सापेक्षवादी तरंग समीकरण: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 306: | Line 306: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 29/03/2023]] | [[Category:Created On 29/03/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:41, 19 April 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
Quantum field theory |
---|
History |
भौतिकी में, विशेष रूप से सापेक्षवादी क्वांटम यांत्रिकी (आरक्यूएम) और कण भौतिकी के लिए इसके अनुप्रयोग के आधार पर सापेक्षवादी तरंग समीकरण प्रकाश की गति के बराबर उच्च ऊर्जा और वेग पर कणों के व्यवहार के मान को प्रकट करती हैं। इस प्रकार क्वांटम क्षेत्र सिद्धांत (क्यूएफटी) के संदर्भ में, समीकरण क्वांटम क्षेत्र की गतिशीलता को निर्धारित करते हैं। इन समीकरणों के मान के आधार पर जिन्हें सार्वभौमिक रूप से ψ या Ψ (ग्रीक भाषा Psi (अक्षर)) द्वारा निरूपित किया जाता है, इसको आरक्यूएम के संदर्भ में तरंग क्रिया और क्यूएफटी के संदर्भ में क्षेत्र (भौतिकी) के रूप में संदर्भित किया जाता है। समीकरणों को स्वयं तरंग समीकरण या क्षेत्र समीकरण कहा जाता है, क्योंकि उनके पास तरंग समीकरण का गणितीय रूप होता है या लैग्रैजियन घनत्व और क्षेत्र-सैद्धांतिक यूलर-लग्रेंज समीकरणों से उत्पन्न होता है (पृष्ठभूमि के लिए मौलिक क्षेत्र सिद्धांत देखें)।
श्रोडिंगर चित्र में, तरंग फलन या क्षेत्र श्रोडिंगर समीकरण का हल है,
अधिक सामान्यतः - सापेक्षतावादी तरंग समीकरणों के पीछे आधुनिक औपचारिकता लॉरेंत्ज़ समूह सिद्धांत है, जिसमें कण के घूर्णन का लोरेंत्ज़ समूह के प्रतिनिधित्व के साथ समन्वय स्थापित करती हैं।[1]
इतिहास
1920 के दशक की प्रारंभ: मौलिक और क्वांटम यांत्रिकी
अणु, परमाणु, और परमाणु नाभिक प्रणालियों और छोटे पर लागू मौलिक यांत्रिकी की विफलता ने नए यांत्रिकी की आवश्यकता को क्वांटम यांत्रिकी द्वारा प्रेरित किया हैं। 1920 के दशक के मध्य में गणितीय सूत्रीकरण का नेतृत्व लुइस डी ब्रोगली, नील्स बोह्र, इरविन श्रोडिंगर या श्रोडिंगर, वोल्फगैंग पाउली और वर्नर हाइजेनबर्ग और अन्य ने किया था, और उस समय यह मौलिक यांत्रिकी के अनुरूप था। इस प्रकार श्रोडिंगर समीकरण और हाइजेनबर्ग चित्र बड़ी क्वांटम संख्या की सीमा में और कम प्लैंक स्थिरांक के रूप में गति के मौलिक समीकरणों ħ से मिलते जुलते हैं, इस क्रिया की भौतिकी मात्रा शून्य हो जाती है। यह पत्राचार सिद्धांत है। इस प्रकार इस बिंदु पर, विशेष सापेक्षता क्वांटम यांत्रिकी के साथ पूर्ण रूप से संयुक्त नहीं थी, इसलिए मूल रूप से प्रस्तावित श्रोडिंगर और हाइजेनबर्ग योगों का उपयोग उन स्थितियों में नहीं किया जा सकता था जहां कण प्रकाश की गति के समीप यात्रा करते हैं, या जब प्रत्येक प्रकार के कण की संख्या परिवर्तन (यह वास्तविक मूलभूत अंतःक्रियाओं में होता है, कण क्षय के कई रूप, विनाश, पदार्थ निर्माण, जोड़ी उत्पादन इत्यादि)।
