ब्रह्मांड का निर्माण: Difference between revisions
No edit summary |
No edit summary |
||
(40 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
{{distinguish|गोडेल मीट्रिक}} | {{distinguish|गोडेल मीट्रिक}} | ||
गणित में, | गणित में, समुच्चय सिद्धांत में, '''ब्रह्मांड का निर्माण''' (या गोडेल का रचनात्मक ब्रह्मांड), जिसे {{var|L}} द्वारा दर्शाया गया है, [[सेट (गणित)|समुच्चयों (गणित)]] का एक विशेष [[वर्ग (सेट सिद्धांत)|वर्ग (समुच्चय सिद्धांत)]] है जिसे पूरी तरह से सरल समुच्चयों के संदर्भ में वर्णित किया जा सकता है। {{var|L}} रचनात्मक पदानुक्रम का {{var|L}}{{sub|{{var|α}}}} संघ है। इसे कर्ट गोडेल ने अपने 1938 के पेपर "द कंसिस्टेंसी ऑफ द एक्सिओम ऑफ चॉइस एंड ऑफ द जनरलाइज्ड कॉन्टिनम-हाइपोथिसिस" में प्रस्तुत किया था।<ref>Gödel 1938.</ref> इस पेपर में, उन्होंने सिद्ध किया कि रचनात्मक ब्रह्मांड जेडएफ समुच्चय सिद्धांत का एक [[आंतरिक मॉडल]] है (अर्थात, ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत जिसमें पसंद के सिद्धांत को बाहर रखा गया है), और यह भी कि [[पसंद का सिद्धांत|पसंद के सिद्धांत]] और सामान्यीकृत सातत्य परिकल्पना रचनात्मक ब्रह्मांड में सत्य हैं। इससे पता चलता है कि दोनों प्रस्ताव समुच्चय सिद्धांत के मूल सिद्धांतों के अनुरूप हैं, यदि जेडएफ स्वयं सुसंगत है। चूँकि कई अन्य प्रमेय केवल उन प्रणालियों में मान्य होते हैं जिनमें एक या दोनों प्रस्ताव सत्य होते हैं, उनकी स्थिरता एक महत्वपूर्ण परिणाम होती है। | ||
== | =={{var|L}} क्या है == | ||
<var>L</var> को वॉन न्यूमैन ब्रह्मांड, <var>V</var> के निर्माण के समान "चरणों" में बनाया गया माना जा सकता है। चरणों को क्रमसूचकों द्वारा अनुक्रमित किया जाता है। वॉन न्यूमैन के ब्रह्मांड में, उत्तराधिकारी चरण में, कोई <var>V<sub>α</sub></var><sub>+1</sub> को पिछले चरण, <var>V<sub>α</sub></var> के सभी | <var>L</var> को वॉन न्यूमैन ब्रह्मांड, <var>V</var> के निर्माण के समान "चरणों" में बनाया गया माना जा सकता है। चरणों को क्रमसूचकों द्वारा अनुक्रमित किया जाता है। वॉन न्यूमैन के ब्रह्मांड में, उत्तराधिकारी चरण में, कोई <var>V<sub>α</sub></var><sub>+1</sub> को पिछले चरण, <var>V<sub>α</sub></var> के सभी उप-समूचय का समुच्चय मानता है। इसके विपरीत, गोडेल के रचनात्मक ब्रह्मांड <var>L</var> में, कोई पिछले चरण के केवल उन उप-समूचय का उपयोग करता है जो हैं: | ||
* | *समुच्चय सिद्धांत की [[औपचारिक भाषा]] में एक [[सूत्र (गणितीय तर्क)]] द्वारा परिभाषित, | ||
*पिछले चरण के मापदंडों के साथ और, | *पिछले चरण के मापदंडों के साथ और, | ||
*[[परिमाणक (तर्क)|क्वांटिफायर]] (तर्क) की व्याख्या पिछले चरण की सीमा के अनुसार की गई है। | *[[परिमाणक (तर्क)|क्वांटिफायर]] (तर्क) की व्याख्या पिछले चरण की सीमा के अनुसार की गई है। | ||
अपने आप को केवल पहले से निर्मित किए गए | अपने आप को केवल पहले से निर्मित किए गए समुच्चयों के संदर्भ में परिभाषित समुच्चयों तक सीमित करके, यह सुनिश्चित किया जाता है कि परिणामी समुच्चयों का निर्माण इस तरह से किया जाएगा जो समुच्चय सिद्धांत के निकट के मॉडल की विशिष्टताओं से स्वतंत्र है और ऐसे किसी भी मॉडल में निहित है। | ||
डीईएफ़ ऑपरेटर को परिभाषित करें:<ref>K. J. Devlin, "[https://core.ac.uk/download/pdf/30905237.pdf An introduction to the fine structure of the constructible hierarchy]" (1974). Accessed 20 February 2023.</ref> | डीईएफ़ ऑपरेटर को परिभाषित करें:<ref>K. J. Devlin, "[https://core.ac.uk/download/pdf/30905237.pdf An introduction to the fine structure of the constructible hierarchy]" (1974). Accessed 20 February 2023.</ref> | ||
Line 21: | Line 21: | ||
एल को [[ट्रांसफ़िनिट रिकर्सन]] द्वारा निम्नानुसार परिभाषित किया गया है: | एल को [[ट्रांसफ़िनिट रिकर्सन]] द्वारा निम्नानुसार परिभाषित किया गया है: | ||
* <math> L_0 := \varnothing. </math> | * <math> L_0 := \varnothing. </math> | ||
* <math> L_{\alpha + 1} := \operatorname{Def}(L_\alpha). </math> * | * <math> L_{\alpha + 1} := \operatorname{Def}(L_\alpha). </math> * यदि <math> \lambda </math> तो फिर, यह एक [[सीमा क्रमसूचक]] है <math> L_{\lambda} := \bigcup_{\alpha < \lambda} L_{\alpha}. </math> यहाँ <math>\alpha<\lambda</math> का अर्थ है <math>\alpha</math> क्रमसूचक संख्या और सीमा क्रमवाचक <math>\lambda</math>. | ||
* <math> L := \bigcup_{\alpha \in \mathbf{Ord}} L_{\alpha}. </math> यहां ऑर्ड सभी | * <math> L := \bigcup_{\alpha \in \mathbf{Ord}} L_{\alpha}. </math> यहां ऑर्ड सभी क्रमवाचक के वर्ग (समुच्चय सिद्धांत) को दर्शाता है। | ||
यदि <math>z</math> का एक तत्व है <math>L_\alpha</math>, फिर <math>z=\{y\in L_\alpha\ \text{and}\ y\in z\}\in\textrm{Def}(L_\alpha)=L_{\alpha+1}</math>.<ref>K. J. Devlin, ''Constructibility'' (1984), ch. 2, "The Constructible Universe, p.58. Perspectives in Mathematical Logic, Springer-Verlag.</ref> इसलिए <math>L_\alpha</math> का एक उपसमुच्चय है <math>L_{\alpha+1}</math>, जो {{var|L}}{{sub|{{var|α}}}} के [[ सत्ता स्थापित |घात समुच्चय]] का एक उपसमुच्चय है। लेकिन L स्वयं एक [[सकर्मक समुच्चय]] है। {{var|L}} के तत्वों को "रचनात्मक" समुच्चय कहा जाता है; और {{var|L}} स्वयं "रचनात्मक ब्रह्मांड" है। "[[रचनाशीलता का सिद्धांत|रचनात्मकता का सिद्धांत]]", उर्फ "{{var|V}} = {{var|L}} ", कहता है कि प्रत्येक समुच्चय ({{var|V}} का) ) रचनात्मक है, अर्थात् {{var|L}} में है। | |||
==समुच्चय {{var|L}}{{sub|{{var|α}}}} के बारे में अतिरिक्त तथ्य== | |||
{{var|L}}{{sub|{{var|α}}}} के लिए एक समतुल्य परिभाषा है: | |||
{{block indent|किसी भी अध्यादेश के लिए {{var|α}}, <math>L_{\alpha} = \bigcup_{\beta < \alpha} \operatorname{Def} (L_{\beta}) \! </math>.}} | |||
= | किसी भी परिमित क्रमसूचक {{var|n}} के लिए, समुच्चय {{var|L}}{{sub|{{var|n}}}} और {{var|V}}{{sub|{{var|n}}}} समान हैं (चाहे {{var|V}}, {{var|L}} के बराबर है या नहीं), और इस प्रकार {{var|L}}{{sub|{{var|ω}}}} = {{var|V}}{{sub|{{var|ω}}}}: उनके तत्व बिल्कुल आनुवंशिक रूप से परिमित समुच्चय हैं। इस बिंदु से आगे समानता स्थिर नहीं है। यहां तक कि ज़र्मेलो-फ़्रैन्केल समुच्चय सिद्धांत के मॉडल में भी जिसमें {{var|V}}, {{var|L}}के बराबर है, {{var|L}}{{sub|{{var|ω}}+1}}, {{var|V}}{{var|<sub>{{var|ω}}+1</sub>}} का एक उचित उपसमुच्चय है, और उसके पश्चात {{var|L}}{{sub|{{var|α}}+1}} सभी {{var|α}} > {{var|ω}} के लिए {{var|L}}{{sub|{{var|α}}}} के घात समुच्चय का एक उचित उपसमुच्चय है। दूसरी ओर, {{var|V}} = {{var|L}} का अर्थ यह है कि यदि {{var|α}} = {{var|ω}}{{sub|{{var|α}}}} है तो {{var|V}}{{sub|{{var|α}}}}, {{var|L}}{{sub|{{var|α}}}} के बराबर है, उदाहरण के लिए यदि {{var|α}} अप्राप्य हैं। अधिक सामान्यतः, {{var|V}} = {{var|L}} का अर्थ सभी अनंत कार्डिनल्स {{var|α}} के लिए {{var|H}}{{sub|{{var|α}}}} = {{var|L}}{{sub|{{var|α}}}} है। | ||
के लिए एक | |||
{{ | |||
यदि α एक अनंत क्रमसूचक है तो {{var|L}}{{sub|{{var|α}}}} और {{var|α}} के बीच एक आक्षेप होता है, और आक्षेप रचनात्मक होता है। तो ये समुच्चय समुच्चय सिद्धांत के किसी भी मॉडल में समतुल्य हैं जिसमें ये सम्मलित हैं। | |||
जैसा कि ऊपर परिभाषित किया गया है, Def({{var|X}}) के उपसमुच्चय का समुच्चय है Δ{{sub|0}} सूत्रों द्वारा परिभाषित {{var|X}} के उप-समूचय का समुच्चय है ([[लेवी पदानुक्रम]] के संबंध में, अर्थात, समुच्चय सिद्धांत के सूत्र जिसमें केवल बंधे हुए क्वांटिफायर होते हैं) जो पैरामीटर के रूप में केवल {{var|X}} और उसके तत्वों का उपयोग करते हैं।<ref>K. Devlin 1975, [https://core.ac.uk/download/pdf/30905237.pdf An Introduction to the Fine Structure of the Constructible Hierarchy] (p.2). Accessed 2021-05-12.</ref> | |||
गोडेल के कारण एक अन्य परिभाषा, प्रत्येक {{var|L}}{{sub|{{var|α}}+1}} को संवृत होने के साथ {{var|L}}{{sub|{{var|α}}}} के घात समुच्चय के प्रतिच्छेदन के रूप में दर्शाती है <math>L_\alpha\cup\{L_\alpha\}</math> गोडेल संचालन के समान, नौ स्पष्ट फलनो के संग्रह के अधीन। यह परिभाषा निश्चितता का कोई संदर्भ नहीं देती है। | |||
गोडेल के कारण एक | |||
के सभी [[अंकगणितीय पदानुक्रम]] उपसमुच्चय {{var|ω}} | {{var|ω}} के सभी [[अंकगणितीय पदानुक्रम]] उपसमुच्चय और {{var|ω}} पर संबंध {{var|L}}{{sub|{{var|ω}}+1}} से संबंधित हैं (क्योंकि अंकगणितीय परिभाषा {{var|L}}{{sub|{{var|ω}}+1}}में एक देती है)। इसके विपरीत, {{var|L}}{{sub|{{var|ω}}+1}} से संबंधित {{var|ω}} का कोई भी उपसमुच्चय अंकगणितीय है (क्योंकि {{var|L}}{{sub|{{var|ω}}}} के तत्वों को प्राकृतिक संख्याओं द्वारा इस तरह कोडित किया जा सकता है कि ∈ निश्चित है, अर्थात, अंकगणित है)। दूसरी ओर, {{var|L}}{{sub|{{var|ω}}+2}} में पहले से ही {{var|ω}} के कुछ गैर-अंकगणितीय उपसमुच्चय सम्मलित हैं, जैसे कि (प्राकृतिक संख्या कोडिंग) वास्तविक अंकगणितीय कथनों का समुच्चय (इसे {{var|L}}{{sub|{{var|ω}}+1}} से परिभाषित किया जा सकता है, इसलिए यह {{var|L}}{{sub|{{var|ω}}+2}} में है)। | ||
