क्रमित सदिश समष्टि: Difference between revisions
(Created page with "{{Short description|Vector space with a partial order}} File:Ordered space illustration.svg|right|thumb|एक बिंदु <math>x</math> में <math>\Reals^2</math>...") |
No edit summary |
||
(12 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Vector space with a partial order}} | {{Short description|Vector space with a partial order}} | ||
[[File:Ordered space illustration.svg|right|thumb|एक बिंदु <math>x</math> में <math>\Reals^2</math> और सभी का [[सेट (गणित)]]। <math>y</math> ऐसा है कि <math>x \leq y</math> (लाल)। यहाँ आदेश है <math>x \leq y</math> | [[File:Ordered space illustration.svg|right|thumb|एक बिंदु <math>x</math> में <math>\Reals^2</math> और सभी का [[सेट (गणित)|समुच्चय (गणित)]]। <math>y</math> ऐसा है कि <math>x \leq y</math> (लाल)। यहाँ आदेश है <math>x \leq y</math> यदि और केवल यदि <math>x_1 \leq y_1</math> और <math>x_2 \leq y_2.</math>]]गणित में, '''क्रमित सदिश समष्टि''' या आंशिक रूप से क्रमित सदिश समष्टि आंशिक क्रम से सुसज्जित सदिश समष्टि है जो सदिश समष्टि संचालन के साथ संगत है। | ||
==परिभाषा== | ==परिभाषा == | ||
[[वास्तविक संख्या]] <math>\Reals</math> से अधिक सदिश समिष्ट <math>X</math> दिया गया है और [[पूर्व आदेश]] समुच्चय <math>X,</math> पर प्रीऑर्डर्ड <math>\,\leq\,</math> दिया गया है जोड़ी <math>(X, \leq)</math> है प्रीऑर्डर्ड सदिश समिष्ट कहा जाता है और हम कहते हैं कि प्रीऑर्डर <math>\,\leq\,</math> <math>X</math> की सदिश समिष्ट संरचना के साथ संगत है और <math>\,\leq\,</math> कॉल करें सदिश प्रीऑर्डर कहा जाता है <math>X</math> यदि सभी के लिए <math>x, y, z \in X</math> और <math>r \in \Reals</math> साथ <math>r \geq 0</math> निम्नलिखित दो सिद्धांत संतुष्ट हैं | |||
# <math>x \leq y</math> तात्पर्य <math>x + z \leq y + z,</math> | # <math>x \leq y</math> तात्पर्य <math>x + z \leq y + z,</math> | ||
# <math>y \leq x</math> तात्पर्य <math>r y \leq r x.</math> | # <math>y \leq x</math> तात्पर्य <math>r y \leq r x.</math> | ||
यदि <math>\,\leq\,</math> <math>X</math> की सदिश समिष्ट संरचना के साथ संगत आंशिक क्रम है तब <math>(X, \leq)</math> क्रमित सदिश समष्टि कहलाती है और <math>\,\leq\,</math> को <math>X</math> सदिश आंशिक क्रम कहा जाता है दो सिद्धांतों का अर्थ है कि अनुवाद और धनात्मक समरूपताएं ऑटोमोर्फिज्म हैं ऑर्डर संरचना और मानचित्रण <math>x \mapsto -x</math> [[द्वैत (आदेश सिद्धांत)]] के लिए एक समरूपता है। क्रमबद्ध वेक्टर रिक्त समिष्ट उनके अतिरिक्त ऑपरेशन के तहत क्रमबद्ध समूह हैं। | |||
ध्यान दें कि <math>x \leq y</math> यदि और केवल यदि <math>-y \leq -x.</math> | |||
== | ==धनात्मक शंकु और क्रम के अनुसार उनकी तुल्यता == | ||
सदिश समिष्ट का <math>X</math> का उपसमुच्चय <math>C</math> है जिन्हें शंकु कहा जाता है यदि यह वास्तव के लिए <math>r > 0,</math> <math>r C \subseteq C.</math> में इसे शंकु को नुकीला कहा जाता है यदि उसमें मूल बिंदु सम्मिलित हो। शंकु <math>C</math> उत्तल है यदि और केवल यदि <math>C + C \subseteq C.</math> शंकु के किसी भी गैर-रिक्त वर्ग (सम्मानित उत्तल शंकु) का [[प्रतिच्छेदन (सेट सिद्धांत)|प्रतिच्छेदन (समुच्चय सिद्धांत)]] फिर से शंकु (सम्मानित उत्तल शंकु) है; शंकुओं (सम्मान उत्तल शंकु) के बढ़ते (उपसमुच्चय के तहत) वर्ग के [[संघ (सेट सिद्धांत)|संघ (समुच्चय सिद्धांत)]] के बारे में भी यही सच है। सदिश समिष्ट में <math>X</math> में शंकु <math>C</math> को उत्पन्न करने वाला माना जाता है <math>X = C - C.</math>{{sfn|Schaefer|Wolff|1999|pp=250-257}} एक धनात्मक शंकु तभी उत्पन्न होता है जब यह <math>\,\leq.</math> [[निर्देशित सेट|निर्देशित]] समुच्चय होता है | |||
शंकुओं (सम्मान उत्तल शंकु) के बढ़ते (उपसमुच्चय के तहत) | |||
एक | |||
पूर्व-आदेशित सदिश समिष्ट <math>X</math> दिया गया| सभी '''अवयव ों''' <math>x</math> उपसमुच्चय <math>X^+</math> में <math>(X, \leq)</math> संतुष्टि देने वाला <math>x \geq 0</math> शीर्ष के साथ नुकीला [[उत्तल शंकु]] है <math>0</math> (अर्थात इसमें सम्मिलित है <math>0</math>) जिसे <math>X</math> का धनात्मक शंकु कहलाता है और <math>\operatorname{PosCone} X.</math> द्वारा निरूपित किया गया | धनात्मक शंकु के अवयव ों को धनात्मक कहा जाता है। यदि <math>x</math> और <math>y</math> पूर्वक्रमित सदिश समष्टि के अवयव हैं <math>(X, \leq),</math> तब <math>x \leq y</math> यदि और केवल यदि <math>y - x \in X^+.</math> शीर्ष <math>C</math> के साथ किसी भी नुकीले उत्तल शंकु को देखते हुए <math>0,</math> कोई <math>X</math> प्रीऑर्डर <math>\,\leq\,</math> को परिभाषित कर सकता है जो सभी के लिए घोषणा करके <math>X</math> के सदिश समिष्ट संरचना के अनुकूल है <math>x, y \in X,</math> वह <math>x \leq y</math> यदि और केवल यदि <math>y - x \in C;</math> इस परिणामी पूर्वक्रमित सदिश समष्टि का धनात्मक शंकु है <math>C.</math> इस प्रकार शीर्ष <math>0</math> के साथ नुकीले उत्तल शंकुओं और <math>X </math> पर सदिश प्री-ऑर्डर के बीच एक-से-एक पत्राचार होता है{{sfn|Schaefer|Wolff|1999|pp=250-257}} यदि <math>X</math> पूर्व-आदेश दिया गया है तो हम <math>X</math> को परिभाषित करके <math>x</math> पर तुल्यता संबंध बना सकते हैं तथा <math>y</math> यदि और केवल यदि <math>x \leq y</math> और <math>y \leq x;</math> यदि <math>N</math> तब मूल से युक्त [[तुल्यता वर्ग]] है <math>N</math>, <math>X</math> का सदिश उपसमष्टि है और <math>X / N</math> संबंध के अंतर्गत क्रमित सदिश समष्टि है: <math>A \leq B</math> यदि और केवल वहाँ <math>a \in A</math> और <math>b \in B</math> अस्तित्व है <math>a \leq b.</math> ऐसा है{{sfn|Schaefer|Wolff|1999|pp=250-257}} | |||
