अणु: Difference between revisions

From Vigyanwiki
(HISTORY)
No edit summary
 
(20 intermediate revisions by 5 users not shown)
Line 2: Line 2:
''अन्य उपयोगों के लिए, अणु (बहुविकल्पी) देखें।''  
''अन्य उपयोगों के लिए, अणु (बहुविकल्पी) देखें।''  


[[File:PTCDA AFM.jpg|thumb|[[ परमाणु बल माइक्रोस्कोपी | परमाणु बल सूक्ष्मदर्शी यंत्र]] (एएफएम) एक [[ पेरीलेनेटेट्राकारबॉक्सिलिक डायनहाइड्राइड | पेरीलेनेटेट्राकारबॉक्सिलिक डायनहाइड्राइड]] अणु की छवि, जिसमें पांच छह-कार्बन के छल्ले दिखाई दे रहे हैं।<ref>{{cite journal|doi=10.1038/ncomms8766|pmid=26178193|pmc=4518281|title=Chemical structure imaging of a single molecule by atomic force microscopy at room temperature|journal=Nature Communications|volume=6|page=7766|year=2015|last1=Iwata|first1=Kota|last2=Yamazaki|first2=Shiro|last3=Mutombo|first3=Pingo|last4=Hapala|first4=Prokop|last5=Ondráček|first5=Martin|last6=Jelínek|first6=Pavel|last7=Sugimoto|first7=Yoshiaki|bibcode= 2015NatCo...6.7766I}}</ref>]]
[[File:PTCDA AFM.jpg|thumb|[[ परमाणु बल माइक्रोस्कोपी |परमाणु बल सूक्ष्मदर्शी यंत्र]] (एएफएम) एक [[ पेरीलेनेटेट्राकारबॉक्सिलिक डायनहाइड्राइड | पेरीलेनेटेट्राकारबॉक्सिलिक डायनहाइड्राइड]] अणु की छवि, जिसमें पांच छह-कार्बन के छल्ले दिखाई दे रहे हैं।<ref>{{cite journal|doi=10.1038/ncomms8766|pmid=26178193|pmc=4518281|title=Chemical structure imaging of a single molecule by atomic force microscopy at room temperature|journal=Nature Communications|volume=6|page=7766|year=2015|last1=Iwata|first1=Kota|last2=Yamazaki|first2=Shiro|last3=Mutombo|first3=Pingo|last4=Hapala|first4=Prokop|last5=Ondráček|first5=Martin|last6=Jelínek|first6=Pavel|last7=Sugimoto|first7=Yoshiaki|bibcode= 2015NatCo...6.7766I}}</ref>]]
[[File:Pentacene on Ni(111) STM.jpg|thumb|[[ पेंटासीन | पेंटासीन]] अणुओं की एक अवलोकन टनलिंग सूक्ष्मदर्शी यंत्र , जिसमें पांच कार्बन के छल्लों की रैखिक श्रृंखलाएं होती हैं।<ref>{{cite journal|doi=10.1039/C4NR07057G|pmid=25619890|title=Pentacene on Ni(111): Room-temperature molecular packing and temperature-activated conversion to graphene|journal=Nanoscale|volume=7|issue=7|pages=3263–9|year=2015|last1=Dinca|first1=L.E.|last2=De Marchi|first2=F.|last3=MacLeod|first3=J.M.|last4=Lipton-Duffin|first4=J.|last5=Gatti|first5=R.|last6=Ma|first6=D.|last7=Perepichka|first7=D.F.|last8=Rosei|first8=F.|author-link7=Dmitrii Perepichka|bibcode= 2015Nanos...7.3263D}}</ref>]]
[[File:Pentacene on Ni(111) STM.jpg|thumb|[[ पेंटासीन | पेंटासीन]] अणुओं की एक अवलोकन टनलिंग सूक्ष्मदर्शी यंत्र , जिसमें पांच कार्बन के छल्लों की रैखिक श्रृंखलाएं होती हैं।<ref>{{cite journal|doi=10.1039/C4NR07057G|pmid=25619890|title=Pentacene on Ni(111): Room-temperature molecular packing and temperature-activated conversion to graphene|journal=Nanoscale|volume=7|issue=7|pages=3263–9|year=2015|last1=Dinca|first1=L.E.|last2=De Marchi|first2=F.|last3=MacLeod|first3=J.M.|last4=Lipton-Duffin|first4=J.|last5=Gatti|first5=R.|last6=Ma|first6=D.|last7=Perepichka|first7=D.F.|last8=Rosei|first8=F.|author-link7=Dmitrii Perepichka|bibcode= 2015Nanos...7.3263D}}</ref>]]
[[File:TOAT AFM.png|thumb|1,5,9-ट्रायोक्सो -13-एजेट्रेेेगुलिन एएफएम छवि और इसकी रासायनिक संरचना की।<ref>{{cite journal|doi=10.1038/ncomms11560|pmid=27230940|pmc=4894979|title=Mapping the electrostatic force field of single molecules from high-resolution scanning probe images|journal=Nature Communications|volume=7|pages=11560|year=2016|last1=Hapala|first1=Prokop|last2=Švec|first2=Martin|last3=Stetsovych|first3=Oleksandr|last4=Van Der Heijden|first4=Nadine J.|last5=Ondráček|first5=Martin|last6=Van Der Lit|first6=Joost|last7=Mutombo|first7=Pingo|last8=Swart|first8=Ingmar|last9=Jelínek|first9=Pavel|bibcode=2016NatCo...711560H}}</ref>]]
[[File:TOAT AFM.png|thumb|1,5,9-ट्रायोक्सो -13-एजेट्रेेेगुलिन एएफएम छवि और इसकी रासायनिक संरचना की।<ref>{{cite journal|doi=10.1038/ncomms11560|pmid=27230940|pmc=4894979|title=Mapping the electrostatic force field of single molecules from high-resolution scanning probe images|journal=Nature Communications|volume=7|pages=11560|year=2016|last1=Hapala|first1=Prokop|last2=Švec|first2=Martin|last3=Stetsovych|first3=Oleksandr|last4=Van Der Heijden|first4=Nadine J.|last5=Ondráček|first5=Martin|last6=Van Der Lit|first6=Joost|last7=Mutombo|first7=Pingo|last8=Swart|first8=Ingmar|last9=Jelínek|first9=Pavel|bibcode=2016NatCo...711560H}}</ref>]]
एक ''अणु'' दो या दो से अधिक [[ परमाणु |परमाणु]]ओं का एक समूह होता है जो आकर्षक बलों द्वारा एक साथ जुडा होता है जिसे [[ रासायनिक बंध | रासायनिक बंध]]कहा जाता है; संदर्भ के आधार पर, शब्द में आयन सम्मिलित हो सकते हैं या नहीं भी हो सकते हैं जो इस मानदंड को पूरा करते हैं।<ref name="iupac">{{GoldBookRef| title=Molecule|file=M04002|accessdate=23 February 2016}}</ref><ref>{{cite book| author= Ebbin, Darrell D.| title= General Chemistry |edition=3rd| date= 1990| publisher= [[Houghton Mifflin Co.]]| location= Boston| isbn= 978-0-395-43302-7}}</ref><ref>{{cite book| author= Brown, T.L. |author2=Kenneth C. Kemp |author3=Theodore L. Brown |author4=Harold Eugene LeMay |author5=Bruce Edward Bursten |title= Chemistry – the Central Science | url= https://archive.org/details/studentlectureno00theo | url-access= registration |edition=9th| date= 2003| publisher= [[Prentice Hall]]| location= New Jersey| isbn= 978-0-13-066997-1}}</ref><ref>{{cite book| last= Chang| first= Raymond| title= Chemistry | url= https://archive.org/details/chemistry00chan_0| url-access= registration|edition=6th| date= 1998| publisher= [[McGraw Hill]]| location= New York| isbn= 978-0-07-115221-1}}</ref><ref>{{cite book| author= Zumdahl, Steven S.| title= Chemistry |edition=4th| date= 1997| publisher= Houghton Mifflin| location= Boston| isbn= 978-0-669-41794-4}}</ref> क्वांटम भौतिकी, कार्बनिक रसायन विज्ञान और जैव रसायन मे आयनों से विभेदन को हटा दिया जाता है और बहुपरमाणुक आयनों के संदर्भ मे प्रायः अणु का उपयोग किया जाता है।
'''''अणु''''' दो या दो से अधिक [[ परमाणु |परमाणु]]ओं का एक समूह होता है जो आकर्षक बलों द्वारा एक साथ जुडा होता है जिसे [[ रासायनिक बंध | रासायनिक बंध]] कहा जाता है। संदर्भ के आधार पर, शब्द में आयन सम्मिलित हो सकते हैं या नहीं भी हो सकते हैं जो इस मानदंड को पूरा करते हैं।<ref name="iupac">{{GoldBookRef| title=Molecule|file=M04002|accessdate=23 February 2016}}</ref><ref>{{cite book| author= Ebbin, Darrell D.| title= General Chemistry |edition=3rd| date= 1990| publisher= [[Houghton Mifflin Co.]]| location= Boston| isbn= 978-0-395-43302-7}}</ref><ref>{{cite book| author= Brown, T.L. |author2=Kenneth C. Kemp |author3=Theodore L. Brown |author4=Harold Eugene LeMay |author5=Bruce Edward Bursten |title= Chemistry – the Central Science | url= https://archive.org/details/studentlectureno00theo | url-access= registration |edition=9th| date= 2003| publisher= [[Prentice Hall]]| location= New Jersey| isbn= 978-0-13-066997-1}}</ref><ref>{{cite book| last= Chang| first= Raymond| title= Chemistry | url= https://archive.org/details/chemistry00chan_0| url-access= registration|edition=6th| date= 1998| publisher= [[McGraw Hill]]| location= New York| isbn= 978-0-07-115221-1}}</ref><ref>{{cite book| author= Zumdahl, Steven S.| title= Chemistry |edition=4th| date= 1997| publisher= Houghton Mifflin| location= Boston| isbn= 978-0-669-41794-4}}</ref> क्वांटम भौतिकी, कार्बनिक रसायन विज्ञान और जैव रसायन मे आयनों से भेद को हटा दिया जाता है और बहुपरमाणुक आयनों के संदर्भ मे जिक्र करते समय प्रायः अणु का उपयोग किया जाता है।


एक अणु [[ होमोन्यूक्लियर |समानभिकीय]] हो सकता है, अर्थात इसमें [[ रासायनिक तत्व | रासायनिक तत्व]] के परमाणु होते हैं, उदाहरण के लिए [[ ऑक्सीजन |ऑक्सीजन]] अणु में दो परमाणु (O .)<sub>2</sub>); या यह[[ हेटेरोन्यूक्लियर | विषमनभिकीय]] हो सकता है, एक [[ रासायनिक यौगिक | रासायनिक यौगिक]] जो एक से अधिक तत्वों से बना होता है, जैसे पानी (दो हाइड्रोजन परमाणु और एक ऑक्सीजन परमाणु(H<sub>2O</sub>)गैसों के गतिज सिद्धांत में, अणु शब्द का प्रयोग प्रायः किसी भी गैसीय [[ कण | कण]] के लिए किया जाता है, चाहे उसकी संरचना कुछ भी हो। यह इस आवश्यकता को शिथिल करता है कि एक अणु में दो या दो से अधिक परमाणु होते हैं, क्योंकि उत्कृष्ट गैसें विशिष्ट परमाणु होती हैं।<ref>{{cite book |last=Chandra |first=Sulekh |title=Comprehensive Inorganic Chemistry |date=2005 |publisher=New Age Publishers |isbn=978-81-224-1512-4}}</ref> [[ हाइड्रोजन बंध |हाइड्रोजन बंध]] या [[ आयोनिक बंध | आयोनिक बंध,]] जैसे गैर-सहसंयोजक, अन्तःक्रियाओ से जुड़े मिश्रित परमाणुओ को आमतौर पर एकल अणु नहीं माना जाता है।<ref>{{cite encyclopedia|title=Molecule|encyclopedia=[[Encyclopædia Britannica]]|date=22 January 2016|url=http://global.britannica.com/science/molecule|access-date=23 February 2016|archive-date=3 May 2020|archive-url=https://web.archive.org/web/20200503044729/https://global.britannica.com/science/molecule|url-status=live}}</ref>
एक अणु [[ होमोन्यूक्लियर |समनाभिकीय]] हो सकता है, अर्थात इसमें [[ रासायनिक तत्व | रासायनिक तत्व]] के परमाणु होते हैं, उदाहरण के लिए [[ ऑक्सीजन |ऑक्सीजन (O<sub>2</sub>]]) अणु में दो परमाणु<sub>,</sub> या यह[[ हेटेरोन्यूक्लियर | विषमनाभिकीय]] हो सकता है, एक [[ रासायनिक यौगिक |रासायनिक यौगिक]] जो एक से अधिक तत्वों से बना होता है, जैसे पानी(H<sub>2</sub>O) मे दो हाइड्रोजन परमाणु और एक ऑक्सीजन परमाणु होता है। गैसों के गतिज सिद्धांत में, अणु शब्द का प्रयोग प्रायः इसकी सरंचना पर ध्यान दिए बिना किसी भी गैसीय [[ कण |कण]] के लिए करते है। यह इस अपेक्षा को शिथिल करता है कि एक अणु में दो या दो से अधिक परमाणु होते हैं, क्योंकि उत्कृष्ट गैसें विशिष्ट परमाणु होती हैं।<ref>{{cite book |last=Chandra |first=Sulekh |title=Comprehensive Inorganic Chemistry |date=2005 |publisher=New Age Publishers |isbn=978-81-224-1512-4}}</ref> [[ हाइड्रोजन बंध |हाइड्रोजन बंध]] या [[ आयोनिक बंध | आयोनिक बंध,]] जैसे गैर-सहसंयोजक, अन्तःक्रियाओ से जुड़े मिश्रित परमाणुओ को सामान्यतः एकल अणु नहीं माना जाता है।<ref>{{cite encyclopedia|title=Molecule|encyclopedia=[[Encyclopædia Britannica]]|date=22 January 2016|url=http://global.britannica.com/science/molecule|access-date=23 February 2016|archive-date=3 May 2020|archive-url=https://web.archive.org/web/20200503044729/https://global.britannica.com/science/molecule|url-status=live}}</ref>


अणुओं के समान अवधारणाओं पर प्राचीन काल से चर्चा की गई है, लेकिन अणुओं की प्रकृति और उनके बंधनों की आधुनिक जांच 17 वीं शताब्दी में प्रारंभ हुई। रॉबर्ट बॉयल, [[ एमेडियो अवोगाद्रो |एमेडियो अवोगाद्रो]], [[ जीन-बैप्टिस्ट पेरिन |जीन-बैप्टिस्ट पेरिन]] और [[ लिनुस पॉलिंग |लिनुस पॉलिंग]] जैसे वैज्ञानिकों द्वारा समय के साथ परिष्कृत, अणुओं के अध्ययन को आज [[ आणविक भौतिकी | आणविक भौतिकी]] या आणविक रसायन विज्ञान के रूप में जाना जाता है।
अणुओं के समान अवधारणाओं पर प्राचीन काल से चर्चा की गई है, लेकिन अणुओं की प्रकृति और उनके बंधनों की आधुनिक अन्वेषण सत्तरहवीं शताब्दी में प्रारंभ हुआ। रॉबर्ट बॉयल, [[ एमेडियो अवोगाद्रो |एमेडियो अवोगाद्रो]],[[ जीन-बैप्टिस्ट पेरिन |जीन-बैप्टिस्ट पेरिन]] और [[ लिनुस पॉलिंग |लिनुस पॉलिंग]] जैसे वैज्ञानिकों द्वारा समय के साथ परिष्कृत, अणुओं के अध्ययन को आज[[ आणविक भौतिकी | आणविक भौतिकी]] या आणविक रसायन विज्ञान के रूप में जाना जाता है।