के सभी [[हाइपर अंकगणितीय पदानुक्रम]] उपसमुच्चय {{var|ω}} | {{var|ω}} के सभी [[हाइपर अंकगणितीय पदानुक्रम]] उपसमुच्चय {{var|ω}} पर संबंध संबंधित हैं <math>L_{\omega_1^{\mathrm{CK}}}</math> (जहाँ <math>\omega_1^{\mathrm{CK}}</math> का अर्थ चर्च-क्लीन ऑर्डिनल है), और इसके विपरीत {{var|ω}} का कोई भी उपसमुच्चय जो इससे संबंधित है <math>L_{\omega_1^{\mathrm{CK}}}</math> अति अंकगणितीय है।<ref>Barwise 1975, page 60 (comment following proof of theorem 5.9)</ref> | ||
== एल जेडएफसी का एक मानक आंतरिक मॉडल है == | |||
<math>(L,\in)</math> एक मानक मॉडल है, अर्थात एल एक संक्रमणीय वर्ग है और व्याख्या वास्तविक तत्व संबंध का उपयोग करती है, इसलिए यह अच्छी तरह से स्थापित है। {{var|L}} एक आंतरिक मॉडल है, अर्थात इसमें {{var|V}} की सभी क्रमिक संख्याएं सम्मलित हैं और इसमें {{var|V}} के अतिरिक्त कोई "अतिरिक्त" समुच्चय नहीं है। चूंकि L, {{var|V}} का एक उचित उपवर्ग हो सकता है। {{var|L}} ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफसी) का एक मॉडल है, जिसका अर्थ है कि यह निम्नलिखित सिद्धांतों को संतुष्ट करता है: | |||
<math>(L,\in)</math> एक मानक मॉडल है, | * [[नियमितता का सिद्धांत]]: प्रत्येक गैर-रिक्त समुच्चय {{var|x}} में कुछ तत्व {{var|y}} होते हैं जैसे कि {{var|x}} और {{var|y}} असंयुक्त समुच्चय होते हैं। | ||
* [[नियमितता का सिद्धांत]]: प्रत्येक गैर-रिक्त | :({{var|L}},∈), ({{var|V}},∈) की एक उपसंरचना है, जो अच्छी तरह से स्थापित है, इसलिए {{var|L}} अच्छी तरह से स्थापित है। विशेष रूप से, यदि {{var|y}} ∈ {{var|x}} ∈ {{var|L}}, तो {{var|L}} की परिवर्तनशीलता से, {{var|y}} ∈ {{var|L}}. यदि हम {{var|V}} में इसी {{var|y}} का उपयोग करते हैं, तो यह अभी भी {{var|x}} से असंयुक्त है क्योंकि हम समान तत्व संबंध का उपयोग कर रहे हैं और कोई नया समुच्चय नहीं जोड़ा गया है। | ||
:({{var|L}},∈) | * [[विस्तारात्मकता का सिद्धांत]]: यदि दो समुच्चयों में समान तत्व हों तो वे समान होते हैं। | ||
* [[विस्तारात्मकता का सिद्धांत]]: दो | : यदि {{var|x}} और {{var|y}}, {{var|L}} में हैं और {{var|L}} में उनके समान तत्व हैं, तो {{var|L}} की परिवर्तनशीलता के अनुसार, उनके पास समान तत्व हैं ({{var|V}} में) हैं। अत: वे बराबर हैं ({{var|V}} में और इस प्रकार {{var|L}} में)। | ||
: | |||
* रिक्त समुच्चय का अभिगृहीत: {} एक समुच्चय है। | * रिक्त समुच्चय का अभिगृहीत: {} एक समुच्चय है। | ||
: <math>\{\}=L_0=\{y\mid y\in L_0\land y=y\}</math>, जो इसमें है <math>L_1</math>. इसलिए <math>\{\}\in L</math>. चूँकि तत्व संबंध समान है और कोई नया तत्व नहीं जोड़ा गया है, यह | : <math>\{\}=L_0=\{y\mid y\in L_0\land y=y\}</math>, जो इसमें है <math>L_1</math>. इसलिए <math>\{\}\in L</math>. चूँकि तत्व संबंध समान है और कोई नया तत्व नहीं जोड़ा गया है, यह रिक्त समुच्चय है <math>L</math>. | ||
* [[युग्म का अभिगृहीत]]: यदि <math>x</math>, <math>y</math> तो, | * [[युग्म का अभिगृहीत]]: यदि <math>x</math>, <math>y</math> तो, समुच्चय हैं <math>\{x,y\}</math> एक समुच्चय है। | ||
: | : यदि <math>x\in L</math> और <math>y\in L</math>, तो कुछ क्रमसूचक है <math>\alpha</math> ऐसा है कि <math>x\in L_\alpha</math> और <math>y\in L_\alpha</math>. फि<nowiki/>र {{{var|x}}<nowiki/>,{{var|y}}} = {{{var|s}} | {{var|s}} ∈ {{var|L}}{{sub|{{var|α}}}} और ({{var|s}} = {{var|x}} या {{var|s}} = {{var|y}})} ∈ {{var|L}}{{sub|{{var|α}}+1}}. इस प्रकार {{{var|x}},{{var|y}}}<nowiki/> ∈ {{var|L}}<nowiki/> और इसका {{var|L}} के लिए वही अर्थ है जो {{var|V}} के लिए है। | ||
* मिलन का अभिगृहीत: किसी भी समुच्चय के लिए {{var|x}} एक | * मिलन का अभिगृहीत: किसी भी समुच्चय के लिए {{var|x}} एक समुच्चय है {{var|y}} जिनके तत्व बिल्कुल तत्वों के तत्व हैं {{var|x}}. | ||
: | : यदि <math>x\in L_\alpha</math>, तो उसके तत्व अंदर हैं <math>L_\alpha</math> और उनके तत्व भी अंदर हैं <math>L_\alpha</math>. इसलिए <math>y</math> का एक उपसमुच्चय है <math>L_\alpha</math>. {{var|y}} = {<नोविकी/>{{var|s}} | {{var|s}} ∈ {{var|L}}{{sub|{{var|α}}}} और वहाँ उपस्थित है {{var|z}} ∈ {{var|x}} ऐसा है कि {{var|s}} ∈ <nowiki/>{{var|z}}} ∈ {{var|L}}{{sub|{{var|α}}+1}}. इस प्रकार <math>y\in L</math>. | ||
* [[अनंत का अभिगृहीत]]: एक समुच्चय | * [[अनंत का अभिगृहीत]]: एक समुच्चय उपस्थित है <math>x</math> ऐसा है कि <math>\varnothing</math> में है <math>x</math> और जब भी <math>y</math> में है <math>x</math>, तो संघ है <math>y\cup\{y\}</math>. | ||
: प्रत्येक क्रमसूचक को दिखाने के लिए [[ट्रांसफिनिट इंडक्शन]] का उपयोग किया जा सकता है {{var|α}} ∈ {{var|L}}{{sub|{{var|α}}+1}}. विशेष रूप से, {{var|ω}} ∈ {{var|L}}{{sub|{{var|ω}}+1}} और इस तरह {{var|ω}} ∈ {{var|L}}. | : प्रत्येक क्रमसूचक को दिखाने के लिए [[ट्रांसफिनिट इंडक्शन]] का उपयोग किया जा सकता है {{var|α}} ∈ {{var|L}}{{sub|{{var|α}}+1}}. विशेष रूप से, {{var|ω}} ∈ {{var|L}}{{sub|{{var|ω}}+1}} और इस तरह {{var|ω}} ∈ {{var|L}}. | ||
* पृथक्करण का अभिगृहीत: किसी भी समुच्चय को देखते हुए {{var|S}} और कोई भी प्रस्ताव {{var|P}}({{var|x}},{{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}}), {<नोविकी/>{{var|x}} | {{var|x}} ∈ {{var|S}} और {{var|P}}({{var|x}},{{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}})} एक समुच्चय है. | * पृथक्करण का अभिगृहीत: किसी भी समुच्चय को देखते हुए {{var|S}} और कोई भी प्रस्ताव {{var|P}}({{var|x}},{{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}}), {<नोविकी/>{{var|x}} | {{var|x}} ∈ {{var|S}} और {{var|P}}({{var|x}},{{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}})} एक समुच्चय है. | ||
: के उपसूत्रों पर प्रेरण द्वारा {{var|P}}, कोई दिखा सकता है कि वहाँ एक है {{var|α}} ऐसा है कि {{var|L}}{{sub|{{var|α}}}} रोकना {{var|S}} और {{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}} और ({{var|P}} में सत्य है {{var|L}}{{sub|{{var|α}}}} | : के उपसूत्रों पर प्रेरण द्वारा {{var|P}}, कोई दिखा सकता है कि वहाँ एक है {{var|α}} ऐसा है कि {{var|L}}{{sub|{{var|α}}}} रोकना {{var|S}} और {{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}} और ({{var|P}} में सत्य है {{var|L}}{{sub|{{var|α}}}} यदि और केवल यदि <math>P</math> में सच है <math>L</math>), पश्चात वाले को [[प्रतिबिंब सिद्धांत]] कहा जाता है)। त<nowiki/>ो {{{var|x}} | {{var|x}} ∈ {{var|S}} and {{var|P}}({{var|x}},{{var|z}}{{sub|1}},...,{{var|z}}{{sub|n}}) holds in<nowiki/> {{var|L}}} = {<नोविकी/>{{var|x}} | {{var|x}} ∈ {{var|L}}{{sub|{{var|α}}}} और {{var|x}} ∈ {{var|S}} और {{var|P}}({{var|x}},{{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}}) धारण करता है {{var|L}}{{sub|{{var|α}}}}} ∈ {{var|L}}{{sub|{{var|α}}+1}}. इस प्रकार उपसमुच्चय {{var|L}} में है।<ref>P. Odifreddi, ''Classical Recursion Theory'', pp.427. Studies in Logic and the Foundations of Mathematics</ref> | ||
* [[प्रतिस्थापन का सिद्धांत]]: | * [[प्रतिस्थापन का सिद्धांत]]: किसी भी समुच्चय {{var|S}} और किसी मैपिंग (औपचारिक रूप से एक प्रस्ताव {{var|P}}({{var|x}},{{var|y}}) के रूप में परिभाषित किया गया है, जहां {{var|P}}({{var|x}},{{var|y}}) और P({{var|x}},{{var|z}}) का तात्पर्य {{var|y}} = z है), {y | {{var|x}} ∈ {{var|S}} का अस्तित्व इस प्रकार है कि {{var|P}}({{var|x}},{{var|y}})} <nowiki/>एक समुच्चय है। | ||
: | : मान लीजिए {{var|Q}}({{var|x}},{{var|y}}) वह सूत्र है जो {{var|P}} को {{var|L}}, से सापेक्ष करता है, अर्थात {{var|P}} में सभी परिमाणक {{var|L}} तक ही सीमित हैं। {{var|Q}}, {{var|P}} की तुलना में बहुत अधिक समष्टि सूत्र है, लेकिन यह अभी भी एक सीमित सूत्र है, और चूँकि {{var|P}}, {{var|L}} के ऊपर एक मानचित्रण था, {{var|Q}} को {{var|V}} के ऊपर एक मानचित्रण होना चाहिए; इस प्रकार हम {{var|V}} से {{var|Q}} में प्रतिस्<nowiki/>थापन लागू कर सकते हैं। तो {{{var|y}} | {{var|y}} ∈ {{var|L}} और {{var|x}} ∈ {{var|S}} का अस्तित्व इस प्रकार है कि {{var|P}}({{var|x}},{{var|y}}) {{var|L}}} = {{var|y}} | {{var|x}} ∈ {{var|S}} का अस्तित्व इस प्रकार है कि {{var|Q}}({{var|x}},{{var|y}})} {{var|V}} में एक समुच्चय और {{var|L}} का एक उपवर्ग है। फिर से {{var|V}} में प्रतिस्थापन के सिद्धांत का उपयोग करके, हम दिखा सकते हैं कि एक {{var|α}} होना चाहिए जैसे कि यह समुच्चय {{var|L}}{{sub|{{var|α}}}} ∈ {{var|L}}{{sub|{{var|α}}+1}} का एक उपसमुच्चय हो। तब कोई यह दिखाने के लिए कि यह {{var|L}} का एक तत्व है, {{var|L}} में पृथक्करण के सिद्धांत का उपयोग कर सकता है। | ||
