सिम्प्लेक्टिक सदिश समिष्ट: Difference between revisions
No edit summary |
m (Abhishek moved page सिम्प्लेक्टिक वेक्टर स्पेस to सिम्प्लेक्टिक सदिश समिष्ट without leaving a redirect) |
(No difference)
|
Revision as of 14:20, 24 July 2023
गणित में, सिम्प्लेक्टिक सदिश समिष्ट क्षेत्र (गणित) F (उदाहरण के लिए वास्तविक संख्या R) के ऊपर एक सदिश समष्टि V होता है जो सिम्प्लेक्टिक द्विरेखीय रूप से सुसज्जित होता है।
एक सिम्प्लेक्टिक बिलिनियर रूप मानचित्र है (गणित) ω : V × V → F अर्थात
- द्विरेखीय रूप
- प्रत्येक तर्क में अलग से रैखिक मानचित्र;
- वैकल्पिक रूप
- यदि ω(v, v) = 0 सभी के लिए धारण करता है v ∈ V; और
- अविक्षिप्त रूप
- सभी v ∈ V के लिए ω(u, v) = 0 का तात्पर्य है कि u = 0.
इस प्रकार से यदि अंतर्निहित क्षेत्र में विशेषता (बीजगणित) 2 नहीं है, तो प्रत्यावर्तन विषम-समरूपता के समान है। यदि विशेषता 2 है, तो विषम-समरूपता निहित है, किन्तु प्रत्यावर्तन का अर्थ नहीं है। इस स्तिथि में प्रत्येक सहानुभूतिपूर्ण रूप एक सममित द्विरेखीय रूप है, किन्तु इसके विपरीत नहीं है।
अतः निश्चित आधार (रैखिक बीजगणित) में कार्य करते हुए, यदि ω को आव्युह (गणित) द्वारा दर्शाया जा सकता है। उपरोक्त स्थितियाँ इस आव्युह के समतुल्य हैं, विषम-सममित आव्युह, गैर-एकवचन आव्युह, और निरर्थक आव्युह या विकर्ण प्रविष्टियाँ सभी शून्य (सभी विकर्ण प्रविष्टियाँ शून्य हैं)। इसे सिंपलेक्टिक आव्युह के साथ भ्रमित नहीं किया जाना चाहिए, जो की अंतरिक्ष के सिम्प्लेक्टिक परिवर्तन का प्रतिनिधित्व करता है। यदि V परिमित-आयामी है, तो इसका आयाम आवश्यक रूप से सम संख्या होना चाहिए क्योंकि विषम आकार के प्रत्येक विषम-सममित, निरर्थक आव्युह में निर्धारक शून्य होता है। ध्यान दें कि यदि क्षेत्र की विशेषता 2 है, तो आव्युह निरर्थक होने की स्थिति निरर्थक नहीं है। सहानुभूतिपूर्ण रूप सममित रूप से अधिक अलग व्यवहार करता है, उदाहरण के लिए, यूक्लिडियन सदिश रिक्त समिष्ट पर अदिश उत्पाद किया जाता है।
मानक सिंपलेक्टिक समिष्ट
इस प्रकार से मानक सिंपलेक्टिक समष्टि R2n है जिसका सिंपलेक्टिक रूप एक गैर-एकवचन, विषम-सममित आव्युह द्वारा दिया गया है। सामान्यतः ω को ब्लॉक आव्युह चुना जाता है
जहां In n × n पहचान आव्युह है। आधार सदिशों के संदर्भ में (x1, ..., xn, y1, ..., yn):
ग्राम-श्मिट प्रक्रिया के संशोधित संस्करण से पता चलता है कि किसी भी परिमित-आयामी सहानुभूति सदिश समिष्ट का आधार ऐसा होता है कि ω यह रूप लेता है, जिसे प्रायः 'डार्बोक्स आधार' या सहानुभूति आधार कहा जाता है।
'प्रक्रिया का रेखाचित्र:'
इच्छानुसार आधार से प्रारंभ करें , और दोहरे आधार द्वारा प्रत्येक आधार सदिश के दोहरे का प्रतिनिधित्व करें: . इससे मान लीजिये प्रविष्टियों के साथ आव्युह . इसके शून्य समिष्ट को हल करिए। अब किसी के लिए शून्य समिष्ट में, हमारे पास है , इसलिए शून्य समिष्ट हमें पतित उपसमिष्ट देता है .