<math>X</math> को [[उचित शंकु]] कहा जाता है यदि यह शीर्ष <math>C</math> का उत्तल शंकु है इसका उपसमुच्चय सदिश समिष्ट का होता है तो इसे <math>0</math> संतुष्टि देने वाला <math>C \cap (- C) = \{0\}.</math> है तथा स्पष्ट रूप से, <math>C</math> उचित शंकु है यदि (1) <math>C + C \subseteq C,</math> (2) <math>r C \subseteq C</math> सभी <math>r > 0,</math> के लिए और (3) <math>C \cap (- C) = \{0\}.</math>{{sfn|Schaefer|Wolff|1999|pp=205–209}} उचित शंकुओं के किसी भी गैर-रिक्त वर्ग का प्रतिच्छेदन फिर से उचित शंकु है। प्रत्येक उचित शंकु वास्तविक सदिश समष्टि में परिभाषित करके सदिश समष्टि पर क्रम उत्पन्न करता है <math>C</math> <math>x \leq y</math> यदि और केवल यदि <math>y - x \in C,</math> और इसके अलावा, इस क्रमित सदिश समष्टि का धनात्मक शंकु होगा <math>C.</math> इसलिए, उचित उत्तल शंकुओं के बीच वन-से-वन पत्राचार उपस्तिथ <math>X</math> है और सदिश आंशिक आदेश <math>X.</math> पर होते है | |||
कुल सदिश क्रम से <math>X</math> हमारा कारण [[कुल ऑर्डर]] <math>X</math> से है जो कि सदिश समिष्ट संरचना <math>X.</math> के अनुकूल है तथा सदिश समष्टि पर कुल सदिश क्रमों का वर्ग <math>X</math> सभी उचित शंकुओं के वर्ग के साथ वन-से-वन पत्राचार में है जो समुच्चय समावेशन के तहत अधिकतम हैं।{{sfn|Schaefer|Wolff|1999|pp=250-257}} कुल सदिश क्रम [[आर्किमिडीज़ आदेश]] नहीं हो सकता है यदि इसका [[आयाम (वेक्टर स्थान)|आयाम (सदिश समिष्ट)]], जब वास्तविक पर सदिश समिष्ट माना जाता है, 1 से अधिक है।{{sfn|Schaefer|Wolff|1999|pp=250-257}} | |||
यदि <math>R</math> और <math>S</math> धनात्मक शंकु वाले सदिश समष्टि के दो क्रम क्रमशः <math>P</math> और <math>Q,</math> हैं , तो हम ऐसा कहते हैं <math>R</math> से बेहतर है <math>S</math> यदि <math>P \subseteq Q.</math>{{sfn|Schaefer|Wolff|1999|pp=205–209}} | |||
==उदाहरण== | ==उदाहरण== | ||
सामान्य क्रम के साथ वास्तविक संख्याएँ पूरी तरह से क्रमबद्ध | सामान्य क्रम के साथ वास्तविक संख्याएँ पूरी तरह से क्रमबद्ध सदिश समिष्ट बनाती हैं। सभी [[पूर्णांक|पूर्णांकों]] <math>n \geq 0,</math> के लिए [[यूक्लिडियन स्थान|यूक्लिडियन समिष्ट]] <math>\Reals^n</math> [[शब्दकोषीय क्रम]] के साथ वास्तविकताओं पर सदिश समिष्ट के रूप में माना जाता है, जो कि पूर्व-क्रमित सदिश समिष्ट बनता है जिसका क्रम आर्किमिडीयन द्वारा आदेशित सदिश समिष्ट है यदि और केवल यदि <math>n = 1</math>.{{sfn|Narici|Beckenstein|2011|pp=139-153}} | ||
===बिंदुवार क्रम === | |||
यदि <math>S</math> क्या कोई समुच्चय है और यदि <math>X</math> वास्तविक-मूल्यवान फलन (गणित) का सदिश समिष्ट <math>S,</math>(वास्तविकता पर) है तत्पश्चात <math>X</math> द्वारा बिन्दुवार क्रम जारी करें , <math>f, g \in X,</math> सभी <math>f \leq g</math> के लिए दिया गया है यदि और केवल यदि <math>f(s) \leq g(s)</math> सभी <math>s \in S.</math> के लिए यही होगा | {{sfn|Narici|Beckenstein|2011|pp=139-153}} | |||
* | * <math>S </math> पर परिबद्ध फलन के वास्तविक-मूल्यवान मानचित्रों पर समिष्ट <math>\ell^\infty(S, \Reals)</math> होता है | | ||
* | * वास्तविक-मूल्यवान अनुक्रमों की समिष्ट <math>c_0(\Reals)</math> जो किसी <math>0.</math>[[अनुक्रम की सीमा]] को सीमित करते हैं | ||
* किसी भी गैर-नकारात्मक पूर्णांक | *[[टोपोलॉजिकल स्पेस|टोपोलॉजिकल समिष्ट]] <math>S.</math> पर सतत फलन (टोपोलॉजी) के वास्तविक-मूल्यवान फलन समिष्ट <math>C(S, \Reals)</math> होता है | | ||
* किसी भी गैर-नकारात्मक पूर्णांक <math>n,</math> के लिए यूक्लिडियन समिष्ट <math>\Reals^n</math> जब समिष्ट <math>C(\{1, \dots, n\}, \Reals)</math> के रूप में माना जाता है जहाँ <math>S = \{1, \dots, n\}</math> [[असतत टोपोलॉजी]] दी गई है। | |||
समिष्ट <math>\mathcal{L}^\infty(\Reals, \Reals)</math> सभी मापने योग्य फलन [[लगभग हर जगह]] वास्तविक-मूल्यवान <math>\Reals,</math> मानचित्रों से बंधे होते हैं जहां सभी <math>f, g \in \mathcal{L}^\infty(\Reals, \Reals)</math> के लिए प्रीऑर्डर <math>f \leq g</math> द्वारा रिभाषित किया गया है यदि और केवल यदि <math>f(s) \leq g(s)</math> लगभग हर जगह होता है ।{{sfn|Narici|Beckenstein|2011|pp=139-153}} | |||
==अंतराल और क्रमबद्ध दोहरा== | ==अंतराल और क्रमबद्ध दोहरा == | ||
पूर्व-क्रमित सदिश समष्टि में | पूर्व-क्रमित सदिश समष्टि में क्रम अंतराल प्रपत्र का समुच्चय होता है | ||
<math display=block>\begin{alignat}{4} | |||
[a, b] &= \{x : a \leq x \leq b\}, \\[0.1ex] | [a, b] &= \{x : a \leq x \leq b\}, \\[0.1ex] | ||
[a, b[ &= \{x : a \leq x < b\}, \\ | [a, b[ &= \{x : a \leq x < b\}, \\ | ||
Line 50: | Line 47: | ||
]a, b[ &= \{x : a < x < b\}. \\ | ]a, b[ &= \{x : a < x < b\}. \\ | ||
\end{alignat}</math> | \end{alignat}</math> | ||