== व्युत्पत्ति ==
==व्युत्पत्ति==
[[ मेरिएम वेबस्टर ]] और [[ ऑनलाइन व्युत्पत्ति शब्दकोश ]] के अनुसार, अणु शब्द [[ लैटिन ]] मोल (इकाई) या द्रव्यमान की छोटी इकाई से निकला है। यह शब्द फ्रेंच से लिया गया है{{linktext|molécule}}(1678), [[ नया लैटिन ]] से{{linktext|molecula}}, लैटिन का छोटा{{linktext|moles}}द्रव्यमान, बाधा। यह शब्द, जो अठारहवीं शताब्दी के अंत तक केवल लैटिन रूप में प्रयोग किया जाता था, रेने डेसकार्टेस द्वारा दर्शन के कार्यों में उपयोग किए जाने के बाद लोकप्रिय हो गया।<ref>{{OEtymD|molecule|accessdate=2016-02-22}}</ref><ref>{{cite dictionary |title=molecule |dictionary=[[Merriam-Webster]] |url=http://www.merriam-webster.com/dictionary/molecule |access-date=22 February 2016 |archive-url=https://web.archive.org/web/20210224223305/https://www.merriam-webster.com/dictionary/molecule |archive-date=24 February 2021 |url-status=live}}</ref>
[[ मेरिएम वेबस्टर | मेरिएम वेबस्टर]] और [[ ऑनलाइन व्युत्पत्ति शब्दकोश | सक्रिय व्युत्पत्ति शब्दकोश]] के अनुसार, <nowiki>''अणु''</nowiki> शब्द [[ लैटिन | लैटिन]] मोल (इकाई) या द्रव्यमान की छोटी इकाई से व्युत्पन्न हुआ है। यह शब्द ''फ्रेंच मॉलिक्यूल (1678)'' से लिया गया है, जो नए शब्द ''लैटिन मॉलिक्यूला'' का लैटिन मोल <nowiki>''द्रव्यमान झिल्ली''</nowiki> से छोटा है। यह शब्द, जो अठारहवीं शताब्दी के अंत तक केवल लैटिन रूप में प्रयोग किया जाता था, रेने डेसकार्टेस द्वारा तत्वज्ञान के कार्यों में उपयोग किए जाने के बाद प्रचलित हो गया।<ref>{{OEtymD|molecule|accessdate=2016-02-22}}</ref><ref>{{cite dictionary |title=molecule |dictionary=[[Merriam-Webster]] |url=http://www.merriam-webster.com/dictionary/molecule |access-date=22 February 2016 |archive-url=https://web.archive.org/web/20210224223305/https://www.merriam-webster.com/dictionary/molecule |archive-date=24 February 2021 |url-status=live}}</ref>
==इतिहास==
{{Main|आणविक सिद्धांत का इतिहास }}
अणु की परिभाषा विकसित हुई है, क्योंकि अणुओं की संरचना के ज्ञान मे वृद्धि हुई है। लेकिन पहले की परिभाषाएँ कम सटीक थीं, अणुओं को शुद्ध रासायनिक पदार्थों के सबसे छोटे कणों के रूप मे परिभाषित किया गया था जो अभी भी अपनी संरचना और रासायनिक गुणों को बरकरार रखते है।<ref>[http://antoine.frostburg.edu/chem/senese/101/glossary/m.shtml#molecule Molecule Definition] {{Webarchive|url=https://web.archive.org/web/20141013143129/http://antoine.frostburg.edu/chem/senese/101/glossary/m.shtml#molecule|date=13 October 2014}} ([[Frostburg State University]])</ref> यह परिभाषा प्रायः भंग हो जाती है क्योंकि सामान्य अनुभव में कई पदार्थ, जैसे कि चट्टानें, नमक और[[ धातु | धातु,]] रासायनिक रूप से बंधे परमाणुओं या [[ आयन |आयनों]] के बड़े क्रिस्टलीय संजाल से बने होते हैं, लेकिन असंतत अणु से नहीं बने होते हैं।


अणुओं की आधुनिक अवधारणा को पूर्व-वैज्ञानिक और ग्रीक दार्शनिकों जैसे[[ ल्यूसिपस | ल्यूसिपस]] और[[ डेमोक्रिटस | डेमोक्रिटस]] से पता लगाया जा सकता है, जिन्होंने तर्क दिया कि सारा ब्रह्मांड परमाणुओं और शून्यता से बना हुआ है। लगभग 450 ई.पू. मे एम्पेडोकल्स ने  मौलिक तत्वों (अग्नि(△), पृथ्वी, वायु, पानी और तत्वों को परस्पर क्रिया करने की अनुमति देने वाले आकर्षण और प्रतिकर्षण के <nowiki>''बलों''</nowiki> की कल्पना की है।


== इतिहास ==
एक पाँचवाँ तत्व, अविनाशी सर्वोत्कृष्ट [[ ईथर (शास्त्रीय तत्व) | ईथर (शास्त्रीय तत्व)]] , को उत्तम पिंडों का मूलभूत निर्माण खंड माना जाता था। ल्यूसिपस और एम्पेडोकल्स का दृष्टिकोण, एथर के साथ, [[ अरस्तू | अरस्तू]] द्वारा स्वीकार किया गया था और मध्ययुगीन और पुनर्जागरण यूरोप को पारित कर दिया गया था।
{{Main|History of molecular theory}}
अणु की परिभाषा विकसित हुई है क्योंकि अणुओं की संरचना का ज्ञान बढ़ा है। पहले की परिभाषाएँ कम सटीक थीं, अणुओं को कणों की सबसे छोटी सूची के रूप में परिभाषित करना # शुद्ध [[ रासायनिक पदार्थ ]]ों के अणु जो अभी भी अपने रासायनिक यौगिक और रासायनिक गुणों को बनाए रखते हैं।<ref>[http://antoine.frostburg.edu/chem/senese/101/glossary/m.shtml#molecule Molecule Definition] {{Webarchive|url=https://web.archive.org/web/20141013143129/http://antoine.frostburg.edu/chem/senese/101/glossary/m.shtml#molecule|date=13 October 2014}} ([[Frostburg State University]])</ref> यह परिभाषा अक्सर टूट जाती है क्योंकि सामान्य अनुभव में कई पदार्थ, जैसे कि चट्टान (भूविज्ञान), नमक (रसायन विज्ञान), और [[ धातु ]], रासायनिक बंधन परमाणुओं या [[ आयन ]]ों के बड़े क्रिस्टलीय नेटवर्क से बने होते हैं, लेकिन असतत अणुओं से नहीं बने होते हैं।


अणुओं की आधुनिक अवधारणा को पूर्व-वैज्ञानिक और ग्रीक दार्शनिकों जैसे [[ ल्यूसिपस ]] और [[ डेमोक्रिटस ]] की ओर देखा जा सकता है, जिन्होंने तर्क दिया कि सभी ब्रह्मांड परमाणु सिद्धांत से बना है। लगभग 450 ईसा पूर्व [[ एम्पिदोक्लेस ]] ने [[ शास्त्रीय तत्व ]] की कल्पना की (अग्नि (शास्त्रीय तत्व) ([[File:Fire_symbol_(alchemical).svg|20x20px), [[ पृथ्वी (शास्त्रीय तत्व) ]] ([[File:Earth_symbol_(alchemical).svg|20x20px), [[ वायु (शास्त्रीय तत्व) ]] ([[File:Air_symbol_(alchemical).svg|20x20px), और पानी (शास्त्रीय तत्व) ([[File:Water_symbol_(alchemical).svg|20x20px)) और आकर्षण और प्रतिकर्षण की ताकतें तत्वों को बातचीत करने की अनुमति देती हैं।
हालांकि, अधिक यथार्थपूर्ण तरीके से, बंधित परमाणुओं के समुच्चय या इकाइयों की अवधारणा, अर्थात <nowiki>''अणु''</nowiki>, ''रॉबर्ट बॉयल की 1661 की परिकल्पना'' के लिए इसकी उत्पत्ति का पता लगाती हैं, उनके प्रसिद्ध ग्रंथ <nowiki>''द स्केप्टिकल काइमिस्ट में''</nowiki>, वह पदार्थ कणों के समूहो से और वह रासायनिक परिवर्तन समूह की पुनर्व्यवस्था के परिणामस्वरूप बने होते है। बॉयल ने तर्क दिया कि पदार्थ के मूल तत्वों में विभिन्न प्रकार और कणों के आकार सम्मिलित होते हैं, जिन्हें कणिकाये कहा जाता है, जो स्वयं को समूहों में व्यवस्थित करने में सक्षम थे। 1789 में, विलियम हिगिंस (रसायनज्ञ) ने उन विचारों को प्रकाशित किया जिन्हें उन्होंने मौलिक कणों का संयोजन कहा था, जिसने संयोजकता बांड की अवधारणा को पूर्वाभास दिया। उदाहरण के लिए, हिगिंस के अनुसार, यदि ऑक्सीजन के अंतिम कण और नाइट्रोजन के अंतिम कण के बीच का बल 6 था, और इसी तरह मौलिक कणों के अन्य संयोजनों के लिए, बल की सामर्थ्य को तदनुसार विभाजित किया जाएगा। एमेडिओ आवोगार्डों ने <nowiki>''अणु''</nowiki> शब्द बनाया। <ref>{{cite journal |author=Seymour H. Mauskopf |date=1969 |title=The Atomic Structural Theories of Ampère and Gaudin: Molecular Speculation and Avogadro's Hypothesis |journal=Isis |volume=60 |issue=1 |pages=61–74 |doi=10.1086/350449 |jstor=229022 |s2cid=143759556}}</ref> उनका 1811 का पेपर 'निकायों के प्राथमिक अणुओं के सापेक्ष द्रव्यमान का निर्धारण पर निबंध'  वह वास्तव मे,अर्थात पार्टिंगटन के ''<nowiki/>'ए शॉर्ट हिस्ट्री ऑफ केमिस्ट्री''' के अनुसार ,किː


एक पाँचवाँ तत्व, अविनाशी सर्वोत्कृष्ट [[ ईथर (शास्त्रीय तत्व) ]], को स्वर्गीय पिंडों का मूलभूत निर्माण खंड माना जाता था। ल्यूसिपस और एम्पेडोकल्स का दृष्टिकोण, एथर के साथ, [[ अरस्तू ]] द्वारा स्वीकार किया गया था और मध्ययुगीन और पुनर्जागरण यूरोप को पारित कर दिया गया था।
गैसों के सबसे छोटे कण आवश्यक रूप से सरल परमाणु नहीं होते है,लेकिन इन परमाणुओ की एक निश्चित संख्या से बने होते है जो एक एकल '''अणु''' बनाने के लिए आकर्षण से एकजुट होते है।


अधिक ठोस तरीके से, हालांकि, बंधुआ परमाणुओं के समुच्चय या इकाइयों की अवधारणा, यानी अणु, रॉबर्ट बॉयल की 1661 की परिकल्पना के लिए अपनी उत्पत्ति का पता लगाते हैं, उनके प्रसिद्ध ग्रंथ द स्केप्टिकल चिमिस्ट में, वह पदार्थ कणों के समूहों और उस रासायनिक परिवर्तन से बना है। क्लस्टर के पुनर्व्यवस्था के परिणाम। बॉयल ने तर्क दिया कि पदार्थ के मूल तत्वों में विभिन्न प्रकार और कणों के आकार होते हैं, जिन्हें कॉर्पसकल कहा जाता है, जो स्वयं को समूहों में व्यवस्थित करने में सक्षम थे। 1789 में, विलियम हिगिंस (रसायनज्ञ) ने उन विचारों को प्रकाशित किया जिन्हें उन्होंने परम कणों के संयोजन कहा था, जिसने संयोजकता बांड की अवधारणा को पूर्वाभास दिया। यदि, उदाहरण के लिए, हिगिंस के अनुसार, ऑक्सीजन के अंतिम कण और नाइट्रोजन के अंतिम कण के बीच का बल 6 था, तो बल की ताकत को तदनुसार विभाजित किया जाएगा, और इसी तरह परम कणों के अन्य संयोजनों के लिए।
इन अवधारणाओं के समन्वय में, 1833 में फ्रांसीसी रसायनज्ञ [[ मार्क एंटोनी अगस्टे गौडीन | मार्क एंटोनी अगस्टे गौडीन]] ने <nowiki>''आयतन आरेख''</nowiki> का उपयोग करके परमाणु भार के संबंध मे  अवोगाद्रो की परिकल्पना का एक स्पष्ट विवरण प्रस्तुत किया,<ref name=":0">{{cite journal |author=Seymour H. Mauskopf |date=1969 |title=The Atomic Structural Theories of Ampère and Gaudin: Molecular Speculation and Avogadro's Hypothesis |journal=Isis |volume=60 |issue=1 |pages=61–74 |doi=10.1086/350449 |jstor=229022 |s2cid=143759556}}</ref>  जो स्पष्ट रूप से अर्ध-सही आणविक ज्यामिति, दोनों को दर्शाता है, जैसे कि एक रैखिक पानी के अणु, और सही आणविक सूत्र H<sub>2</sub>O,
[[File:Gaudins-volume-diagrams.jpg|center|thumb|350x350px|मार्क एंटोनी अगस्टे गौडिन के गैस चरण में अणुओं के आयतन आरेख (1833)]]
1917 में, लिनुस पॉलिंग नाम का एक अज्ञात अमेरिकी स्नातक रसायन यांत्रिक कृषि कॉलेज में [[ डाल्टन मॉडल |(डाल्टन मॉडल]] ) डाल्टन हुक-एंड-आई बॉन्डिंग विधि सीख रहा था, जो उस समय परमाणुओं के बीच बंधन का मुख्य विवरण था। हालाँकि, पॉलिंग इस पद्धति से संतुष्ट नहीं थे और उन्होंने एक नई विधि के लिए क्वांटम भौतिकी के नए उभरते क्षेत्र की ओर देखा। 1926 में, फ्रांसीसी भौतिक विज्ञानी [[ जॉन पेरिन |जीन पेरिन]] को अणुओं के अस्तित्व को साबित करने के लिए भौतिकी में नोबेल पुरस्कार मिला। उन्होंने तीन अलग-अलग तरीकों का उपयोग करके अवोगाद्रो की संख्या की गणना की, जिसमें सभी तरल चरण प्रणालियों को सम्मिलित किया गया था। सबसे पहले, उन्होंने एक गैंबोज साबुन की तरह रासायनिक पायस का इस्तेमाल किया, दूसरा [[ ब्राउनियन गति | ब्राउनियन गति]] पर प्रायोगिक कार्य करके, और तीसरा तरल चरण में आइंस्टीन के कण घूर्णन के सिद्धांत की पुष्टि की ।<ref>Perrin, Jean, B. (1926). [https://www.nobelprize.org/prizes/physics/1926/perrin/lecture/ Discontinuous Structure of Matter] {{Webarchive|url=https://web.archive.org/web/20190529115507/https://www.nobelprize.org/prizes/physics/1926/perrin/lecture/ |date=29 May 2019 }}, Nobel Lecture, December 11.</ref>


Amedeo Avogadro ने अणु शब्द बनाया।<ref name="ley196606">{{Cite magazine |last=Ley |first=Willy |date=June 1966 |title=The Re-Designed Solar System |url=https://archive.org/stream/Galaxy_v24n05_1966-06#page/n93/mode/2up |department=For Your Information |magazine=Galaxy Science Fiction |pages=94–106}}</ref> उनका 1811 का पेपर निबंध, निकायों के प्राथमिक अणुओं के सापेक्ष द्रव्यमान का निर्धारण पर, वह अनिवार्य रूप से कहता है, यानी जेआर पार्टिंगटन के ए शॉर्ट हिस्ट्री ऑफ केमिस्ट्री के अनुसार, कि:<ref>{{cite journal |last1=Avogadro |first1=Amedeo |date=1811 |title=Masses of the Elementary Molecules of Bodies |url=http://web.lemoyne.edu/~giunta/AVOGADRO.HTML |journal=Journal de Physique |volume=73 |pages=58–76 |access-date=25 August 2022 |archive-date=12 May 2019 |archive-url=https://web.archive.org/web/20190512182624/http://web.lemoyne.edu/~giunta/avogadro.html |url-status=live }}</ref>{{quote|The smallest particles of gases are not necessarily simple atoms, but are made up of a certain number of these atoms united by attraction to form a single '''molecule'''.}}इन अवधारणाओं के समन्वय में, 1833 में फ्रांसीसी रसायनज्ञ [[ मार्क एंटोनी अगस्टे गौडीन ]] ने अवोगाद्रो की परिकल्पना का एक स्पष्ट विवरण प्रस्तुत किया,<ref>{{cite journal |author=Seymour H. Mauskopf |date=1969 |title=The Atomic Structural Theories of Ampère and Gaudin: Molecular Speculation and Avogadro's Hypothesis |journal=Isis |volume=60 |issue=1 |pages=61–74 |doi=10.1086/350449 |jstor=229022 |s2cid=143759556}}</ref> परमाणु भार के संबंध में, आयतन आरेखों का उपयोग करके, जो स्पष्ट रूप से अर्ध-सही आणविक ज्यामिति, जैसे कि एक रैखिक पानी के अणु, और सही आणविक सूत्र, जैसे H दोनों को स्पष्ट रूप से दिखाते हैं।<sub>2</sub>ओ:
1927 में, भौतिकविदों [[ फ़्रिट्ज़ लंदन | फ़्रिट्ज़ लंदन]] और वाल्टर हिटलर ने हाइड्रोजन अणु के संतृप्त, गैर-गतिशील आकर्षण और प्रतिकर्षण, अर्थात विनिमय बलों के साथ संबोधित करने के लिए नए क्वांटम यांत्रिकी को लागू किया। इस समस्या का उनका संयोजकता बांध निष्पादन,उनके संयुक्त पत्र में था,<ref>{{cite journal |last1=Heitler |first1=Walter |last2=London |first2=Fritz |date=1927 |title=Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik |journal=Zeitschrift für Physik |volume=44 |issue=6–7 |pages=455–472 |bibcode=1927ZPhy...44..455H |doi=10.1007/BF01397394 |s2cid=119739102}}</ref> यह एतिहासिक था जिसमें यह रसायन विज्ञान को क्वांटम यांत्रिकी के तहत लाया गया था।  उनके काम से पॉलिंग प्रभावित हुआ था, जिन्होंने अभी-अभी डॉक्टर की उपाधि प्राप्त की थी और एक [[ गुगेनहाइम फैलोशिप |गुगेनहाइम फैलोशिप]] पर ज्यूरिख मे हिटलर और लंदन का दौरा किया था।
[[File:Gaudins-volume-diagrams.jpg|center|thumb|350x350px|मार्क एंटोनी अगस्टे गौडिन के गैस चरण में अणुओं के आयतन आरेख (1833)]]
1917 में, लिनुस पॉलिंग नाम का एक अज्ञात अमेरिकी स्नातक रसायन इंजीनियर ओरेगॉन कृषि कॉलेज में [[ डाल्टन मॉडल ]] | डाल्टन हुक-एंड-आई बॉन्डिंग विधि सीख रहा था, जो उस समय परमाणुओं के बीच बंधन का मुख्य विवरण था। हालाँकि, पॉलिंग इस पद्धति से संतुष्ट नहीं थे और उन्होंने एक नई विधि के लिए क्वांटम भौतिकी के नए उभरते क्षेत्र की ओर देखा। 1926 में, फ्रांसीसी भौतिक विज्ञानी [[ जॉन पेरिन ]] को अणुओं के अस्तित्व को साबित करने के लिए भौतिकी में नोबेल पुरस्कार मिला। उन्होंने तीन अलग-अलग तरीकों का उपयोग करके अवोगाद्रो की संख्या की गणना करके ऐसा किया, जिसमें सभी तरल चरण प्रणालियों को शामिल किया गया था। पहला, उन्होंने गैंबोज साबुन की तरह इमल्शन का इस्तेमाल किया, दूसरा [[ ब्राउनियन गति ]] पर प्रायोगिक कार्य करके, और तीसरा तरल चरण में आइंस्टीन के कण रोटेशन के सिद्धांत की पुष्टि करके।<ref>Perrin, Jean, B. (1926). [https://www.nobelprize.org/prizes/physics/1926/perrin/lecture/ Discontinuous Structure of Matter] {{Webarchive|url=https://web.archive.org/web/20190529115507/https://www.nobelprize.org/prizes/physics/1926/perrin/lecture/ |date=29 May 2019 }}, Nobel Lecture, December 11.</ref>
1927 में, भौतिकविदों [[ फ़्रिट्ज़ लंदन ]] और वाल्टर हिटलर ने हाइड्रोजन अणु के संतृप्त, गैर-गतिशील आकर्षण और प्रतिकर्षण, यानी विनिमय बलों के साथ सौदे के लिए नए क्वांटम यांत्रिकी को लागू किया। इस समस्या का उनके संयोजकता बांड उपचार, उनके संयुक्त पत्र में,<ref>{{cite journal |last1=Heitler |first1=Walter |last2=London |first2=Fritz |date=1927 |title=Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik |journal=Zeitschrift für Physik |volume=44 |issue=6–7 |pages=455–472 |bibcode=1927ZPhy...44..455H |doi=10.1007/BF01397394 |s2cid=119739102}}</ref> यह एक मील का पत्थर था जिसमें यह रसायन विज्ञान को क्वांटम यांत्रिकी के तहत लाया। उनका काम पॉलिंग पर एक प्रभाव था, जिन्होंने अभी-अभी डॉक्टरेट की उपाधि प्राप्त की थी और एक [[ गुगेनहाइम फैलोशिप ]] पर ज्यूरिख में हिटलर और लंदन का दौरा किया था।


