आदेशित फ़ील्ड
गणित में, एक क्रमबद्ध क्षेत्र एक ऐसा क्षेत्र (गणित) है जिसमें इसके तत्वों का कुल क्रम होता है जो क्षेत्र संचालन के साथ संगत होता है। एक आदेशित क्षेत्र का मूल उदाहरण वास्तविक संख्याओं का क्षेत्र है, और प्रत्येक डेडेकाइंड-पूर्ण आदेशित क्षेत्र वास्तविक के समरूपी है।
किसी ऑर्डर किए गए फ़ील्ड का प्रत्येक फ़ील्ड विस्तार विरासत में मिले क्रम में एक ऑर्डर किया गया फ़ील्ड भी होता है। प्रत्येक क्रमित फ़ील्ड में एक क्रमबद्ध उपफ़ील्ड होता है जो परिमेय संख्याओं के समरूपी होता है। एक क्रमित क्षेत्र में वर्ग (बीजगणित) आवश्यक रूप से गैर-नकारात्मक होते हैं। इसका तात्पर्य यह है कि सम्मिश्र संख्याओं को क्रमबद्ध नहीं किया जा सकता क्योंकि काल्पनिक इकाई i का वर्ग है −1 (जो किसी भी क्रमित फ़ील्ड में नकारात्मक है)। परिमित फ़ील्ड का आदेश नहीं दिया जा सकता.
ऐतिहासिक रूप से, डेविड हिल्बर्ट, ओटो होल्डर और हंस हैन (गणितज्ञ) सहित गणितज्ञों द्वारा एक आदेशित क्षेत्र के स्वयंसिद्धीकरण को वास्तविक संख्याओं से धीरे-धीरे अलग किया गया था। यह अंततः क्रमित क्षेत्रों और औपचारिक रूप से वास्तविक क्षेत्रों के आर्टिन-श्रेयर प्रमेय|आर्टिन-श्रेयर सिद्धांत में विकसित हुआ।
परिभाषाएँ
किसी क्रमित फ़ील्ड की दो समान सामान्य परिभाषाएँ हैं। कुल क्रम की परिभाषा पहली बार ऐतिहासिक रूप से सामने आई और यह क्रम का प्रथम-क्रम स्वयंसिद्धीकरण है एक द्विआधारी विधेय के रूप में। आर्टिन और श्रेयर ने 1926 में सकारात्मक शंकु के संदर्भ में परिभाषा दी, जो गैर-नकारात्मक तत्वों के उपसंग्रह को स्वयंसिद्ध करती है। हालाँकि बाद वाला उच्च-क्रम का है, सकारात्मक शंकु को इस रूप में देखना maximal प्रीपॉजिटिव शंकु एक बड़ा संदर्भ प्रदान करता है जिसमें फ़ील्ड ऑर्डर होते हैं extremal आंशिक आदेश।
कुल ऑर्डर
एक क्षेत्र (गणित) कुल आदेश के साथ#सख्त कुल आदेश|(सख्त) कुल आदेश पर एकordered field यदि आदेश सभी के लिए निम्नलिखित गुणों को संतुष्ट करता है
- अगर तब और
- अगर और तब
धनात्मक शंकु
एprepositive cone या किसी फ़ील्ड का प्रीऑर्डर करना एक उपसमुच्चय है जिसमें निम्नलिखित गुण हैं:[1]
- के लिए और में दोनों और में हैं
- अगर तब विशेष रूप से,
- तत्व इसमें नहीं है