* | * घात समुच्चय का सिद्धांत: किसी भी समुच्चय {{var|x}} के लिए एक समुच्चय {{var|y}} उपस्थित होता है, जैसे कि {{var|y}} के तत्व एकदम x के उपसमुच्चय होते हैं। | ||
: सामान्यतः, {{var|L}} में एक समुच्चय के कुछ उपसमुच्चय {{var|L}} में नहीं होंगे। इसलिए {{var|L}} में समुच्चय की पूरी घात सामान्यतः {{var|L}} में नहीं होगी। हमें यहां यह दिखाने की आवश्यकता है कि एल के साथ निर्धारित घात का प्रतिच्छेदन {{var|L}} में है। यह दिखाने के लिए {{var|V}} में प्रतिस्थापन का उपयोग करें कि एक α इस प्रकार है कि प्रतिच्छेदन {{var|L}}{{sub|{{var|α}}}} का एक उपसमुच्चय है। तब प्रतिच्छेदन {{{var|z}} | है {{var|z}} ∈ {{var|L}}{{sub|{{var|α}}}} और {{var|z}}, {{var|x}}} ∈ {{var|L}}{{sub|{{var|α}}+1}}. का उपसमु<nowiki/>च्चय है। इस प्रकार आवश्यक समुच्चय {{var|L}} में है। | |||
* पसंद का सिद्धांत: एक | :*पसंद का सिद्धांत: पारस्परिक रूप से असंबद्ध गैर-रिक्त समुच्चयों के एक समुच्चय {{var|x}} को देखते हुए, एक समुच्चय {{var|y}} ({{var|x}} के लिए एक विकल्प समुच्चय) होता है जिसमें {{var|x}} के प्रत्येक सदस्य से निस्संदेह एक तत्व होता है। | ||
: कोई यह दिखा सकता है कि | :: कोई यह दिखा सकता है कि {{var|L}} का एक निश्चित सुव्यवस्थित क्रम है, विशेष रूप से सभी समुच्चयों के क्रम के आधार पर {{var|L}}, उनकी परिभाषाओं और जिस रैंक पर वे आते हैं उसके अनुसार। इसलिए कोई व्यक्ति {{var|L}} में मिलन और पृथक्करण के सिद्धांतों का उपयोग करके {{var|y}} बनाने के लिए {{var|x}} के प्रत्येक सदस्य का सबसे छोटा तत्व चुनता है। ध्यान दें कि {{var|L}}, जेडएफसी का एक मॉडल है, इसके प्रमाण के लिए केवल यह आवश्यक है कि {{var|V}}, जेडएफ का एक मॉडल हो, यानी हम यह नहीं मानते हैं कि पसंद का सिद्धांत {{var|V}} में है। | ||
ध्यान दें कि | |||
== एल पूर्ण और न्यूनतम है == | == एल पूर्ण और न्यूनतम है == | ||
यदि W, जेडएफ का कोई भी मानक मॉडल है जो समान क्रम-क्रम साझा करता है <math>V</math>, फिर <math>L</math> में परिभाषित किया गया <math>W</math> के समान है <math>L</math> में परिभाषित किया गया <math>V</math>. विशेष रूप से, <math>L_\alpha</math>समान है <math>W</math> और <math>V</math>, किसी भी क्रमसूचक के लिए <math>\alpha</math>. और वही सूत्र और पैरामीटर <math>Def(L_\alpha)</math> समान रचनात्मक समुच्चय प्रस्तुत करता है <math>L_{\alpha+1}</math>. | |||
इसके | इसके अतिरिक्त, तब से <math>L</math> का एक उपवर्ग है <math>V</math> और, इसी तरह, <math>L</math> का एक उपवर्ग है <math>W</math>, <math>L</math> सबसे छोटा वर्ग है जिसमें सभी ऑर्डिनल्स शामिल हैं जो ZF का एक मानक मॉडल है। वास्तव में, <math>L</math> ऐसे सभी वर्गों का प्रतिच्छेदन है। | ||
यदि कोई समुच्चय है <math>W</math> में <math>V</math> यह ZF का आंतरिक मॉडल और क्रमसूचक है <math>\kappa</math> यह क्रमादेशों का समूह है जो घटित होता है <math>W</math>, तब <math>L_\kappa</math> है <math>L</math> का <math>W</math>. यदि कोई ऐसा समुच्चय है जो जेडएफ का मानक मॉडल है, तो ऐसा सबसे छोटा समुच्चय है <math>L_\kappa</math>. इस समुच्चय को जेडएफसी का [[न्यूनतम मॉडल (सेट सिद्धांत)|न्यूनतम मॉडल (समुच्चय सिद्धांत)]] कहा जाता है। अधोमुखी लोवेनहेम-स्कोलेम प्रमेय का उपयोग करके, कोई यह दिखा सकता है कि न्यूनतम मॉडल (यदि यह उपस्थित है) एक गणनीय समुच्चय है। | |||
निःसंदेह, किसी भी सुसंगत सिद्धांत में एक मॉडल होना चाहिए, इसलिए समुच्चय सिद्धांत के न्यूनतम मॉडल के भीतर भी ऐसे समुच्चय हैं जो जेडएफ के मॉडल हैं (यह मानते हुए कि जेडएफ सुसंगत है)। चूंकि, वे समुच्चय मॉडल गैर-मानक हैं। विशेष रूप से, वे सामान्य तत्व संबंध का उपयोग नहीं करते हैं और वे अच्छी तरह से स्थापित नहीं हैं। | |||
क्योंकि दोनों<math>L</math> भीतर निर्मित <math>L</math>और<math>V</math> भीतर निर्मित <math>L</math>वास्तविक | क्योंकि दोनों <math>L</math> के भीतर निर्मित किया गया <math>L</math>और<math>V</math> के भीतर निर्मित <math>L</math>का परिणाम वास्तविक है <math>L</math>, और दोनों <math>L</math> का <math>L_\kappa</math> और यह <math>V</math> का <math>L_\kappa</math> असली हैं <math>L_\kappa</math>, हमें वह मिल गया <math>V=L</math> में सच है <math>L</math> और किसी में भी <math>L_\kappa</math> यह जेडएफ का एक मॉडल है. चूंकि, <math>V=L</math> जेडएफ के किसी भी अन्य मानक मॉडल में नहीं है | ||
=== एल और बड़े कार्डिनल === | === एल और बड़े कार्डिनल === | ||
{{math|Ord ⊂ {{var|L}} ⊆ {{var|V}}}}, के बाद से, ऑर्डिनल्स के गुण जो किसी फलन या अन्य संरचना की अनुपस्थिति पर निर्भर करते हैं (अर्थात Π{{sub|1}}{{sup|ZF}} सूत्र) {{mvar|V}} से {{mvar|L}} तक नीचे जाने पर संरक्षित होते हैं। इसलिए कार्डिनल्स के प्रारंभिक क्रम-क्रम एल में प्रारंभिक रहते हैं। नियमित क्रम-क्रम {{mvar|L}} में नियमित रहते हैं। असमर्थ सीमा [[कार्डिनल सीमा]] {{mvar|L}} में स्थिर सीमा कार्डिनल बन जाते हैं क्योंकि [[सामान्यीकृत सातत्य परिकल्पना]] {{mvar|L}} में होती है। असमर्थ रूप से [[[[बड़ा कार्डिनल]]]] दृढ़ता से दुर्गम हो जाते हैं। असमर्थ [[कार्डिनल आँखें|महलो कार्डिनल]] स्थिर से महलो बन जाते हैं। और अधिक सामान्यतः, 0<sup>#</sup> से असमर्थ कोई भी बड़ी कार्डिनल गुण ([[बड़ी कार्डिनल संपत्तियों की सूची|बड़ी कार्डिनल गुण की सूची]] देखें) {{mvar|L}} में स्थिर रखी जाएगी। | |||
चूंकि, {{mvar|L}} में 0{{sup|#}} में गलत है, भले ही {{mvar|V}} में सच हो। तो सभी बड़े कार्डिनल्स जिनका अस्तित्व 0{{sup|#}} दर्शाता है, उनके पास वे बड़े कार्डिनल गुण नहीं हैं, लेकिन वे 0{{sup|#}} से असमर्थ गुणों को स्थिर रखते हैं जो उनके पास भी हैं। उदाहरण के लिए, [[मापने योग्य कार्डिनल]] मापने योग्य नहीं रह जाते हैं लेकिन {{mvar|L}} में महलो बने रहते हैं। | |||
यदि 0{{sup|#}} | यदि 0{{sup|#}} {{mvar|V}} में है, तो ऑर्डिनल्स का एक [[क्लब सेट|क्लब समुच्चय]] असीमित वर्ग है जो L में अदृश्य है। जबकि इनमें से कुछ {{mvar|V}} में प्रारंभिक ऑर्डिनल्स भी नहीं हैं, लेकिन उनके सभी बड़े कार्डिनल गुण L में 0{{sup|#}} से असमर्थ हैं। इसके अलावा, किसी भी सख्ती से बढ़ते वर्ग फ़ंक्शन को अविभाज्य वर्ग से {{mvar|L}} में {{mvar|L}} के प्रारंभिक एम्बेडिंग के लिए एक अनूठे तरीके से बढ़ाया जा सकता है।{{citation needed|date=January 2023}} यह {{mvar|L}} को दोहराए जाने वाले खंडों की एक अच्छी संरचना देता है। | ||
== {{mvar|L}} सुव्यवस्थित किया जा सकता है == | == {{mvar|L}} सुव्यवस्थित किया जा सकता है == | ||
सुव्यवस्थित करने के विभिन्न | सुव्यवस्थित करने के विभिन्न उपाए हैं {{mvar|L}}. इनमें से कुछ में गोडेल ऑपरेशन सम्मलित है की उत्तम संरचना {{mvar|L}}, जिसका वर्णन पहली बार [[रोनाल्ड जेन्सेन]] ने अपने 1972 के पेपर में किया था जिसका शीर्षक था रचनात्मक पदानुक्रम की उत्कृष्ट संरचना। सूक्ष्म संरचना की व्याख्या करने के अतिरिक्त, हम कैसे की रूपरेखा देंगे {{mvar|L}} को केवल ऊपर दी गई परिभाषा का उपयोग करके सुव्यवस्थित किया जा सकता है। | ||
कल्पना करना {{mvar|x}} और {{mvar|y}} दो अलग-अलग | कल्पना करना {{mvar|x}} और {{mvar|y}} दो अलग-अलग समुच्चय हैं {{mvar|L}} और हम यह निर्धारित करना चाहते हैं कि क्या {{math|{{var|x}} < {{var|y}}}} या {{math|{{var|x}} > {{var|y}}}}. यदि {{mvar|x}} सबसे पहले दिखाई देता है {{math|{{var|L}}{{sub|{{var|α}}+1}}}} और {{mvar|y}} सबसे पहले दिखाई देता है {{math|{{var|L}}{{sub|{{var|β}}+1}}}} और {{mvar|β}} से भिन्न {{mvar|α}}, तो करने दें {{math|{{var|x}} < {{var|y}}}} यदि और केवल यदि {{math|{{var|α}} < {{var|β}}}}. अब से, हम ऐसा मानते हैं {{math|{{var|β}} {{=}} {{mvar|α}}}}. | ||
मंच {{math|{{var|L}}{{sub|{{var|α}}+1}} {{=}} Def ({{var|L}}{{sub|{{var|α}}}})}} से पैरामीटर वाले | मंच {{math|{{var|L}}{{sub|{{var|α}}+1}} {{=}} Def ({{var|L}}{{sub|{{var|α}}}})}} से पैरामीटर वाले सूत्र का उपयोग करता है {{math|{{var|L}}{{sub|{{var|α}}}}}} समुच्चय को परिभाषित करने के लिए {{mvar|x}} और {{mvar|y}}. यदि कोई मापदंडों को छूट देता है, तो सूत्रों को प्राकृतिक संख्याओं द्वारा एक मानक गोडेल नंबरिंग दी जा सकती है। यदि {{mvar|Φ}} सबसे छोटी गोडेल संख्या वाला सूत्र है जिसका उपयोग परिभाषित करने के लिए किया जा सकता है {{mvar|x}}, और {{mvar|Ψ}} सबसे छोटी गोडेल संख्या वाला सूत्र है जिसका उपयोग परिभाषित करने के लिए किया जा सकता है {{mvar|y}}, और {{mvar|Ψ}} से भिन्न {{mvar|Φ}}, तो करने दें {{math|{{var|x}} < {{var|y}}}} यदि और केवल यदि {{math|{{var|Φ}} < {{var|Ψ}}}} गोडेल नंबरिंग में। अब से, हम ऐसा मानते हैं {{math|{{var|Ψ}} {{=}} {{mvar|Φ}}}}. | ||