इसके बाद, 1931 में, हिटलर और लंदन के काम पर और लुईस के प्रसिद्ध लेख में पाए गए सिद्धांतों पर, पॉलिंग ने अपना महत्वपूर्ण लेख द नेचर ऑफ द केमिकल बॉन्ड प्रकाशित किया।<ref>{{cite journal |last1=Pauling |first1=Linus |date=1931 |title=The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules |journal=J. Am. Chem. Soc. |volume=53 |issue=4 |pages=1367–1400 |doi=10.1021/ja01355a027}}</ref> जिसमें उन्होंने अणुओं के गुणों और संरचनाओं की गणना करने के लिए क्वांटम यांत्रिकी का उपयोग किया, जैसे बांड के बीच कोण और बांड के बारे में रोटेशन। इन अवधारणाओं पर, पॉलिंग ने CH . जैसे अणुओं में बंधों को ध्यान में रखते हुए [[ संकरण सिद्धांत ]] विकसित किया<sub>4</sub>, जिसमें चार sp³ संकरित कक्षक [[ हाइड्रोजन ]] के 1s कक्षक द्वारा अतिव्याप्त होते हैं, जिससे चार सिग्मा आबंध|सिग्मा (σ) आबंध प्राप्त होते हैं। चार बंधन समान लंबाई और ताकत के होते हैं, जो नीचे दिखाए गए अनुसार आणविक संरचना उत्पन्न करते हैं:
इसके बाद, 1931 में, हिटलर और लंदन के काम पर और लुईस के प्रसिद्ध लेख में पाए गए सिद्धांतों पर निर्माण करते हुए, पॉलिंग ने अपना महत्वपूर्ण लेख <nowiki>''</nowiki>''द नेचर ऑफ द केमिकल बॉन्ड<nowiki>''</nowiki>'' प्रकाशित किया।<ref>{{cite journal |last1=Pauling |first1=Linus |date=1931 |title=The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules |journal=J. Am. Chem. Soc. |volume=53 |issue=4 |pages=1367–1400 |doi=10.1021/ja01355a027}}</ref> जिसमें उन्होंने अणुओं के गुणों और संरचनाओं की गणना करने के लिए क्वांटम यांत्रिकी का उपयोग किया, जैसे बांध  के बीच कोण और बंधन के चारों ओर घूर्णन। इन अवधारणाओं पर, पॉलिंग ने CH<sub>4</sub> जैसे अणुओं में बंधों को ध्यान में रखते हुए [[ संकरण सिद्धांत | संकरण सिद्धांत]] विकसित किया, जिसमें चार sp³ संकरित कक्षीय[[ हाइड्रोजन | हाइड्रोजन]] के 1s कक्षीय द्वारा अतिव्याप्त की जाती हैं, जिससे चार सिग्मा (σ) बंधन प्राप्त होते हैं। चार बंधन समान लंबाई और सामर्थ्य के होते हैं, जो नीचे दिखाए गए अनुसार एक आणविक संरचना उत्पन्न करते हैं:
[[File:Ch4_hybridization.svg|center|thumb|200x200px|हाइड्रोजन के ऑर्बिटल्स को ओवरलैप करने वाले हाइब्रिड ऑर्बिटल्स की एक योजनाबद्ध प्रस्तुति]]
[[File:Ch4_hybridization.svg|center|thumb|200x200px|हाइड्रोजन के कक्षाओ को अतिव्याप्त करने वाले संकर कक्षाओ की एक योजनाबद्ध प्रस्तुति]]




== आण्विक विज्ञान ==
==आण्विक विज्ञान==


अणुओं के विज्ञान को आणविक रसायन विज्ञान या आणविक भौतिकी कहा जाता है, यह इस बात पर निर्भर करता है कि ध्यान रसायन विज्ञान पर है या भौतिकी पर। आणविक रसायन विज्ञान अणुओं के बीच बातचीत को नियंत्रित करने वाले कानूनों से संबंधित है, जिसके परिणामस्वरूप रासायनिक बंधों का निर्माण और टूटना होता है, जबकि आणविक भौतिकी उनकी संरचना और गुणों को नियंत्रित करने वाले कानूनों से संबंधित है। व्यवहार में, हालांकि, यह भेद अस्पष्ट है। आणविक विज्ञान में, एक अणु में दो या दो से अधिक परमाणुओं से बनी एक स्थिर प्रणाली ([[ बाध्य अवस्था ]]) होती है। बहुपरमाणुक आयनों को कभी-कभी विद्युत आवेशित अणुओं के रूप में उपयोगी माना जा सकता है। अस्थिर अणु शब्द का उपयोग बहुत प्रतिक्रियाशीलता (रसायन विज्ञान) प्रजातियों के लिए किया जाता है, अर्थात, इलेक्ट्रॉनों और [[ परमाणु नाभिक ]] की अल्पकालिक असेंबली (रेजोनेंस (रसायन विज्ञान)), जैसे कि रेडिकल (रसायन विज्ञान), आणविक आयन, Rydberg अणु, संक्रमण अवस्था, वैन डेर बोस-आइंस्टीन कंडेनसेट के रूप में वाल्स बॉन्डिंग, या परमाणुओं के टकराने की प्रणाली।
अणुओं के विज्ञान को आणविक रसायन विज्ञान या आणविक भौतिकी कहा जाता है, यह इस बात पर निर्भर करता है कि ध्यान रसायन विज्ञान पर है या भौतिकी पर। आणविक रसायन विज्ञान अणुओं के बीच परस्पर क्रिया को नियंत्रित करने वाले कानूनों से संबंधित है, जिसके परिणामस्वरूप रासायनिक बंधों का निर्माण और विघटन होता है, जबकि आणविक भौतिकी उनकी संरचना और गुणों को नियंत्रित करने वाले नियमों से संबंधित है। व्यवहार में, हालांकि, यह भेद अस्पष्ट है। आणविक विज्ञान में, एक अणु में दो या दो से अधिक परमाणुओं से बनी एक स्थिर प्रणाली ([[ बाध्य अवस्था | बाध्य अवस्था]] ) होती है। बहुपरमाणुक आयनों को कभी-कभी विद्युत आवेशित अणुओं के रूप में उपयोगी समझा जा सकता है। अस्थिर अणु शब्द का उपयोग बहुत प्रतिक्रियाशीलता वर्ग के लिए किया जाता है, अर्थात, इलेक्ट्रॉनों और [[ परमाणु नाभिक | परमाणु नाभिकों]] के अल्पकालिक संयोजन(प्रतिध्वनि), जैसे कि कण, आणविक आयन, रिडबर्ग अणु, संक्रमण अवस्थाये, वान्डरवॉलस सम्मिश्र, या बोस-आइंस्टीन संघनन के रूप मे परमाणुओं के टकराने की प्रणाली।  


== व्यापकता ==
==व्यापकता==
{{Unreferenced section|date=August 2022}}
{{Unreferenced section|date=August 2022}}
पदार्थ के घटक के रूप में अणु आम हैं। वे अधिकांश महासागरों और वायुमंडल को भी बनाते हैं। अधिकांश कार्बनिक पदार्थ अणु होते हैं। जीवन के पदार्थ अणु हैं, उदा। प्रोटीन, अमीनो एसिड जिनसे वे बने हैं, न्यूक्लिक एसिड (डीएनए और आरएनए), शर्करा, कार्बोहाइड्रेट, वसा और विटामिन। पोषक तत्व खनिज आम तौर पर आयनिक यौगिक होते हैं, इस प्रकार वे अणु नहीं होते हैं, उदा। लौह सल्फेट।
पदार्थ के घटक के रूप में अणु सामान्य हैं। वे अधिकांश महासागरों और वायुमंडल को भी बनाते हैं,और अधिकांश कार्बनिक पदार्थ अणु होते हैं। जीवन के पदार्थ अणु हैं, जैसे  प्रोटीन, अमीनो एसिड जिनसे वे बने हैं, न्यूक्लिक एसिड (डीएनए और आरएनए), शर्करा, कार्बोहाइड्रेट, वसा और विटामिन। पोषक तत्व खनिज आम तौर पर आयनिक यौगिक होते हैं, इस प्रकार वे अणु नहीं होते हैं, जैसे आयरन सल्फेट।
 
हालाँकि, पृथ्वी पर अधिकांश प्रचलित ठोस पदार्थ आंशिक रूप से या पूरी तरह से क्रिस्टल या आयनिक यौगिकों से बने होते हैं, जो अणुओं से नहीं बने होते हैं। इनमें वे सभी खनिज सम्मिलित हैं जो पृथ्वी के पदार्थ, रेत, मिट्टी, कंकड़, चट्टानें, शिलाखंड, [[ क्रस्ट (भूविज्ञान) |आधारशिला]], पिघल हुआ आंतरिक भाग और [[ पृथ्वी कोर | पृथ्वी कोर]] का निर्माण करते हैं। इन सभी में कई रासायनिक बंधन होते हैं, लेकिन ये पहचानने योग्य अणुओं से नहीं बने होते हैं।


हालाँकि, पृथ्वी पर अधिकांश परिचित ठोस पदार्थ आंशिक रूप से या पूरी तरह से क्रिस्टल या आयनिक यौगिकों से बने होते हैं, जो अणुओं से नहीं बने होते हैं। इनमें वे सभी खनिज शामिल हैं जो पृथ्वी के पदार्थ, रेत, मिट्टी, कंकड़, चट्टानें, शिलाखंड, [[ क्रस्ट (भूविज्ञान) ]], [[ मेंटल (भूविज्ञान) ]], और [[ पृथ्वी कोर ]] का निर्माण करते हैं। इन सभी में कई रासायनिक बंधन होते हैं, लेकिन ये पहचानने योग्य अणुओं से नहीं बने होते हैं।
नमक के लिए और न ही [[ नेटवर्क ठोस | सहसयोजक क्रिस्टल]] के लिए कोई विशिष्ट अणु परिभाषित नहीं किया जा सकता है, हालांकि ये प्रायः पुनरावर्ती वाली इकाई कोशिकाओं से बने होते हैं जो या तो एक समतल में विस्तारित होते हैं, जैसे [[ ग्राफीन | ग्राफीन,]] त्रि-आयामी[[ हीरा | हीरा,]] क्वार्ट्ज, सोडियम क्लोराइड। पुनरावर्ती वाली इकाई-कोशिका-संरचना का विषय अधिकांश धातुओं के लिए भी है जो धातु बंधन के साथ संघनित चरण हैं। इस प्रकार ठोस धातुएं अणुओं से नहीं बनती हैं। चश्मे में, जो ठोस होते हैं जो एक [[ कांच |कांच]] की अव्यवस्थित अवस्था में विद्यमान होते हैं, परमाणुओं को रासायनिक बंधनों द्वारा एक साथ रखा जाता है, जिसमें किसी भी निश्चित अणु की उपस्थिति नहीं होती है, न ही पुनरावर्ती वाली इकाई-कोशिका-संरचना की कोई नियमितता होती है जो लवण, सहसंयोजक क्रिस्टल, और धातुओ की विशेषता होती है।


नमक के लिए कोई विशिष्ट अणु परिभाषित नहीं किया जा सकता है और न ही [[ नेटवर्क ठोस ]] के लिए, हालांकि ये अक्सर दोहराई जाने वाली इकाई कोशिकाओं से बने होते हैं जो या तो एक विमान (गणित) में विस्तारित होते हैं, उदा। [[ ग्राफीन ]]; या त्रि-आयामी उदा। [[ हीरा ]], क्वार्ट्ज, सोडियम क्लोराइड। दोहराई जाने वाली इकाई-कोशिका-संरचना का विषय अधिकांश धातुओं के लिए भी है जो धातु बंधन के साथ संघनित चरण हैं। इस प्रकार ठोस धातुएं अणुओं से नहीं बनती हैं। चश्मे में, जो ठोस होते हैं जो एक [[ कांच ]] की अव्यवस्थित अवस्था में मौजूद होते हैं, परमाणुओं को रासायनिक बंधनों द्वारा एक साथ रखा जाता है, जिसमें किसी भी निश्चित अणु की उपस्थिति नहीं होती है, न ही दोहराई जाने वाली इकाई-सेलुलर-संरचना की कोई नियमितता जो लवण, सहसंयोजक क्रिस्टल, और धातु।
==बंधन==
अणु सामान्यतः सहसंयोजक बंधन द्वारा एक साथ जुड़े होते हैं। कई गैर-धातु तत्व पर्यावरण में केवल अणुओं के रूप में या तो यौगिकों में या समानभिकीय अणुओ के रूप में सम्मिलित होते हैं, न कि मुक्त परमाणुओं के रूप में: उदाहरण के लिए, हाइड्रोजन।


== बंधन ==
जबकि कुछ लोग कहते हैं कि धात्विक ठोस को धात्विक बंधन द्वारा एक साथ रखा गया एक विशाल अणु माना जा सकता है,<ref>{{cite book |last1=Harry |first1=B. Gray |title=Chemical Bonds: An Introduction to Atomic and Molecular Structure |pages=210–211 |url=https://authors.library.caltech.edu/105209/15/TR000574_06_chapter-6.pdf |access-date=22 November 2021 |archive-date=31 March 2021 |archive-url=https://web.archive.org/web/20210331062040/https://authors.library.caltech.edu/105209/15/TR000574_06_chapter-6.pdf |url-status=live }}</ref> अन्य इंगित करते हैं कि धातुएं अणुओं की तुलना में बहुत अलग तरीके से व्यवहार करती हैं।<ref>{{cite web |title=How many gold atoms make gold metal? |url=https://phys.org/news/2015-04-gold-atoms-metal.html |website=phys.org |access-date=22 November 2021 |language=en |archive-date=30 October 2020 |archive-url=https://web.archive.org/web/20201030202803/https://phys.org/news/2015-04-gold-atoms-metal.html |url-status=live }}</ref>
अणु आमतौर पर सहसंयोजक बंधन द्वारा एक साथ होते हैं। कई गैर-धातु तत्व पर्यावरण में केवल अणुओं के रूप में या तो यौगिकों में या होमोन्यूक्लियर अणुओं के रूप में मौजूद होते हैं, न कि मुक्त परमाणुओं के रूप में: उदाहरण के लिए, हाइड्रोजन।