उपरोक्त अभिगृहीतों 1 और 2 से यह निष्कर्ष निकलता है <math>x, y \in [a, b]</math> और <math>0 < t < 1</math> तात्पर्य <math>t x + (1 - t) y</math> से संबंधित <math>[a, b];</math> इस प्रकार ये क्रम अंतराल उत्तल हैं। | उपरोक्त अभिगृहीतों 1 और 2 से यह निष्कर्ष निकलता है कि <math>x, y \in [a, b]</math> और <math>0 < t < 1</math> से तात्पर्य है कि <math>t x + (1 - t) y</math> से संबंधित है <math>[a, b];</math> इस प्रकार ये क्रम अंतराल उत्तल हैं। एक उपसमुच्चय को ऑर्डर बाउंड कहा जाता है यदि वह किसी ऑर्डर अंतराल में समाहित हो।{{sfn|Schaefer|Wolff|1999|pp=205–209}} एक पूर्व-आदेशित वास्तविक सदिश समिष्ट में, यदि <math>x \geq 0</math> के लिए है तो फिर <math>[-x, x]</math> रूप का अंतराल [[संतुलित सेट|संतुलित]] समुच्चय है.{{sfn|Schaefer|Wolff|1999|pp=205–209}} पूर्व-क्रमित सदिश समष्टि की क्रम इकाई कोई भी अवयव है <math>x</math> ऐसे कि समुच्चय <math>[-x, x]</math> [[अवशोषक सेट|अवशोषक]] समुच्चय है.{{sfn|Schaefer|Wolff|1999|pp=205–209}} | ||
एक उपसमुच्चय को ऑर्डर बाउंड कहा जाता है यदि वह किसी ऑर्डर अंतराल में समाहित हो।{{sfn|Schaefer|Wolff|1999|pp=205–209}} | |||
एक पूर्व-आदेशित वास्तविक | |||
पूर्व-क्रमित सदिश समष्टि की | |||
पूर्व-क्रमित सदिश समष्टि पर सभी | पूर्व-क्रमित सदिश समष्टि पर सभी रैखिक फलनात्मकताओं का समुच्चय <math>X</math> प्रत्येक ऑर्डर अंतराल को बाउंडेड समुच्चय में मानचित्ररण करने को [[ आदेश बाध्य दोहरी |आदेश बाध्य दोहरी]] कहा जाता है और <math>X</math> द्वारा <math>X^{\operatorname{b}}.</math> निरूपित किया गया {{sfn|Schaefer|Wolff|1999|pp=205–209}} यदि किसी समिष्ट को क्रमबद्ध किया जाता है तो उसका क्रमबद्ध दोहरा उसके बीजगणितीय दोहरे का सदिश उपसमष्टि होता है। | ||
यदि किसी | |||
उपसमुच्चय <math>A</math> | उपसमुच्चय <math>A</math> क्रमबद्ध सदिश समष्टि का <math>X</math> यदि प्रत्येक गैर-रिक्त उपसमुच्चय के लिए ऑर्डर पूर्ण कहा जाता है <math>B \subseteq A</math> ऐसा है कि <math>B</math> आदेश में बंधा हुआ है <math>A,</math> है दोनों <math>\sup B</math> और <math>\inf B</math> उपस्तिथ हैं और <math>A.</math> के अवयव हैं हम कहते हैं कि क्रमित सदिश समष्टि <math>X</math> क्या ऑर्डर पूरा <math>X</math> हैतथा इसका ऑर्डर पूर्ण उपसमुच्चय <math>X.</math> है {{sfn|Schaefer|Wolff|1999|pp=204-214}} | ||
===उदाहरण=== | ===उदाहरण === | ||
यदि <math>(X, \leq)</math> ऑर्डर इकाई के साथ वास्तविकताओं पर पूर्व-आदेशित सदिश समिष्ट <math>u,</math> है फिर मानचित्र <math>p(x) := \inf \{t \in \Reals : x \leq t u\}</math> [[सबलीनियर कार्यात्मक|सबलीनियर फलनात्मक]]ता है।{{sfn|Narici|Beckenstein|2011|pp=139-153}} | |||
==गुण== | ==गुण == | ||
यदि <math>X</math> सभी <math>x, y \in X,</math> के लिए पूर्व-आदेशित सदिश समिष्ट है | |||
* | * <math>x \geq 0</math> और <math>y \geq 0</math> का अर्थ <math>x + y \geq 0.</math> है| {{sfn|Narici|Beckenstein|2011|pp=139-153}} | ||
* <math>x \leq y</math> और <math>r < 0</math> | *यदि और केवल यदि <math>-y \leq -x.</math> {{sfn|Narici|Beckenstein|2011|pp=139-153}} | ||
* <math>x \leq y</math> | * <math>x \leq y</math> और <math>r < 0</math> का अर्थ <math>r x \geq r y.</math> है| {{sfn|Narici|Beckenstein|2011|pp=139-153}} | ||
* <math>\sup \{x, y\}</math> अस्तित्व में है यदि और केवल यदि <math>\inf \{-x, -y\}</math> | * <math>x \leq y</math> यदि और केवल यदि <math>y = \sup \{x, y\}</math> यदि और केवल यदि <math>x = \inf \{x, y\}</math>{{sfn|Narici|Beckenstein|2011|pp=139-153}} | ||
* <math>\sup \{x, y\}</math> अस्तित्व में है यदि और केवल यदि <math>\inf \{x, y\}</math> | * <math>\sup \{x, y\}</math> अस्तित्व में है यदि और केवल यदि <math>\inf \{-x, -y\}</math> उपस्तिथ है, किस स्थिति में <math>\inf \{-x, -y\} = - \sup \{x, y\}.</math>{{sfn|Narici|Beckenstein|2011|pp=139-153}} | ||
* <math>\sup \{x, y\}</math> अस्तित्व में है यदि और केवल यदि <math>\inf \{x, y\}</math> उपस्तिथ है, इस स्तिथियों में सभी <math>z \in X,</math>के लिए होता है {{sfn|Narici|Beckenstein|2011|pp=139-153}} | |||
** <math>\sup \{x + z, y + z\} = z + \sup \{x, y\},</math> और | ** <math>\sup \{x + z, y + z\} = z + \sup \{x, y\},</math> और | ||
** <math>\inf \{x + z, y + z\} = z + \inf \{x, y\}</math> | ** <math>\inf \{x + z, y + z\} = z + \inf \{x, y\}</math> | ||
** <math>x + y = \inf\{x, y\} + \sup \{x, y\}.</math> | ** <math>x + y = \inf\{x, y\} + \sup \{x, y\}.</math> | ||
* <math>X</math> | * <math>X</math> सदिश जालक है यदि और केवल यदि <math>\sup \{0, x\}</math> सभी <math>x \in X.</math> के लिए उपस्तिथ है {{sfn|Narici|Beckenstein|2011|pp=139-153}} | ||
==रैखिक मानचित्रों का | ==रैखिक मानचित्रों का समिष्ट == | ||
{{Main| | {{Main|धनात्मक रैखिक संचालक }} | ||
एक शंकु <math>C</math> कहा जाता है कि यदि उत्पन्न हो रहा है <math>C - C</math> संपूर्ण सदिश समष्टि के बराबर है।{{sfn|Schaefer|Wolff|1999|pp=205–209}} | एक शंकु <math>C</math> कहा जाता है कि यदि उत्पन्न हो रहा है <math>C - C</math> संपूर्ण सदिश समष्टि के बराबर है।{{sfn|Schaefer|Wolff|1999|pp=205–209}} यदि <math>X</math> और <math>W</math> संबंधित धनात्मक शंकु के साथ <math>P</math> और <math>Q,</math> दो गैर-तुच्छ क्रमित सदिश समिष्ट हैं तब <math>P</math> में <math>X</math> उत्पन्न हो रहा है यदि और केवल यदि समुच्चय <math>C = \{u \in L(X; W) : u(P) \subseteq Q\}</math> में उचित शंकु <math>L(X; W),</math> है जो सभी रैखिक मानचित्रों का समिष्ट <math>X</math> में <math>W.</math> है इस स्तिथियाँ में, <math>L(X; W).</math> द्वारा परिभाषित आदेश <math>C</math> का विहित क्रम कहा जाता है {{sfn|Schaefer|Wolff|1999|pp=205–209}} तथा अधिक सामान्यतः, यदि <math>M</math> का कोई सदिश उपसमष्टि <math>L(X; W)</math> है तब ऐसा है कि <math>C \cap M</math> उचित शंकु है, तथा इसके द्वारा <math>C \cap M</math> परिभाषित क्रम <math>M.</math> को विहित क्रम कहा जाता है {{sfn|Schaefer|Wolff|1999|pp=205–209}} | ||
