असंगति और चिरायता". Science. 172 (3987): 1044–1046. Bibcode:1971Sci...172.1044F. doi:10.1126/science.172.3987.1044. PMID 5573954. S2CID 25725148.
- ↑ Ohloff, Günther; Vial, Christian; Wolf, Hans Richard; Job, Kurt; Jégou, Elise; Polonsky, Judith; Lederer, Edgar (1980). "एनेंटिओमेरिक एम्बरग्रीस सुगंध में स्टीरियोकेमिस्ट्री-गंध संबंध". Helvetica Chimica Acta. 63 (7): 1932–1946. doi:10.1002/hlca.19800630721.
अग्रिम पठन
- Clayden, Jonathan; Greeves, Nick; Warren, Stuart (2012). Organic Chemistry (2nd ed.). Oxford, UK: Oxford University Press. pp. 319f, 432, 604np, 653, 746int, 803ketals, 839, 846f. ISBN 978-0199270293. Retrieved 2 February 2016.
- Eliel, Ernest Ludwig; Wilen, Samuel H.; Mander, Lewis N. (1994). "Chirality in Molecules Devoid of Chiral Centers (Chapter 14)". Stereochemistry of Organic Compounds. pp. 428–430. doi:10.1002/(SICI)1520-636X(1997)9:5/6<428::AID-CHIR5>3.0.CO;2-1. ISBN 978-0471016700. Retrieved 2 February 2016.
{{cite book}}
:|journal=
ignored (help) - Eliel, E.L. (1997). "Infelicitous Stereochemical Nomenclatures". Chirality. 9 (5–6): 428–430. doi:10.1002/(SICI)1520-636X(1997)9:5/6<428::AID-CHIR5>3.0.CO;2-1. Archived from the original on 3 March 2016. Retrieved 5 February 2016.
- Gal, Joseph (2013). "Molecular Chirality: Language, History, and Significance". Differentiation of Enantiomers I. pp. 1–20. doi:10.1007/128_2013_435. ISBN 978-3-319-03238-2. PMID 23666078.
{{cite book}}
:|journal=
ignored (help)
बाहरी संबंध
- 21st International Symposium on Chirality
- STEREOISOMERISM - OPTICAL ISOMERISM
- Symposium highlights-Session 5: New technologies for small molecule synthesis
- IUPAC nomenclature for amino acid configurations.
- Michigan State University's explanation of R/S nomenclature
- Chirality & Odour Perception at leffingwell.com
- Chirality & Bioactivity I.: Pharmacology
- Chirality and the Search for Extraterrestrial Life
- The Handedness of the Universe by Roger A Hegstrom and Dilip K Kondepudi http://quantummechanics.ucsd.edu/ph87/ScientificAmerican/Sciam/Hegstrom_The_Handedness_of_the_universe.pdf