लगता है कि {{mvar|Φ}} उपयोग करता है {{mvar|n}} से पैरामीटर {{math|{{var|L}}{{sub|{{var|α}}}}}}. कल्पना करना {{math|{{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}}}} उन पैरामीटरों का क्रम है जिनका उपयोग किया जा सकता है {{mvar|Φ}} परिभाषित करने के लिए {{mvar|x}}, और {{math|{{var|w}}{{sub|1}},...,{{var|w}}{{sub|{{var|n}}}}}} के लिए भी ऐसा ही करता है {{mvar|y}}. तो करने दें {{math|{{var|x}} < {{var|y}}}} यदि और केवल यदि दोनों में से कोई एक {{math|{{var|z}}{{sub|{{var|n}}}} < {{var|w}}{{sub|{{var|n}}}}}} या ({{math|{{var|z}}{{sub|{{var|n}}}} {{=}} {{var|w}}{{sub|{{var|n}}}}}} और {{tmath|z_{n-1} < w_{n-1} }}) या ({{math|{{var|z<sub>n</sub>}} {{=}} {{var|w<sub>n</sub>}}}} और {{tmath|z_{n-1} {{=}} w_{n-1} }} और {{tmath|z_{n-2} < w_{n-2} }}) आदि। इसे रिवर्स [[शब्दकोषीय क्रम]] कहा जाता है; यदि मापदंडों के कई क्रम हैं जो किसी एक | लगता है कि {{mvar|Φ}} उपयोग करता है {{mvar|n}} से पैरामीटर {{math|{{var|L}}{{sub|{{var|α}}}}}}. कल्पना करना {{math|{{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}}}} उन पैरामीटरों का क्रम है जिनका उपयोग किया जा सकता है {{mvar|Φ}} परिभाषित करने के लिए {{mvar|x}}, और {{math|{{var|w}}{{sub|1}},...,{{var|w}}{{sub|{{var|n}}}}}} के लिए भी ऐसा ही करता है {{mvar|y}}. तो करने दें {{math|{{var|x}} < {{var|y}}}} यदि और केवल यदि दोनों में से कोई एक {{math|{{var|z}}{{sub|{{var|n}}}} < {{var|w}}{{sub|{{var|n}}}}}} या ({{math|{{var|z}}{{sub|{{var|n}}}} {{=}} {{var|w}}{{sub|{{var|n}}}}}} और {{tmath|z_{n-1} < w_{n-1} }}) या ({{math|{{var|z<sub>n</sub>}} {{=}} {{var|w<sub>n</sub>}}}} और {{tmath|z_{n-1} {{=}} w_{n-1} }} और {{tmath|z_{n-2} < w_{n-2} }}) आदि। इसे रिवर्स [[शब्दकोषीय क्रम]] कहा जाता है; यदि मापदंडों के कई क्रम हैं जो किसी एक समुच्चय को परिभाषित करते हैं, तो हम इस क्रम के अधीन सबसे कम एक को चुनते हैं। यह समझा जा रहा है कि प्रत्येक पैरामीटर के संभावित मानों को क्रम के प्रतिबंध के अनुसार क्रमबद्ध किया गया है {{mvar|L}} को {{math|{{var|L}}{{sub|{{var|α}}}}}}, इसलिए इस परिभाषा में ट्रांसफिनिट रिकर्सन सम्मलित है {{mvar|α}}. | ||
एकल मापदंडों के मूल्यों का सुव्यवस्थित क्रम ट्रांसफ़िनिट इंडक्शन की आगमनात्मक परिकल्पना द्वारा प्रदान किया जाता है। के मूल्य {{mvar|n}}-उत्पाद ऑर्डरिंग द्वारा पैरामीटर्स के टुपल्स को अच्छी तरह से क्रमबद्ध किया जाता है। मापदंडों वाले सूत्र सु-क्रमों के क्रमबद्ध योग (गोडेल संख्याओं द्वारा) द्वारा सुव्यवस्थित होते हैं। और {{mvar|L}} आदेशित राशि द्वारा सुव्यवस्थित है (द्वारा अनुक्रमित)। {{mvar|α}}) के आदेश पर {{math|{{var|L}}{{sub|{{var|α}}+1}}}}. | एकल मापदंडों के मूल्यों का सुव्यवस्थित क्रम ट्रांसफ़िनिट इंडक्शन की आगमनात्मक परिकल्पना द्वारा प्रदान किया जाता है। के मूल्य {{mvar|n}}-उत्पाद ऑर्डरिंग द्वारा पैरामीटर्स के टुपल्स को अच्छी तरह से क्रमबद्ध किया जाता है। मापदंडों वाले सूत्र सु-क्रमों के क्रमबद्ध योग (गोडेल संख्याओं द्वारा) द्वारा सुव्यवस्थित होते हैं। और {{mvar|L}} आदेशित राशि द्वारा सुव्यवस्थित है (द्वारा अनुक्रमित)। {{mvar|α}}) के आदेश पर {{math|{{var|L}}{{sub|{{var|α}}+1}}}}. | ||
ध्यान दें कि इस सुव्यवस्थितता को भीतर परिभाषित किया जा सकता है {{mvar|L}} स्वयं | ध्यान दें कि इस सुव्यवस्थितता को भीतर परिभाषित किया जा सकता है {{mvar|L}} स्वयं समुच्चय सिद्धांत के एक सूत्र द्वारा, जिसमें कोई पैरामीटर नहीं है, केवल मुक्त-चर हैं {{mvar|x}} और {{mvar|y}}. और यह सूत्र समान सत्य मान देता है, भले ही इसका मूल्यांकन किया गया हो {{mvar|L}}, {{mvar|V}}, या {{mvar|W}} (समान क्रमवाचक के साथ ZF का कुछ अन्य मानक मॉडल) और हम मान लेंगे कि सूत्र गलत है यदि दोनों में से कोई भी {{mvar|x}} या {{mvar|y}} इसमें नहीं है {{mvar|L}}. | ||
यह सर्वविदित है कि पसंद का सिद्धांत प्रत्येक | यह सर्वविदित है कि पसंद का सिद्धांत प्रत्येक समुच्चय को अच्छी तरह से व्यवस्थित करने की क्षमता के बराबर है। उचित कक्षा को सुव्यवस्थित करने में सक्षम होना {{mvar|V}} (जैसा कि हमने यहां किया है {{mvar|L}}) वैश्विक पसंद के सिद्धांत के समतुल्य है, जो पसंद के सामान्य सिद्धांत से अधिक शक्तिशाली है क्योंकि इसमें गैर-रिक्त समुच्चयों के उचित वर्गों को भी सम्मलित किया गया है। | ||
=={{var|L}} | == {{var|L}} का प्रतिबिंब सिद्धांत है == | ||
यह साबित | यह साबित करने के लिए कि पृथक्करण का सिद्धांत, प्रतिस्थापन का सिद्धांत, और पसंद का सिद्धांत {{var|L}} में है (कम से कम जैसा कि ऊपर दिखाया गया है) {{var|L}} के लिए प्रतिबिंब सिद्धांत के उपयोग की आवश्यकता है। यहां हम ऐसे सिद्धांत का वर्णन करते हैं | ||
{{var|n}} < {{var|ω}} पर प्रेरण द्वारा, हम {{var|V}} में ZF का उपयोग यह साबित करने के लिए कर सकते हैं कि किसी भी क्रमसूचक {{var|α}} के लिए, एक क्रमसूचक {{var|β}} > {{var|α}}है जैसे कि किसी भी वाक्य {{var|P}}({{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|k}}}}) के लिए {{var|z}}{{sub|1}},..., {{var|L}}{{sub|{{var|β}}}} में {{var|z}}{{sub|{{var|k}}}} और {{var|n}} से कम प्रतीकों से युक्त ( {{var|L}}{{sub|{{var|β}}}} के एक तत्व के लिए एक स्थिर प्रतीक को एक प्रतीक के रूप में गिनने पर) हमें पता चलता है कि P(z1,...,zk) Lβ में धारण करता है यदि और केवल यदि यह {{var|L}} में धारण करता है। | |||
== सामान्यीकृत सातत्य परिकल्पना | == सामान्यीकृत सातत्य परिकल्पना {{var|L}} में नियत है == | ||
<math>S \in L_\alpha </math>, और मान लीजिए कि {{var|T}}, {{var|S}} का कोई रचनात्मक उपसमुच्चय है। फिर कुछ {{var|β}} है <math>T \in L_{\beta+1}</math>, इसलिए {{nowrap|<math>T = \{x \in L_\beta : x \in S \wedge \Phi(x, z_i)\} = \{x \in S : \Phi(x, z_i)\} </math>,}} कुछ सूत्र के लिए {{var|Φ}} और कुछ <math>z_i</math> से खींचा गया <math>L_\beta</math>. नीचे की ओर लोवेनहेम-स्कोलेम प्रमेय और [[मोस्टोव्स्की पतन लेम्मा]] के अनुसार, कुछ सकर्मक समुच्चय {{var|K}} युक्त होना चाहिए <math>L_\alpha</math> और कुछ <math>w_i</math>, और प्रथम-क्रम सिद्धांत के समान है <math>L_\beta</math> के साथ के स्थान पर <math>w_i</math> प्रतिस्थापित किया गया <math>z_i</math>; और इस {{var|K}} का कार्डिनल भी वैसा ही होगा <math>L_\alpha</math>. तब से <math> V = L </math> सत्य है <math>L_\beta</math>, यह {{var|K}} में भी सत्य है, इसलिए <math>K = L_\gamma</math> कुछ {{var|γ}} के लिए जिसका कार्डिनल {{var|α}} के समान है। और <math>T = \{x \in L_\beta : x \in S \wedge \Phi(x, z_i)\} = \{x \in L_\gamma : x \in S \wedge \Phi(x, w_i)\} </math> क्योंकि <math>L_\beta</math> और <math>L_\gamma</math> एक ही सिद्धांत है. इसलिए {{var|T}} वास्तव में अंदर है <math>L_{\gamma+1}</math>. | |||
तो एक अनंत समुच्चय S के सभी रचनात्मक उपसमुच्चयों की रैंक (अधिकतम) {{var|S}} की रैंक के समान कार्डिनल {{var|κ}} के साथ होती है; इससे यह निष्कर्ष निकलता है कि यदि {{var|δ}}, {{var|κ}}{{sup|+}} के लिए प्रारंभिक क्रमसूचक है, तो <math>L \cap \mathcal{P}(S) \subseteq L_\delta</math> {{var|L}} के भीतर {{var|S}} के "घात समुच्चय" के रूप में कार्य करता है। इस प्रकार यह "घात समुच्चय" <math>L \cap \mathcal{P}(S) \in L_{\delta+1}</math>. और बदले में इसका तात्पर्य यह है कि {{var|S}} के "घात समुच्चय" में अधिकतम कार्डिनल है ||{{var|δ}}||. यह मानते हुए कि {{var|S}} में स्वयं कार्डिनल {{var|κ}} है, तो "घात समुच्चय" में बिल्कुल कार्डिनल {{var|κ}}{{sup|+}} होना चाहिए। लेकिन यह बिल्कुल {{var|L}} से संबंधित सामान्यीकृत सातत्य परिकल्पना है। | |||
== निर्माण योग्य | == निर्माण योग्य समुच्चय क्रमवाचक से निश्चित हैं == | ||
समुच्चय सिद्धांत का एक सूत्र है जो इस विचार को व्यक्त करता है {{var|X}} = {{var|L}}{{sub|{{var|α}}}}. | समुच्चय सिद्धांत का एक सूत्र है जो इस विचार को व्यक्त करता है कि {{var|X}} = {{var|L}}{{sub|{{var|α}}}}. इसमें केवल {{var|X}} और {{var|α}} के लिए निःशुल्क चर हैं। इसका उपयोग करके हम प्रत्येक रचनात्मक समुच्चय की परिभाषा का विस्तार कर सकते हैं। यदि {{var|s}} ∈ {{var|L}}{{sub|{{var|α}}+1}}, तो {{var|s}} = = {<var>y</var> | <var>y</var> ∈ <var>L<sub>α</sub></var> और {{var|Φ}}({{var|y}},{{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}}) कुछ सूत्र {{var|Φ}} के लिए ({{var|L}}{{sub|{{var|α}}}},∈)} और {{var|L}}{{sub|{{var|α}}}} में कुछ {{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}} में रखता है। यह कहने के बराबर है कि: सभी {{var|y}}, {{var|y}} ∈ {{var|s}} के लिए यदि और केवल यदि [वहाँ {{var|X}} का अस्तित्व इस प्रकार है कि {{var|X}} ={{var|L}}{{sub|{{var|α}}}} और {{var|y}} ∈ {{var|X}} और {{var|Ψ}}({{var|X}},{{var|y}},{{var|z}}{{sub|1}},...,{{var|z}}{{sub|{{var|n}}}})] जहां {{var|Ψ}}({{var|X}},...) प्रत्येक परिमाणक को {{var|Φ}}(...) से {{var|X}} तक सीमित करने का परिणाम है। ध्यान दें कि प्रत्येक {{var|z}}{{sub|{{var|k}}}} ∈ {{var|L}}{{sub|{{var|β}}+1}} कुछ {{var|β}} < {{var|α}} के लिए। {{var|z}} के सूत्र को {{var|s}} के सूत्र के साथ संयोजित करें और {{var|z}} के बाहर अस्तित्व संबंधी क्वांटिफ़ायर लागू करें और एक सूत्र प्राप्त होता है जो केवल क्रमवाचक {{var|α}} का उपयोग करके रचनात्मक समुच्चय {{var|s}} को परिभाषित करता है जो पैरामीटर के रूप में {{var|X}} = {{var|L}}{{sub|{{var|α}}}} जैसे व्यंजको में दिखाई देते हैं। | ||