अब इच्छानुसार पूरक चुनें ऐसा है कि , और जाने को का आधार बनने दें . तब से , और , डब्लूएलओजी . अब माप जिससे . फिर परिभाषित करें प्रत्येक के लिए . पुनरावृति है।
ध्यान दें कि यह विधि केवल वास्तविक संख्याओं के क्षेत्र के लिए ही नहीं, किन्तु किसी भी क्षेत्र पर सिम्प्लेक्टिक सदिश समष्टि के लिए प्रयुक्त होती है।
वास्तविक या समष्टि क्षेत्र की स्तिथि :
जब समिष्ट वास्तविक संख्याओं के क्षेत्र से ऊपर हो जाता है, तो हम संशोधित ग्राम-श्मिट प्रक्रिया को निम्नानुसार संशोधित कर सकते हैं: उसी तरह से प्रारंभ करें। मान लीजिए कि , का एक ऑर्थोनॉर्मल आधार है ( पर सामान्य आंतरिक उत्पाद के संबंध में)। चूँकि और डब्ल्यूएलओजी अब को एक चिन्ह से गुणा करें, जिससे फिर में से प्रत्येक के लिए को परिभाषित करें, फिर प्रत्येक को स्केल करें जिससे इसमें एक मानक हो। पुनरावृति।
इसी प्रकार, सम्मिश्र संख्याओं के क्षेत्र के लिए, हम एकात्मक आधार चुन सकते हैं। यह विषम-सममित आव्युह या स्पेक्ट्रल सिद्धांत सिद्ध करता है।
लैग्रेन्जियन रूप
इस मानक सहानुभूतिपूर्ण रूप की व्याख्या करने का और विधि है। चूंकि मॉडल समष्टि R2n में बहुत अधिक विहित संरचना है जिससे सरलता से असत्य व्याख्या हो सकती है, हम इसके अतिरिक्त अज्ञात सदिश रिक्त समिष्ट का उपयोग करेंगे। मान लीजिए V आयाम n और V∗ का वास्तविक सदिश समष्टि हैयह दोहरा समिष्ट है। अब सदिश समष्टि के प्रत्यक्ष योग पर विचार करें W = V ⊕ V∗ इन समिष्टों में से निम्नलिखित प्रपत्र से सुसज्जित है:
अब कोई भी आधार चुनें (रैखिक बीजगणित) (v1, ..., vn) V का और इसके दोहरे समिष्ट पर विचार करें
यदि हम xi = (vi, 0) और yi = (0, vi∗) लिखते हैं तो हम W में पूर्ण आधार सदिश की व्याख्या कर सकते हैं। कुल मिलाकर, ये W का पूर्ण आधार बनाते हैं,
यहां परिभाषित प्रपत्र ω में इस खंड की प्रारंभिक के समान गुण दिखाए जा सकते हैं। दूसरी ओर, प्रत्येक सहानुभूति संरचना किसी न किसी रूप में समरूपी होती है V ⊕ V∗. उप-समिष्ट V अद्वितीय नहीं है, और उप-समिष्ट V की चुनाओ को 'ध्रुवीकरण' कहा जाता है। जो की उप-समिष्ट ऐसी समरूपता देते हैं, उन्हें 'लैग्रैन्जियन उप-समिष्ट' या केवल 'लैग्रैन्जियन' कहा जाता है।
स्पष्ट रूप से, लैग्रेंजियन उप-समिष्ट या दिया गया है, फिर आधार का विकल्प (x1, ..., xn) पूरक के लिए दोहरे आधार ω(xi, yj) = δij को परिभाषित करता है .
समष्टि संरचनाओं के साथ सादृश्य
जिस प्रकार प्रत्येक सिंपलेक्टिक संरचना V ⊕ V∗ के किसी न किसी रूप में समरूपी होती है , सदिश समष्टि पर प्रत्येक रैखिक समष्टि संरचना V ⊕ V के किसी रूप में समरूपी होती है . इन संरचनाओं का उपयोग करते हुए, n-मैनिफोल्ड के स्पर्शरेखा बंडल, जिसे 2n-मैनिफोल्ड के रूप में माना जाता है, की लगभग समष्टि संरचना होती है, और एन-मैनिफोल्ड के कोटैंजेंट बंडल, जिसे 2n-मैनिफोल्ड के रूप में माना जाता है, की सहानुभूतिपूर्ण संरचना होती है: T∗(T∗M)p = Tp(M) ⊕ (Tp(M))∗.