1920 के दशक के उत्तरार्ध: घूर्णन-0 और घूर्णन- के सापेक्षवादी क्वांटम यांत्रिकी1/2 कण
कई सैद्धांतिक भौतिकविदों द्वारा क्वांटम यांत्रिक प्रणाली का विवरण मांगा गया था जो सापेक्षतावादी प्रभावों के लिए उत्तरदायी हो सकता है, इस प्रकार 1920 के दशक के अंत से 1940 के मध्य तक किया गया हैं।[2] इस प्रकार सापेक्षतावादी क्वांटम यांत्रिकी के लिए पहला आधार अर्थात विशेष सापेक्षता को क्वांटम यांत्रिकी के साथ लागू किया गया, उन सभी लोगों द्वारा पाया गया जिन्होंने खोज की जिसे अधिकांशतः क्लेन-गॉर्डन समीकरण कहा जाता है:
|
(1) |
आपेक्षिकीय ऊर्जा-संवेग संबंध में ऊर्जा संचालक और संवेग संचालक को सम्मिलित करके:
|
(2) |
इसके समाधान (1) के आधार पर यह अदिश क्षेत्र को प्रकट करता हैं। इसके द्विघात समीकरण प्रकृति के परिणामस्वरूप ऋणात्मक ऊर्जा और संभाव्यता के कारण केजी समीकरण (2) - सापेक्षतावादी सिद्धांत में अपरिहार्य रूप से अवांछनीय है। इस प्रकार यह समीकरण प्रारंभ में श्रोडिंगर द्वारा प्रस्तावित किया गया था, और उन्होंने इसे ऐसे कारणों से त्याग दिया था, जिसे केवल कुछ महीनों पश्चात यह प्राप्त करने के लिए कि इसकी गैर-सापेक्षतावादी सीमा (जिसे अब श्रोडिंगर समीकरण कहा जाता है) अभी भी महत्वपूर्ण थी। इसके अतिरिक्त - (1) घूर्णन-0 बोसॉन पर लागू होता है।[3]
श्रोडिंगर द्वारा पाए गए न तो गैर-सापेक्षवादी और न ही सापेक्षवादी समीकरण हाइड्रोजन वर्णक्रमीय श्रृंखला में ठीक संरचना की संभावना को प्रकट कर सकते हैं। रहस्यमय अंतर्निहित संपत्ति घूर्णन थी। पाउली समीकरण में पाउली द्वारा पहले द्वि-आयामी घूर्णन आव्यूह (पॉल आव्यूह के रूप में जाना जाता है) प्रस्तुत किए गए थे, चुंबकीय क्षेत्र में कणों के लिए अतिरिक्त शब्द सहित गैर-सापेक्षवादी हैमिल्टनियन के साथ श्रोडिंगर समीकरण, किन्तु यह अभूतपूर्व था। इस प्रकार हरमन वेइल ने पाउली आव्यूह के संदर्भ में सापेक्षिक समीकरण पाया गया हैं, मासलेस घूर्णन के लिए वेइल समीकरण-1/2 फर्मीअन्स का पालन किया जाता हैं। इस प्रकार 1920 के दशक के अंत में पॉल डिराक द्वारा समस्या का समाधान किया गया, जब उन्होंने समीकरण के अनुप्रयोग को आगे बढ़ाया (2) इलेक्ट्रॉन के लिए - विभिन्न जोड़-तोड़ से उन्होंने समीकरण को रूप में परिवर्तित कर दिया गया हैं:
|
(3A) |