एpreordered field प्रीऑर्डरिंग से सुसज्जित एक फ़ील्ड है इसके गैर-शून्य तत्व के गुणक समूह का एक उपसमूह बनाएं यदि इसके अतिरिक्त, सेट का मिलन है और हम बुलाते है का एक सकारात्मक शंकु के गैर-शून्य तत्व के सकारात्मक तत्व कहलाते हैं एक आदेशित फ़ील्ड एक फ़ील्ड है एक सकारात्मक शंकु के साथ प्रीऑर्डर जारी है वास्तव में सकारात्मक शंकु के परिवारों के प्रतिच्छेदन हैं सकारात्मक शंकु अधिकतम प्रीऑर्डरिंग हैं।[1]
दो परिभाषाओं की समानता
होने देना एक क्षेत्र हो. के क्षेत्र क्रमों के बीच एक आपत्ति है और के सकारात्मक शंकु पहली परिभाषा के अनुसार फ़ील्ड ऑर्डरिंग ≤ को देखते हुए, तत्वों का सेट ऐसा होता है का एक धनात्मक शंकु बनता है इसके विपरीत, एक धनात्मक शंकु दिया गया है का जैसा कि दूसरी परिभाषा में है, कोई कुल क्रम को जोड़ सकता है पर व्यवस्थित करके मतलब निकालना यह कुल ऑर्डरिंग पहली परिभाषा के गुणों को संतुष्ट करता है।
आदेशित फ़ील्ड के उदाहरण
आदेशित फ़ील्ड के उदाहरण हैं:
- तर्कसंगत संख्याएँ
- वास्तविक संख्याएँ
- किसी क्रमित फ़ील्ड का कोई उपफ़ील्ड, जैसे वास्तविक बीजगणितीय संख्याएँ या गणना योग्य संख्याएँ
- फील्ड तर्कसंगत कार्यों का , कहाँ और तर्कसंगत गुणांक वाले बहुपद हैं, , एक वास्तविक पारलौकिक संख्या को निश्चित करके एक क्रमबद्ध फ़ील्ड में बनाया जा सकता है और परिभाषित करना अगर और केवल अगर . यह एम्बेडिंग के बराबर है में और के आदेश को प्रतिबंधित करना की छवि के एक आदेश के लिए .
- फील्ड तर्कसंगत कार्यों का , कहाँ और वास्तविक गुणांक वाले बहुपद हैं, , एक आदेशित क्षेत्र में बनाया जा सकता है जहां बहुपद परिभाषित करके, किसी भी अचर बहुपद से बड़ा है इसका मतलब यह है , कहाँ और के प्रमुख गुणांक हैं और , क्रमश। यह आदेशित फ़ील्ड आर्किमिडीयन क्षेत्र नहीं है।
- फील्ड वास्तविक गुणांकों के साथ औपचारिक शक्ति श्रृंखला का, जहां x को अतिसूक्ष्म और सकारात्मक माना जाता है
- ट्रांससीरीज़
- वास्तविक बंद फ़ील्ड
- [[अतियथार्थवादी संख्या]]एँ
- अतिवास्तविक संख्याएँ
अवास्तविक संख्याएँ एक सेट (गणित) के बजाय एक वर्ग (सेट सिद्धांत) बनाती हैं, लेकिन अन्यथा एक आदेशित क्षेत्र के सिद्धांतों का पालन करती हैं। प्रत्येक आदेशित फ़ील्ड को अवास्तविक संख्याओं में एम्बेड किया जा सकता है।
आदेशित फ़ील्ड के गुण
एफ में प्रत्येक ए, बी, सी, डी के लिए:
- या तो −a ≤ 0 ≤ a या a ≤ 0 ≤ −a.
- कोई असमानताएं जोड़ सकता है: यदि a ≤ b और c ≤ d, तो a + c ≤ b + d.
- कोई असमानताओं को सकारात्मक तत्वों से गुणा कर सकता है: यदि a ≤ b और 0 ≤ c, तो ac ≤ bc।
- असमानता का सकर्मक गुण: यदि a < b और b < c, तो a < c।
- यदि a < b और a, b > 0, तो 1/b < 1/a.