अधिक सामान्यतः, यदि <math>M</math> का कोई सदिश उपसमष्टि | |||
=== | ===धनात्मक फलन और क्रम दोहरा=== | ||
एक रैखिक | एक रैखिक फलन <math>f</math> पूर्व-आदेशित सदिश समिष्ट को धनात्मक कहा जाता है यदि यह निम्नलिखित समकक्ष नियमों में से किसी को संतुष्ट करता है: | ||
# <math>x \geq 0</math> तात्पर्य <math>f(x) \geq 0.</math> | # <math>x \geq 0</math> तात्पर्य <math>f(x) \geq 0.</math> | ||
# | # यदि <math>x \leq y</math> तब <math>f(x) \leq f(y).</math>{{sfn|Narici|Beckenstein|2011|pp=139-153}} | ||
धनात्मक शंकु वाले सदिश समष्टि पर सभी धनात्मक रैखिक रूपों का समुच्चय <math>C,</math> [[द्वैत शंकु और ध्रुवीय शंकु]] कहा जाता है और इसे | धनात्मक शंकु वाले सदिश समष्टि पर सभी धनात्मक रैखिक रूपों का समुच्चय <math>C,</math> [[द्वैत शंकु और ध्रुवीय शंकु]] कहा जाता है और इसे <math>C^*,</math> द्वारा निरूपित किया जाता है <math>-C.</math> के ध्रुवीय समुच्चय के बराबर शंकु है रैखिक फलनात्मकताओं के समिष्ट पर दोहरे शंकु द्वारा प्रेरित प्रीऑर्डर <math>X</math> कहा जाता है.{{sfn|Narici|Beckenstein|2011|pp=139-153}} | ||
एक क्रमित सदिश समष्टि का क्रम दोहरा ( | एक क्रमित सदिश समष्टि का क्रम दोहरा (फलनात्मक विश्लेषण)। <math>X</math> समुच्चय है, जिसे <math>X^+,</math> द्वारा दर्शाया गया है तथा <math>X^+ := C^* - C^*.</math> द्वारा परिभाषित किया जाता है यद्यपि <math>X^+ \subseteq X^b,</math> वहां क्रमबद्ध सदिश रिक्त समिष्ट उपस्तिथ हैं जिनके लिए समुच्चय समानता उपस्तिथ है।{{sfn|Schaefer|Wolff|1999|pp=205–209}} | ||
==विशेष प्रकार के क्रमित सदिश समष्टि== | ==विशेष प्रकार के क्रमित सदिश समष्टि == | ||
मान लीजिये <math>X</math> क्रमबद्ध सदिश समष्टि हो। हम कहते हैं कि क्रमित सदिश समष्टि <math>X</math> क्या आर्किमिडीज़ ने सदिश समष्टि का आदेश दिया है और इसका क्रम क्या है <math>X</math> आर्किमिडीयन है यदि जब भी <math>x</math> में <math>X</math> इस प्रकार कि <math>\{n x : n \in \N\}</math> [[प्रमुखीकरण]] है (अर्थात, कुछ उपस्तिथ है <math>y \in X</math> ऐसा है कि <math>n x \leq y</math> सभी के लिए <math>n \in \N</math>) तब <math>x \leq 0.</math>{{sfn|Schaefer|Wolff|1999|pp=205–209}} | |||
एक [[टोपोलॉजिकल वेक्टर स्पेस]] (टीवीएस) जो कि | एक [[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल सदिश समिष्ट]] (टीवीएस) जो कि ऑर्डर किया गया सदिश समिष्ट है, आवश्यक रूप से आर्किमिडीयन है यदि इसका धनात्मक शंकु संवृत है।{{sfn|Schaefer|Wolff|1999|pp=205–209}} | ||
हम कहते हैं कि | हम कहते हैं कि पूर्व-आदेशित सदिश समष्टि <math>X</math> नियमित रूप से आदेश दिया जाता है और यदि यह आर्किमिडीयन आदेश दिया गया है तो इसका आदेश नियमित है <math>X^+</math> में बिंदुओं को अलग करता है <math>X.</math>{{sfn|Schaefer|Wolff|1999|pp=205–209}} यह संपत्ति गारंटी देती है कि आदेशित सदिश समिष्टों का अध्ययन करने के लिए द्वंद्व के उपकरणों का सफलतापूर्वक उपयोग करने में सक्षम होने के लिए पर्याप्त रूप से कई धनात्मक रैखिक रूप हैं।{{sfn|Schaefer|Wolff|1999|pp=205–209}} | ||
यह संपत्ति गारंटी देती है कि आदेशित | |||
यदि सभी | यदि सभी अवयवों <math>x</math> और <math>y,</math> के लिए क्रमित सदिश समष्टि को सदिश जालक कहा जाता है तथा उच्चतम <math>\sup (x, y)</math> और सबसे निचला <math>\inf (x, y)</math> अस्तित्व होता है।{{sfn|Schaefer|Wolff|1999|pp=205–209}} | ||
== | ==उपसमिष्ट, भागफल, और उत्पाद== | ||
मान लीजिए कि <math>X</math> धनात्मक शंकु <math>C.</math> के साथ पूर्व-आदेशित सदिश समष्टि हो | |||
यदि <math>M</math> <math>X</math> का सदिश उपसमष्टि है <math>X</math> का धनात्मक शंकु <math>C</math> द्वारा प्रेरित <math>M</math> पर विहित क्रम नुकीले उत्तल शंकु <math>C \cap M,</math> द्वारा आदेश चालू प्रेरक आंशिक क्रम है यदि <math>C</math> उचित होने पर यह शंकु उचित है है.{{sfn|Schaefer|Wolff|1999|pp=205–209}} | |||
भागफल स्थान | === भागफल समिष्ट === | ||
मान लीजिये कि <math>M</math> क्रमित सदिश समष्टि <math>X,</math>का सदिश उपसमष्टि बनें <math>\pi : X \to X / M</math> विहित प्रक्षेपण हो, और चलो <math>\hat{C} := \pi(C).</math> तब <math>\hat{C}</math> में शंकु है <math>X / M</math> जो [[भागफल स्थान (रैखिक बीजगणित)|भागफल समिष्ट (रैखिक बीजगणित)]] पर विहित प्रीऑर्डरिंग को प्रेरित करता है <math>X / M.</math> यदि <math>\hat{C}</math> में उचित शंकु है<math>X / M</math> तब <math>\hat{C}</math> बनाता है <math>X / M</math> क्रमबद्ध सदिश समिष्ट में।{{sfn|Schaefer|Wolff|1999|pp=205–209}} यदि <math>M</math> शंकु-संतृप्त है | <math>C</math>-फिर संतृप्त <math>\hat{C}</math> के विहित क्रम को परिभाषित करता है <math>X / M.</math>{{sfn|Schaefer|Wolff|1999|pp=250-257}} | |||
ध्यान दें कि <math>X = \Reals^2_0</math> क्रमित सदिश समष्टि का उदाहरण प्रदान करता है जहाँ <math>\pi(C)</math> उचित शंकु नहीं है. | |||
यदि <math>X</math> टोपोलॉजिकल सदिश समिष्ट (टीवीएस) भी है और यदि प्रत्येक पड़ोस के लिए (गणित) <math>V</math> में उत्पत्ति का <math>X</math> वहाँ पड़ोस उपस्तिथ है <math>U</math> उत्पत्ति की ऐसी कि <math>[(U + N) \cap C] \subseteq V + N</math> तब <math>\hat{C}</math> [[भागफल टोपोलॉजी]] के लिए [[सामान्य शंकु (कार्यात्मक विश्लेषण)|सामान्य शंकु (फलनात्मक विश्लेषण)]] है।{{sfn|Schaefer|Wolff|1999|pp=250-257}} | |||