और इनमें से कारक ऊर्जा और संवेग संचालकों को सम्मिलित करने पर डायराक समीकरण है। इस प्रकार पहली बार इसने नए चार-आयामी घूर्णन आव्यूह प्रस्तुत किए α और β सापेक्षवादी तरंग समीकरण में, और हाइड्रोजन की सूक्ष्म संरचना की व्याख्या की थी। इस प्रकार इसके समाधान के लिए (3A) बहु-घटक घूर्णन क्षेत्र हैं, और प्रत्येक घटक संतुष्ट करता है (1) घूर्णन का मान प्राप्त करने का उल्लेखनीय परिणाम यह है कि आधे घटक कण का वर्णन करते हैं जबकि अन्य आधे एंटीपार्टिकल का वर्णन करते हैं, इस स्थिति में इलेक्ट्रॉन और पोजीट्रान डायराक समीकरण अब सभी बड़े घूर्णन (भौतिकी) या घूर्णन के लिए लागू करने के लिए 1/2 फर्मीअन्स के रूप में जाना जाता है। इस प्रकार गैर-सापेक्षतावादी सीमा में, पाउली समीकरण को पुनः प्राप्त किया जाता है, जबकि द्रव्यमान रहित स्थिति का परिणाम वेइल समीकरण में होता है।
यद्यपि क्वांटम सिद्धांत में मील का पत्थर, डायराक समीकरण केवल घूर्णन के लिए सही है-1/2 फर्मियन्स, और अभी भी ऋणात्मक ऊर्जा समाधानों की भविष्यवाणी करता है, जो उस समय विवाद का कारण बना (विशेष रूप से - सभी भौतिकविद ऋणात्मक ऊर्जा स्थितियों के डायरक समुद्र के साथ सहज नहीं थे)।
1930-1960 का दशक: उच्च-घूर्णन कणों का आपेक्षिक क्वांटम यांत्रिकी
प्राकृतिक समस्या स्पष्ट हो गई: किसी भी घूर्णन वाले कणों के लिए डायराक समीकरण को सामान्य बनाना, दोनों इस प्रकार फ़र्मियन और बोसॉन समीकरण में उनके एंटीपार्टिकल्स (संभवतः उनके समीकरण में डिराक द्वारा प्रारंभ किये गए घूर्णन औपचारिकता के कारण, और इस कारण फिर 1929 में बार्टेल लेन्डर्ट वैन डेर वेर्डन द्वारा घूर्णन कैलकुलस में हाल के विकास), और इसको आदर्श रूप से धनात्मक ऊर्जा समाधान के साथ प्रकट किया जाता हैं।[2]
यह 1932 में मेजराना द्वारा डिराक के लिए विचलित दृष्टिकोण द्वारा प्रस्तुत और हल किया गया था। इस प्रकार मेजराना का मूल (3A) माना जाता है :
|
(3B) |
जहाँ ψ साइन में अनिश्चितता को दूर करने के लिए, असीमित रूप से कई घटकों के साथ घूर्णन क्षेत्र है, जो टेन्सर या घूर्णनों की सीमित संख्या के लिए अप्रासंगिक है। आव्यूह (गणित) α और β अनंत-आयामी आव्यूह हैं, जो इस प्रकार अत्यल्प लोरेंत्ज़ परिवर्तनों से संबंधित हैं। उन्होंने यह मांग नहीं की कि प्रत्येक घटक 3B समीकरण को संतुष्ट करने के लिए (2), इसके अतिरिक्त उन्होंने लोरेंत्ज़ सहप्रसरण या लोरेंत्ज़-अपरिवर्तनीय क्रिया (भौतिकी), कम से कम कार्रवाई के सिद्धांत के माध्यम से, और लोरेंत्ज़ समूह सिद्धांत के अनुप्रयोग का उपयोग करके समीकरण को पुन: उत्पन्न किया था।[4][5]