जबकि कुछ लोग कहते हैं कि धात्विक क्रिस्टल को धात्विक बंधन द्वारा एक साथ रखा गया एक विशाल अणु माना जा सकता है,<ref>{{cite book |last1=Harry |first1=B. Gray |title=Chemical Bonds: An Introduction to Atomic and Molecular Structure |pages=210–211 |url=https://authors.library.caltech.edu/105209/15/TR000574_06_chapter-6.pdf |access-date=22 November 2021 |archive-date=31 March 2021 |archive-url=https://web.archive.org/web/20210331062040/https://authors.library.caltech.edu/105209/15/TR000574_06_chapter-6.pdf |url-status=live }}</ref> अन्य बताते हैं कि धातुएं अणुओं की तुलना में बहुत अलग तरीके से व्यवहार करती हैं।<ref>{{cite web |title=How many gold atoms make gold metal? |url=https://phys.org/news/2015-04-gold-atoms-metal.html |website=phys.org |access-date=22 November 2021 |language=en |archive-date=30 October 2020 |archive-url=https://web.archive.org/web/20201030202803/https://phys.org/news/2015-04-gold-atoms-metal.html |url-status=live }}</ref>


===सहसंयोजक===
[[File:Covalent bond hydrogen.svg|thumb|right|H . बनाने वाला एक सहसंयोजक बंधन<sub>2</sub> (दाएं) जहां दो [[ हाइड्रोजन परमाणु | हाइड्रोजन परमाणु]] दो इलेक्ट्रॉनों को साझा करते हैं]]
{{main|सहसंयोजन बंधन }}


=== सहसंयोजक ===
एक सहसंयोजक बंधन एक रासायनिक बंधन है जिसमें परमाणुओं के बीच इलेक्ट्रॉन जोड़े को साझा करना सम्मिलित है। इन इलेक्ट्रॉन जोड़े को साझा जोड़े या बंधन जोड़े कहा जाता है, और परमाणुओं के बीच आकर्षक और प्रतिकारक बलों के स्थिर संतुलन, जब वे [[ इलेक्ट्रॉन जोड़ी | इलेक्ट्रॉन जोड़ी]] साझा करते हैं, उसको सहसंयोजक बंधन कहा जाता है।<ref>{{cite book| author2= Brad Williamson| author3= Robin J. Heyden| last= Campbell| first= Neil A.| title= Biology: Exploring Life| url= http://www.phschool.com/el_marketing.html| access-date= 2012-02-05| year= 2006| publisher= [[Pearson Prentice Hall]]| location= Boston| isbn= 978-0-13-250882-7| archive-date= 2 November 2014| archive-url= https://web.archive.org/web/20141102041816/http://www.phschool.com/el_marketing.html| url-status= live}}</ref>
[[File:Covalent bond hydrogen.svg|thumb|right|H . बनाने वाला एक सहसंयोजक बंधन<sub>2</sub> (दाएं) जहां दो [[ हाइड्रोजन परमाणु ]] दो इलेक्ट्रॉनों को साझा करते हैं]]
{{main|Covalent bonding}}
एक सहसंयोजक बंधन एक रासायनिक बंधन है जिसमें परमाणुओं के बीच इलेक्ट्रॉन जोड़े को साझा करना शामिल है। इन इलेक्ट्रॉन जोड़े को साझा जोड़े या बंधन जोड़े कहा जाता है, और परमाणुओं के बीच आकर्षक और प्रतिकारक बलों के स्थिर संतुलन, जब वे [[ इलेक्ट्रॉन जोड़ी ]] साझा करते हैं, को सहसंयोजक बंधन कहा जाता है।<ref>{{cite book| author2= Brad Williamson| author3= Robin J. Heyden| last= Campbell| first= Neil A.| title= Biology: Exploring Life| url= http://www.phschool.com/el_marketing.html| access-date= 2012-02-05| year= 2006| publisher= [[Pearson Prentice Hall]]| location= Boston| isbn= 978-0-13-250882-7| archive-date= 2 November 2014| archive-url= https://web.archive.org/web/20141102041816/http://www.phschool.com/el_marketing.html| url-status= live}}</ref>




=== आयनिक ===
===आयनिक===
{{main|Ionic bonding}} [[File:NaF.gif|thumb|left|सोडियम और [[ एक अधातु तत्त्व ]] सोडियम फ्लोराइड बनाने के लिए रेडॉक्स प्रतिक्रिया से गुजरते हैं। सोडियम अपने बाहरी [[ इलेक्ट्रॉन ]] को एक स्थिर इलेक्ट्रॉन विन्यास देने के लिए खो देता है, और यह इलेक्ट्रॉन फ्लोरीन परमाणु में [[ एक्ज़ोथिर्मिक ]] रूप से प्रवेश करता है।]]
{{main|आयनिक बंधन }} [[File:NaF.gif|thumb|left|सोडियम और [[ एक अधातु तत्त्व | एक अधातु तत्त्व]] सोडियम फ्लोराइड बनाने के लिए रेडॉक्स प्रतिक्रिया से गुजरते हैं। सोडियम अपने बाहरी [[ इलेक्ट्रॉन | इलेक्ट्रॉन]] को एक स्थिर इलेक्ट्रॉन विन्यास देने के लिए खो देता है, और यह इलेक्ट्रॉन फ्लोरीन परमाणु में [[ एक्ज़ोथिर्मिक | एक्ज़ोथिर्मिक]] रूप से प्रवेश करता है।]]
आयनिक बंधन एक प्रकार का रासायनिक बंधन है जिसमें विपरीत रूप से चार्ज किए गए आयनों के बीच [[ इलेक्ट्रोस्टैटिक ]] आकर्षण शामिल होता है, और [[ आयनिक यौगिक ]]ों में होने वाली प्राथमिक बातचीत होती है। आयन ऐसे परमाणु होते हैं जिन्होंने एक या एक से अधिक इलेक्ट्रॉनों को खो दिया है (जिन्हें धनायन कहा जाता है) और परमाणु जिन्होंने एक या एक से अधिक इलेक्ट्रॉन प्राप्त किए हैं (जिन्हें आयन कहा जाता है)।<ref>{{Cite book|url=https://books.google.com/books?id=6VdROgeQ5M8C&q=ionic+bonding+-wikipedia&pg=PA7|title=Elements of Metallurgy and Engineering Alloys|last=Campbell|first=Flake C.|year=2008|publisher=[[ASM International]]|isbn=978-1-61503-058-3|language=en|access-date=27 October 2020|archive-date=31 March 2021|archive-url=https://web.archive.org/web/20210331062041/https://books.google.com/books?id=6VdROgeQ5M8C&q=ionic+bonding+-wikipedia&pg=PA7|url-status=live}}</ref> [[ सहसंयोजक बंधन ]] के विपरीत इलेक्ट्रॉनों के इस हस्तांतरण को इलेक्ट्रोवेलेंस कहा जाता है। सबसे सरल मामले में, धनायन एक धातु परमाणु है और आयन एक [[ अधातु ]] परमाणु है, लेकिन ये आयन अधिक जटिल प्रकृति के हो सकते हैं, उदा। NH . जैसे आणविक आयन<sub>4</sub><sup>+</sup> या SO<sub>4</sub><sup>2−</sup>. सामान्य तापमान और दबाव पर, आयनिक बंधन ज्यादातर अलग-अलग पहचान योग्य अणुओं के बिना ठोस (या कभी-कभी तरल पदार्थ) बनाता है, लेकिन ऐसी सामग्रियों का वाष्पीकरण/उच्च बनाने की क्रिया अलग अणुओं का उत्पादन करती है जहां बांडों को सहसंयोजक के बजाय आयनिक माना जाने के लिए इलेक्ट्रॉनों को अभी भी पूरी तरह से स्थानांतरित किया जाता है। .
आयनिक बंधन एक प्रकार का रासायनिक बंधन है जिसमें विपरीत रूप से आवेशित किए गए आयनों के बीच [[ इलेक्ट्रोस्टैटिक | स्थिरवैद्युत]] आकर्षण सम्मिलित होता है, और [[ आयनिक यौगिक | आयनिक यौगिको]] में होने वाली प्राथमिक परस्पर क्रिया होती है। आयन ऐसे परमाणु होते हैं जिन्होंने एक या एक से अधिक इलेक्ट्रॉनों को खो दिया है (जिन्हें धनायन कहा जाता है) और परमाणु जिन्होंने एक या एक से अधिक इलेक्ट्रॉन प्राप्त किए हैं (जिन्हें आयन कहा जाता है)।<ref>{{Cite book|url=https://books.google.com/books?id=6VdROgeQ5M8C&q=ionic+bonding+-wikipedia&pg=PA7|title=Elements of Metallurgy and Engineering Alloys|last=Campbell|first=Flake C.|year=2008|publisher=[[ASM International]]|isbn=978-1-61503-058-3|language=en|access-date=27 October 2020|archive-date=31 March 2021|archive-url=https://web.archive.org/web/20210331062041/https://books.google.com/books?id=6VdROgeQ5M8C&q=ionic+bonding+-wikipedia&pg=PA7|url-status=live}}</ref> [[ सहसंयोजक बंधन | सहसंयोजक बंधन]] के विपरीत इलेक्ट्रॉनों के इस हस्तांतरण को विद्युत संयोजकता कहा जाता है। सबसे साधारण स्थिति में, धनायन एक धातु परमाणु है और आयन एक [[ अधातु | अधातु]] परमाणु है, लेकिन ये आयन अधिक जटिल प्रकृति के हो सकते हैं, जैसे  NH <sub>4</sub><sup>+</sup> या SO<sub>4</sub><sup>2</sup>. जैसे आणविक आयन है, सामान्य तापमान और दबाव पर, आयनिक बंधन ज्यादातर अलग-अलग पहचान योग्य अणुओं के बिना ठोस या कभी-कभी तरल पदार्थ बनाता है, लेकिन ऐसे पदार्थों का वाष्पीकरण/उच्च बनाने की क्रिया अलग अणुओं का उत्पादन करती है जहां बांधों को सहसंयोजक के बजाय आयनिक माना जाने के लिए इलेक्ट्रॉनों को अभी भी पूरी तरह से स्थानांतरित किया जाता है। .
{{clear}}
{{clear}}




== आणविक आकार ==


अधिकांश अणु नग्न आंखों से देखे जाने के लिए बहुत छोटे होते हैं, हालांकि कई पॉलिमर के अणु [[ स्थूल ]] आकार तक पहुंच सकते हैं, जिसमें [[ डीएनए ]] जैसे [[ जैव बहुलक ]] भी शामिल हैं। आमतौर पर कार्बनिक संश्लेषण के लिए बिल्डिंग ब्लॉक्स के रूप में उपयोग किए जाने वाले अणुओं में कुछ [[ एंगस्ट्रॉम ]] (Å) से लेकर कई दर्जन या मीटर के लगभग एक अरबवें हिस्से का आयाम होता है। एकल अणुओं को आमतौर पर प्रकाश द्वारा नहीं देखा जा सकता है (जैसा कि ऊपर उल्लेख किया गया है), लेकिन छोटे अणुओं और यहां तक ​​कि व्यक्तिगत परमाणुओं की रूपरेखा को कुछ परिस्थितियों में परमाणु बल माइक्रोस्कोप के उपयोग से पता लगाया जा सकता है। कुछ सबसे बड़े अणु [[ मैक्रो मोलेक्यूल ]]्स या सुपरमोलेक्यूल्स हैं।


सबसे छोटा अणु द्विपरमाणुक हाइड्रोजन (H .) है<sub>2</sub>), 0.74 की बांड लंबाई के साथ।<ref>{{cite book| author= Roger L. DeKock| author2= Harry B. Gray| author3= Harry B. Gray| title= Chemical structure and bonding| url= https://books.google.com/books?id=q77rPHP5fWMC&pg=PA199| date= 1989| publisher= University Science Books| isbn= 978-0-935702-61-3| page= 199| access-date= 27 October 2020| archive-date= 31 March 2021| archive-url= https://web.archive.org/web/20210331062042/https://books.google.com/books?id=q77rPHP5fWMC&pg=PA199| url-status= live}}</ref>
==आणविक आकार==
प्रभावी आणविक त्रिज्या वह आकार है जो एक अणु समाधान में प्रदर्शित करता है।<ref>{{cite journal
अधिकांश अणु नग्न आंखों से देखे जाने के लिए बहुत छोटे होते हैं, हालांकि कई बहुलक के अणु [[ स्थूल | स्थूल]] आकार तक पहुंच सकते हैं, जिसमें [[ डीएनए | डीएनए]] जैसे [[ जैव बहुलक | जैव बहुलक]] भी सम्मिलित हैं। सामान्यतः पर कार्बनिक संश्लेषण के लिए खंड निर्माण के रूप में उपयोग किए जाने वाले अणुओं में कुछ [[ एंगस्ट्रॉम | एंगस्ट्रॉम]] (Å) से लेकर कई दर्जन  मीटर के लगभग या एक अरबवें हिस्से का आयाम होता है। एकल अणुओं को सामान्यतः पर प्रकाश द्वारा नहीं देखा जा सकता है (जैसा कि ऊपर उल्लेख किया गया है), लेकिन छोटे अणुओं और यहां तक ​​कि व्यक्तिगत परमाणुओं की रूपरेखा को कुछ परिस्थितियों में परमाणु बल सूक्ष्मदर्शी के उपयोग से पता लगाया जा सकता है, कि कुछ सबसे बड़े अणु वृहत अणु या अतिअणु  हैं।
 
सबसे छोटा अणु द्विपरमाणुक हाइड्रोजन (H<sub>2</sub>)है, जिसकी बांध लंबाई 0.74 है।<ref>{{cite book| author= Roger L. DeKock| author2= Harry B. Gray| author3= Harry B. Gray| title= Chemical structure and bonding| url= https://books.google.com/books?id=q77rPHP5fWMC&pg=PA199| date= 1989| publisher= University Science Books| isbn= 978-0-935702-61-3| page= 199| access-date= 27 October 2020| archive-date= 31 March 2021| archive-url= https://web.archive.org/web/20210331062042/https://books.google.com/books?id=q77rPHP5fWMC&pg=PA199| url-status= live}}</ref> प्रभावी आणविक त्रिज्या वह आकार है जो एक अणु समाधान में प्रदर्शित करता है।<ref>{{cite journal
|author=Chang RL |author2=Deen WM |author3=Robertson CR |author4=Brenner BM
|author=Chang RL |author2=Deen WM |author3=Robertson CR |author4=Brenner BM
|title=Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions
|title=Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions
Line 92: Line 94:
|pmc=1334749
|pmc=1334749
|bibcode= 1975BpJ....15..887C}}</ref>
|bibcode= 1975BpJ....15..887C}}</ref>
विभिन्न पदार्थों के लिए पारगम्यता की तालिका में उदाहरण हैं।
विभिन्न पदार्थों के लिए पारगम्यता की तालिका में उदाहरण हैं।


== आणविक सूत्र ==
==आणविक सूत्र==


=== रासायनिक सूत्र प्रकार ===
===रासायनिक सूत्र प्रकार===
{{Main|Chemical formula}}
{{Main|रासायनिक सूत्र }}
एक अणु के लिए [[ रासायनिक सूत्र ]] रासायनिक तत्व प्रतीकों, संख्याओं, और कभी-कभी अन्य प्रतीकों, जैसे कोष्ठक, डैश, कोष्ठक, और प्लस (+) और माइनस (-) संकेतों की एक पंक्ति का उपयोग करता है। ये प्रतीकों की एक टाइपोग्राफिक लाइन तक सीमित हैं, जिसमें सबस्क्रिप्ट और सुपरस्क्रिप्ट शामिल हो सकते हैं।
एक अणु के लिए [[ रासायनिक सूत्र | रासायनिक सूत्र]] रासायनिक तत्व प्रतीकों, संख्याओं, और कभी-कभी अन्य प्रतीकों, जैसे कोष्ठक, डैश, कोष्ठक, और प्लस (+) और माइनस (-) संकेतों की एक पंक्ति का उपयोग करता है। ये प्रतीकों की एक मुद्रण संबंधी लाइन तक सीमित हैं, जिसमें अधोलेख और अधिलेख सम्मिलित हो सकते हैं।