यदि <math>X</math> [[टोपोलॉजिकल वेक्टर जाली|टोपोलॉजिकल सदिश जालक]] है और <math>M</math> का संवृत ठोस समुच्चय उप-जाल है <math>X</math> तब <math>X / L</math> यह टोपोलॉजिकल सदिश जालक भी है।{{sfn|Schaefer|Wolff|1999|pp=250-257}} | |||
उत्पाद | उत्पाद | ||
यदि <math>S</math> क्या कोई समुच्चय है फिर समिष्ट? <math>X^S</math> से सभी फलनों का <math>S</math> में <math>X</math> उचित शंकु द्वारा विहित रूप से आदेश दिया गया है <math>\left\{f \in X^S : f(s) \in C \text{ for all } s \in S\right\}.</math>{{sfn|Schaefer|Wolff|1999|pp=205–209}} | |||
लगता है कि <math>\left\{X_\alpha : \alpha \in A\right\}</math> पूर्वक्रमित सदिश | लगता है कि <math>\left\{X_\alpha : \alpha \in A\right\}</math> पूर्वक्रमित सदिश समिष्टों का वर्ग है और इसका धनात्मक शंकु है <math>X_\alpha</math> है <math>C_\alpha.</math> तब <math display="inline">C := \prod_\alpha C_\alpha</math> में नुकीला उत्तल शंकु है <math display="inline">\prod_\alpha X_\alpha,</math> जो विहित क्रम निर्धारित करता है <math display="inline">\prod_\alpha X_\alpha;</math> <math>C</math> यदि सभी हों तो उचित शंकु है <math>C_\alpha</math> उचित शंकु हैं.{{sfn|Schaefer|Wolff|1999|pp=205–209}} | ||
<math>C</math> यदि सभी हों तो | |||
बीजीय [[प्रत्यक्ष योग]] | बीजीय [[प्रत्यक्ष योग]] | ||
बीजगणितीय प्रत्यक्ष योग <math display="inline">\bigoplus_\alpha X_\alpha</math> का <math>\left\{X_\alpha : \alpha \in A\right\}</math> का | बीजगणितीय प्रत्यक्ष योग <math display="inline">\bigoplus_\alpha X_\alpha</math> का <math>\left\{X_\alpha : \alpha \in A\right\}</math> का सदिश उपसमष्टि है <math display="inline">\prod_\alpha X_\alpha</math> जिसे विहित उप-समिष्ट क्रम विरासत में मिला है <math display="inline">\prod_\alpha X_\alpha.</math>{{sfn|Schaefer|Wolff|1999|pp=205–209}} | ||
यदि <math>X_1, \dots, X_n</math> क्रमित सदिश समष्टि के क्रमित सदिश उपसमष्टि हैं <math>X</math> तब <math>X</math> यदि विहित बीजगणितीय समरूपता है तो इन उप-समिष्टों का क्रमबद्ध प्रत्यक्ष योग है <math>X</math> पर <math>\prod_\alpha X_\alpha</math> (विहित उत्पाद क्रम के साथ) क्रम समरूपता है।{{sfn|Schaefer|Wolff|1999|pp=205–209}} | |||
==उदाहरण== | ==उदाहरण== | ||
* सामान्य क्रम वाली वास्तविक संख्याएँ | * सामान्य क्रम वाली वास्तविक संख्याएँ क्रमित सदिश समष्टि होती हैं। | ||
* <math>\Reals^2</math> के साथ | * <math>\Reals^2</math> के साथ क्रमित सदिश समष्टि <math>\,\leq\,</math> है इस संबंध को निम्नलिखित में से किसी भी विधि से परिभाषित किया गया है (बढ़ती ताकत के क्रम में, यानी जोड़े के घटते समुच्चय में ): | ||
** [[शब्दावली क्रम]]: <math>(a, b) \leq (c, d)</math> | ** [[शब्दावली क्रम]]: <math>(a, b) \leq (c, d)</math> यदि और केवल यदि <math>a < c</math> या <math>(a = c \text{ and } b \leq d).</math>है तब यह कुल ऑर्डर है. धनात्मक शंकु <math>x > 0</math> या <math>(x = 0 \text{ and } y \leq 0),</math> द्वारा दिया गया है अर्थात्, [[ध्रुवीय समन्वय प्रणाली]] में, उत्पत्ति कोणीय निर्देशांक वाले बिंदुओं के साथ <math>-\pi / 2 < \theta \leq \pi / 2,</math> का समुच्चय संतोषजनक होता है. | ||
** <math>(a, b) \leq (c, d)</math> | **<math>(a, b) \leq (c, d)</math> यदि और केवल यदि <math>a \leq c</math> और <math>b \leq d</math> (<math>\leq</math> के साथ <math>\Reals</math> की दो प्रतियों का [[उत्पाद क्रम]]). यह आंशिक आदेश है. धनात्मक शंकु द्वारा दिया गया है <math>x \geq 0</math> और <math>y \geq 0,</math> अर्थात्, ध्रुवीय निर्देशांक में <math>0 \leq \theta \leq \pi / 2,</math> उत्पत्ति के साथ होती है | ||
** <math>(a, b) \leq (c, d)</math> | **<math>(a, b) \leq (c, d)</math> यदि और केवल यदि <math>(a < c \text{ and } b < d)</math> या <math>(a = c \text{ and } b = d)</math> (प्रत्यक्ष उत्पाद का [[प्रतिवर्ती समापन]] या दो प्रतियों <math>\Reals</math> के द्विआधारी संबंधों का प्रत्यक्ष उत्पाद है यह भी आंशिक आदेश है. धनात्मक शंकु द्वारा दिया गया है <math>(x > 0 \text{ and } y > 0)</math> या <math>x = y = 0),</math> अर्थात्, ध्रुवीय निर्देशांक में, उत्पत्ति के साथ. <math>0 < \theta < \pi / 2,</math> है | ||
:केवल दूसरा क्रम, | :केवल दूसरा क्रम, <math>\Reals^4,</math>के उपसमुच्चय के रूप में है संवृत किया हुआ; आंशिक रूप से ऑर्डर किया गया समुच्चय या टोपोलॉजिकल समिष्ट में आंशिक ऑर्डर देखें। | ||
:तीसरे क्रम के लिए द्वि-आयामी आंशिक रूप से क्रमित | :तीसरे क्रम के लिए द्वि-आयामी आंशिक रूप से क्रमित समुच्चय या अंतराल <math>p < x < q</math> विवृत समुच्चय हैं जो टोपोलॉजी उत्पन्न करते हैं। | ||
* <math>\Reals^n</math> के साथ | * <math>\Reals^n</math> के साथ क्रमित सदिश समष्टि है <math>\,\leq\,</math> संबंध को इसी तरह परिभाषित किया गया है। उदाहरण के लिए, ऊपर उल्लिखित दूसरे आदेश के लिए: | ||
** <math>x \leq y</math> | ** <math>x \leq y</math> यदि और केवल यदि <math>x_i \leq y_i</math> , <math>i = 1, \dots, n.</math>के लिए | ||
* निरंतर | **[[रिज़्ज़ स्थान|रिज़्ज़ समिष्ट]] ऑर्डर किया गया सदिश समिष्ट है जहां ऑर्डर जालक (ऑर्डर) को उत्पन्न करता है। | ||