इस प्रकार मेजराना ने अन्य महत्वपूर्ण योगदान दिए जो अप्रकाशित थे, जिनमें विभिन्न आयामों (5, 6 और 16) के तरंग समीकरण सम्मिलित थे। इस प्रकार डी ब्रोगली (1934), और डफिन, केमर, और पेटियाउ (लगभग 1938-1939) द्वारा उन्हें बाद में (अधिक सम्मिलित विधि से) प्रत्याशित किया गया था, डफिन-केमेर-पेटियाउ बीजगणित देखें। इस प्रकार डिराक-फ़िर्ज़-पाउली औपचारिकता मेजराना की तुलना में अधिक परिष्कृत थी, क्योंकि बीसवीं शताब्दी की प्रारंभ में घूर्णन नए गणितीय उपकरण थे, चूंकि 1932 के मेजराना के पेपर को पूर्ण रूप से समझना कठिन था, 1940 के आसपास इसे समझने में पाउली और विग्नर को कुछ समय लगा था।[2]
1936 में डिराक, और 1939 में फ़िएर्ज़ और पाउली ने इरेड्यूसिबल घूर्णनों से समीकरण बनाए A और B, घूर्णन के विशाल कण के लिए, सभी सूचकांकों में सममित n + ½ पूर्णांक के लिए n (बिंदीदार सूचकांकों के अर्थ के लिए वैन डेर वेर्डन संकेतन देखें):
|
(4A) |
|
(4B) |
जहाँ p सहसंयोजक घूर्णन ऑपरेटर के रूप में गति है। के लिए n = 0, समीकरण युग्मित डायराक समीकरणों को कम करते हैं और A और B साथ मिलकर मूल डायरक घूर्णन के रूप में रूपांतरित होते हैं। या तो खत्म करना A या B पता चलता है कि A और B प्रत्येक पूर्ति (1) को प्रकट करता हैं।[2]
1941 में, रारिटा और श्विंगर ने घूर्णन पर ध्यान केंद्रित किया-3⁄2 कण और रैरिटा-श्विंगर समीकरण को उत्पन्न करने के लिए लैग्रैंगियन (क्षेत्र सिद्धांत) सहित व्युत्पन्न किया, और बाद में घूर्णन के अनुरूप समीकरणों को सामान्यीकृत किया n + ½ पूर्णांक के लिए n द्वारा 1945 में, पाउली ने होमी जे. भाभा को मेजराना के 1932 के पेपर का सुझाव दिया, जो 1932 में मेजराना द्वारा प्रस्तुत किए गए सामान्य विचारों पर लौट आए थे। इस प्रकार 3A) और (3B) उचित नियत स्थिरांक द्वारा, शर्तों के रूप में स्थिति करके इसके अधीन जिसका तरंग कार्यों को पालन करना चाहिए।[6]
इसके अंत में, वर्ष 1948 में (उसी वर्ष जब फेनमैन का पथ अभिन्न सूत्रीकरण किया गया था), वेलेंटाइन बर्गमैन और यूजीन विग्नर ने बड़े पैमाने पर कणों के लिए सामान्य समीकरण तैयार किया गया था, जिसमें कोई भी घूर्णन हो सकता है, पूरी तरह से सममित परिमित-घटक घूर्णन के साथ डिराक समीकरण पर विचार करके प्राप्त किया जाता हैं। इस प्रकार लोरेंत्ज़ समूह सिद्धांत का उपयोग करना आवश्यक हैं (जैसा कि मेजराना ने किया था): बर्गमैन-विग्नर समीकरण के आधार पर प्रकट किया जाता हैं।[2][7] इस प्रकार 1960 के दशक के प्रारंभ में, जूस-वेनबर्ग समीकरण, एच. जोस और स्टीवन वेनबर्ग द्वारा बर्गमैन-विग्नर समीकरणों का सुधार किया गया था। इस समय विभिन्न सिद्धांतकारों ने उच्च प्रचक्रण कणों के लिए आपेक्षिक हेमिल्टनियों में और अनुसंधान किया था।[1][8][9]