- एक क्रमित फ़ील्ड में विशेषता (बीजगणित) 0 होती है। (चूंकि 1 > 0, फिर 1 + 1 > 0, और 1 + 1 + 1 > 0, आदि। यदि फ़ील्ड में विशेषता p > 0 है, तो −1 होगा p − 1 वाले का योग, लेकिन −1 धनात्मक नहीं है।) विशेष रूप से, परिमित फ़ील्ड का आदेश नहीं दिया जा सकता है।
- वर्ग गैर-ऋणात्मक हैं: 0 ≤ a2F में सभी a के लिए।
- वर्गों का प्रत्येक गैर-तुच्छ योग शून्य नहीं होता है। समान रूप से: [2][3]
एक आदेशित क्षेत्र का प्रत्येक उपक्षेत्र भी एक आदेशित क्षेत्र है (प्रेरित क्रम को विरासत में मिला हुआ)। सबसे छोटा उपक्षेत्र परिमेय संख्या के समरूपता है (विशेषता 0 के किसी भी अन्य क्षेत्र के लिए), और इस परिमेय उपक्षेत्र पर क्रम स्वयं परिमेय के क्रम के समान है। यदि किसी क्रमित क्षेत्र का प्रत्येक तत्व उसके तर्कसंगत उपक्षेत्र के दो तत्वों के बीच स्थित है, तो क्षेत्र को आर्किमिडीयन संपत्ति कहा जाता है। अन्यथा, ऐसा फ़ील्ड एक गैर-आर्किमिडीयन आदेशित फ़ील्ड है और इसमें बहुत छोता शामिल हैं। उदाहरण के लिए, वास्तविक संख्याएँ एक आर्किमिडीयन फ़ील्ड बनाती हैं, लेकिन हाइपररियल संख्याएँ एक गैर-आर्किमिडीयन फ़ील्ड बनाती हैं, क्योंकि यह किसी भी मानक प्राकृतिक संख्या से अधिक तत्वों के साथ वास्तविक संख्याओं का विस्तार करती है।[4] एक क्रमित फ़ील्ड F, वास्तविक संख्या फ़ील्ड 'R' के समरूपी है यदि F में ऊपरी सीमा वाले F के प्रत्येक गैर-रिक्त उपसमुच्चय में F में न्यूनतम ऊपरी सीमा है। यह गुण बताता है कि फ़ील्ड आर्किमिडीयन है।
आदेशित फ़ील्ड पर वेक्टर रिक्त स्थान
वेक्टर रिक्त स्थान (विशेष रूप से, वेक्टर रिक्त स्थान के उदाहरण#समन्वय स्थान|n-स्थान) एक क्रमित क्षेत्र पर कुछ विशेष गुण प्रदर्शित करते हैं और कुछ विशिष्ट संरचनाएं रखते हैं, अर्थात्: अभिविन्यास (सदिश स्थल), उत्तल विश्लेषण, और आंतरिक उत्पाद स्थान|सकारात्मक-निश्चित अंदरूनी प्रोडक्ट। 'आर' के उन गुणों की चर्चा के लिए वास्तविक समन्वय स्थान#ज्यामितीय गुण और उपयोग देखेंn, जिसे अन्य ऑर्डर किए गए फ़ील्ड पर वेक्टर रिक्त स्थान के लिए सामान्यीकृत किया जा सकता है।
फ़ील्ड की क्रमबद्धता
प्रत्येक आदेशित फ़ील्ड औपचारिक रूप से वास्तविक फ़ील्ड है, यानी, 0 को गैर-शून्य वर्गों के योग के रूप में नहीं लिखा जा सकता है।[2][3] इसके विपरीत, प्रत्येक औपचारिक रूप से वास्तविक क्षेत्र को एक संगत कुल क्रम से सुसज्जित किया जा सकता है, जो इसे एक आदेशित क्षेत्र में बदल देगा। (इस आदेश को विशिष्ट रूप से निर्धारित करने की आवश्यकता नहीं है।) प्रमाण ज़ोर्न के लेम्मा का उपयोग करता है।[5] परिमित फ़ील्ड और अधिक सामान्यतः सकारात्मक विशेषता (बीजगणित) के फ़ील्ड को क्रमित फ़ील्ड में नहीं बदला जा सकता है, क्योंकि विशेषता पी में, तत्व -1 को (पी - 1) वर्ग 1 के योग के रूप में लिखा जा सकता है।2. सम्मिश्र संख्याओं को भी एक क्रमित फ़ील्ड में नहीं बदला जा सकता, क्योंकि −1 काल्पनिक इकाई i का एक वर्ग है। इसके अलावा, पी-एडिक संख्याओं को क्रमबद्ध नहीं किया जा सकता है, क्योंकि हेंसल की लेम्मा#उदाहरण|हेंसेल की लेम्मा 'क्यू' के अनुसार2 इसमें −7 का वर्गमूल होता है, इस प्रकार 12 +12 +12 +22+√−7)2= 0, और Qp (p > 2) में 1 − p का वर्गमूल होता है, इस प्रकार (p − 1)⋅12 + (√1 − p)2=0.[6]