लैग्रेंजियन उप-समिष्ट का समष्टि एनालॉग एक वास्तविक उप-समिष्ट है, एक उप-समिष्ट जिसका समष्टिता संपूर्ण समिष्ट है: W = V ⊕ J V. जैसा कि ऊपर दिए गए मानक सहानुभूति रूप से देखा जा सकता है, यदि R2n पर प्रत्येक सहानुभूति रूप Cn पर मानक कॉम्प्लेक्स (हर्मिटियन) आंतरिक उत्पाद के काल्पनिक भाग के लिए आइसोमोर्फिक (पहले तर्क के एंटी-लीनियर होने की परंपरा के साथ) है।
आयतन रूप
मान लीजिए ω एक n-आयामी वास्तविक सदिश समष्टि V, ω ∈ Λ2(V) पर एक वैकल्पिक द्विरेखीय रूप है। तब ω गैर-पतित है यदि और केवल यदि n सम है और ωn/2 = ω ∧ ... ∧ ω एक आयतन रूप है। n-आयामी सदिश समिष्ट V पर एक वॉल्यूम रूप n-रूप e1∗ ∧ ... ∧ en∗ का एक गैर-शून्य गुणक है जहां e1, e2, ..., en का आधार है।
पूर्व अनुभाग में परिभाषित मानक आधार के लिए, हमारे पास है
पुनः व्यवस्थित करके कोई भी लिख सकता है
लेखक विभिन्न प्रकार से ωn या (−1)n/2ωn को मानक आयतन रूप के रूप में परिभाषित करते हैं। n का एक सामयिक कारक! यह भी प्रकट हो सकता है, यह इस पर निर्भर करता है कि वैकल्पिक उत्पाद की परिभाषा में n का कारक सम्मिलित है या नहीं! या नहीं। वॉल्यूम रूप सिंपलेक्टिक सदिश समिष्ट (V, ω) पर एक अभिविन्यास (गणित) को परिभाषित करता है।
सिम्प्लिक मानचित्र
मान लीजिए कि (V, ω) और (W, ρ) सहानुभूति सदिश समष्टि हैं। फिर एक रेखीय मानचित्र f : V → W को एक सिम्प्लेक्टिक मानचित्र कहा जाता है यदि पुलबैक (विभेदक ज्यामिति) सिम्प्लेक्टिक रूप को संरक्षित करता है, यानी f∗ρ = ω, जहां पुलबैक रूप को (f∗ρ)(u, v) = ρ(f(u), f(v)) द्वारा परिभाषित किया जाता है। सिम्प्लेक्टिक मानचित्र आयतन- और अभिविन्यास-संरक्षित हैं।
सिम्प्लेक्टिक समूह
यदि V = W, तो एक सहानुभूति मानचित्र को V का रैखिक सहानुभूति परिवर्तन कहा जाता है। विशेष रूप से, इस मामले में किसी के पास ω(f(u), f(v)) = ω(u, v) है, और इसलिए रैखिक परिवर्तन f सहानुभूति रूप को संरक्षित करता है। सभी सहानुभूति परिवर्तनों का समुच्चय एक समूह (गणित) बनाता है और विशेष रूप से एक लाई समूह, जिसे सहानुभूति समूह कहा जाता है और इसे Sp(V) या कभी-कभी Sp(V, ω) द्वारा दर्शाया जाता है। आव्युह रूप में सिंपलेक्टिक परिवर्तन सिंपलेक्टिक आव्युह द्वारा दिए जाते हैं।
उपसमिष्ट
मान लीजिए कि W, V का रैखिक उपसमष्टि है। उपसमष्टि होने के लिए W के 'सहानुभूतिपूर्ण पूरक' को परिभाषित करें
इस प्रकार से सहानुभूतिपूर्ण पूरक संतुष्ट करता है:
चूंकि , ऑर्थोगोनल पूरक के विपरीत, W⊥ ∩ W को 0 होने की आवश्यकता नहीं है। हम चार मामलों को अलग करते हैं:
- यदि W⊥ ∩ W = {0} हो तो W सहानुभूतिपूर्ण है। यह सत्य है अगर और केवल अगर ω W पर गैर-अपक्षयी रूप तक सीमित है। प्रतिबंधित रूप के साथ सहानुभूति उप-समिष्ट अपने आप में सहानुभूति सदिश समिष्ट है।
- यदि W ⊆ W⊥ हो तो W समदैशिक है। यह सत्य है यदि और केवल यदि ω W पर 0 तक सीमित है। कोई भी एक-आयामी उप-समिष्ट आइसोट्रोपिक है
- यदि W 'कोइसोट्रोपिक' है W⊥ ⊆ W W कोइसोट्रोपिक है यदि और केवल यदि ω⊥ भागफल समिष्ट (रैखिक बीजगणित) W/W⊥ पर गैर-अपक्षयी रूप में उतरता है. समान रूप से W कोइसोट्रोपिक है यदि और केवल यदि W⊥ आइसोट्रोपिक है। कोई भी संहिताकरण -एक उपसमिष्ट कोइसोट्रोपिक है।