1960-धारा
प्रचक्रण कणों का आपेक्षिक वर्णन क्वांटम सिद्धांत में कठिन समस्या रही है। इस प्रकार यह अभी भी धारा के लिए शोध का क्षेत्र है क्योंकि समस्या केवल आंशिक रूप से हल हो गई है, समीकरणों में अंतःक्रियाओं को सम्मिलित करना समस्याग्रस्त है, और विरोधाभासी भविष्यवाणियां (डायराक समीकरण से भी) अभी भी सम्मिलित हैं।[5]
रैखिक समीकरण
निम्नलिखित समीकरणों का हल हैं जो सुपरपोज़िशन सिद्धांत को संतुष्ट करते हैं, अर्थात, तरंग फलन योगात्मक प्रमाण हैं।
कुल मिलाकर, टेंसर इंडेक्स नोटेशन और फेनमैन स्लैश नोटेशन के मानक सम्मेलनों का उपयोग किया जाता है, जिसमें ग्रीक इंडेक्स सम्मिलित हैं, जो स्थानिक घटकों के लिए 1, 2, 3 मान लेते हैं और अनुक्रमित मात्रा के समयबद्ध घटक के लिए 0 लेते हैं। इस प्रकार तरंग के कार्यों को ψ, और ∂μ द्वारा निरूपित किया जाता है जिसमें चार प्रवणताओं के परिचालक घटक व्याप्त होते हैं।
आव्यूह (गणित) समीकरणों में, पाउली आव्यूहों को σμ के द्वारा निरूपित किया जाता है, जिसमें μ = 0, 1, 2, 3, जहाँ σ0 है 2 × 2 शिनाख्त प्रारूप हैं:
इस प्रकार 2 × 2 आव्यूह (गणित) ऑपरेटर (गणित) जो 2-घटक घूर्णन क्षेत्रों पर कार्य करता है।
गामा आव्यूह को γμ द्वारा निरूपित किया जाता है, जिसमें फिर से μ = 0, 1, 2, 3, और इसमें से चुनने के लिए कई प्रतिनिधित्व हैं। गणित का सवाल γ0 आवश्यक नहीं है 4 × 4 प्राप्त प्रारूप हैं। इस प्रकार
ध्यान दें कि जैसे शब्द mc स्केलर गुणन प्रासंगिक आयाम (वेक्टर स्थान) की पहचान आव्यूह, सामान्य आकार 2 × 2 या 4 × 4 हैं, और पारंपरिक रूप से सरलता के लिए नहीं लिखे गए हैं।
कण स्पिन क्वांटम संख्या एस | नाम | समीकरण | विशिष्ट कण गणना का वर्णन करता है |
---|---|---|---|
0 | क्लेन-गॉर्डन गणना | द्रव्यमान रहित या विशाल स्पिन-0 कण (जैसे हिग्स बोसोन)। | |
1/2 | वेइल रेश्यो | मासलेस स्पिन-1/2 कण। | |
डायरक समीकरण | बड़े पैमाने पर स्पिन-1/2 कण (जैसे इलेक्ट्रॉन)। | ||
दो-निकाय डायरक गणनाएँ |
|
बड़े पैमाने पर स्पिन-1/2 कण (जैसे इलेक्ट्रॉन)। | |
मेजराना गणना | बड़े पैमाने पर मेजराना कण। | ||
ब्रेट गणना | दो बड़े पैमाने पर स्पिन-1/2 कण (जैसे इलेक्ट्रॉन) गड़बड़ी सिद्धांत में पहले क्रम में विद्युत चुम्बकीय रूप से बातचीत करते हैं। | ||
1 | मैक्सवेल गणना (लॉरेंज गेज का उपयोग करके क्यूईडी में) | फोटॉन, द्रव्यमान रहित स्पिन-1 कण। | |
प्रोका गणना | विशाल स्पिन-1 कण (जैसे W और Z बोसोन)। | ||
3/2 | रारिटा-श्विंगर गणना | बड़े पैमाने पर स्पिन-3/2 कण। | |
s | बर्गमैन-विग्नर गणना |