एक यौगिक का [[ अनुभवजन्य सूत्र ]] एक बहुत ही सरल प्रकार का रासायनिक सूत्र है।<ref>{{Cite book|url=https://books.google.com/books?id=6wUmteTIc18C&q=empirical+formula&pg=PA288|title=The Practice of Chemistry|last1=Wink|first1=Donald J.|last2=Fetzer-Gislason|first2=Sharon|last3=McNicholas|first3=Sheila|year=2003|publisher=Macmillan|isbn=978-0-7167-4871-7|language=en|access-date=27 October 2020|archive-date=10 April 2022|archive-url=https://web.archive.org/web/20220410070618/https://books.google.com/books?id=6wUmteTIc18C&q=empirical+formula&pg=PA288|url-status=live}}</ref> यह इसे बनाने वाले रासायनिक तत्वों का सबसे सरल [[ पूर्णांक ]] अनुपात है।<ref>{{Cite web|url=http://www.chemteam.info/Mole/EmpiricalFormula.html|title=ChemTeam: Empirical Formula|website=www.chemteam.info|access-date=2017-04-16|archive-date=19 January 2021|archive-url=https://web.archive.org/web/20210119114516/https://www.chemteam.info/Mole/EmpiricalFormula.html|url-status=live}}</ref> उदाहरण के लिए, पानी हमेशा हाइड्रोजन से ऑक्सीजन परमाणुओं के 2:1 अनुपात से बना होता है, और [[ इथेनॉल ]] (एथिल अल्कोहल) हमेशा 2:6:1 के अनुपात में कार्बन, हाइड्रोजन और ऑक्सीजन से बना होता है। हालांकि, यह विशिष्ट रूप से अणु के प्रकार को निर्धारित नहीं करता है - उदाहरण के लिए, [[ डाइमिथाइल ईथर ]] में इथेनॉल के समान अनुपात होता है। विभिन्न व्यवस्थाओं में समान परमाणुओं वाले अणु [[ समावयवी ]] कहलाते हैं। इसके अलावा, उदाहरण के लिए, कार्बोहाइड्रेट का अनुपात समान होता है (कार्बन: हाइड्रोजन: ऑक्सीजन = 1:2:1) (और इस प्रकार एक ही अनुभवजन्य सूत्र) लेकिन अणु में परमाणुओं की कुल संख्या अलग होती है।
एक यौगिक का [[ अनुभवजन्य सूत्र | अनुभवजन्य सूत्र]] एक बहुत ही सरल प्रकार का रासायनिक सूत्र है।<ref>{{Cite book|url=https://books.google.com/books?id=6wUmteTIc18C&q=empirical+formula&pg=PA288|title=The Practice of Chemistry|last1=Wink|first1=Donald J.|last2=Fetzer-Gislason|first2=Sharon|last3=McNicholas|first3=Sheila|year=2003|publisher=Macmillan|isbn=978-0-7167-4871-7|language=en|access-date=27 October 2020|archive-date=10 April 2022|archive-url=https://web.archive.org/web/20220410070618/https://books.google.com/books?id=6wUmteTIc18C&q=empirical+formula&pg=PA288|url-status=live}}</ref> यह इसे बनाने वाले रासायनिक तत्वों का सबसे सरल [[ पूर्णांक | पूर्णांक]] अनुपात है।<ref>{{Cite web|url=http://www.chemteam.info/Mole/EmpiricalFormula.html|title=ChemTeam: Empirical Formula|website=www.chemteam.info|access-date=2017-04-16|archive-date=19 January 2021|archive-url=https://web.archive.org/web/20210119114516/https://www.chemteam.info/Mole/EmpiricalFormula.html|url-status=live}}</ref> उदाहरण के लिए, पानी हमेशा हाइड्रोजन से ऑक्सीजन परमाणुओं के 2:1 अनुपात से बना होता है, और [[ इथेनॉल | इथेनॉल]] (एथिल अल्कोहल) हमेशा 2:6:1 के अनुपात में कार्बन, हाइड्रोजन और ऑक्सीजन से बना होता है। हालांकि, यह विशिष्ट रूप से अणु के प्रकार को निर्धारित नहीं करता है - उदाहरण के लिए, [[ डाइमिथाइल ईथर | डाइमिथाइल ईथर]] में इथेनॉल के समान अनुपात होता है। विभिन्न व्यवस्थाओं में समान परमाणुओं वाले अणु [[ समावयवी | समावयवी]] कहलाते हैं। इसके अलावा, उदाहरण के लिए, कार्बोहाइड्रेट का अनुपात समान होता है (कार्बन: हाइड्रोजन: ऑक्सीजन = 1:2:1) (और इस प्रकार एक ही अनुभवजन्य सूत्र) लेकिन अणु में परमाणुओं की कुल संख्या अलग होती है।


आणविक सूत्र अणु की रचना करने वाले परमाणुओं की सटीक संख्या को दर्शाता है और इसलिए विभिन्न अणुओं की विशेषता है। हालाँकि अलग-अलग अणु होते हुए भी अलग-अलग आइसोमर्स की परमाणु संरचना समान हो सकती है।
आणविक सूत्र अणु की रचना करने वाले परमाणुओं की सटीक संख्या को दर्शाता है और इसलिए विभिन्न अणुओं की विशेषता है। हालाँकि अलग-अलग अणु होते हुए भी अलग-अलग समावयवी की परमाणु संरचना समान हो सकती है।


अनुभवजन्य सूत्र अक्सर आणविक सूत्र के समान होता है लेकिन हमेशा नहीं। उदाहरण के लिए, [[ एसिटिलीन ]] अणु का आणविक सूत्र C . होता है<sub>2</sub>H<sub>2</sub>, लेकिन तत्वों का सरलतम पूर्णांक अनुपात CH है।
अनुभवजन्य सूत्र प्रायः आणविक सूत्र के समान होता है लेकिन सदैव नहीं होते है। उदाहरण के लिए, [[ एसिटिलीन | एसिटिलीन]] अणु का आणविक सूत्र C<sub>2</sub>H<sub>2</sub> होता है, लेकिन तत्वों का सरलतम पूर्णांक अनुपात CH है।


आणविक द्रव्यमान की गणना रासायनिक सूत्र से की जा सकती है और इसे एक तटस्थ कार्बन -12 के द्रव्यमान के 1/12 के बराबर पारंपरिक परमाणु द्रव्यमान इकाइयों में व्यक्त किया जाता है (<sup>12</sup>[[ कार्बन ]] समस्थानिक) परमाणु। नेटवर्क सॉलिड के लिए, स्टोइकोमेट्रिक गणनाओं में [[ सूत्र इकाई ]] शब्द का उपयोग किया जाता है।
आणविक द्रव्यमान की गणना रासायनिक सूत्र से की जा सकती है और इसे एक उदासीन कार्बन-12 (<sup>12</sup>[[ कार्बन | कार्बन]] समस्थानिक) परमाणु के द्रव्यमान के 1/12 के बराबर परंपरागत परमाणु द्रव्यमान इकाइयों में व्यक्त किया जाता है। ठोस संजाल के लिए, तत्वयोगमितीय गणनाओं में [[ सूत्र इकाई | सूत्र इकाई]] शब्द का उपयोग किया जाता है।
{{Clear}}
{{Clear}}




=== संरचनात्मक सूत्र ===
===संरचनात्मक सूत्र===
[[File:Atisane3.png|thumb|right|upright=1.8|त्रि-आयामी अंतरिक्ष (बाएं और केंद्र) और 2 डी ज्यामितीय मॉडल (दाएं) टेरपेनोइड अणु एटिसेन का प्रतिनिधित्व करते हैं]]
[[File:Atisane3.png|thumb|right|upright=1.8|त्रि-आयामी अंतरिक्ष (बाएं और केंद्र) और 2 डी ज्यामितीय मॉडल (दाएं) टेरपेनोइड अणु एटिसेन का प्रतिनिधित्व करते हैं]]
{{Main|Structural formula}}
{{Main|संरचना सूत्र}}
एक जटिल 3-आयामी संरचना वाले अणुओं के लिए, विशेष रूप से चार अलग-अलग पदार्थों से बंधे परमाणुओं को शामिल करते हुए, एक साधारण आणविक सूत्र या यहां तक ​​​​कि अर्ध-संरचनात्मक रासायनिक सूत्र अणु को पूरी तरह से निर्दिष्ट करने के लिए पर्याप्त नहीं हो सकता है। इस मामले में, एक ग्राफिकल प्रकार के सूत्र की आवश्यकता हो सकती है जिसे संरचनात्मक सूत्र कहा जाता है। संरचनात्मक सूत्रों को बदले में एक-आयामी रासायनिक नाम के साथ दर्शाया जा सकता है, लेकिन ऐसे [[ रासायनिक नामकरण ]] के लिए कई शब्दों और शब्दों की आवश्यकता होती है जो रासायनिक सूत्रों का हिस्सा नहीं होते हैं।
एक जटिल त्रि-आयामी संरचना वाले अणुओं के लिए, विशेष रूप से चार अलग-अलग पदार्थों से बंधे परमाणुओं को सम्मिलित करते हुए, एक साधारण आणविक सूत्र या यहां तक ​​​​कि अर्ध-संरचनात्मक रासायनिक सूत्र अणु को पूरी तरह से निर्दिष्ट करने के लिए पर्याप्त नहीं हो सकता है। इस स्थिति में, एक चित्रात्मक प्रकार के सूत्र की आवश्यकता हो सकती है जिसे संरचनात्मक सूत्र कहा जाता है। संरचनात्मक सूत्रों को एक-आयामी रासायनिक नाम के साथ दर्शाया जा सकता है, लेकिन ऐसे [[ रासायनिक नामकरण | रासायनिक नामकरण]] के लिए कई शब्दों और शर्तों की आवश्यकता होती है जो रासायनिक सूत्रों का हिस्सा नहीं होते हैं।
{{Clear}}
{{Clear}}




== आण्विक ज्यामिति ==
==आण्विक ज्यामिति==
{{Main|Molecular geometry}}
{{Main|आण्विक ज्यामिति}}


[[File:Cyanostar STM.png|thumb|left|upright|एक साइनोस्टार [[ डेनड्रीमर ]] अणु की संरचना और स्कैनिंग टनलिंग माइक्रोस्कोपी छवि।<ref>{{cite journal|doi=10.1039/C4CC03725A|pmid=25080328|title=Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals|journal=Chemical Communications|volume=50|issue=69|pages=9827–30|year=2014|last1=Hirsch|first1=Brandon E.|last2=Lee|first2=Semin|last3=Qiao|first3=Bo|last4=Chen|first4=Chun-Hsing|last5=McDonald|first5=Kevin P.|last6=Tait|first6=Steven L.|last7=Flood|first7=Amar H.|url=https://zenodo.org/record/889879|access-date=20 April 2018|archive-date=31 March 2021|archive-url=https://web.archive.org/web/20210331062049/https://zenodo.org/record/889879|url-status=live}}</ref>]]
[[File:Cyanostar STM.png|thumb|left|upright|एक साइनोस्टार [[ डेनड्रीमर | डेनड्रीमर]] अणु की संरचना और स्कैनिंग टनलिंग माइक्रोस्कोपी छवि।<ref>{{cite journal|doi=10.1039/C4CC03725A|pmid=25080328|title=Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals|journal=Chemical Communications|volume=50|issue=69|pages=9827–30|year=2014|last1=Hirsch|first1=Brandon E.|last2=Lee|first2=Semin|last3=Qiao|first3=Bo|last4=Chen|first4=Chun-Hsing|last5=McDonald|first5=Kevin P.|last6=Tait|first6=Steven L.|last7=Flood|first7=Amar H.|url=https://zenodo.org/record/889879|access-date=20 April 2018|archive-date=31 March 2021|archive-url=https://web.archive.org/web/20210331062049/https://zenodo.org/record/889879|url-status=live}}</ref>]]
अणुओं में [[ यांत्रिक संतुलन ]] ज्यामिति-बंध लंबाई और कोण- निश्चित होते हैं, जिसके बारे में वे कंपन और घूर्णी गतियों के माध्यम से लगातार दोलन करते हैं। एक शुद्ध पदार्थ समान औसत ज्यामितीय संरचना वाले अणुओं से बना होता है। रासायनिक सूत्र और अणु की संरचना दो महत्वपूर्ण कारक हैं जो इसके गुणों को निर्धारित करते हैं, विशेष रूप से इसकी प्रतिक्रियाशीलता (रसायन विज्ञान)। [[ आइसोमरों ]] एक रासायनिक सूत्र साझा करते हैं लेकिन आम तौर पर उनकी विभिन्न संरचनाओं के कारण बहुत भिन्न गुण होते हैं। स्टीरियोइसोमर्स, एक विशेष प्रकार के आइसोमर में बहुत समान भौतिक-रासायनिक गुण हो सकते हैं और एक ही समय में विभिन्न जैव रसायन गतिविधियाँ हो सकती हैं।
अणुओं में [[ यांत्रिक संतुलन | यांत्रिक संतुलन]] ज्यामिति-बंध लंबाई और कोण- निश्चित होते हैं, जिसके बारे में वे कंपन और घूर्णी गतियों के माध्यम से लगातार दोलन करते हैं। एक शुद्ध पदार्थ समान औसत ज्यामितीय संरचना वाले अणुओं से बना होता है। रासायनिक सूत्र और अणु की संरचना दो महत्वपूर्ण कारक हैं जो इसके गुणों को निर्धारित करते हैं, विशेष रूप से इसकी प्रतिक्रियाशीलता। [[ आइसोमरों | समावयवी]] एक रासायनिक सूत्र साझा करते हैं लेकिन आम तौर पर उनकी विभिन्न संरचनाओं के कारण बहुत भिन्न गुण होते हैं। त्रिविमसमावयवी, एक विशेष प्रकार के समावयवी में एक जैसे बहुत भौतिक-रासायनिक गुण हो सकते हैं और एक ही समय में विभिन्न जैव रसायन गतिविधियाँ हो सकती हैं।


== आण्विक स्पेक्ट्रोस्कोपी ==
{{Main|Spectroscopy}}


[[File:Dehydrogenation of H2TPP by STM.jpg|thumb|upright=1.3|हाइड्रोजन को व्यक्तिगत टेट्राफेनिलपोर्फिरिन से हटाया जा सकता है | एच<sub>2</sub>एक स्कैनिंग टनलिंग माइक्रोस्कोप (एसटीएम, ए) की नोक पर अतिरिक्त वोल्टेज लगाने से टीपीपी अणु; यह निष्कासन टीपीपी अणुओं के वर्तमान-वोल्टेज (आई-वी) घटता को बदल देता है, जिसे उसी एसटीएम टिप का उपयोग करके मापा जाता है, [[ डायोड ]] जैसे (बी में लाल वक्र) से प्रतिरोधी (हरा वक्र) तक। छवि (सी) टीपीपी की एक पंक्ति दिखाती है, एच<sub>2</sub>टीपीपी और टीपीपी अणु। छवि (डी) को स्कैन करते समय, एच . पर अतिरिक्त वोल्टेज लागू किया गया था<sub>2</sub>ब्लैक डॉट पर टीपीपी, जो तुरंत हाइड्रोजन को हटा देता है, जैसा कि (डी) के निचले हिस्से और रेस्कैन इमेज (ई) में दिखाया गया है। इस तरह के जोड़तोड़ का उपयोग एकल-अणु इलेक्ट्रॉनिक्स में किया जा सकता है।<ref>{{cite journal|doi=10.1038/srep08350|pmid=25666850|pmc=4322354|title=N and p type character of single molecule diodes|journal=Scientific Reports|volume=5|page=8350|year=2015|bibcode= 2015NatSR...5E8350Z|last1=Zoldan|first1=V. C.|last2=Faccio|first2=R|last3=Pasa|first3=A.A.}}</ref>]]
आणविक स्पेक्ट्रोस्कोपी अणुओं की प्रतिक्रिया ([[ आवृत्ति ]] स्पेक्ट्रम) से संबंधित है जो ज्ञात [[ ऊर्जा ]] (या आवृत्ति, प्लैंक के स्थिरांक | प्लैंक के सूत्र के अनुसार) के जांच संकेतों के साथ बातचीत करते हैं। अणुओं ने ऊर्जा के स्तर को परिमाणित किया है जिसे [[ अवशोषण ]] या [[ उत्सर्जन (विद्युत चुम्बकीय विकिरण) ]] के माध्यम से अणु के ऊर्जा विनिमय का पता लगाकर विश्लेषण किया जा सकता है।<ref name="iupac2">{{GoldBookRef|title=Spectroscopy|file=S05848|accessdate=23 February 2016}}</ref>
स्पेक्ट्रोस्कोपी आम तौर पर [[ विवर्तन ]] अध्ययन का उल्लेख नहीं करता है जहां [[ न्यूट्रॉन ]], इलेक्ट्रॉन, या उच्च ऊर्जा एक्स-रे जैसे कण अणुओं की नियमित व्यवस्था (जैसे क्रिस्टल में) के साथ बातचीत करते हैं।


[[ माइक्रोवेव स्पेक्ट्रोस्कोपी ]] आमतौर पर अणुओं के रोटेशन में परिवर्तन को मापता है, और इसका उपयोग बाहरी अंतरिक्ष में अणुओं की पहचान करने के लिए किया जा सकता [[ अवरक्त के पास ]] स्पेक्ट्रोस्कोपी अणुओं के कंपन को मापता है, जिसमें खींचने, झुकने या घुमाने की गति शामिल है। यह आमतौर पर अणुओं में बंधों या [[ कार्यात्मक समूह ]]ों के प्रकार की पहचान करने के लिए उपयोग किया जाता है। इलेक्ट्रॉनों की व्यवस्था में परिवर्तन से पराबैंगनी, दृश्यमान या निकट अवरक्त प्रकाश में अवशोषण या उत्सर्जन रेखाएं उत्पन्न होती हैं, और परिणाम रंग में होता है। परमाणु [[ अवरक्त स्पेक्ट्रोस्कोपी ]] अणु में विशेष नाभिक के वातावरण को मापता है, और इसका उपयोग अणु में विभिन्न स्थितियों में परमाणुओं की संख्या को चिह्नित करने के लिए किया जा सकता है।


== सैद्धांतिक पहलू ==


आणविक भौतिकी और सैद्धांतिक रसायन विज्ञान द्वारा अणुओं का अध्ययन काफी हद तक क्वांटम यांत्रिकी पर आधारित है और रासायनिक बंधन को समझने के लिए आवश्यक है। अणुओं में सबसे सरल [[ हाइड्रोजन अणु-आयन ]], H . है<sub>2</sub><sup>+</sup>, और सभी रासायनिक बंधों में सबसे सरल [[ एक-इलेक्ट्रॉन बंधन ]] है। एच<sub>2</sub><sup>+</sup> दो धनात्मक आवेशित प्रोटॉन और एक ऋणात्मक आवेशित इलेक्ट्रॉन से बना है, जिसका अर्थ है कि इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण की कमी के कारण सिस्टम के लिए श्रोडिंगर समीकरण को अधिक आसानी से हल किया जा सकता है। तेजी से डिजिटल कंप्यूटर के विकास के साथ, अधिक जटिल अणुओं के लिए अनुमानित समाधान संभव हो गए हैं और कम्प्यूटेशनल रसायन विज्ञान के मुख्य पहलुओं में से एक हैं।