- यदि W 'लैग्रेन्जियन' है W = W⊥. उपसमिष्ट लैग्रेंजियन है यदि और केवल यदि यह आइसोट्रोपिक और कोइसोट्रोपिक दोनों है। परिमित-आयामी सदिश अंतरिक्ष में, लैग्रैन्जियन उपसमिष्ट आइसोट्रोपिक है जिसका आयाम V का आधा है। प्रत्येक आइसोट्रोपिक उपसमिष्ट को लैग्रैन्जियन तक बढ़ाया जा सकता है।
कैनोनिकल सदिश समष्टि 'R2n' का जिक्र करते हुए ऊपर,
- {x1, y1} द्वारा फैला हुआ उप-समिष्ट सहानुभूतिपूर्ण है
- {x1, x2} द्वारा फैला हुआ उपसमिष्ट समदैशिक है
- {x1, x2, ..., xn, y1} द्वारा फैला हुआ उपसमिष्ट कोइसोट्रोपिक है
- {x1, x2, ..., xn} द्वारा फैला हुआ उपसमिष्ट लैग्रेंजियन है।
हाइजेनबर्ग समूह
इस प्रकार से हाइजेनबर्ग समूह को किसी भी सहानुभूतिपूर्ण सदिश समिष्ट के लिए परिभाषित किया जा सकता है, और यह हाइजेनबर्ग समूहों के उत्पन्न होने का विशिष्ट विधि है।
किन्तु सदिश समष्टि को क्रमविनिमेय लाई समूह (जोड़ के अनुसार) के रूप में, या समकक्ष रूप से क्रमविनिमेय लाई बीजगणित के रूप में माना जा सकता है, जिसका अर्थ है नगण्य लाई ब्रैकेट। हाइजेनबर्ग समूह ऐसे क्रमविनिमेय समूह/बीजगणित का केंद्रीय विस्तार (गणित) है: सहानुभूतिपूर्ण रूप विहित कम्यूटेशन संबंधों (सीसीआर) के अनुरूप रूपांतर को परिभाषित करता है, और डार्बौक्स आधार विहित निर्देशांक से मेल खाता है - भौतिकी के संदर्भ में, गति संचालक और स्थिति संचालक है।
वास्तव में, स्टोन-वॉन न्यूमैन प्रमेय के अनुसार, सीसीआर (हाइजेनबर्ग समूह का प्रत्येक प्रतिनिधित्व) को संतुष्ट करने वाला प्रत्येक प्रतिनिधित्व इस रूप का है, या अधिक उचित रूप से मानक रूप से इकाई रूप से संयुग्मित है।
इसके अतिरिक्त, सदिश समिष्ट (दोहरे से) का समूह वलय सममित बीजगणित है, और हेइज़ेनबर्ग समूह (दोहरे का) का समूह बीजगणित वेइल बीजगणित है: कोई केंद्रीय विस्तार को परिमाणीकरण या विरूपण के अनुरूप विचार कर सकता है .
इस प्रकार से औपचारिक रूप से, क्षेत्र F पर सदिश समष्टि V का सममित बीजगणित दोहरे, Sym(V) := F[V∗] का समूह बीजगणित है, और वेइल बीजगणित (दोहरी) हाइजेनबर्ग समूह W(V) = F[H(V∗)] का समूह बीजगणित है . चूंकि समूह बीजगणित को पारित करना विरोधाभासी फ़ंक्टर है, केंद्रीय विस्तार मानचित्र H(V) → V समावेश Sym(V) → W(V) बन जाता है .
यह भी देखें
- एक सिंपलेक्टिक मैनिफ़ोल्ड प्रत्येक स्पर्शरेखा समिष्ट पर सुचारू रूप से अलग-अलग संवृत सिंपलेक्टिक रूप के साथ एक स्मूथ मैनिफोल्ड है।
- मास्लोव सूचकांक
- एक सहानुभूतिपूर्ण प्रतिनिधित्व समूह प्रतिनिधित्व है जहां प्रत्येक समूह अवयव सहानुभूति परिवर्तन के रूप में कार्य करता है।
संदर्भ
- Claude Godbillon (1969) "Géométrie différentielle et mécanique analytique", Hermann
- Abraham, Ralph; Marsden, Jerrold E. (1978). "Hamiltonian and Lagrangian Systems". Foundations of Mechanics (2nd ed.). London: Benjamin-Cummings. pp. 161–252. ISBN 0-8053-0102-X. PDF
- Paulette Libermann and Charles-Michel Marle (1987) "Symplectic Geometry and Analytical Mechanics", D. Reidel
- Jean-Marie Souriau (1997) "Structure of Dynamical Systems, A Symplectic View of Physics", Springer