where ψ is a rank-2s 4-component घूर्णन. |
मनमाना स्पिन के मुक्त कण (बोसॉन और फर्मसियन्स)।[8][10] |
जूस-वेनबर्ग गणना | मनमाना स्पिन के मुक्त कण (बोसॉन और फर्मसियन्स)। |
रैखिक गेज क्षेत्र
डफिन-केमेर-पेटियाउ बीजगणित डफिन-केमेर-पेटियाउ समीकरण या डफिन-केमेर-पेटियाउ समीकरण घूर्णन-0 और घूर्णन-1 कणों के लिए वैकल्पिक समीकरण है:
आरडब्ल्यूई का निर्माण
4-वैक्टर और ऊर्जा-संवेग संबंध का उपयोग करना
मानक विशेष आपेक्षिकता (SR) 4-वैक्टर से प्रारंभ करें
- 4-स्थिति
- 4- वेग
- 4-गति
- 4-वेववेक्टर
- 4-प्रवणता
ध्यान दें कि प्रत्येक 4-वेक्टर दूसरे से लोरेंत्ज़ अदिश द्वारा संबंधित है:
- , जहाँ उचित समय है
- , जहाँ शेष द्रव्यमान है
- , जो प्लैंक-आइंस्टीन संबंध और ब्रोगली का पदार्थ तरंग संबंध का 4-वेक्टर संस्करण है
- , जो जटिल-मूल्यवान समतल तरंगों का 4-ग्रेडिएंट संस्करण है
अब, मानक लोरेन्ट्ज़ स्केलर उत्पाद नियम को हर पर लागू करें:
अंतिम समीकरण मौलिक क्वांटम संबंध है।
जब लोरेंत्ज़ स्केलर क्षेत्र पर लागू किया जाता है, इस प्रकार क्लेन-गॉर्डन समीकरण प्राप्त करता है, जो क्वांटम सापेक्षतावादी तरंग समीकरणों का सबसे मौलिक है।
- : 4-वेक्टर प्रारूप में
- : टेंसर प्रारूप में
- : फ़ैक्टर्ड टेंसर प्रारूप में
श्रोडिंगर समीकरण क्लेन–गॉर्डन समीकरण का निम्न-वेग सीमांत स्थिति (गणित) (v << c) है।
जब संबंध चार-वेक्टर क्षेत्र पर लागू होता है लोरेंत्ज़ स्केलर क्षेत्र के अतिरिक्त , तो किसी को प्रोका समीकरण (लॉरेंज गेज में) मिलता है:
लोरेंत्ज़ समूह का प्रतिनिधित्व
एक उचित ऑर्थोक्रोनस लोरेंत्ज़ परिवर्तन के अनुसार x → Λx मिंकोवस्की समतल में, सभी एक-कण क्वांटम स्थितियाँ {{math|ψjσ}घूर्णन का j घूर्णन जेड-घटक के साथ σ लोरेंत्ज़ समूह के कुछ प्रतिनिधित्व सिद्धांत के अनुसार स्थानीय रूप से रूपांतरित {{math|D}लोरेंत्ज़ समूह के } करता हैं:[11][12]
प्रतिनिधित्व सिद्धांत उप-प्रतिनिधित्व, भागफल, और अलघुकरणीय अभ्यावेदन आधे-पूर्णांक या पूर्णांक की जोड़ी (A, B) द्वारा लेबल किए जाते हैं। इनसे अन्य सभी अभ्यावेदन विभिन्न प्रकार के मानक तरीकों का उपयोग करके बनाए जा सकते हैं, जैसे टेन्सर उत्पादों और प्रत्यक्ष योगों को लिया जाता हैं। इस प्रकार विशेष रूप से, समतल समय स्वयं 4-वेक्टर प्रतिनिधित्व (1/2, 1/2) का गठन करता है, जिससे कि Λ ∈ D'(1/2, 1/2) को इस संदर्भ में रखने के लिए, डायराक घूर्णन्स इसके अनुसार (1/2, 0) ⊕ (0, 1/2) प्रतिनिधित्व के रूप में रूपांतरित करता हैं। सामान्यतः (A, B) प्रतिनिधित्व स्थान में रेखीय उप-स्थान हैं जो स्थानिक घुमावों के उपसमूह के अनुसार, SO(3), घूर्णन जे की वस्तुओं के समान अनियमित रूप से रूपांतरित करता हैं, जहां प्रत्येक अनुमत मूल्य:
अभ्यावेदन D(j, 0) और D(0, j) प्रत्येक अलग-अलग घूर्णन के कणों j का प्रतिनिधित्व कर सकता है। इस प्रकार के प्रतिनिधित्व में स्थिति या क्वांटम क्षेत्र क्लेन-गॉर्डन समीकरण को छोड़कर कोई भी क्षेत्र समीकरण को संतुष्ट नहीं करता हैं।
गैर रेखीय समीकरण
ऐसे समीकरण हैं जिनके समाधान हैं जो सुपरपोज़िशन सिद्धांत को संतुष्ट नहीं करते हैं।
अरैखिक गेज क्षेत्र
- यांग-मिल्स सिद्धांत या यांग-मिल्स समीकरण: गैर-अबेलियन गेज क्षेत्र का वर्णन करता है
- यांग-मिल्स-हिग्स समीकरण: विशाल घूर्णन-0 कण के साथ मिलकर गैर-अबेलियन गेज क्षेत्र का वर्णन करता है
घूर्णन 2
- आइंस्टीन क्षेत्र समीकरण: गुरुत्वाकर्षण क्षेत्र के साथ पदार्थ की परस्पर क्रिया का वर्णन करें (द्रव्यमान रहित घूर्णन-2 क्षेत्र): समाधान मीट्रिक टेंसर टेंसर क्षेत्र है, अतिरिक्त तरंग फ़ंक्शन के।
यह भी देखें
- परमाणु और कण भौतिकी में समीकरणों की सूची
- क्वांटम यांत्रिकी में समीकरणों की सूची
- लोरेंत्ज़ परिवर्तन
- विद्युत चुम्बकीय क्षेत्र का गणितीय विवरण
- न्यूनतम युग्मन
- स्केलर क्षेत्र सिद्धांत
- विशेष सापेक्षता की स्थिति
संदर्भ
- ↑ 1.0 1.1 T Jaroszewicz; P.S Kurzepa (1992). "Geometry of spacetime propagation of spinning particles". Annals of Physics. 216 (2): 226–267. Bibcode:1992AnPhy.216..226J. doi:10.1016/0003-4916(92)90176-M.
- ↑ 2.0 2.1 2.2 2.3 2.4 S. Esposito (2011). "Searching for an equation: Dirac, Majorana and the others". Annals of Physics. 327 (6): 1617–1644. arXiv:1110.6878. Bibcode:2012AnPhy.327.1617E. doi:10.1016/j.aop.2012.02.016. S2CID 119147261.
- ↑ B. R. Martin, G.Shaw (2008). कण भौतिकी. Manchester Physics Series (3rd ed.). John Wiley & Sons. p. 3. ISBN 978-0-470-03294-7.
- ↑ R. Casalbuoni (2006). "मेजराना और अनंत घटक वेव समीकरण". Pos Emc. 2006: 004. arXiv:hep-th/0610252. Bibcode:2006hep.th...10252C.
- ↑ 5.0 5.1 X. Bekaert; M.R. Traubenberg; M. Valenzuela (2009). "बड़े पैमाने पर उच्च-स्पिन क्षेत्रों का एक अनंत सुपरमल्टीप्लेट". Journal of High Energy Physics. 2009 (5): 118. arXiv:0904.2533. Bibcode:2009JHEP...05..118B. doi:10.1088/1126-6708/2009/05/118. S2CID 16285006.
- ↑ R.K. Loide; I. Ots; R. Saar (1997). "भाभा सापेक्षवादी तरंग समीकरण". Journal of Physics A: Mathematical and General. 30 (11): 4005–4017. Bibcode:1997JPhA...30.4005L. doi:10.1088/0305-4470/30/11/027.