आदेश द्वारा प्रेरित टोपोलॉजी
यदि F कुल ऑर्डर ≤ से उत्पन्न होने वाले ऑर्डर टोपोलॉजी से सुसज्जित है, तो स्वयंसिद्ध गारंटी देते हैं कि ऑपरेशन + और × निरंतर फ़ंक्शन (टोपोलॉजी) हैं, ताकि F एक टोपोलॉजिकल क्षेत्र हो।
हैरिसन टोपोलॉजी
हैरिसन टोपोलॉजी ऑर्डर X के सेट पर एक टोपोलॉजी हैF औपचारिक रूप से वास्तविक क्षेत्र F का। प्रत्येक क्रम को F से गुणक समूह समरूपता के रूप में माना जा सकता है∗ ±1 पर। असतत टोपोलॉजी ±1 और ±1 दे रहे हैंएफउत्पाद टोपोलॉजी एक्स पर सबस्पेस टोपोलॉजी को प्रेरित करती हैF. हैरिसन सेट करता है हैरिसन टोपोलॉजी के लिए एक उपआधार तैयार करें। उत्पाद एक बूलियन स्थान (सघन स्थान , हॉसडॉर्फ़ स्थान और पूरी तरह पूरी तरह से कटा हुआ स्थान) और एक्स हैF एक बंद उपसमुच्चय है, इसलिए फिर से बूलियन।[7][8]
प्रशंसक और सुपर ऑर्डर फ़ील्ड
एफ पर एक पंखा टी का प्री ऑर्डर है, इस गुण के साथ कि यदि एस एफ में सूचकांक 2 का एक उपसमूह है∗ जिसमें T − {0} है और −1 नहीं है तो S एक क्रम है (अर्थात, S जोड़ के तहत बंद है)।[9] एक सुपरऑर्डर फ़ील्ड एक पूरी तरह से वास्तविक फ़ील्ड है जिसमें वर्गों के योग का सेट एक प्रशंसक बनाता है।[10]
यह भी देखें
- Linearly ordered group
- Ordered group
- Ordered ring
- Ordered topological vector space
- Ordered vector space – Vector space with a partial order
- Partially ordered ring
- Partially ordered space
- Preorder field
- Riesz space
टिप्पणियाँ
- ↑ 1.0 1.1 Lam (2005) p. 289
- ↑ 2.0 2.1 Lam (2005) p. 41
- ↑ 3.0 3.1 Lam (2005) p. 232
- ↑ Bair, Jaques; Henry, Valérie. "सूक्ष्मदर्शी के साथ निहित भेदभाव" (PDF). University of Liège. Retrieved 2013-05-04.
- ↑ Lam (2005) p. 236
- ↑ The squares of the square roots √−7 and √1 − p are in Q, but are < 0, so that these roots cannot be in Q which means that their p-adic expansions are not periodic.
- ↑ Lam (2005) p. 271
- ↑ Lam (1983) pp. 1–2
- ↑ Lam (1983) p. 39
- ↑ Lam (1983) p. 45
संदर्भ
- Lam, T. Y. (1983), Orderings, valuations and quadratic forms, CBMS Regional Conference Series in Mathematics, vol. 52, American Mathematical Society, ISBN 0-8218-0702-1, Zbl 0516.12001
- Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics. Vol. 67. American Mathematical Society. ISBN 0-8218-1095-2. Zbl 1068.11023.
- Lang, Serge (1993), Algebra (Third ed.), Reading, Mass.: Addison-Wesley, ISBN 978-0-201-55540-0, Zbl 0848.13001