जब यह कड़ाई से परिभाषित करने की कोशिश की जा रही है कि क्या परमाणुओं की एक व्यवस्था एक अणु माने जाने के लिए पर्याप्त रूप से स्थिर है, तो IUPAC का सुझाव है कि यह संभावित ऊर्जा सतह पर एक अवसाद के अनुरूप होना चाहिए जो कम से कम एक कंपन अवस्था को सीमित करने के लिए पर्याप्त गहरा हो।<ref name="iupac" />यह परिभाषा परमाणुओं के बीच परस्पर क्रिया की प्रकृति पर निर्भर नहीं करती है, बल्कि केवल अंतःक्रिया के बल पर निर्भर करती है। वास्तव में, इसमें कमजोर रूप से बाध्य प्रजातियां शामिल हैं जिन्हें परंपरागत रूप से अणु नहीं माना जाएगा, जैसे [[ हीलियम ]] [[ डिमर (रसायन विज्ञान) ]], हीलियम डिमर|हे<sub>2</sub>, जिसमें एक कंपन बाध्य अवस्था है<ref>{{cite journal |author=Anderson JB |title=Comment on "An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential" [J. Chem. Phys. 115, 4546 (2001)] |journal=J Chem Phys |volume=120 |issue=20 |pages=9886–7 |date=May 2004 |pmid=15268005 |doi=10.1063/1.1704638 |bibcode= 2004JChPh.120.9886A|doi-access=free }}</ref> और इतना शिथिल रूप से बंधा हुआ है कि इसके केवल बहुत कम तापमान पर देखे जाने की संभावना है।


अणु माने जाने के लिए परमाणुओं की व्यवस्था पर्याप्त रूप से स्थिर है या नहीं, यह स्वाभाविक रूप से एक परिचालन परिभाषा है। दार्शनिक रूप से, इसलिए, एक अणु एक मौलिक इकाई नहीं है (इसके विपरीत, उदाहरण के लिए, एक [[ प्राथमिक कण ]] के लिए); बल्कि, एक अणु की अवधारणा दुनिया में परमाणु-पैमाने की बातचीत की ताकत के बारे में एक उपयोगी बयान देने का रसायनज्ञ का तरीका है जिसे हम देखते हैं।
 
 
 
 
 
 
 
 
==आण्विक स्पेक्ट्रमदर्शी ==
{{Main|स्पेक्ट्रोस्कोपी}}
 
[[File:Dehydrogenation of H2TPP by STM.jpg|thumb|upright=1.3| एच<sub>2</sub>एक अवलोकन टनलिंग सूक्ष्मदर्शी (एसटीएम, ए) की नोक पर अतिरिक्त वोल्टेज लगाने से टीपीपी अणु; यह निष्कासन टीपीपी अणुओं के वर्तमान-वोल्टेज (आई-वी) घटता को बदल देता है, जिसे उसी एसटीएम टिप का उपयोग करके मापा जाता है, [[ डायोड | डायोड]] जैसे (बी में लाल वक्र) से प्रतिरोधी (हरा वक्र) तक। छवि (सी) टीपीपी की एक पंक्ति दिखाती है, एच<sub>2</sub>टीपीपी और टीपीपी अणु। छवि (डी) को स्कैन करते समय, एच . पर अतिरिक्त वोल्टेज लागू किया गया था<sub>2</sub>ब्लैक डॉट पर टीपीपी, जो तुरंत हाइड्रोजन को हटा देता है, जैसा कि (डी) के निचले हिस्से और रेस्कैन इमेज (ई) में दिखाया गया है। इस तरह के जोड़तोड़ का उपयोग एकल-अणु इलेक्ट्रॉनिक्स में किया जा सकता है।<ref>{{cite journal|doi=10.1038/srep08350|pmid=25666850|pmc=4322354|title=N and p type character of single molecule diodes|journal=Scientific Reports|volume=5|page=8350|year=2015|bibcode= 2015NatSR...5E8350Z|last1=Zoldan|first1=V. C.|last2=Faccio|first2=R|last3=Pasa|first3=A.A.}}</ref>]]
आणविक स्पेक्ट्रोस्कोपी अणुओं की प्रतिक्रिया ([[ आवृत्ति | आवृत्ति]] वर्णक्रम) से संबंधित है जो ज्ञात [[ ऊर्जा |ऊर्जा]] या आवृत्ति, प्लैंक के स्थिरांक प्लैंक के सूत्र के अनुसार के जांच संकेतों के साथ परस्पर क्रिया करते हैं। अणुओं ने ऊर्जा के स्तर को परिमाणित किया है जिसे [[ अवशोषण |अवशोषण]] या [[ उत्सर्जन (विद्युत चुम्बकीय विकिरण) | उत्सर्जन (विद्युत चुम्बकीय विकिरण)]] के माध्यम से अणु के ऊर्जा विनिमय का पता लगाकर विश्लेषण किया जा सकता है।<ref name="iupac2">{{GoldBookRef|title=Spectroscopy|file=S05848|accessdate=23 February 2016}}</ref>
 
स्पेक्ट्रमदर्शी आम तौर पर [[ विवर्तन | विवर्तन]] अध्ययन को संदर्भित नहीं करता है जहां [[ न्यूट्रॉन | न्यूट्रॉन]] , इलेक्ट्रॉन, या उच्च ऊर्जा एक्स-रे जैसे कण अणुओं की सुव्यवस्थित व्यवस्था (जैसे क्रिस्टल में) के साथ परस्पर क्रिया करते हैं।
 
[[ माइक्रोवेव स्पेक्ट्रोस्कोपी | सूक्ष्मतरंग स्पेक्ट्रमदर्शी]] सामान्यतः पर अणुओं के घूर्णन में परिवर्तन को मापता है, और इसका उपयोग बाहरी अंतरिक्ष में अणुओं की पहचान करने के लिए किया जा सकता है।[[ अवरक्त के पास | अवरक्त]] स्पेक्ट्रमदर्शी अणुओं के कंपन को मापता है, जिसमें खींचने, झुकने या घुमाने की गति सम्मिलित है। यह सामान्यतः पर अणुओं में बंधों या [[ कार्यात्मक समूह | कार्यात्मक समूहो]] के प्रकार की पहचान करने के लिए उपयोग किया जाता है। इलेक्ट्रॉनों की व्यवस्था में परिवर्तन से पराबैंगनी, दृश्यमान या निकट अवरक्त प्रकाश में अवशोषण या उत्सर्जन रेखाएं उत्पन्न होती हैं, और परिणाम वर्ण मे होता है। परमाणु [[ अवरक्त स्पेक्ट्रोस्कोपी |अवरक्त स्पेक्ट्रमदर्शी]] अणु में विशेष नाभिक के वातावरण को मापता है, और इसका उपयोग अणु में विभिन्न स्थितियों में परमाणुओं की संख्या को चिह्नित करने के लिए किया जा सकता है।
 
==सैद्धांतिक पहलू==
 
आणविक भौतिकी और सैद्धांतिक रसायन विज्ञान द्वारा अणुओं का अध्ययन काफी हद तक क्वांटम यांत्रिकी पर आधारित है और रासायनिक बंधन को समझने के लिए आवश्यक है। अणुओं में सबसे सरल [[ हाइड्रोजन अणु-आयन | हाइड्रोजन अणु-आयन]], H<sub>2</sub><sup>+</sup>है, और सभी रासायनिक बंधों में सबसे सरल [[ एक-इलेक्ट्रॉन बंधन |एक-इलेक्ट्रॉन बंधन]] है। H<sub>2</sub><sup>+</sup> दो धनात्मक आवेशित प्रोटॉन और एक ऋणात्मक आवेशित इलेक्ट्रॉन से बने होते है, जिसका अर्थ है कि पद्धति के लिए श्रोडिंगर समीकरण की इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण की कमी के कारण को अधिक आसानी से हल किया जा सकता है। तेजी से डिजिटल कंप्यूटर के विकास के साथ, अधिक जटिल अणुओं के लिए अनुमानित समाधान संभव हो गए हैं और अभिकलन रसायन विज्ञान के मुख्य पहलुओं में से एक हैं।
 
जब यह सख्ती से परिभाषित करने की कोशिश की जा रही है कि क्या परमाणुओं की एक व्यवस्था एक अणु माने जाने के लिए पर्याप्त रूप से स्थिर है, तो IUPAC का सुझाव है कि यह <nowiki>''संभावित ऊर्जा सतह पर एक शक्तिहीनता के अनुरूप होना चाहिए जो कम से कम एक कंपन अवस्था को सीमित करने के लिए पर्याप्त मंद हो''</nowiki>।<ref name="iupac" /> यह परिभाषा परमाणुओं के बीच परस्पर क्रिया की प्रकृति पर निर्भर नहीं करती है, बल्कि केवल अंतःक्रिया के बल पर निर्भर करती है। वास्तव में, इसमें कमजोर रूप से बाध्य वर्ग सम्मिलित हैं जिन्हें आदेशात्मक रूप से अणु नहीं माना जाएगा, जैसे [[ हीलियम | हीलियम]] [[ डिमर (रसायन विज्ञान) |द्वितय He<sub>2</sub>]], जिसमें एक कंपन बाध्य अवस्था है<ref>{{cite journal |author=Anderson JB |title=Comment on "An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential" [J. Chem. Phys. 115, 4546 (2001)] |journal=J Chem Phys |volume=120 |issue=20 |pages=9886–7 |date=May 2004 |pmid=15268005 |doi=10.1063/1.1704638 |bibcode= 2004JChPh.120.9886A|doi-access=free }}</ref> और इतना शिथिल रूप से बाध्य होती है कि इसको केवल बहुत कम तापमान पर देखा जा सकता है।
 
अणु माने जाने के लिए परमाणुओं की व्यवस्था पर्याप्त रूप से स्थिर है या नहीं, यह स्वाभाविक रूप से एक संचालन परिभाषा है। इसलिए दार्शनिक रूप से, एक अणु एक मौलिक इकाई नहीं है (इसके विपरीत, उदाहरण के लिए, एक [[ प्राथमिक कण | प्राथमिक कण]] के लिए); बल्कि, एक अणु की अवधारणा दुनिया में परमाणु-पैमाने की परस्पर क्रिया के सामर्थ्य के बारे में एक उपयोगी कथन देने का रसायनज्ञ का तरीका है जिसे हम देखते हैं।
{{Clear}}
{{Clear}}




== यह भी देखें ==
==यह भी देखें==
{{div col|colwidth=23em}}
{{div col|colwidth=23em}}
* परमाणु
* परमाणु
Line 171: Line 189:




== संदर्भ ==
==संदर्भ==
{{Reflist}}
{{Reflist}}




== बाहरी संबंध ==
==बाहरी संबंध ==
{{Wikimedia|collapsible=true|c=Category:Molecules|voy=no|wikt=molecule|v=no|n=no|q=Molecule|s=Molecule|b=no|species=no|d=Q11369}}
{{Wikimedia|collapsible=true|c=Category:Molecules|voy=no|wikt=molecule|v=no|n=no|q=Molecule|s=Molecule|b=no|species=no|d=Q11369}}
* [http://www.chm.bris.ac.uk/motm/motm.htm Molecule of the Month{{snds}}School of Chemistry, University of Bristol]
*[http://www.chm.bris.ac.uk/motm/motm.htm Molecule of the Month]{{snds}}School of Chemistry, University of Bristol


{{Composition}}
{{Composition}}
Line 184: Line 202:
{{Branches of chemistry}}
{{Branches of chemistry}}
{{Authority control}}
{{Authority control}}
[[Category:आणविक भौतिकी| ]]
[[index.php?title=Category:आणविक भौतिकी| ]]
[[Category: अणु| ]]
[[index.php?title=Category:अणु| ]]
[[Category: रसायन विज्ञान]]
[[Category: पदार्थ]]
 


[[Category: Machine Translated Page]]
[[Category:AC with 0 elements]]
[[Category:All articles needing additional references]]
[[Category:Articles needing additional references from August 2022]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:CS1 English-language sources (en)]]
[[Category:Collapse templates]]
[[Category:Created On 07/09/2022]]
[[Category:Created On 07/09/2022]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia metatemplates]]
[[Category:पदार्थ]]
[[Category:रसायन विज्ञान]]

Latest revision as of 14:55, 17 November 2022

अन्य उपयोगों के लिए, अणु (बहुविकल्पी) देखें।

परमाणु बल सूक्ष्मदर्शी यंत्र (एएफएम) एक पेरीलेनेटेट्राकारबॉक्सिलिक डायनहाइड्राइड अणु की छवि, जिसमें पांच छह-कार्बन के छल्ले दिखाई दे रहे हैं।[1]
पेंटासीन अणुओं की एक अवलोकन टनलिंग सूक्ष्मदर्शी यंत्र , जिसमें पांच कार्बन के छल्लों की रैखिक श्रृंखलाएं होती हैं।[2]
1,5,9-ट्रायोक्सो -13-एजेट्रेेेगुलिन एएफएम छवि और इसकी रासायनिक संरचना की।[3]

अणु दो या दो से अधिक परमाणुओं का एक समूह होता है जो आकर्षक बलों द्वारा एक साथ जुडा होता है जिसे रासायनिक बंध कहा जाता है। संदर्भ के आधार पर, शब्द में आयन सम्मिलित हो सकते हैं या नहीं भी हो सकते हैं जो इस मानदंड को पूरा करते हैं।[4][5][6][7][8] क्वांटम भौतिकी, कार्बनिक रसायन विज्ञान और जैव रसायन मे आयनों से भेद को हटा दिया जाता है और बहुपरमाणुक आयनों के संदर्भ मे जिक्र करते समय प्रायः अणु का उपयोग किया जाता है।

एक अणु समनाभिकीय हो सकता है, अर्थात इसमें रासायनिक तत्व के परमाणु होते हैं, उदाहरण के लिए ऑक्सीजन (O2) अणु में दो परमाणु, या यह विषमनाभिकीय हो सकता है, एक रासायनिक यौगिक जो एक से अधिक तत्वों से बना होता है, जैसे पानी(H2O) मे दो हाइड्रोजन परमाणु और एक ऑक्सीजन परमाणु होता है। गैसों के गतिज सिद्धांत में, अणु शब्द का प्रयोग प्रायः इसकी सरंचना पर ध्यान दिए बिना किसी भी गैसीय कण के लिए करते है। यह इस अपेक्षा को शिथिल करता है कि एक अणु में दो या दो से अधिक परमाणु होते हैं, क्योंकि उत्कृष्ट गैसें विशिष्ट परमाणु होती हैं।[9] हाइड्रोजन बंध या आयोनिक बंध, जैसे गैर-सहसंयोजक, अन्तःक्रियाओ से जुड़े मिश्रित परमाणुओ को सामान्यतः एकल अणु नहीं माना जाता है।[10]

अणुओं के समान अवधारणाओं पर प्राचीन काल से चर्चा की गई है, लेकिन अणुओं की प्रकृति और उनके बंधनों की आधुनिक अन्वेषण सत्तरहवीं शताब्दी में प्रारंभ हुआ। रॉबर्ट बॉयल, एमेडियो अवोगाद्रो,जीन-बैप्टिस्ट पेरिन और लिनुस पॉलिंग जैसे वैज्ञानिकों द्वारा समय के साथ परिष्कृत, अणुओं के अध्ययन को आज आणविक भौतिकी या आणविक रसायन विज्ञान के रूप में जाना जाता है।

व्युत्पत्ति

मेरिएम वेबस्टर और सक्रिय व्युत्पत्ति शब्दकोश के अनुसार, ''अणु'' शब्द लैटिन मोल (इकाई) या द्रव्यमान की छोटी इकाई से व्युत्पन्न हुआ है। यह शब्द फ्रेंच मॉलिक्यूल (1678) से लिया गया है, जो नए शब्द लैटिन मॉलिक्यूला का लैटिन मोल ''द्रव्यमान झिल्ली'' से छोटा है। यह शब्द, जो अठारहवीं शताब्दी के अंत तक केवल लैटिन रूप में प्रयोग किया जाता था, रेने डेसकार्टेस द्वारा तत्वज्ञान के कार्यों में उपयोग किए जाने के बाद प्रचलित हो गया।[11][12]

इतिहास

अणु की परिभाषा विकसित हुई है, क्योंकि अणुओं की संरचना के ज्ञान मे वृद्धि हुई है। लेकिन पहले की परिभाषाएँ कम सटीक थीं, अणुओं को शुद्ध रासायनिक पदार्थों के सबसे छोटे कणों के रूप मे परिभाषित किया गया था जो अभी भी अपनी संरचना और रासायनिक गुणों को बरकरार रखते है।[13] यह परिभाषा प्रायः भंग हो जाती है क्योंकि सामान्य अनुभव में कई पदार्थ, जैसे कि चट्टानें, नमक और धातु, रासायनिक रूप से बंधे परमाणुओं या आयनों के बड़े क्रिस्टलीय संजाल से बने होते हैं, लेकिन असंतत अणु से नहीं बने होते हैं।