उदाहरण: | उदाहरण: समुच्चय {5,{{var|ω}}} रचनात्मक है। यह अद्वितीय समुच्चय {{var|s}} है जो सूत्र को संतुष्ट करता है: | ||
{{block indent|{{nowrap|<math>\forall y (y \in s \iff (y \in L_{\omega+1} \land (\forall a (a \in y \iff a \in L_5 \land Ord (a)) \lor \forall b (b \in y \iff b \in L_{\omega} \land Ord (b)))))</math>,}}}} | {{block indent|{{nowrap|<math>\forall y (y \in s \iff (y \in L_{\omega+1} \land (\forall a (a \in y \iff a \in L_5 \land Ord (a)) \lor \forall b (b \in y \iff b \in L_{\omega} \land Ord (b)))))</math>,}}}} | ||
जहां <math>Ord (a)</math> इसके लिए संक्षिप्त है: | |||
{{block indent|<math>\forall c \in a (\forall d \in c (d \in a \land \forall e \in d (e \in c))).</math>}} | {{block indent|<math>\forall c \in a (\forall d \in c (d \in a \land \forall e \in d (e \in c))).</math>}} | ||
दरअसल, इस | दरअसल, इस समष्टि सूत्र को भी पहले पैराग्राफ में दिए गए निर्देशों के आधार पर सरल बनाया गया है। लेकिन मुद्दा यह है कि, समुच्चय सिद्धांत का एक सूत्र है जो केवल वांछित रचनात्मक समुच्चय {{var|s}} के लिए सत्य है और इसमें केवल क्रमवाचक के लिए पैरामीटर सम्मलित हैं। | ||
==सापेक्ष रचनाशीलता== | ==सापेक्ष रचनाशीलता== | ||
कभी-कभी | कभी-कभी समुच्चय सिद्धांत का एक मॉडल ढूंढना वांछनीय होता है जो {{var|L}} की तरह संकीर्ण होता है, लेकिन इसमें एक ऐसा समुच्चय सम्मलित होता है या उससे प्रभावित होता है जो रचनात्मक नहीं होता है। यह सापेक्ष रचनाशीलता की अवधारणा को जन्म देता है, जिसके दो स्वाद हैं, जिन्हें {{var|L}}({{var|A}}) और और {{var|L}}[{{var|A}}] द्वारा दर्शाया गया है। एक गैर-रचनात्मक समुच्चय {{var|A}} के लिए वर्ग {{var|L}}({{var|A}}) सभी वर्गों का प्रतिच्छेदन है जो समुच्चय सिद्धांत के मानक मॉडल हैं और इसमें {{var|A}} और सभी अध्यादेश सम्मलित हैं। | ||
{{var|L}}({{var|A}}) को ट्रांसफिनिट रिकर्सन द्वारा निम्नानुसार परिभाषित किया गया है: | {{var|L}}({{var|A}}) को ट्रांसफिनिट रिकर्सन द्वारा निम्नानुसार परिभाषित किया गया है: | ||
*{{var|L}}{{sub|0}}({{var|A}}) = सबसे छोटा सकर्मक समुच्चय {{var|A}} | *{{var|L}}{{sub|0}}({{var|A}}) =एक तत्व के रूप में {{var|A}} युक्त सबसे छोटा सकर्मक समुच्चय, अर्थात { {{var|A}} } का [[ सकर्मक समापन (सेट) |सकर्मक समापन (समुच्चय)]] | ||
*{{var|L}}{{sub|{{var|α}}+1}}({{var|A}}) = डेफ़ ({{var|L}}{{sub|{{var|α}}}}({{var|A}})) | *{{var|L}}{{sub|{{var|α}}+1}}({{var|A}}) = डेफ़ ({{var|L}}{{sub|{{var|α}}}}({{var|A}})) | ||
* | *यदि {{var|λ}} एक सीमा क्रमसूचक है, तो <math>L_{\lambda}(A) = \bigcup_{\alpha < \lambda} L_{\alpha}(A) \! </math>. | ||
*<math>L(A) = \bigcup_{\alpha} L_{\alpha}(A) \! </math>. | *<math>L(A) = \bigcup_{\alpha} L_{\alpha}(A) \! </math>. | ||
यदि {{var|L}}({{var|A}}) में {{{var|A}}} के सकर्मक समापन का सुव्यवस्थित क्रम सम्मलित है, तो इसे {{var|L}}({{var|A}}) के सुव्यवस्थित क्रम तक बढ़ाया जा सकता है। अन्यथा, पसंद का सिद्धांत {{var|L}}({{var|A}}) में विफल हो जाएगा। | |||
एक सामान्य उदाहरण है <math>L(\mathbb{R})</math>, सबसे छोटा मॉडल जिसमें सभी वास्तविक | एक सामान्य उदाहरण है <math>L(\mathbb{R})</math>, सबसे छोटा मॉडल जिसमें सभी वास्तविक संख्याएं सम्मलित हैं, जिसका उपयोग आधुनिक वर्णनात्मक समुच्चय सिद्धांत में बड़े पैमाने पर किया जाता है। | ||
वर्ग {{var|L}}[{{var|A}}] समुच्चयों का वह वर्ग है जिसका निर्माण ए से प्रभावित होता है, जहां {{var|A}} एक (संभवतः गैर-निर्माण योग्य) समुच्चय या एक उचित वर्ग हो सकता है। इस वर्ग की परिभाषा Def{{sub|{{var|A}}}} ({{var|X}}) का उपयोग करती है, जो Def ({{var|X}}) के समान है, मॉडल ({{var|X}},∈) में सूत्र {{var|Φ}} की सच्चाई का मूल्यांकन करने के अतिरिक्त, कोई मॉडल ({{var|X}},∈,{{var|A}}) का उपयोग करता है {{var|A}} एक एकात्मक विधेय है। {{var|A}}({{var|y}}) की अभीष्ट व्याख्या {{var|y}} ∈ {{var|A}} है। तब {{var|L}}[{{var|A}}] की परिभाषा पूरीतरह {{var|L}} के समान है, जिसमें Def को Def{{sub|{{var|A}}}} द्वारा प्रतिस्थापित किया गया है। | |||
{{var|L}}[{{var|A}}] | {{var|L}}[{{var|A}}] सदैव पसंद के सिद्धांत का एक मॉडल है। भले ही {{var|A}} एक समुच्चय हो, {{var|A}} आवश्यक नहीं है कि वह स्वयं {{var|L}}[{{var|A}}], का सदस्य हो, चूंकि ऐसा सदैव होता है यदि {{var|A}} क्रमसूचकों का एक समुच्चय है। | ||
{{var|L}}({{var|A}}) या {{var|L}}[{{var|A}}] में समुच्चय सामान्यतःवास्तव में निर्माण योग्य नहीं होते हैं, और इन मॉडलों के गुण {{var|L}} के गुणों से पर्याप्त भिन्न हो सकते हैं। | |||
== यह भी देखें == | == यह भी देखें == | ||
* रचनाशीलता का सिद्धांत | * रचनाशीलता का सिद्धांत | ||
* | * L में कथन सत्य हैं | ||
* | *परावर्तन सिद्धांत | ||
*[[स्वयंसिद्ध समुच्चय सिद्धांत]] | *[[स्वयंसिद्ध समुच्चय सिद्धांत]] | ||
* सकर्मक समुच्चय | * सकर्मक समुच्चय | ||
Line 158: | Line 149: | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
<references/> | <references/> | ||
== संदर्भ == | == संदर्भ == | ||
* {{cite book |last= | * {{cite book |last=बारवाइज़ |first=जॉन |author-link=जॉन बारवाइज |title=अड्मिसबल सेट और संरचनाएँ |year=1975 |location=बर्लिन |publisher=स्प्रिंगर-वेरलाग |isbn=0-387-07451-1 |url-access=registration |url=https://archive.org/details/admissiblesetsst00barw_0 }} | ||
* {{cite book| last = | * {{cite book| last = डेवलिन | first = कीथ जे.|author-link=कीथ डेवलिन | title = रचनाशीलता |year = 1984 | location = बर्लिन | publisher = स्प्रिंगर-वेरलाग | isbn = 0-387-13258-9}} | ||
*{{Cite book|last= | *{{Cite book|last=फेल्गनर|first=उलरिच|year=1971|title=जेडएफ-सेट थ्योरी के मॉडल|series=गणित में व्याख्यान नोट्स|publisher=स्प्रिंगर-वेरलाग|isbn=3-540-05591-6}} | ||
*{{cite journal | *{{cite journal | ||
| doi = 10.1073/pnas.24.12.556 | | doi = 10.1073/pnas.24.12.556 | ||
| last = | | last = गोडेल | first = कर्ट | ||
| title = | | title = पसंद के सिद्धांत और सामान्यीकृत सातत्य-परिकल्पना की संगति | ||
| journal = | | journal = संयुक्त राज्य अमेरिका की राष्ट्रीय विज्ञान अकादमी की कार्यवाही | ||
| volume = 24 | | volume = 24 | ||
| issue = 12 | | issue = 12 | ||
| year = 1938 | | year = 1938 | ||
| pages = 556–557 | | pages = 556–557 | ||
| publisher = | | publisher = राष्ट्रीय विज्ञान अकादमी | ||
| pmid = 16577857 | | pmid = 16577857 | ||
| pmc = 1077160 | | pmc = 1077160 | ||
| jstor=87239| bibcode = 1938PNAS...24..556G | doi-access = free }} | | jstor=87239| bibcode = 1938PNAS...24..556G | doi-access = free }} | ||
*{{Cite book|mr=0002514 | *{{Cite book|mr=0002514 | ||
|last= | |last=गोडेल|first=कर्ट | ||
|title= | |title=सातत्य परिकल्पना की संगति | ||
|series= | |series=गणित अध्ययन के इतिहास|volume=3|publisher= प्रिंसटन यूनिवर्सिटी प्रेस|place= प्रिंसटन, एन.जे.|year= 1940 | ||
|url=http://press.princeton.edu/titles/1034.html|isbn=978-0-691-07927-1}} | |url=http://press.princeton.edu/titles/1034.html|isbn=978-0-691-07927-1}} | ||
*{{Cite book|last= | *{{Cite book|last=जेच|first=थॉमस|author-link=थॉमस जेच|year=2002|title=समुच्चय सिद्धान्त|edition=तीसरी सहस्राब्दी|series=गणित में स्प्रिंगर मोनोग्राफ|publisher=कोंपल|isbn=3-540-44085-2}} | ||
{{Set theory}} | {{Set theory}} | ||
{{Mathematical logic}} | {{Mathematical logic}} | ||
{{DEFAULTSORT:Constructible Universe}} | {{DEFAULTSORT:Constructible Universe}} | ||
[[Category: | [[Category:All articles with unsourced statements|Constructible Universe]] | ||
[[Category:Created On 20/07/2023]] | [[Category:Articles with hatnote templates targeting a nonexistent page|Constructible Universe]] | ||
[[Category:Articles with unsourced statements from January 2023|Constructible Universe]] | |||
[[Category:Collapse templates|Constructible Universe]] | |||
[[Category:Created On 20/07/2023|Constructible Universe]] | |||
[[Category:Lua-based templates|Constructible Universe]] | |||