- ↑ Bargmann, V.; Wigner, E. P. (1948). "आपेक्षिक तरंग समीकरणों की समूह सैद्धांतिक चर्चा". Proc. Natl. Acad. Sci. U.S.A. 34 (5): 211–23. Bibcode:1948PNAS...34..211B. doi:10.1073/pnas.34.5.211. PMC 1079095. PMID 16578292.
- ↑ 8.0 8.1 E.A. Jeffery (1978). "Component Minimization of the Bargman–Wigner wavefunction". Australian Journal of Physics. 31 (2): 137–149. Bibcode:1978AuJPh..31..137J. doi:10.1071/ph780137.
- ↑ R.F Guertin (1974). "Relativistic hamiltonian equations for any spin". Annals of Physics. 88 (2): 504–553. Bibcode:1974AnPhy..88..504G. doi:10.1016/0003-4916(74)90180-8.
- ↑ R.Clarkson, D.G.C. McKeon (2003). "Quantum Field Theory" (PDF). pp. 61–69. Archived from the original (PDF) on 2009-05-30.
- ↑ Weinberg, S. (1964). "फेनमैन नियम किसी भी स्पिन के लिए" (PDF). Phys. Rev. 133 (5B): B1318–B1332. Bibcode:1964PhRv..133.1318W. doi:10.1103/PhysRev.133.B1318.; Weinberg, S. (1964). "फेनमैन नियम किसी भी स्पिन के लिए. II. Massless Particles" (PDF). Phys. Rev. 134 (4B): B882–B896. Bibcode:1964PhRv..134..882W. doi:10.1103/PhysRev.134.B882.; Weinberg, S. (1969). "फेनमैन नियम किसी भी स्पिन के लिए. III" (PDF). Phys. Rev. 181 (5): 1893–1899. Bibcode:1969PhRv..181.1893W. doi:10.1103/PhysRev.181.1893.
- ↑ K. Masakatsu (2012). "Superradiance Problem of Bosons and Fermions for Rotating Black Holes in Bargmann–Wigner Formulation". arXiv:1208.0644 [gr-qc].
- ↑ Weinberg, S (2002), "5", The Quantum Theory of Fields, vol I, p. [1], ISBN 0-521-55001-7
अग्रिम पठन
- R.G. Lerner; G.L. Trigg (1991). Encyclopaedia of Physics (2nd ed.). VHC publishers. ISBN 0-89573-752-3.
- C.B. Parker (1994). McGraw Hill Encyclopaedia of Physics (2nd ed.). ISBN 0-07-051400-3.
- G. Woan, Cambridge University Press (2010). The Cambridge Handbook of Physics Formulas. ISBN 978-0-521-57507-2.
- D. McMahon (2006). Relativity DeMystified. Mc Graw Hill (USA). ISBN 0-07-145545-0.
- J.A. Wheeler; C. Misner; K.S. Thorne (1973). Gravitation. W.H. Freeman. ISBN 0-7167-0344-0.
- B.R. Martin; G. Shaw (2008). Particle Physics (Manchester series) (2nd ed.). John Wiley & Sons. ISBN 978-0-470-03294-7.
- P. Labelle, Demystified (2010). Supersymmetry. McGraw-Hill (USA). ISBN 978-0-07-163641-4.
- B.H. Bransden; C.J. Joachain (1983). Physics of Atoms and Molecules. Longman. ISBN 0-582-44401-2.
- E. Abers (2004). Quantum Mechanics. Addison Wesley. ISBN 978-0-13-146100-0.
- D. McMahon (2008). Quantum Field Theory. Mc Graw Hill (USA). ISBN 978-0-07-154382-8.
- M. Pillin (1994). "q-Deformed Relativistic Wave Equations". Journal of Mathematical Physics. 35 (6): 2804–2817. arXiv:hep-th/9310097. Bibcode:1994JMP....35.2804P. doi:10.1063/1.530487. S2CID 5919588.