अणुओं की आधुनिक अवधारणा को पूर्व-वैज्ञानिक और ग्रीक दार्शनिकों जैसे ल्यूसिपस और डेमोक्रिटस से पता लगाया जा सकता है, जिन्होंने तर्क दिया कि सारा ब्रह्मांड परमाणुओं और शून्यता से बना हुआ है। लगभग 450 ई.पू. मे एम्पेडोकल्स ने मौलिक तत्वों (अग्नि(△), पृथ्वी, वायु, पानी और तत्वों को परस्पर क्रिया करने की अनुमति देने वाले आकर्षण और प्रतिकर्षण के ''बलों'' की कल्पना की है।

एक पाँचवाँ तत्व, अविनाशी सर्वोत्कृष्ट ईथर (शास्त्रीय तत्व) , को उत्तम पिंडों का मूलभूत निर्माण खंड माना जाता था। ल्यूसिपस और एम्पेडोकल्स का दृष्टिकोण, एथर के साथ, अरस्तू द्वारा स्वीकार किया गया था और मध्ययुगीन और पुनर्जागरण यूरोप को पारित कर दिया गया था।

हालांकि, अधिक यथार्थपूर्ण तरीके से, बंधित परमाणुओं के समुच्चय या इकाइयों की अवधारणा, अर्थात ''अणु'', रॉबर्ट बॉयल की 1661 की परिकल्पना के लिए इसकी उत्पत्ति का पता लगाती हैं, उनके प्रसिद्ध ग्रंथ ''द स्केप्टिकल काइमिस्ट में'', वह पदार्थ कणों के समूहो से और वह रासायनिक परिवर्तन समूह की पुनर्व्यवस्था के परिणामस्वरूप बने होते है। बॉयल ने तर्क दिया कि पदार्थ के मूल तत्वों में विभिन्न प्रकार और कणों के आकार सम्मिलित होते हैं, जिन्हें कणिकाये कहा जाता है, जो स्वयं को समूहों में व्यवस्थित करने में सक्षम थे। 1789 में, विलियम हिगिंस (रसायनज्ञ) ने उन विचारों को प्रकाशित किया जिन्हें उन्होंने मौलिक कणों का संयोजन कहा था, जिसने संयोजकता बांड की अवधारणा को पूर्वाभास दिया। उदाहरण के लिए, हिगिंस के अनुसार, यदि ऑक्सीजन के अंतिम कण और नाइट्रोजन के अंतिम कण के बीच का बल 6 था, और इसी तरह मौलिक कणों के अन्य संयोजनों के लिए, बल की सामर्थ्य को तदनुसार विभाजित किया जाएगा। एमेडिओ आवोगार्डों ने ''अणु'' शब्द बनाया। [14] उनका 1811 का पेपर 'निकायों के प्राथमिक अणुओं के सापेक्ष द्रव्यमान का निर्धारण पर निबंध' वह वास्तव मे,अर्थात पार्टिंगटन के 'ए शॉर्ट हिस्ट्री ऑफ केमिस्ट्री' के अनुसार ,किː

गैसों के सबसे छोटे कण आवश्यक रूप से सरल परमाणु नहीं होते है,लेकिन इन परमाणुओ की एक निश्चित संख्या से बने होते है जो एक एकल अणु बनाने के लिए आकर्षण से एकजुट होते है।

इन अवधारणाओं के समन्वय में, 1833 में फ्रांसीसी रसायनज्ञ मार्क एंटोनी अगस्टे गौडीन ने ''आयतन आरेख'' का उपयोग करके परमाणु भार के संबंध मे अवोगाद्रो की परिकल्पना का एक स्पष्ट विवरण प्रस्तुत किया,[15] जो स्पष्ट रूप से अर्ध-सही आणविक ज्यामिति, दोनों को दर्शाता है, जैसे कि एक रैखिक पानी के अणु, और सही आणविक सूत्र H2O,

मार्क एंटोनी अगस्टे गौडिन के गैस चरण में अणुओं के आयतन आरेख (1833)

1917 में, लिनुस पॉलिंग नाम का एक अज्ञात अमेरिकी स्नातक रसायन यांत्रिक कृषि कॉलेज में (डाल्टन मॉडल ) डाल्टन हुक-एंड-आई बॉन्डिंग विधि सीख रहा था, जो उस समय परमाणुओं के बीच बंधन का मुख्य विवरण था। हालाँकि, पॉलिंग इस पद्धति से संतुष्ट नहीं थे और उन्होंने एक नई विधि के लिए क्वांटम भौतिकी के नए उभरते क्षेत्र की ओर देखा। 1926 में, फ्रांसीसी भौतिक विज्ञानी जीन पेरिन को अणुओं के अस्तित्व को साबित करने के लिए भौतिकी में नोबेल पुरस्कार मिला। उन्होंने तीन अलग-अलग तरीकों का उपयोग करके अवोगाद्रो की संख्या की गणना की, जिसमें सभी तरल चरण प्रणालियों को सम्मिलित किया गया था। सबसे पहले, उन्होंने एक गैंबोज साबुन की तरह रासायनिक पायस का इस्तेमाल किया, दूसरा ब्राउनियन गति पर प्रायोगिक कार्य करके, और तीसरा तरल चरण में आइंस्टीन के कण घूर्णन के सिद्धांत की पुष्टि की ।[16]

1927 में, भौतिकविदों फ़्रिट्ज़ लंदन और वाल्टर हिटलर ने हाइड्रोजन अणु के संतृप्त, गैर-गतिशील आकर्षण और प्रतिकर्षण, अर्थात विनिमय बलों के साथ संबोधित करने के लिए नए क्वांटम यांत्रिकी को लागू किया। इस समस्या का उनका संयोजकता बांध निष्पादन,उनके संयुक्त पत्र में था,[17] यह एतिहासिक था जिसमें यह रसायन विज्ञान को क्वांटम यांत्रिकी के तहत लाया गया था। उनके काम से पॉलिंग प्रभावित हुआ था, जिन्होंने अभी-अभी डॉक्टर की उपाधि प्राप्त की थी और एक गुगेनहाइम फैलोशिप पर ज्यूरिख मे हिटलर और लंदन का दौरा किया था।

इसके बाद, 1931 में, हिटलर और लंदन के काम पर और लुईस के प्रसिद्ध लेख में पाए गए सिद्धांतों पर निर्माण करते हुए, पॉलिंग ने अपना महत्वपूर्ण लेख ''द नेचर ऑफ द केमिकल बॉन्ड'' प्रकाशित किया।[18] जिसमें उन्होंने अणुओं के गुणों और संरचनाओं की गणना करने के लिए क्वांटम यांत्रिकी का उपयोग किया, जैसे बांध के बीच कोण और बंधन के चारों ओर घूर्णन। इन अवधारणाओं पर, पॉलिंग ने CH4 जैसे अणुओं में बंधों को ध्यान में रखते हुए संकरण सिद्धांत विकसित किया, जिसमें चार sp³ संकरित कक्षीय हाइड्रोजन के 1s कक्षीय द्वारा अतिव्याप्त की जाती हैं, जिससे चार सिग्मा (σ) बंधन प्राप्त होते हैं। चार बंधन समान लंबाई और सामर्थ्य के होते हैं, जो नीचे दिखाए गए अनुसार एक आणविक संरचना उत्पन्न करते हैं:

हाइड्रोजन के कक्षाओ को अतिव्याप्त करने वाले संकर कक्षाओ की एक योजनाबद्ध प्रस्तुति


आण्विक विज्ञान

अणुओं के विज्ञान को आणविक रसायन विज्ञान या आणविक भौतिकी कहा जाता है, यह इस बात पर निर्भर करता है कि ध्यान रसायन विज्ञान पर है या भौतिकी पर। आणविक रसायन विज्ञान अणुओं के बीच परस्पर क्रिया को नियंत्रित करने वाले कानूनों से संबंधित है, जिसके परिणामस्वरूप रासायनिक बंधों का निर्माण और विघटन होता है, जबकि आणविक भौतिकी उनकी संरचना और गुणों को नियंत्रित करने वाले नियमों से संबंधित है। व्यवहार में, हालांकि, यह भेद अस्पष्ट है। आणविक विज्ञान में, एक अणु में दो या दो से अधिक परमाणुओं से बनी एक स्थिर प्रणाली ( बाध्य अवस्था ) होती है। बहुपरमाणुक आयनों को कभी-कभी विद्युत आवेशित अणुओं के रूप में उपयोगी समझा जा सकता है। अस्थिर अणु शब्द का उपयोग बहुत प्रतिक्रियाशीलता वर्ग के लिए किया जाता है, अर्थात, इलेक्ट्रॉनों और परमाणु नाभिकों के अल्पकालिक संयोजन(प्रतिध्वनि), जैसे कि कण, आणविक आयन, रिडबर्ग अणु, संक्रमण अवस्थाये, वान्डरवॉलस सम्मिश्र, या बोस-आइंस्टीन संघनन के रूप मे परमाणुओं के टकराने की प्रणाली।

व्यापकता

पदार्थ के घटक के रूप में अणु सामान्य हैं। वे अधिकांश महासागरों और वायुमंडल को भी बनाते हैं,और अधिकांश कार्बनिक पदार्थ अणु होते हैं। जीवन के पदार्थ अणु हैं, जैसे प्रोटीन, अमीनो एसिड जिनसे वे बने हैं, न्यूक्लिक एसिड (डीएनए और आरएनए), शर्करा, कार्बोहाइड्रेट, वसा और विटामिन। पोषक तत्व खनिज आम तौर पर आयनिक यौगिक होते हैं, इस प्रकार वे अणु नहीं होते हैं, जैसे आयरन सल्फेट।

हालाँकि, पृथ्वी पर अधिकांश प्रचलित ठोस पदार्थ आंशिक रूप से या पूरी तरह से क्रिस्टल या आयनिक यौगिकों से बने होते हैं, जो अणुओं से नहीं बने होते हैं। इनमें वे सभी खनिज सम्मिलित हैं जो पृथ्वी के पदार्थ, रेत, मिट्टी, कंकड़, चट्टानें, शिलाखंड, आधारशिला, पिघल हुआ आंतरिक भाग और पृथ्वी कोर का निर्माण करते हैं। इन सभी में कई रासायनिक बंधन होते हैं, लेकिन ये पहचानने योग्य अणुओं से नहीं बने होते हैं।

नमक के लिए और न ही सहसयोजक क्रिस्टल के लिए कोई विशिष्ट अणु परिभाषित नहीं किया जा सकता है, हालांकि ये प्रायः पुनरावर्ती वाली इकाई कोशिकाओं से बने होते हैं जो या तो एक समतल में विस्तारित होते हैं, जैसे ग्राफीन, त्रि-आयामी हीरा, क्वार्ट्ज, सोडियम क्लोराइड। पुनरावर्ती वाली इकाई-कोशिका-संरचना का विषय अधिकांश धातुओं के लिए भी है जो धातु बंधन के साथ संघनित चरण हैं। इस प्रकार ठोस धातुएं अणुओं से नहीं बनती हैं। चश्मे में, जो ठोस होते हैं जो एक कांच की अव्यवस्थित अवस्था में विद्यमान होते हैं, परमाणुओं को रासायनिक बंधनों द्वारा एक साथ रखा जाता है, जिसमें किसी भी निश्चित अणु की उपस्थिति नहीं होती है, न ही पुनरावर्ती वाली इकाई-कोशिका-संरचना की कोई नियमितता होती है जो लवण, सहसंयोजक क्रिस्टल, और धातुओ की विशेषता होती है।

बंधन

अणु सामान्यतः सहसंयोजक बंधन द्वारा एक साथ जुड़े होते हैं। कई गैर-धातु तत्व पर्यावरण में केवल अणुओं के रूप में या तो यौगिकों में या समानभिकीय अणुओ के रूप में सम्मिलित होते हैं, न कि मुक्त परमाणुओं के रूप में: उदाहरण के लिए, हाइड्रोजन।

जबकि कुछ लोग कहते हैं कि धात्विक ठोस को धात्विक बंधन द्वारा एक साथ रखा गया एक विशाल अणु माना जा सकता है,[19] अन्य इंगित करते हैं कि धातुएं अणुओं की तुलना में बहुत अलग तरीके से व्यवहार करती हैं।[20]


सहसंयोजक

H . बनाने वाला एक सहसंयोजक बंधन2 (दाएं) जहां दो हाइड्रोजन परमाणु दो इलेक्ट्रॉनों को साझा करते हैं

एक सहसंयोजक बंधन एक रासायनिक बंधन है जिसमें परमाणुओं के बीच इलेक्ट्रॉन जोड़े को साझा करना सम्मिलित है। इन इलेक्ट्रॉन जोड़े को साझा जोड़े या बंधन जोड़े कहा जाता है, और परमाणुओं के बीच आकर्षक और प्रतिकारक बलों के स्थिर संतुलन, जब वे इलेक्ट्रॉन जोड़ी साझा करते हैं, उसको सहसंयोजक बंधन कहा जाता है।[21]


आयनिक

सोडियम और एक अधातु तत्त्व सोडियम फ्लोराइड बनाने के लिए रेडॉक्स प्रतिक्रिया से गुजरते हैं। सोडियम अपने बाहरी इलेक्ट्रॉन को एक स्थिर इलेक्ट्रॉन विन्यास देने के लिए खो देता है, और यह इलेक्ट्रॉन फ्लोरीन परमाणु में एक्ज़ोथिर्मिक रूप से प्रवेश करता है।

आयनिक बंधन एक प्रकार का रासायनिक बंधन है जिसमें विपरीत रूप से आवेशित किए गए आयनों के बीच स्थिरवैद्युत आकर्षण सम्मिलित होता है, और आयनिक यौगिको में होने वाली प्राथमिक परस्पर क्रिया होती है। आयन ऐसे परमाणु होते हैं जिन्होंने एक या एक से अधिक इलेक्ट्रॉनों को खो दिया है (जिन्हें धनायन कहा जाता है) और परमाणु जिन्होंने एक या एक से अधिक इलेक्ट्रॉन प्राप्त किए हैं (जिन्हें आयन कहा जाता है)।[22] सहसंयोजक बंधन के विपरीत इलेक्ट्रॉनों के इस हस्तांतरण को विद्युत संयोजकता कहा जाता है। सबसे साधारण स्थिति में, धनायन एक धातु परमाणु है और आयन एक अधातु परमाणु है, लेकिन ये आयन अधिक जटिल प्रकृति के हो सकते हैं, जैसे NH 4+ या SO42. जैसे आणविक आयन है, सामान्य तापमान और दबाव पर, आयनिक बंधन ज्यादातर अलग-अलग पहचान योग्य अणुओं के बिना ठोस या कभी-कभी तरल पदार्थ बनाता है, लेकिन ऐसे पदार्थों का वाष्पीकरण/उच्च बनाने की क्रिया अलग अणुओं का उत्पादन करती है जहां बांधों को सहसंयोजक के बजाय आयनिक माना जाने के लिए इलेक्ट्रॉनों को अभी भी पूरी तरह से स्थानांतरित किया जाता है। .