[[Category:Machine Translated Page|Constructible Universe]] | |||
[[Category:Mathematics navigational boxes|Constructible Universe]] | |||
[[Category:Navbox orphans|Constructible Universe]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Constructible Universe]] | |||
[[Category:Pages with empty portal template|Constructible Universe]] | |||
[[Category:Pages with script errors|Constructible Universe]] | |||
[[Category:Philosophy and thinking navigational boxes|Constructible Universe]] | |||
[[Category:Portal-inline template with redlinked portals|Constructible Universe]] | |||
[[Category:Short description with empty Wikidata description|Constructible Universe]] | |||
[[Category:Sidebars with styles needing conversion|Constructible Universe]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi|Constructible Universe]] | |||
[[Category:Templates Vigyan Ready|Constructible Universe]] | |||
[[Category:Templates generating microformats|Constructible Universe]] | |||
[[Category:Templates that add a tracking category|Constructible Universe]] | |||
[[Category:Templates that are not mobile friendly|Constructible Universe]] | |||
[[Category:Templates that generate short descriptions|Constructible Universe]] | |||
[[Category:Templates using TemplateData|Constructible Universe]] | |||
[[Category:Wikipedia metatemplates|Constructible Universe]] | |||
[[Category:कर्ट गोडेल द्वारा काम किया गया|Constructible Universe]] | |||
[[Category:ब्रह्माण्ड का निर्माण| ब्रह्माण्ड का निर्माण]] |
Latest revision as of 16:46, 8 August 2023
गणित में, समुच्चय सिद्धांत में, ब्रह्मांड का निर्माण (या गोडेल का रचनात्मक ब्रह्मांड), जिसे L द्वारा दर्शाया गया है, समुच्चयों (गणित) का एक विशेष वर्ग (समुच्चय सिद्धांत) है जिसे पूरी तरह से सरल समुच्चयों के संदर्भ में वर्णित किया जा सकता है। L रचनात्मक पदानुक्रम का Lα संघ है। इसे कर्ट गोडेल ने अपने 1938 के पेपर "द कंसिस्टेंसी ऑफ द एक्सिओम ऑफ चॉइस एंड ऑफ द जनरलाइज्ड कॉन्टिनम-हाइपोथिसिस" में प्रस्तुत किया था।[1] इस पेपर में, उन्होंने सिद्ध किया कि रचनात्मक ब्रह्मांड जेडएफ समुच्चय सिद्धांत का एक आंतरिक मॉडल है (अर्थात, ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत जिसमें पसंद के सिद्धांत को बाहर रखा गया है), और यह भी कि पसंद के सिद्धांत और सामान्यीकृत सातत्य परिकल्पना रचनात्मक ब्रह्मांड में सत्य हैं। इससे पता चलता है कि दोनों प्रस्ताव समुच्चय सिद्धांत के मूल सिद्धांतों के अनुरूप हैं, यदि जेडएफ स्वयं सुसंगत है। चूँकि कई अन्य प्रमेय केवल उन प्रणालियों में मान्य होते हैं जिनमें एक या दोनों प्रस्ताव सत्य होते हैं, उनकी स्थिरता एक महत्वपूर्ण परिणाम होती है।
L क्या है
L को वॉन न्यूमैन ब्रह्मांड, V के निर्माण के समान "चरणों" में बनाया गया माना जा सकता है। चरणों को क्रमसूचकों द्वारा अनुक्रमित किया जाता है। वॉन न्यूमैन के ब्रह्मांड में, उत्तराधिकारी चरण में, कोई Vα+1 को पिछले चरण, Vα के सभी उप-समूचय का समुच्चय मानता है। इसके विपरीत, गोडेल के रचनात्मक ब्रह्मांड L में, कोई पिछले चरण के केवल उन उप-समूचय का उपयोग करता है जो हैं:
- समुच्चय सिद्धांत की औपचारिक भाषा में एक सूत्र (गणितीय तर्क) द्वारा परिभाषित,
- पिछले चरण के मापदंडों के साथ और,
- क्वांटिफायर (तर्क) की व्याख्या पिछले चरण की सीमा के अनुसार की गई है।
अपने आप को केवल पहले से निर्मित किए गए समुच्चयों के संदर्भ में परिभाषित समुच्चयों तक सीमित करके, यह सुनिश्चित किया जाता है कि परिणामी समुच्चयों का निर्माण इस तरह से किया जाएगा जो समुच्चय सिद्धांत के निकट के मॉडल की विशिष्टताओं से स्वतंत्र है और ऐसे किसी भी मॉडल में निहित है।
डीईएफ़ ऑपरेटर को परिभाषित करें:[2]
एल को ट्रांसफ़िनिट रिकर्सन द्वारा निम्नानुसार परिभाषित किया गया है:
- * यदि तो फिर, यह एक सीमा क्रमसूचक है यहाँ का अर्थ है क्रमसूचक संख्या और सीमा क्रमवाचक .
- यहां ऑर्ड सभी क्रमवाचक के वर्ग (समुच्चय सिद्धांत) को दर्शाता है।
यदि का एक तत्व है , फिर .[3] इसलिए का एक उपसमुच्चय है , जो Lα के घात समुच्चय का एक उपसमुच्चय है। लेकिन L स्वयं एक सकर्मक समुच्चय है। L के तत्वों को "रचनात्मक" समुच्चय कहा जाता है; और L स्वयं "रचनात्मक ब्रह्मांड" है। "रचनात्मकता का सिद्धांत", उर्फ "V = L ", कहता है कि प्रत्येक समुच्चय (V का) ) रचनात्मक है, अर्थात् L में है।
समुच्चय Lα के बारे में अतिरिक्त तथ्य
Lα के लिए एक समतुल्य परिभाषा है:
किसी भी परिमित क्रमसूचक n के लिए, समुच्चय Ln और Vn समान हैं (चाहे V, L के बराबर है या नहीं), और इस प्रकार Lω = Vω: उनके तत्व बिल्कुल आनुवंशिक रूप से परिमित समुच्चय हैं। इस बिंदु से आगे समानता स्थिर नहीं है। यहां तक कि ज़र्मेलो-फ़्रैन्केल समुच्चय सिद्धांत के मॉडल में भी जिसमें V, Lके बराबर है, Lω+1, Vω+1 का एक उचित उपसमुच्चय है, और उसके पश्चात Lα+1 सभी α > ω के लिए Lα के घात समुच्चय का एक उचित उपसमुच्चय है। दूसरी ओर, V = L का अर्थ यह है कि यदि α = ωα है तो Vα, Lα के बराबर है, उदाहरण के लिए यदि α अप्राप्य हैं। अधिक सामान्यतः, V = L का अर्थ सभी अनंत कार्डिनल्स α के लिए Hα = Lα है।
यदि α एक अनंत क्रमसूचक है तो Lα और α के बीच एक आक्षेप होता है, और आक्षेप रचनात्मक होता है। तो ये समुच्चय समुच्चय सिद्धांत के किसी भी मॉडल में समतुल्य हैं जिसमें ये सम्मलित हैं।
जैसा कि ऊपर परिभाषित किया गया है, Def(X) के उपसमुच्चय का समुच्चय है Δ0 सूत्रों द्वारा परिभाषित X के उप-समूचय का समुच्चय है (लेवी पदानुक्रम के संबंध में, अर्थात, समुच्चय सिद्धांत के सूत्र जिसमें केवल बंधे हुए क्वांटिफायर होते हैं) जो पैरामीटर के रूप में केवल X और उसके तत्वों का उपयोग करते हैं।[4]
गोडेल के कारण एक अन्य परिभाषा, प्रत्येक Lα+1 को संवृत होने के साथ Lα के घात समुच्चय के प्रतिच्छेदन के रूप में दर्शाती है गोडेल संचालन के समान, नौ स्पष्ट फलनो के संग्रह के अधीन। यह परिभाषा निश्चितता का कोई संदर्भ नहीं देती है।
ω के सभी अंकगणितीय पदानुक्रम उपसमुच्चय और ω पर संबंध Lω+1 से संबंधित हैं (क्योंकि अंकगणितीय परिभाषा Lω+1में एक देती है)। इसके विपरीत, Lω+1 से संबंधित ω का कोई भी उपसमुच्चय अंकगणितीय है (क्योंकि Lω के तत्वों को प्राकृतिक संख्याओं द्वारा इस तरह कोडित किया जा सकता है कि ∈ निश्चित है, अर्थात, अंकगणित है)। दूसरी ओर, Lω+2 में पहले से ही ω के कुछ गैर-अंकगणितीय उपसमुच्चय सम्मलित हैं, जैसे कि (प्राकृतिक संख्या कोडिंग) वास्तविक अंकगणितीय कथनों का समुच्चय (इसे Lω+1 से परिभाषित किया जा सकता है, इसलिए यह Lω+2 में है)।
ω के सभी हाइपर अंकगणितीय पदानुक्रम उपसमुच्चय ω पर संबंध संबंधित हैं (जहाँ का अर्थ चर्च-क्लीन ऑर्डिनल है), और इसके विपरीत ω का कोई भी उपसमुच्चय जो इससे संबंधित है अति अंकगणितीय है।[5]
एल जेडएफसी का एक मानक आंतरिक मॉडल है
एक मानक मॉडल है, अर्थात एल एक संक्रमणीय वर्ग है और व्याख्या वास्तविक तत्व संबंध का उपयोग करती है, इसलिए यह अच्छी तरह से स्थापित है। L एक आंतरिक मॉडल है, अर्थात इसमें V की सभी क्रमिक संख्याएं सम्मलित हैं और इसमें V के अतिरिक्त कोई "अतिरिक्त" समुच्चय नहीं है। चूंकि L, V का एक उचित उपवर्ग हो सकता है। L ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफसी) का एक मॉडल है, जिसका अर्थ है कि यह निम्नलिखित सिद्धांतों को संतुष्ट करता है:
- नियमितता का सिद्धांत: प्रत्येक गैर-रिक्त समुच्चय x में कुछ तत्व y होते हैं जैसे कि x और y असंयुक्त समुच्चय होते हैं।
- (L,∈), (V,∈) की एक उपसंरचना है, जो अच्छी तरह से स्थापित है, इसलिए L अच्छी तरह से स्थापित है। विशेष रूप से, यदि y ∈ x ∈ L, तो L की परिवर्तनशीलता से, y ∈ L. यदि हम V में इसी y का उपयोग करते हैं, तो यह अभी भी x से असंयुक्त है क्योंकि हम समान तत्व संबंध का उपयोग कर रहे हैं और कोई नया समुच्चय नहीं जोड़ा गया है।
- विस्तारात्मकता का सिद्धांत: यदि दो समुच्चयों में समान तत्व हों तो वे समान होते हैं।
- यदि x और y, L में हैं और L में उनके समान तत्व हैं, तो L की परिवर्तनशीलता के अनुसार, उनके पास समान तत्व हैं (V में) हैं। अत: वे बराबर हैं (V में और इस प्रकार L में)।
- रिक्त समुच्चय का अभिगृहीत: {} एक समुच्चय है।
- , जो इसमें है . इसलिए . चूँकि तत्व संबंध समान है और कोई नया तत्व नहीं जोड़ा गया है, यह रिक्त समुच्चय है .
- युग्म का अभिगृहीत: यदि , तो, समुच्चय हैं एक समुच्चय है।
- यदि और , तो कुछ क्रमसूचक है ऐसा है कि और . फिर {x,y} = {s | s ∈ Lα और (s = x या s = y)} ∈ Lα+1. इस प्रकार {x,y} ∈ L और इसका L के लिए वही अर्थ है जो V के लिए है।
- मिलन का अभिगृहीत: किसी भी समुच्चय के लिए x एक समुच्चय है y जिनके तत्व बिल्कुल तत्वों के तत्व हैं x.
- यदि , तो उसके तत्व अंदर हैं और उनके तत्व भी अंदर हैं . इसलिए का एक उपसमुच्चय है . y = {<नोविकी/>s | s ∈ Lα और वहाँ उपस्थित है z ∈ x ऐसा है कि s ∈ z} ∈ Lα+1. इस प्रकार .