* निरंतर फलनों का समिष्ट <math>[0, 1]</math> जहाँ <math>f \leq g</math> यदि और केवल यदि <math>f(x) \leq g(x)</math> सभी के लिए <math>x</math> में <math>[0, 1].</math> | |||
==यह भी देखें== | ==यह भी देखें== | ||
* {{annotated link| | * {{annotated link|ऑर्डर टोपोलॉजी (कार्यात्मक विश्लेषण)}} | ||
* {{annotated link| | * {{annotated link|आदेशित फ़ील्ड }} | ||
* {{annotated link| | * {{annotated link|आदेशित समूह }} | ||
* {{annotated link| | * {{annotated link|वलय का ऑर्डर दिया }} | ||
* {{annotated link| | * {{annotated link|क्रमबद्ध टोपोलॉजिकल सदिश समिष्ट }} | ||
* {{annotated link| | * {{annotated link|आंशिक रूप से ऑर्डर किया गया समष्टि}} | ||
* {{annotated link| | * {{annotated link|उत्पाद आदेश }} | ||
* {{annotated link| | * {{annotated link|रिज़्ज़ समिष्ट}} | ||
* {{annotated link| | * {{annotated link|टोपोलॉजिकल सदिश जालक }} | ||
* {{annotated link|Vector lattice}} | * {{annotated link|Vector lattice}} | ||
Line 173: | Line 162: | ||
* {{cite book|author=Wong|title=Schwartz spaces, nuclear spaces, and tensor products|publisher=Springer-Verlag|publication-place=Berlin New York|year=1979|isbn=3-540-09513-6|oclc=5126158}} <!-- {{sfn|Wong|1979|p=}} --> | * {{cite book|author=Wong|title=Schwartz spaces, nuclear spaces, and tensor products|publisher=Springer-Verlag|publication-place=Berlin New York|year=1979|isbn=3-540-09513-6|oclc=5126158}} <!-- {{sfn|Wong|1979|p=}} --> | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 21/07/2023]] | [[Category:Created On 21/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:आदेशित समूह]] | |||
[[Category:कार्यात्मक विश्लेषण]] | |||
[[Category:वेक्टर रिक्त स्थान]] |
Latest revision as of 13:51, 8 September 2023
गणित में, क्रमित सदिश समष्टि या आंशिक रूप से क्रमित सदिश समष्टि आंशिक क्रम से सुसज्जित सदिश समष्टि है जो सदिश समष्टि संचालन के साथ संगत है।
परिभाषा
वास्तविक संख्या से अधिक सदिश समिष्ट दिया गया है और पूर्व आदेश समुच्चय पर प्रीऑर्डर्ड दिया गया है जोड़ी है प्रीऑर्डर्ड सदिश समिष्ट कहा जाता है और हम कहते हैं कि प्रीऑर्डर की सदिश समिष्ट संरचना के साथ संगत है और कॉल करें सदिश प्रीऑर्डर कहा जाता है यदि सभी के लिए और साथ निम्नलिखित दो सिद्धांत संतुष्ट हैं
- तात्पर्य
- तात्पर्य
यदि की सदिश समिष्ट संरचना के साथ संगत आंशिक क्रम है तब क्रमित सदिश समष्टि कहलाती है और को सदिश आंशिक क्रम कहा जाता है दो सिद्धांतों का अर्थ है कि अनुवाद और धनात्मक समरूपताएं ऑटोमोर्फिज्म हैं ऑर्डर संरचना और मानचित्रण द्वैत (आदेश सिद्धांत) के लिए एक समरूपता है। क्रमबद्ध वेक्टर रिक्त समिष्ट उनके अतिरिक्त ऑपरेशन के तहत क्रमबद्ध समूह हैं।
ध्यान दें कि यदि और केवल यदि
धनात्मक शंकु और क्रम के अनुसार उनकी तुल्यता
सदिश समिष्ट का का उपसमुच्चय है जिन्हें शंकु कहा जाता है यदि यह वास्तव के लिए में इसे शंकु को नुकीला कहा जाता है यदि उसमें मूल बिंदु सम्मिलित हो। शंकु उत्तल है यदि और केवल यदि शंकु के किसी भी गैर-रिक्त वर्ग (सम्मानित उत्तल शंकु) का प्रतिच्छेदन (समुच्चय सिद्धांत) फिर से शंकु (सम्मानित उत्तल शंकु) है; शंकुओं (सम्मान उत्तल शंकु) के बढ़ते (उपसमुच्चय के तहत) वर्ग के संघ (समुच्चय सिद्धांत) के बारे में भी यही सच है। सदिश समिष्ट में में शंकु को उत्पन्न करने वाला माना जाता है [1] एक धनात्मक शंकु तभी उत्पन्न होता है जब यह निर्देशित समुच्चय होता है
पूर्व-आदेशित सदिश समिष्ट दिया गया| सभी अवयव ों उपसमुच्चय में संतुष्टि देने वाला शीर्ष के साथ नुकीला उत्तल शंकु है (अर्थात इसमें सम्मिलित है ) जिसे का धनात्मक शंकु कहलाता है और द्वारा निरूपित किया गया | धनात्मक शंकु के अवयव ों को धनात्मक कहा जाता है। यदि और पूर्वक्रमित सदिश समष्टि के अवयव हैं तब यदि और केवल यदि शीर्ष के साथ किसी भी नुकीले उत्तल शंकु को देखते हुए कोई प्रीऑर्डर को परिभाषित कर सकता है जो सभी के लिए घोषणा करके के सदिश समिष्ट संरचना के अनुकूल है वह यदि और केवल यदि इस परिणामी पूर्वक्रमित सदिश समष्टि का धनात्मक शंकु है इस प्रकार शीर्ष के साथ नुकीले उत्तल शंकुओं और पर सदिश प्री-ऑर्डर के बीच एक-से-एक पत्राचार होता है[1] यदि पूर्व-आदेश दिया गया है तो हम को परिभाषित करके पर तुल्यता संबंध बना सकते हैं तथा यदि और केवल यदि और यदि तब मूल से युक्त तुल्यता वर्ग है , का सदिश उपसमष्टि है और संबंध के अंतर्गत क्रमित सदिश समष्टि है: यदि और केवल वहाँ और अस्तित्व है ऐसा है[1]
को उचित शंकु कहा जाता है यदि यह शीर्ष का उत्तल शंकु है इसका उपसमुच्चय सदिश समिष्ट का होता है तो इसे संतुष्टि देने वाला है तथा स्पष्ट रूप से, उचित शंकु है यदि (1) (2) सभी के लिए और (3) [2] उचित शंकुओं के किसी भी गैर-रिक्त वर्ग का प्रतिच्छेदन फिर से उचित शंकु है। प्रत्येक उचित शंकु वास्तविक सदिश समष्टि में परिभाषित करके सदिश समष्टि पर क्रम उत्पन्न करता है यदि और केवल यदि और इसके अलावा, इस क्रमित सदिश समष्टि का धनात्मक शंकु होगा इसलिए, उचित उत्तल शंकुओं के बीच वन-से-वन पत्राचार उपस्तिथ है और सदिश आंशिक आदेश पर होते है
कुल सदिश क्रम से हमारा कारण कुल ऑर्डर से है जो कि सदिश समिष्ट संरचना के अनुकूल है तथा सदिश समष्टि पर कुल सदिश क्रमों का वर्ग सभी उचित शंकुओं के वर्ग के साथ वन-से-वन पत्राचार में है जो समुच्चय समावेशन के तहत अधिकतम हैं।[1] कुल सदिश क्रम आर्किमिडीज़ आदेश नहीं हो सकता है यदि इसका आयाम (सदिश समिष्ट), जब वास्तविक पर सदिश समिष्ट माना जाता है, 1 से अधिक है।[1]
यदि और धनात्मक शंकु वाले सदिश समष्टि के दो क्रम क्रमशः और हैं , तो हम ऐसा कहते हैं से बेहतर है यदि [2]