आणविक आकार

अधिकांश अणु नग्न आंखों से देखे जाने के लिए बहुत छोटे होते हैं, हालांकि कई बहुलक के अणु स्थूल आकार तक पहुंच सकते हैं, जिसमें डीएनए जैसे जैव बहुलक भी सम्मिलित हैं। सामान्यतः पर कार्बनिक संश्लेषण के लिए खंड निर्माण के रूप में उपयोग किए जाने वाले अणुओं में कुछ एंगस्ट्रॉम (Å) से लेकर कई दर्जन मीटर के लगभग या एक अरबवें हिस्से का आयाम होता है। एकल अणुओं को सामान्यतः पर प्रकाश द्वारा नहीं देखा जा सकता है (जैसा कि ऊपर उल्लेख किया गया है), लेकिन छोटे अणुओं और यहां तक ​​कि व्यक्तिगत परमाणुओं की रूपरेखा को कुछ परिस्थितियों में परमाणु बल सूक्ष्मदर्शी के उपयोग से पता लगाया जा सकता है, कि कुछ सबसे बड़े अणु वृहत अणु या अतिअणु हैं।

सबसे छोटा अणु द्विपरमाणुक हाइड्रोजन (H2)है, जिसकी बांध लंबाई 0.74 है।[23] प्रभावी आणविक त्रिज्या वह आकार है जो एक अणु समाधान में प्रदर्शित करता है।[24][25]

विभिन्न पदार्थों के लिए पारगम्यता की तालिका में उदाहरण हैं।

आणविक सूत्र

रासायनिक सूत्र प्रकार

एक अणु के लिए रासायनिक सूत्र रासायनिक तत्व प्रतीकों, संख्याओं, और कभी-कभी अन्य प्रतीकों, जैसे कोष्ठक, डैश, कोष्ठक, और प्लस (+) और माइनस (-) संकेतों की एक पंक्ति का उपयोग करता है। ये प्रतीकों की एक मुद्रण संबंधी लाइन तक सीमित हैं, जिसमें अधोलेख और अधिलेख सम्मिलित हो सकते हैं।

एक यौगिक का अनुभवजन्य सूत्र एक बहुत ही सरल प्रकार का रासायनिक सूत्र है।[26] यह इसे बनाने वाले रासायनिक तत्वों का सबसे सरल पूर्णांक अनुपात है।[27] उदाहरण के लिए, पानी हमेशा हाइड्रोजन से ऑक्सीजन परमाणुओं के 2:1 अनुपात से बना होता है, और इथेनॉल (एथिल अल्कोहल) हमेशा 2:6:1 के अनुपात में कार्बन, हाइड्रोजन और ऑक्सीजन से बना होता है। हालांकि, यह विशिष्ट रूप से अणु के प्रकार को निर्धारित नहीं करता है - उदाहरण के लिए, डाइमिथाइल ईथर में इथेनॉल के समान अनुपात होता है। विभिन्न व्यवस्थाओं में समान परमाणुओं वाले अणु समावयवी कहलाते हैं। इसके अलावा, उदाहरण के लिए, कार्बोहाइड्रेट का अनुपात समान होता है (कार्बन: हाइड्रोजन: ऑक्सीजन = 1:2:1) (और इस प्रकार एक ही अनुभवजन्य सूत्र) लेकिन अणु में परमाणुओं की कुल संख्या अलग होती है।

आणविक सूत्र अणु की रचना करने वाले परमाणुओं की सटीक संख्या को दर्शाता है और इसलिए विभिन्न अणुओं की विशेषता है। हालाँकि अलग-अलग अणु होते हुए भी अलग-अलग समावयवी की परमाणु संरचना समान हो सकती है।

अनुभवजन्य सूत्र प्रायः आणविक सूत्र के समान होता है लेकिन सदैव नहीं होते है। उदाहरण के लिए, एसिटिलीन अणु का आणविक सूत्र C2H2 होता है, लेकिन तत्वों का सरलतम पूर्णांक अनुपात CH है।

आणविक द्रव्यमान की गणना रासायनिक सूत्र से की जा सकती है और इसे एक उदासीन कार्बन-12 (12 कार्बन समस्थानिक) परमाणु के द्रव्यमान के 1/12 के बराबर परंपरागत परमाणु द्रव्यमान इकाइयों में व्यक्त किया जाता है। ठोस संजाल के लिए, तत्वयोगमितीय गणनाओं में सूत्र इकाई शब्द का उपयोग किया जाता है।


संरचनात्मक सूत्र

त्रि-आयामी अंतरिक्ष (बाएं और केंद्र) और 2 डी ज्यामितीय मॉडल (दाएं) टेरपेनोइड अणु एटिसेन का प्रतिनिधित्व करते हैं

एक जटिल त्रि-आयामी संरचना वाले अणुओं के लिए, विशेष रूप से चार अलग-अलग पदार्थों से बंधे परमाणुओं को सम्मिलित करते हुए, एक साधारण आणविक सूत्र या यहां तक ​​​​कि अर्ध-संरचनात्मक रासायनिक सूत्र अणु को पूरी तरह से निर्दिष्ट करने के लिए पर्याप्त नहीं हो सकता है। इस स्थिति में, एक चित्रात्मक प्रकार के सूत्र की आवश्यकता हो सकती है जिसे संरचनात्मक सूत्र कहा जाता है। संरचनात्मक सूत्रों को एक-आयामी रासायनिक नाम के साथ दर्शाया जा सकता है, लेकिन ऐसे रासायनिक नामकरण के लिए कई शब्दों और शर्तों की आवश्यकता होती है जो रासायनिक सूत्रों का हिस्सा नहीं होते हैं।


आण्विक ज्यामिति

एक साइनोस्टार डेनड्रीमर अणु की संरचना और स्कैनिंग टनलिंग माइक्रोस्कोपी छवि।[28]

अणुओं में यांत्रिक संतुलन ज्यामिति-बंध लंबाई और कोण- निश्चित होते हैं, जिसके बारे में वे कंपन और घूर्णी गतियों के माध्यम से लगातार दोलन करते हैं। एक शुद्ध पदार्थ समान औसत ज्यामितीय संरचना वाले अणुओं से बना होता है। रासायनिक सूत्र और अणु की संरचना दो महत्वपूर्ण कारक हैं जो इसके गुणों को निर्धारित करते हैं, विशेष रूप से इसकी प्रतिक्रियाशीलता। समावयवी एक रासायनिक सूत्र साझा करते हैं लेकिन आम तौर पर उनकी विभिन्न संरचनाओं के कारण बहुत भिन्न गुण होते हैं। त्रिविमसमावयवी, एक विशेष प्रकार के समावयवी में एक जैसे बहुत भौतिक-रासायनिक गुण हो सकते हैं और एक ही समय में विभिन्न जैव रसायन गतिविधियाँ हो सकती हैं।








आण्विक स्पेक्ट्रमदर्शी

एच2एक अवलोकन टनलिंग सूक्ष्मदर्शी (एसटीएम, ए) की नोक पर अतिरिक्त वोल्टेज लगाने से टीपीपी अणु; यह निष्कासन टीपीपी अणुओं के वर्तमान-वोल्टेज (आई-वी) घटता को बदल देता है, जिसे उसी एसटीएम टिप का उपयोग करके मापा जाता है, डायोड जैसे (बी में लाल वक्र) से प्रतिरोधी (हरा वक्र) तक। छवि (सी) टीपीपी की एक पंक्ति दिखाती है, एच2टीपीपी और टीपीपी अणु। छवि (डी) को स्कैन करते समय, एच . पर अतिरिक्त वोल्टेज लागू किया गया था2ब्लैक डॉट पर टीपीपी, जो तुरंत हाइड्रोजन को हटा देता है, जैसा कि (डी) के निचले हिस्से और रेस्कैन इमेज (ई) में दिखाया गया है। इस तरह के जोड़तोड़ का उपयोग एकल-अणु इलेक्ट्रॉनिक्स में किया जा सकता है।[29]

आणविक स्पेक्ट्रोस्कोपी अणुओं की प्रतिक्रिया ( आवृत्ति वर्णक्रम) से संबंधित है जो ज्ञात ऊर्जा या आवृत्ति, प्लैंक के स्थिरांक प्लैंक के सूत्र के अनुसार के जांच संकेतों के साथ परस्पर क्रिया करते हैं। अणुओं ने ऊर्जा के स्तर को परिमाणित किया है जिसे अवशोषण या उत्सर्जन (विद्युत चुम्बकीय विकिरण) के माध्यम से अणु के ऊर्जा विनिमय का पता लगाकर विश्लेषण किया जा सकता है।[30]

स्पेक्ट्रमदर्शी आम तौर पर विवर्तन अध्ययन को संदर्भित नहीं करता है जहां न्यूट्रॉन , इलेक्ट्रॉन, या उच्च ऊर्जा एक्स-रे जैसे कण अणुओं की सुव्यवस्थित व्यवस्था (जैसे क्रिस्टल में) के साथ परस्पर क्रिया करते हैं।

सूक्ष्मतरंग स्पेक्ट्रमदर्शी सामान्यतः पर अणुओं के घूर्णन में परिवर्तन को मापता है, और इसका उपयोग बाहरी अंतरिक्ष में अणुओं की पहचान करने के लिए किया जा सकता है। अवरक्त स्पेक्ट्रमदर्शी अणुओं के कंपन को मापता है, जिसमें खींचने, झुकने या घुमाने की गति सम्मिलित है। यह सामान्यतः पर अणुओं में बंधों या कार्यात्मक समूहो के प्रकार की पहचान करने के लिए उपयोग किया जाता है। इलेक्ट्रॉनों की व्यवस्था में परिवर्तन से पराबैंगनी, दृश्यमान या निकट अवरक्त प्रकाश में अवशोषण या उत्सर्जन रेखाएं उत्पन्न होती हैं, और परिणाम वर्ण मे होता है। परमाणु अवरक्त स्पेक्ट्रमदर्शी अणु में विशेष नाभिक के वातावरण को मापता है, और इसका उपयोग अणु में विभिन्न स्थितियों में परमाणुओं की संख्या को चिह्नित करने के लिए किया जा सकता है।

सैद्धांतिक पहलू

आणविक भौतिकी और सैद्धांतिक रसायन विज्ञान द्वारा अणुओं का अध्ययन काफी हद तक क्वांटम यांत्रिकी पर आधारित है और रासायनिक बंधन को समझने के लिए आवश्यक है। अणुओं में सबसे सरल हाइड्रोजन अणु-आयन, H2+है, और सभी रासायनिक बंधों में सबसे सरल एक-इलेक्ट्रॉन बंधन है। H2+ दो धनात्मक आवेशित प्रोटॉन और एक ऋणात्मक आवेशित इलेक्ट्रॉन से बने होते है, जिसका अर्थ है कि पद्धति के लिए श्रोडिंगर समीकरण की इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण की कमी के कारण को अधिक आसानी से हल किया जा सकता है। तेजी से डिजिटल कंप्यूटर के विकास के साथ, अधिक जटिल अणुओं के लिए अनुमानित समाधान संभव हो गए हैं और अभिकलन रसायन विज्ञान के मुख्य पहलुओं में से एक हैं।

जब यह सख्ती से परिभाषित करने की कोशिश की जा रही है कि क्या परमाणुओं की एक व्यवस्था एक अणु माने जाने के लिए पर्याप्त रूप से स्थिर है, तो IUPAC का सुझाव है कि यह ''संभावित ऊर्जा सतह पर एक शक्तिहीनता के अनुरूप होना चाहिए जो कम से कम एक कंपन अवस्था को सीमित करने के लिए पर्याप्त मंद हो''।[4] यह परिभाषा परमाणुओं के बीच परस्पर क्रिया की प्रकृति पर निर्भर नहीं करती है, बल्कि केवल अंतःक्रिया के बल पर निर्भर करती है। वास्तव में, इसमें कमजोर रूप से बाध्य वर्ग सम्मिलित हैं जिन्हें आदेशात्मक रूप से अणु नहीं माना जाएगा, जैसे हीलियम द्वितय He2, जिसमें एक कंपन बाध्य अवस्था है[31] और इतना शिथिल रूप से बाध्य होती है कि इसको केवल बहुत कम तापमान पर देखा जा सकता है।

अणु माने जाने के लिए परमाणुओं की व्यवस्था पर्याप्त रूप से स्थिर है या नहीं, यह स्वाभाविक रूप से एक संचालन परिभाषा है। इसलिए दार्शनिक रूप से, एक अणु एक मौलिक इकाई नहीं है (इसके विपरीत, उदाहरण के लिए, एक प्राथमिक कण के लिए); बल्कि, एक अणु की अवधारणा दुनिया में परमाणु-पैमाने की परस्पर क्रिया के सामर्थ्य के बारे में एक उपयोगी कथन देने का रसायनज्ञ का तरीका है जिसे हम देखते हैं।


यह भी देखें


संदर्भ

  1. Iwata, Kota; Yamazaki, Shiro; Mutombo, Pingo; Hapala, Prokop; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki (2015). "Chemical structure imaging of a single molecule by atomic force microscopy at room temperature". Nature Communications. 6: 7766. Bibcode:2015NatCo...6.7766I. doi:10.1038/ncomms8766. PMC 4518281. PMID 26178193.
  2. Dinca, L.E.; De Marchi, F.; MacLeod, J.M.; Lipton-Duffin, J.; Gatti, R.; Ma, D.; Perepichka, D.F.; Rosei, F. (2015). "Pentacene on Ni(111): Room-temperature molecular packing and temperature-activated conversion to graphene". Nanoscale. 7 (7): 3263–9. Bibcode:2015Nanos...7.3263D. doi:10.1039/C4NR07057G. PMID 25619890.
  3. Hapala, Prokop; Švec, Martin; Stetsovych, Oleksandr; Van Der Heijden, Nadine J.; Ondráček, Martin; Van Der Lit, Joost; Mutombo, Pingo; Swart, Ingmar; Jelínek, Pavel (2016). "Mapping the electrostatic force field of single molecules from high-resolution scanning probe images". Nature Communications. 7: 11560. Bibcode:2016NatCo...711560H. doi:10.1038/ncomms11560. PMC 4894979. PMID 27230940.
  4. 4.0 4.1 IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Molecule". doi:10.1351/goldbook.M04002
  5. Ebbin, Darrell D. (1990). General Chemistry (3rd ed.). Boston: Houghton Mifflin Co. ISBN 978-0-395-43302-7.
  6. Brown, T.L.; Kenneth C. Kemp; Theodore L. Brown; Harold Eugene LeMay; Bruce Edward Bursten (2003). Chemistry – the Central Science (9th ed.). New Jersey: Prentice Hall. ISBN 978-0-13-066997-1.
  7. Chang, Raymond (1998). Chemistry (6th ed.). New York: McGraw Hill. ISBN 978-0-07-115221-1.
  8. Zumdahl, Steven S. (1997). Chemistry (4th ed.). Boston: Houghton Mifflin. ISBN 978-0-669-41794-4.
  9. Chandra, Sulekh (2005). Comprehensive Inorganic Chemistry. New Age Publishers. ISBN 978-81-224-1512-4.
  10. "Molecule". Encyclopædia Britannica. 22 January 2016. Archived from the original on 3 May 2020. Retrieved 23 February 2016.
  11. Harper, Douglas. "molecule". Online Etymology Dictionary. Retrieved 2016-02-22.
  12. "molecule". Merriam-Webster. Archived from the original on 24 February 2021. Retrieved 22 February 2016.
  13. Molecule Definition Archived 13 October 2014 at the Wayback Machine (Frostburg State University)
  14. Seymour H. Mauskopf (1969). "The Atomic Structural Theories of Ampère and Gaudin: Molecular Speculation and Avogadro's Hypothesis". Isis. 60 (1): 61–74. doi:10.1086/350449. JSTOR 229022. S2CID 143759556.
  15. Seymour H. Mauskopf (1969). "The Atomic Structural Theories of Ampère and Gaudin: Molecular Speculation and Avogadro's Hypothesis". Isis. 60 (1): 61–74. doi:10.1086/350449. JSTOR 229022. S2CID 143759556.
  16. Perrin, Jean, B. (1926). Discontinuous Structure of Matter Archived 29 May 2019 at the Wayback Machine, Nobel Lecture, December 11.
  17. Heitler, Walter; London, Fritz (1927). "Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik". Zeitschrift für Physik. 44 (6–7): 455–472. Bibcode:1927ZPhy...44..455H. doi:10.1007/BF01397394. S2CID 119739102.
  18. Pauling, Linus (1931). "The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules". J. Am. Chem. Soc. 53 (4): 1367–1400. doi:10.1021/ja01355a027.
  19. Harry, B. Gray. Chemical Bonds: An Introduction to Atomic and Molecular Structure (PDF). pp. 210–211. Archived (PDF) from the original on 31 March 2021. Retrieved 22 November 2021.
  20. "How many gold atoms make gold metal?". phys.org (in English). Archived from the original on 30 October 2020. Retrieved 22 November 2021.
  21. Campbell, Neil A.; Brad Williamson; Robin J. Heyden (2006). Biology: Exploring Life. Boston: Pearson Prentice Hall. ISBN 978-0-13-250882-7. Archived from the original on 2 November 2014. Retrieved 2012-02-05.
  22. Campbell, Flake C. (2008). Elements of Metallurgy and Engineering Alloys (in English). ASM International. ISBN 978-1-61503-058-3. Archived from the original on 31 March 2021. Retrieved 27 October 2020.
  23. Roger L. DeKock; Harry B. Gray; Harry B. Gray (1989). Chemical structure and bonding. University Science Books. p. 199. ISBN 978-0-935702-61-3. Archived from the original on 31 March 2021. Retrieved 27 October 2020.
  24. Chang RL; Deen WM; Robertson CR; Brenner BM (1975). "Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions". Kidney Int. 8 (4): 212–218. doi:10.1038/ki.1975.104. PMID 1202253.
  25. Chang RL; Ueki IF; Troy JL; Deen WM; Robertson CR; Brenner BM (1975). "Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran". Biophys. J. 15 (9): 887–906. Bibcode:1975BpJ....15..887C. doi:10.1016/S0006-3495(75)85863-2. PMC 1334749. PMID 1182263.
  26. Wink, Donald J.; Fetzer-Gislason, Sharon; McNicholas, Sheila (2003). The Practice of Chemistry (in English). Macmillan. ISBN 978-0-7167-4871-7. Archived from the original on 10 April 2022. Retrieved 27 October 2020.
  27. "ChemTeam: Empirical Formula". www.chemteam.info. Archived from the original on 19 January 2021. Retrieved 2017-04-16.
  28. Hirsch, Brandon E.; Lee, Semin; Qiao, Bo; Chen, Chun-Hsing; McDonald, Kevin P.; Tait, Steven L.; Flood, Amar H. (2014). "Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals". Chemical Communications. 50 (69): 9827–30. doi:10.1039/C4CC03725A. PMID 25080328. Archived from the original on 31 March 2021. Retrieved 20 April 2018.
  29. Zoldan, V. C.; Faccio, R; Pasa, A.A. (2015). "N and p type character of single molecule diodes". Scientific Reports. 5: 8350. Bibcode:2015NatSR...5E8350Z. doi:10.1038/srep08350. PMC 4322354. PMID 25666850.
  30. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Spectroscopy". doi:10.1351/goldbook.S05848
  31. Anderson JB (May 2004). "Comment on "An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential" [J. Chem. Phys. 115, 4546 (2001)]". J Chem Phys. 120 (20): 9886–7. Bibcode:2004JChPh.120.9886A. doi:10.1063/1.1704638. PMID 15268005.


बाहरी संबंध