- अनंत का अभिगृहीत: एक समुच्चय उपस्थित है ऐसा है कि में है और जब भी में है , तो संघ है .
- प्रत्येक क्रमसूचक को दिखाने के लिए ट्रांसफिनिट इंडक्शन का उपयोग किया जा सकता है α ∈ Lα+1. विशेष रूप से, ω ∈ Lω+1 और इस तरह ω ∈ L.
- पृथक्करण का अभिगृहीत: किसी भी समुच्चय को देखते हुए S और कोई भी प्रस्ताव P(x,z1,...,zn), {<नोविकी/>x | x ∈ S और P(x,z1,...,zn)} एक समुच्चय है.
- के उपसूत्रों पर प्रेरण द्वारा P, कोई दिखा सकता है कि वहाँ एक है α ऐसा है कि Lα रोकना S और z1,...,zn और (P में सत्य है Lα यदि और केवल यदि में सच है ), पश्चात वाले को प्रतिबिंब सिद्धांत कहा जाता है)। तो {x | x ∈ S and P(x,z1,...,zn) holds in L} = {<नोविकी/>x | x ∈ Lα और x ∈ S और P(x,z1,...,zn) धारण करता है Lα} ∈ Lα+1. इस प्रकार उपसमुच्चय L में है।[6]
- प्रतिस्थापन का सिद्धांत: किसी भी समुच्चय S और किसी मैपिंग (औपचारिक रूप से एक प्रस्ताव P(x,y) के रूप में परिभाषित किया गया है, जहां P(x,y) और P(x,z) का तात्पर्य y = z है), {y | x ∈ S का अस्तित्व इस प्रकार है कि P(x,y)} एक समुच्चय है।
- मान लीजिए Q(x,y) वह सूत्र है जो P को L, से सापेक्ष करता है, अर्थात P में सभी परिमाणक L तक ही सीमित हैं। Q, P की तुलना में बहुत अधिक समष्टि सूत्र है, लेकिन यह अभी भी एक सीमित सूत्र है, और चूँकि P, L के ऊपर एक मानचित्रण था, Q को V के ऊपर एक मानचित्रण होना चाहिए; इस प्रकार हम V से Q में प्रतिस्थापन लागू कर सकते हैं। तो {y | y ∈ L और x ∈ S का अस्तित्व इस प्रकार है कि P(x,y) L} = y | x ∈ S का अस्तित्व इस प्रकार है कि Q(x,y)} V में एक समुच्चय और L का एक उपवर्ग है। फिर से V में प्रतिस्थापन के सिद्धांत का उपयोग करके, हम दिखा सकते हैं कि एक α होना चाहिए जैसे कि यह समुच्चय Lα ∈ Lα+1 का एक उपसमुच्चय हो। तब कोई यह दिखाने के लिए कि यह L का एक तत्व है, L में पृथक्करण के सिद्धांत का उपयोग कर सकता है।
- घात समुच्चय का सिद्धांत: किसी भी समुच्चय x के लिए एक समुच्चय y उपस्थित होता है, जैसे कि y के तत्व एकदम x के उपसमुच्चय होते हैं।
- सामान्यतः, L में एक समुच्चय के कुछ उपसमुच्चय L में नहीं होंगे। इसलिए L में समुच्चय की पूरी घात सामान्यतः L में नहीं होगी। हमें यहां यह दिखाने की आवश्यकता है कि एल के साथ निर्धारित घात का प्रतिच्छेदन L में है। यह दिखाने के लिए V में प्रतिस्थापन का उपयोग करें कि एक α इस प्रकार है कि प्रतिच्छेदन Lα का एक उपसमुच्चय है। तब प्रतिच्छेदन {z | है z ∈ Lα और z, x} ∈ Lα+1. का उपसमुच्चय है। इस प्रकार आवश्यक समुच्चय L में है।
- पसंद का सिद्धांत: पारस्परिक रूप से असंबद्ध गैर-रिक्त समुच्चयों के एक समुच्चय x को देखते हुए, एक समुच्चय y (x के लिए एक विकल्प समुच्चय) होता है जिसमें x के प्रत्येक सदस्य से निस्संदेह एक तत्व होता है।
- कोई यह दिखा सकता है कि L का एक निश्चित सुव्यवस्थित क्रम है, विशेष रूप से सभी समुच्चयों के क्रम के आधार पर L, उनकी परिभाषाओं और जिस रैंक पर वे आते हैं उसके अनुसार। इसलिए कोई व्यक्ति L में मिलन और पृथक्करण के सिद्धांतों का उपयोग करके y बनाने के लिए x के प्रत्येक सदस्य का सबसे छोटा तत्व चुनता है। ध्यान दें कि L, जेडएफसी का एक मॉडल है, इसके प्रमाण के लिए केवल यह आवश्यक है कि V, जेडएफ का एक मॉडल हो, यानी हम यह नहीं मानते हैं कि पसंद का सिद्धांत V में है।
एल पूर्ण और न्यूनतम है
यदि W, जेडएफ का कोई भी मानक मॉडल है जो समान क्रम-क्रम साझा करता है , फिर में परिभाषित किया गया के समान है में परिभाषित किया गया . विशेष रूप से, समान है और , किसी भी क्रमसूचक के लिए . और वही सूत्र और पैरामीटर समान रचनात्मक समुच्चय प्रस्तुत करता है .
इसके अतिरिक्त, तब से का एक उपवर्ग है और, इसी तरह, का एक उपवर्ग है , सबसे छोटा वर्ग है जिसमें सभी ऑर्डिनल्स शामिल हैं जो ZF का एक मानक मॉडल है। वास्तव में, ऐसे सभी वर्गों का प्रतिच्छेदन है।
यदि कोई समुच्चय है में यह ZF का आंतरिक मॉडल और क्रमसूचक है यह क्रमादेशों का समूह है जो घटित होता है , तब है का . यदि कोई ऐसा समुच्चय है जो जेडएफ का मानक मॉडल है, तो ऐसा सबसे छोटा समुच्चय है . इस समुच्चय को जेडएफसी का न्यूनतम मॉडल (समुच्चय सिद्धांत) कहा जाता है। अधोमुखी लोवेनहेम-स्कोलेम प्रमेय का उपयोग करके, कोई यह दिखा सकता है कि न्यूनतम मॉडल (यदि यह उपस्थित है) एक गणनीय समुच्चय है।
निःसंदेह, किसी भी सुसंगत सिद्धांत में एक मॉडल होना चाहिए, इसलिए समुच्चय सिद्धांत के न्यूनतम मॉडल के भीतर भी ऐसे समुच्चय हैं जो जेडएफ के मॉडल हैं (यह मानते हुए कि जेडएफ सुसंगत है)। चूंकि, वे समुच्चय मॉडल गैर-मानक हैं। विशेष रूप से, वे सामान्य तत्व संबंध का उपयोग नहीं करते हैं और वे अच्छी तरह से स्थापित नहीं हैं।
क्योंकि दोनों के भीतर निर्मित किया गया और के भीतर निर्मित का परिणाम वास्तविक है , और दोनों का और यह का असली हैं , हमें वह मिल गया में सच है और किसी में भी यह जेडएफ का एक मॉडल है. चूंकि, जेडएफ के किसी भी अन्य मानक मॉडल में नहीं है
एल और बड़े कार्डिनल
Ord ⊂ L ⊆ V, के बाद से, ऑर्डिनल्स के गुण जो किसी फलन या अन्य संरचना की अनुपस्थिति पर निर्भर करते हैं (अर्थात Π1ZF सूत्र) V से L तक नीचे जाने पर संरक्षित होते हैं। इसलिए कार्डिनल्स के प्रारंभिक क्रम-क्रम एल में प्रारंभिक रहते हैं। नियमित क्रम-क्रम L में नियमित रहते हैं। असमर्थ सीमा कार्डिनल सीमा L में स्थिर सीमा कार्डिनल बन जाते हैं क्योंकि सामान्यीकृत सातत्य परिकल्पना L में होती है। असमर्थ रूप से [[बड़ा कार्डिनल]] दृढ़ता से दुर्गम हो जाते हैं। असमर्थ महलो कार्डिनल स्थिर से महलो बन जाते हैं। और अधिक सामान्यतः, 0# से असमर्थ कोई भी बड़ी कार्डिनल गुण (बड़ी कार्डिनल गुण की सूची देखें) L में स्थिर रखी जाएगी।
चूंकि, L में 0# में गलत है, भले ही V में सच हो। तो सभी बड़े कार्डिनल्स जिनका अस्तित्व 0# दर्शाता है, उनके पास वे बड़े कार्डिनल गुण नहीं हैं, लेकिन वे 0# से असमर्थ गुणों को स्थिर रखते हैं जो उनके पास भी हैं। उदाहरण के लिए, मापने योग्य कार्डिनल मापने योग्य नहीं रह जाते हैं लेकिन L में महलो बने रहते हैं।
यदि 0# V में है, तो ऑर्डिनल्स का एक क्लब समुच्चय असीमित वर्ग है जो L में अदृश्य है। जबकि इनमें से कुछ V में प्रारंभिक ऑर्डिनल्स भी नहीं हैं, लेकिन उनके सभी बड़े कार्डिनल गुण L में 0# से असमर्थ हैं। इसके अलावा, किसी भी सख्ती से बढ़ते वर्ग फ़ंक्शन को अविभाज्य वर्ग से L में L के प्रारंभिक एम्बेडिंग के लिए एक अनूठे तरीके से बढ़ाया जा सकता है।[citation needed] यह L को दोहराए जाने वाले खंडों की एक अच्छी संरचना देता है।
L सुव्यवस्थित किया जा सकता है
सुव्यवस्थित करने के विभिन्न उपाए हैं L. इनमें से कुछ में गोडेल ऑपरेशन सम्मलित है की उत्तम संरचना L, जिसका वर्णन पहली बार रोनाल्ड जेन्सेन ने अपने 1972 के पेपर में किया था जिसका शीर्षक था रचनात्मक पदानुक्रम की उत्कृष्ट संरचना। सूक्ष्म संरचना की व्याख्या करने के अतिरिक्त, हम कैसे की रूपरेखा देंगे L को केवल ऊपर दी गई परिभाषा का उपयोग करके सुव्यवस्थित किया जा सकता है।
कल्पना करना x और y दो अलग-अलग समुच्चय हैं L और हम यह निर्धारित करना चाहते हैं कि क्या x < y या x > y. यदि x सबसे पहले दिखाई देता है Lα+1 और y सबसे पहले दिखाई देता है Lβ+1 और β से भिन्न α, तो करने दें x < y यदि और केवल यदि α < β. अब से, हम ऐसा मानते हैं β = α.
मंच Lα+1 = Def (Lα) से पैरामीटर वाले सूत्र का उपयोग करता है Lα समुच्चय को परिभाषित करने के लिए x और y. यदि कोई मापदंडों को छूट देता है, तो सूत्रों को प्राकृतिक संख्याओं द्वारा एक मानक गोडेल नंबरिंग दी जा सकती है। यदि Φ सबसे छोटी गोडेल संख्या वाला सूत्र है जिसका उपयोग परिभाषित करने के लिए किया जा सकता है x, और Ψ सबसे छोटी गोडेल संख्या वाला सूत्र है जिसका उपयोग परिभाषित करने के लिए किया जा सकता है y, और Ψ से भिन्न Φ, तो करने दें x < y यदि और केवल यदि Φ < Ψ गोडेल नंबरिंग में। अब से, हम ऐसा मानते हैं Ψ = Φ.
लगता है कि Φ उपयोग करता है n से पैरामीटर Lα. कल्पना करना z1,...,zn उन पैरामीटरों का क्रम है जिनका उपयोग किया जा सकता है Φ परिभाषित करने के लिए x, और w1,...,wn के लिए भी ऐसा ही करता है y. तो करने दें x < y यदि और केवल यदि दोनों में से कोई एक zn < wn या (zn = wn और ) या (zn = wn और और ) आदि। इसे रिवर्स शब्दकोषीय क्रम कहा जाता है; यदि मापदंडों के कई क्रम हैं जो किसी एक समुच्चय को परिभाषित करते हैं, तो हम इस क्रम के अधीन सबसे कम एक को चुनते हैं। यह समझा जा रहा है कि प्रत्येक पैरामीटर के संभावित मानों को क्रम के प्रतिबंध के अनुसार क्रमबद्ध किया गया है L को Lα, इसलिए इस परिभाषा में ट्रांसफिनिट रिकर्सन सम्मलित है α.