उदाहरण
सामान्य क्रम के साथ वास्तविक संख्याएँ पूरी तरह से क्रमबद्ध सदिश समिष्ट बनाती हैं। सभी पूर्णांकों के लिए यूक्लिडियन समिष्ट शब्दकोषीय क्रम के साथ वास्तविकताओं पर सदिश समिष्ट के रूप में माना जाता है, जो कि पूर्व-क्रमित सदिश समिष्ट बनता है जिसका क्रम आर्किमिडीयन द्वारा आदेशित सदिश समिष्ट है यदि और केवल यदि .[3]
बिंदुवार क्रम
यदि क्या कोई समुच्चय है और यदि वास्तविक-मूल्यवान फलन (गणित) का सदिश समिष्ट (वास्तविकता पर) है तत्पश्चात द्वारा बिन्दुवार क्रम जारी करें , सभी के लिए दिया गया है यदि और केवल यदि सभी के लिए यही होगा | [3]
- पर परिबद्ध फलन के वास्तविक-मूल्यवान मानचित्रों पर समिष्ट होता है |
- वास्तविक-मूल्यवान अनुक्रमों की समिष्ट जो किसी अनुक्रम की सीमा को सीमित करते हैं
- टोपोलॉजिकल समिष्ट पर सतत फलन (टोपोलॉजी) के वास्तविक-मूल्यवान फलन समिष्ट होता है |
- किसी भी गैर-नकारात्मक पूर्णांक के लिए यूक्लिडियन समिष्ट जब समिष्ट के रूप में माना जाता है जहाँ असतत टोपोलॉजी दी गई है।
समिष्ट सभी मापने योग्य फलन लगभग हर जगह वास्तविक-मूल्यवान मानचित्रों से बंधे होते हैं जहां सभी के लिए प्रीऑर्डर द्वारा रिभाषित किया गया है यदि और केवल यदि लगभग हर जगह होता है ।[3]
अंतराल और क्रमबद्ध दोहरा
पूर्व-क्रमित सदिश समष्टि में क्रम अंतराल प्रपत्र का समुच्चय होता है
पूर्व-क्रमित सदिश समष्टि पर सभी रैखिक फलनात्मकताओं का समुच्चय प्रत्येक ऑर्डर अंतराल को बाउंडेड समुच्चय में मानचित्ररण करने को आदेश बाध्य दोहरी कहा जाता है और द्वारा निरूपित किया गया [2] यदि किसी समिष्ट को क्रमबद्ध किया जाता है तो उसका क्रमबद्ध दोहरा उसके बीजगणितीय दोहरे का सदिश उपसमष्टि होता है।
उपसमुच्चय क्रमबद्ध सदिश समष्टि का यदि प्रत्येक गैर-रिक्त उपसमुच्चय के लिए ऑर्डर पूर्ण कहा जाता है ऐसा है कि आदेश में बंधा हुआ है है दोनों और उपस्तिथ हैं और के अवयव हैं हम कहते हैं कि क्रमित सदिश समष्टि क्या ऑर्डर पूरा हैतथा इसका ऑर्डर पूर्ण उपसमुच्चय है [4]
उदाहरण
यदि ऑर्डर इकाई के साथ वास्तविकताओं पर पूर्व-आदेशित सदिश समिष्ट है फिर मानचित्र सबलीनियर फलनात्मकता है।[3]
गुण
यदि सभी के लिए पूर्व-आदेशित सदिश समिष्ट है
- और का अर्थ है| [3]
- यदि और केवल यदि [3]
- और का अर्थ है| [3]
- यदि और केवल यदि यदि और केवल यदि [3]
- अस्तित्व में है यदि और केवल यदि उपस्तिथ है, किस स्थिति में [3]
- अस्तित्व में है यदि और केवल यदि उपस्तिथ है, इस स्तिथियों में सभी के लिए होता है [3]
- और
- सदिश जालक है यदि और केवल यदि सभी के लिए उपस्तिथ है [3]
रैखिक मानचित्रों का समिष्ट
एक शंकु कहा जाता है कि यदि उत्पन्न हो रहा है संपूर्ण सदिश समष्टि के बराबर है।[2] यदि और संबंधित धनात्मक शंकु के साथ और दो गैर-तुच्छ क्रमित सदिश समिष्ट हैं तब में उत्पन्न हो रहा है यदि और केवल यदि समुच्चय में उचित शंकु है जो सभी रैखिक मानचित्रों का समिष्ट में है इस स्तिथियाँ में, द्वारा परिभाषित आदेश का विहित क्रम कहा जाता है [2] तथा अधिक सामान्यतः, यदि का कोई सदिश उपसमष्टि है तब ऐसा है कि उचित शंकु है, तथा इसके द्वारा परिभाषित क्रम को विहित क्रम कहा जाता है [2]
धनात्मक फलन और क्रम दोहरा
एक रैखिक फलन पूर्व-आदेशित सदिश समिष्ट को धनात्मक कहा जाता है यदि यह निम्नलिखित समकक्ष नियमों में से किसी को संतुष्ट करता है:
- तात्पर्य
- यदि तब [3]
धनात्मक शंकु वाले सदिश समष्टि पर सभी धनात्मक रैखिक रूपों का समुच्चय द्वैत शंकु और ध्रुवीय शंकु कहा जाता है और इसे द्वारा निरूपित किया जाता है के ध्रुवीय समुच्चय के बराबर शंकु है रैखिक फलनात्मकताओं के समिष्ट पर दोहरे शंकु द्वारा प्रेरित प्रीऑर्डर कहा जाता है.[3]
एक क्रमित सदिश समष्टि का क्रम दोहरा (फलनात्मक विश्लेषण)। समुच्चय है, जिसे द्वारा दर्शाया गया है तथा द्वारा परिभाषित किया जाता है यद्यपि वहां क्रमबद्ध सदिश रिक्त समिष्ट उपस्तिथ हैं जिनके लिए समुच्चय समानता उपस्तिथ है।[2]
विशेष प्रकार के क्रमित सदिश समष्टि
मान लीजिये क्रमबद्ध सदिश समष्टि हो। हम कहते हैं कि क्रमित सदिश समष्टि क्या आर्किमिडीज़ ने सदिश समष्टि का आदेश दिया है और इसका क्रम क्या है आर्किमिडीयन है यदि जब भी में इस प्रकार कि प्रमुखीकरण है (अर्थात, कुछ उपस्तिथ है ऐसा है कि सभी के लिए ) तब [2] एक टोपोलॉजिकल सदिश समिष्ट (टीवीएस) जो कि ऑर्डर किया गया सदिश समिष्ट है, आवश्यक रूप से आर्किमिडीयन है यदि इसका धनात्मक शंकु संवृत है।[2]
हम कहते हैं कि पूर्व-आदेशित सदिश समष्टि नियमित रूप से आदेश दिया जाता है और यदि यह आर्किमिडीयन आदेश दिया गया है तो इसका आदेश नियमित है में बिंदुओं को अलग करता है [2] यह संपत्ति गारंटी देती है कि आदेशित सदिश समिष्टों का अध्ययन करने के लिए द्वंद्व के उपकरणों का सफलतापूर्वक उपयोग करने में सक्षम होने के लिए पर्याप्त रूप से कई धनात्मक रैखिक रूप हैं।[2]
यदि सभी अवयवों और के लिए क्रमित सदिश समष्टि को सदिश जालक कहा जाता है तथा उच्चतम और सबसे निचला अस्तित्व होता है।[2]
उपसमिष्ट, भागफल, और उत्पाद
मान लीजिए कि धनात्मक शंकु के साथ पूर्व-आदेशित सदिश समष्टि हो
यदि का सदिश उपसमष्टि है का धनात्मक शंकु द्वारा प्रेरित पर विहित क्रम नुकीले उत्तल शंकु द्वारा आदेश चालू प्रेरक आंशिक क्रम है यदि उचित होने पर यह शंकु उचित है है.[2]
भागफल समिष्ट
मान लीजिये कि क्रमित सदिश समष्टि का सदिश उपसमष्टि बनें विहित प्रक्षेपण हो, और चलो तब में शंकु है जो भागफल समिष्ट (रैखिक बीजगणित) पर विहित प्रीऑर्डरिंग को प्रेरित करता है यदि में उचित शंकु है तब बनाता है क्रमबद्ध सदिश समिष्ट में।[2] यदि शंकु-संतृप्त है | -फिर संतृप्त के विहित क्रम को परिभाषित करता है [1] ध्यान दें कि क्रमित सदिश समष्टि का उदाहरण प्रदान करता है जहाँ उचित शंकु नहीं है.