एकल मापदंडों के मूल्यों का सुव्यवस्थित क्रम ट्रांसफ़िनिट इंडक्शन की आगमनात्मक परिकल्पना द्वारा प्रदान किया जाता है। के मूल्य n-उत्पाद ऑर्डरिंग द्वारा पैरामीटर्स के टुपल्स को अच्छी तरह से क्रमबद्ध किया जाता है। मापदंडों वाले सूत्र सु-क्रमों के क्रमबद्ध योग (गोडेल संख्याओं द्वारा) द्वारा सुव्यवस्थित होते हैं। और L आदेशित राशि द्वारा सुव्यवस्थित है (द्वारा अनुक्रमित)। α) के आदेश पर Lα+1.
ध्यान दें कि इस सुव्यवस्थितता को भीतर परिभाषित किया जा सकता है L स्वयं समुच्चय सिद्धांत के एक सूत्र द्वारा, जिसमें कोई पैरामीटर नहीं है, केवल मुक्त-चर हैं x और y. और यह सूत्र समान सत्य मान देता है, भले ही इसका मूल्यांकन किया गया हो L, V, या W (समान क्रमवाचक के साथ ZF का कुछ अन्य मानक मॉडल) और हम मान लेंगे कि सूत्र गलत है यदि दोनों में से कोई भी x या y इसमें नहीं है L.
यह सर्वविदित है कि पसंद का सिद्धांत प्रत्येक समुच्चय को अच्छी तरह से व्यवस्थित करने की क्षमता के बराबर है। उचित कक्षा को सुव्यवस्थित करने में सक्षम होना V (जैसा कि हमने यहां किया है L) वैश्विक पसंद के सिद्धांत के समतुल्य है, जो पसंद के सामान्य सिद्धांत से अधिक शक्तिशाली है क्योंकि इसमें गैर-रिक्त समुच्चयों के उचित वर्गों को भी सम्मलित किया गया है।
L का प्रतिबिंब सिद्धांत है
यह साबित करने के लिए कि पृथक्करण का सिद्धांत, प्रतिस्थापन का सिद्धांत, और पसंद का सिद्धांत L में है (कम से कम जैसा कि ऊपर दिखाया गया है) L के लिए प्रतिबिंब सिद्धांत के उपयोग की आवश्यकता है। यहां हम ऐसे सिद्धांत का वर्णन करते हैं
n < ω पर प्रेरण द्वारा, हम V में ZF का उपयोग यह साबित करने के लिए कर सकते हैं कि किसी भी क्रमसूचक α के लिए, एक क्रमसूचक β > αहै जैसे कि किसी भी वाक्य P(z1,...,zk) के लिए z1,..., Lβ में zk और n से कम प्रतीकों से युक्त ( Lβ के एक तत्व के लिए एक स्थिर प्रतीक को एक प्रतीक के रूप में गिनने पर) हमें पता चलता है कि P(z1,...,zk) Lβ में धारण करता है यदि और केवल यदि यह L में धारण करता है।
सामान्यीकृत सातत्य परिकल्पना L में नियत है
, और मान लीजिए कि T, S का कोई रचनात्मक उपसमुच्चय है। फिर कुछ β है , इसलिए , कुछ सूत्र के लिए Φ और कुछ से खींचा गया . नीचे की ओर लोवेनहेम-स्कोलेम प्रमेय और मोस्टोव्स्की पतन लेम्मा के अनुसार, कुछ सकर्मक समुच्चय K युक्त होना चाहिए और कुछ , और प्रथम-क्रम सिद्धांत के समान है के साथ के स्थान पर प्रतिस्थापित किया गया ; और इस K का कार्डिनल भी वैसा ही होगा . तब से सत्य है , यह K में भी सत्य है, इसलिए कुछ γ के लिए जिसका कार्डिनल α के समान है। और क्योंकि और एक ही सिद्धांत है. इसलिए T वास्तव में अंदर है .
तो एक अनंत समुच्चय S के सभी रचनात्मक उपसमुच्चयों की रैंक (अधिकतम) S की रैंक के समान कार्डिनल κ के साथ होती है; इससे यह निष्कर्ष निकलता है कि यदि δ, κ+ के लिए प्रारंभिक क्रमसूचक है, तो L के भीतर S के "घात समुच्चय" के रूप में कार्य करता है। इस प्रकार यह "घात समुच्चय" . और बदले में इसका तात्पर्य यह है कि S के "घात समुच्चय" में अधिकतम कार्डिनल है ||δ||. यह मानते हुए कि S में स्वयं कार्डिनल κ है, तो "घात समुच्चय" में बिल्कुल कार्डिनल κ+ होना चाहिए। लेकिन यह बिल्कुल L से संबंधित सामान्यीकृत सातत्य परिकल्पना है।
निर्माण योग्य समुच्चय क्रमवाचक से निश्चित हैं
समुच्चय सिद्धांत का एक सूत्र है जो इस विचार को व्यक्त करता है कि X = Lα. इसमें केवल X और α के लिए निःशुल्क चर हैं। इसका उपयोग करके हम प्रत्येक रचनात्मक समुच्चय की परिभाषा का विस्तार कर सकते हैं। यदि s ∈ Lα+1, तो s = = {y | y ∈ Lα और Φ(y,z1,...,zn) कुछ सूत्र Φ के लिए (Lα,∈)} और Lα में कुछ z1,...,zn में रखता है। यह कहने के बराबर है कि: सभी y, y ∈ s के लिए यदि और केवल यदि [वहाँ X का अस्तित्व इस प्रकार है कि X =Lα और y ∈ X और Ψ(X,y,z1,...,zn)] जहां Ψ(X,...) प्रत्येक परिमाणक को Φ(...) से X तक सीमित करने का परिणाम है। ध्यान दें कि प्रत्येक zk ∈ Lβ+1 कुछ β < α के लिए। z के सूत्र को s के सूत्र के साथ संयोजित करें और z के बाहर अस्तित्व संबंधी क्वांटिफ़ायर लागू करें और एक सूत्र प्राप्त होता है जो केवल क्रमवाचक α का उपयोग करके रचनात्मक समुच्चय s को परिभाषित करता है जो पैरामीटर के रूप में X = Lα जैसे व्यंजको में दिखाई देते हैं।
उदाहरण: समुच्चय {5,ω} रचनात्मक है। यह अद्वितीय समुच्चय s है जो सूत्र को संतुष्ट करता है:
जहां इसके लिए संक्षिप्त है:
दरअसल, इस समष्टि सूत्र को भी पहले पैराग्राफ में दिए गए निर्देशों के आधार पर सरल बनाया गया है। लेकिन मुद्दा यह है कि, समुच्चय सिद्धांत का एक सूत्र है जो केवल वांछित रचनात्मक समुच्चय s के लिए सत्य है और इसमें केवल क्रमवाचक के लिए पैरामीटर सम्मलित हैं।
सापेक्ष रचनाशीलता
कभी-कभी समुच्चय सिद्धांत का एक मॉडल ढूंढना वांछनीय होता है जो L की तरह संकीर्ण होता है, लेकिन इसमें एक ऐसा समुच्चय सम्मलित होता है या उससे प्रभावित होता है जो रचनात्मक नहीं होता है। यह सापेक्ष रचनाशीलता की अवधारणा को जन्म देता है, जिसके दो स्वाद हैं, जिन्हें L(A) और और L[A] द्वारा दर्शाया गया है। एक गैर-रचनात्मक समुच्चय A के लिए वर्ग L(A) सभी वर्गों का प्रतिच्छेदन है जो समुच्चय सिद्धांत के मानक मॉडल हैं और इसमें A और सभी अध्यादेश सम्मलित हैं।
L(A) को ट्रांसफिनिट रिकर्सन द्वारा निम्नानुसार परिभाषित किया गया है:
- L0(A) =एक तत्व के रूप में A युक्त सबसे छोटा सकर्मक समुच्चय, अर्थात { A } का सकर्मक समापन (समुच्चय)
- Lα+1(A) = डेफ़ (Lα(A))
- यदि λ एक सीमा क्रमसूचक है, तो .
- .
यदि L(A) में A के सकर्मक समापन का सुव्यवस्थित क्रम सम्मलित है, तो इसे L(A) के सुव्यवस्थित क्रम तक बढ़ाया जा सकता है। अन्यथा, पसंद का सिद्धांत L(A) में विफल हो जाएगा।
एक सामान्य उदाहरण है , सबसे छोटा मॉडल जिसमें सभी वास्तविक संख्याएं सम्मलित हैं, जिसका उपयोग आधुनिक वर्णनात्मक समुच्चय सिद्धांत में बड़े पैमाने पर किया जाता है।
वर्ग L[A] समुच्चयों का वह वर्ग है जिसका निर्माण ए से प्रभावित होता है, जहां A एक (संभवतः गैर-निर्माण योग्य) समुच्चय या एक उचित वर्ग हो सकता है। इस वर्ग की परिभाषा DefA (X) का उपयोग करती है, जो Def (X) के समान है, मॉडल (X,∈) में सूत्र Φ की सच्चाई का मूल्यांकन करने के अतिरिक्त, कोई मॉडल (X,∈,A) का उपयोग करता है A एक एकात्मक विधेय है। A(y) की अभीष्ट व्याख्या y ∈ A है। तब L[A] की परिभाषा पूरीतरह L के समान है, जिसमें Def को DefA द्वारा प्रतिस्थापित किया गया है।
L[A] सदैव पसंद के सिद्धांत का एक मॉडल है। भले ही A एक समुच्चय हो, A आवश्यक नहीं है कि वह स्वयं L[A], का सदस्य हो, चूंकि ऐसा सदैव होता है यदि A क्रमसूचकों का एक समुच्चय है।
L(A) या L[A] में समुच्चय सामान्यतःवास्तव में निर्माण योग्य नहीं होते हैं, और इन मॉडलों के गुण L के गुणों से पर्याप्त भिन्न हो सकते हैं।
यह भी देखें
- रचनाशीलता का सिद्धांत
- L में कथन सत्य हैं
- परावर्तन सिद्धांत
- स्वयंसिद्ध समुच्चय सिद्धांत
- सकर्मक समुच्चय
- एल(आर)
- सामान्य निश्चित
टिप्पणियाँ
- ↑ Gödel 1938.
- ↑ K. J. Devlin, "An introduction to the fine structure of the constructible hierarchy" (1974). Accessed 20 February 2023.
- ↑ K. J. Devlin, Constructibility (1984), ch. 2, "The Constructible Universe, p.58. Perspectives in Mathematical Logic, Springer-Verlag.
- ↑ K. Devlin 1975, An Introduction to the Fine Structure of the Constructible Hierarchy (p.2). Accessed 2021-05-12.
- ↑ Barwise 1975, page 60 (comment following proof of theorem 5.9)
- ↑ P. Odifreddi, Classical Recursion Theory, pp.427. Studies in Logic and the Foundations of Mathematics
संदर्भ
- बारवाइज़, जॉन (1975). अड्मिसबल सेट और संरचनाएँ. बर्लिन: स्प्रिंगर-वेरलाग. ISBN 0-387-07451-1.
- डेवलिन, कीथ जे. (1984). रचनाशीलता. बर्लिन: स्प्रिंगर-वेरलाग. ISBN 0-387-13258-9.
- फेल्गनर, उलरिच (1971). जेडएफ-सेट थ्योरी के मॉडल. गणित में व्याख्यान नोट्स. स्प्रिंगर-वेरलाग. ISBN 3-540-05591-6.
- गोडेल, कर्ट (1938). "पसंद के सिद्धांत और सामान्यीकृत सातत्य-परिकल्पना की संगति". संयुक्त राज्य अमेरिका की राष्ट्रीय विज्ञान अकादमी की कार्यवाही. राष्ट्रीय विज्ञान अकादमी. 24 (12): 556–557. Bibcode:1938PNAS...24..556G. doi:10.1073/pnas.24.12.556. JSTOR 87239. PMC 1077160. PMID 16577857.
- गोडेल, कर्ट (1940). सातत्य परिकल्पना की संगति. गणित अध्ययन के इतिहास. Vol. 3. प्रिंसटन, एन.जे.: प्रिंसटन यूनिवर्सिटी प्रेस. ISBN 978-0-691-07927-1. MR 0002514.
- जेच, थॉमस (2002). समुच्चय सिद्धान्त. गणित में स्प्रिंगर मोनोग्राफ (तीसरी सहस्राब्दी ed.). कोंपल. ISBN 3-540-44085-2.