यदि टोपोलॉजिकल सदिश समिष्ट (टीवीएस) भी है और यदि प्रत्येक पड़ोस के लिए (गणित) में उत्पत्ति का वहाँ पड़ोस उपस्तिथ है उत्पत्ति की ऐसी कि तब भागफल टोपोलॉजी के लिए सामान्य शंकु (फलनात्मक विश्लेषण) है।[1]
यदि टोपोलॉजिकल सदिश जालक है और का संवृत ठोस समुच्चय उप-जाल है तब यह टोपोलॉजिकल सदिश जालक भी है।[1]
उत्पाद
यदि क्या कोई समुच्चय है फिर समिष्ट? से सभी फलनों का में उचित शंकु द्वारा विहित रूप से आदेश दिया गया है [2]
लगता है कि पूर्वक्रमित सदिश समिष्टों का वर्ग है और इसका धनात्मक शंकु है है तब में नुकीला उत्तल शंकु है जो विहित क्रम निर्धारित करता है यदि सभी हों तो उचित शंकु है उचित शंकु हैं.[2]
बीजीय प्रत्यक्ष योग
बीजगणितीय प्रत्यक्ष योग का का सदिश उपसमष्टि है जिसे विहित उप-समिष्ट क्रम विरासत में मिला है [2] यदि क्रमित सदिश समष्टि के क्रमित सदिश उपसमष्टि हैं तब यदि विहित बीजगणितीय समरूपता है तो इन उप-समिष्टों का क्रमबद्ध प्रत्यक्ष योग है पर (विहित उत्पाद क्रम के साथ) क्रम समरूपता है।[2]
उदाहरण
- सामान्य क्रम वाली वास्तविक संख्याएँ क्रमित सदिश समष्टि होती हैं।
- के साथ क्रमित सदिश समष्टि है इस संबंध को निम्नलिखित में से किसी भी विधि से परिभाषित किया गया है (बढ़ती ताकत के क्रम में, यानी जोड़े के घटते समुच्चय में ):
- शब्दावली क्रम: यदि और केवल यदि या है तब यह कुल ऑर्डर है. धनात्मक शंकु या द्वारा दिया गया है अर्थात्, ध्रुवीय समन्वय प्रणाली में, उत्पत्ति कोणीय निर्देशांक वाले बिंदुओं के साथ का समुच्चय संतोषजनक होता है.
- यदि और केवल यदि और ( के साथ की दो प्रतियों का उत्पाद क्रम). यह आंशिक आदेश है. धनात्मक शंकु द्वारा दिया गया है और अर्थात्, ध्रुवीय निर्देशांक में उत्पत्ति के साथ होती है
- यदि और केवल यदि या (प्रत्यक्ष उत्पाद का प्रतिवर्ती समापन या दो प्रतियों के द्विआधारी संबंधों का प्रत्यक्ष उत्पाद है यह भी आंशिक आदेश है. धनात्मक शंकु द्वारा दिया गया है या अर्थात्, ध्रुवीय निर्देशांक में, उत्पत्ति के साथ. है
- केवल दूसरा क्रम, के उपसमुच्चय के रूप में है संवृत किया हुआ; आंशिक रूप से ऑर्डर किया गया समुच्चय या टोपोलॉजिकल समिष्ट में आंशिक ऑर्डर देखें।
- तीसरे क्रम के लिए द्वि-आयामी आंशिक रूप से क्रमित समुच्चय या अंतराल विवृत समुच्चय हैं जो टोपोलॉजी उत्पन्न करते हैं।
- के साथ क्रमित सदिश समष्टि है संबंध को इसी तरह परिभाषित किया गया है। उदाहरण के लिए, ऊपर उल्लिखित दूसरे आदेश के लिए:
- यदि और केवल यदि , के लिए
- रिज़्ज़ समिष्ट ऑर्डर किया गया सदिश समिष्ट है जहां ऑर्डर जालक (ऑर्डर) को उत्पन्न करता है।
- निरंतर फलनों का समिष्ट जहाँ यदि और केवल यदि सभी के लिए में
यह भी देखें
- ऑर्डर टोपोलॉजी (कार्यात्मक विश्लेषण)
- आदेशित फ़ील्ड – Algebraic object with an ordered structure
- आदेशित समूह
- वलय का ऑर्डर दिया
- क्रमबद्ध टोपोलॉजिकल सदिश समिष्ट
- आंशिक रूप से ऑर्डर किया गया समष्टि
- उत्पाद आदेश
- रिज़्ज़ समिष्ट
- टोपोलॉजिकल सदिश जालक
- Vector lattice
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Schaefer & Wolff 1999, pp. 250–257.
- ↑ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 Schaefer & Wolff 1999, pp. 205–209.
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 Narici & Beckenstein 2011, pp. 139–153.
- ↑ Schaefer & Wolff 1999, pp. 204–214.
ग्रन्थसूची
- Aliprantis, Charalambos D; Burkinshaw, Owen (2003). Locally solid Riesz spaces with applications to economics (Second ed.). Providence, R. I.: American Mathematical Society. ISBN 0-8218-3408-8.
- Bourbaki, Nicolas; Elements of Mathematics: Topological Vector Spaces; ISBN 0-387-13627-4.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Wong (1979). Schwartz spaces, nuclear spaces, and tensor products. Berlin New York: Springer-Verlag. ISBN 3-540-09513-6. OCLC 5126158.