विद्युत चुम्बकीय प्रतिध्वनि कक्ष: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:


[[File:magdeburg-reverberation chamber.jpg|thumb|300px|जर्मनी के ओटो-वॉन-गुएरिके-यूनिवर्सिटी मैगडेबर्ग में (बड़े) रिवर्बरेशन चैंबर के अंदर का  दृश्य। बाईं ओर वर्टिकल मोड स्टिरर (या ट्यूनर) है, जो (सांख्यिकीय रूप से) सजातीय क्षेत्र वितरण सुनिश्चित करने के लिए विद्युत चुम्बकीय सीमाओं को बदलता है।]]'''इलेक्ट्रोमैग्नेटिक रिवर्बरेशन चैंबर''' (जिसे रीवरब चैंबर (आरवीसी) या मोड-स्टिरर्ड चैंबर (एमएससी) के रूप में भी जाना जाता है)[[ विद्युत चुम्बकीय संगतता | इलेक्ट्रोमैग्नेटिक कम्पैटिबिलिटी]] (ईएमसी) परीक्षण और अन्य इलेक्ट्रोमैग्नेटिक शोध के लिए वातावरण है। विद्युत चुम्बकीय प्रतिध्वनि कक्षों को सर्वप्रथम एच.ए. मेंडेस द्वारा 1968 में प्रस्तुत किया गया था।<ref>Mendes, H.A.: ''A new approach to electromagnetic field-strength measurements in shielded enclosures.'', Wescon Tech. Papers, Los Angeles, CA., August, 1968.
[[File:magdeburg-reverberation chamber.jpg|thumb|300px|जर्मनी के ओटो-वॉन-गुएरिके-यूनिवर्सिटी मैगडेबर्ग में (बड़े) रिवर्बरेशन चैंबर के अंदर का  दृश्य। बाईं ओर वर्टिकल मोड स्टिरर (या ट्यूनर) है, जो (सांख्यिकीय रूप से) सजातीय क्षेत्र वितरण सुनिश्चित करने के लिए विद्युत चुम्बकीय सीमाओं को बदलता है।]]'''इलेक्ट्रोमैग्नेटिक रिवर्बरेशन चैंबर''' (जिसे रीवरब चैंबर (आरवीसी) या मोड-स्टिरर्ड चैंबर (एमएससी) के रूप में भी जाना जाता है)[[ विद्युत चुम्बकीय संगतता | इलेक्ट्रोमैग्नेटिक कम्पैटिबिलिटी]] (ईएमसी) परीक्षण और अन्य इलेक्ट्रोमैग्नेटिक शोध के लिए वातावरण है। विद्युत चुम्बकीय प्रतिध्वनि कक्षों को सर्वप्रथम एच.ए. मेंडेस द्वारा 1968 में प्रस्तुत किया गया था।<ref>Mendes, H.A.: ''A new approach to electromagnetic field-strength measurements in shielded enclosures.'', Wescon Tech. Papers, Los Angeles, CA., August, 1968.
</ref> पुनर्संयोजन कक्ष [[विद्युत चुम्बकीय विकिरण]] [[ऊर्जा]] के न्यूनतम [[अवशोषण (विद्युत चुम्बकीय विकिरण)]] के साथ स्क्रीन किया गया कमरा होता है। कम अवशोषण के कारण मध्यम इनपुट शक्ति के साथ अधिक क्षेत्र शक्ति प्राप्त की जा सकती है। प्रतिध्वनि कक्ष उच्च [[क्यू कारक]] वाला  कैविटी रेजोनेटर है। इस प्रकार, विद्युत और चुंबकीय क्षेत्र की शक्तियों का समष्टििक वितरण दृढ़ता से अमानवीय ([[खड़ी तरंगें]]) है। इस विषमता को कम करने के लिए  या अधिक ट्यूनर (स्टिरर) का उपयोग किया जाता है। ट्यूनर बड़े धातु परावर्तकों के साथ  निर्माण है जिसे विभिन्न सीमा स्थितियों को प्राप्त करने के लिए विभिन्न अभिविन्यासों में ले जाया जा सकता है। पुनर्संयोजन कक्ष की न्यूनतम उपयोग योग्य आवृत्ति (एलयूएफ) कक्ष के आकार और ट्यूनर के डिजाइन पर निर्भर करती है। छोटे कक्षों में बड़े कक्षों की अपेक्षा में अधिक एलयूएफ होता है।
</ref> पुनर्संयोजन कक्ष [[विद्युत चुम्बकीय विकिरण]] [[ऊर्जा]] के न्यूनतम [[अवशोषण (विद्युत चुम्बकीय विकिरण)]] के साथ स्क्रीन किया गया कमरा होता है। कम अवशोषण के कारण मध्यम इनपुट शक्ति के साथ अधिक क्षेत्र शक्ति प्राप्त की जा सकती है। प्रतिध्वनि कक्ष उच्च [[क्यू कारक]] वाला  कैविटी रेजोनेटर है। इस प्रकार, विद्युत और चुंबकीय क्षेत्र की शक्तियों का समष्टििक वितरण दृढ़ता से अमानवीय ([[खड़ी तरंगें]]) है। इस विषमता को कम करने के लिए  या अधिक ट्यूनर (स्टिरर) का उपयोग किया जाता है। ट्यूनर बड़े धातु परावर्तकों के साथ  निर्माण है जिसे विभिन्न सीमा स्थितियों को प्राप्त करने के लिए विभिन्न अभिविन्यासों में ले जाया जा सकता है। पुनर्संयोजन कक्ष की न्यूनतम उपयोग योग्य फ्रीक्वेंसी (एलयूएफ) कक्ष के आकार और ट्यूनर के डिजाइन पर निर्भर करती है। छोटे कक्षों में बड़े कक्षों की अपेक्षा में अधिक एलयूएफ होता है।


प्रतिध्वनि कक्ष की अवधारणा [[माइक्रोवेव ओवन]] से तुलनीय है।
प्रतिध्वनि कक्ष की अवधारणा [[माइक्रोवेव ओवन]] से तुलनीय है।
Line 8: Line 8:


===प्रस्तावना===
===प्रस्तावना===
अंकन मुख्य रूप से [[इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन]]  मानक 61000-4-21 के समान है।<ref>IEC 61000-4-21: ''Electromagnetic compatibility (EMC) - Part 4-21: Testing and measurement techniques - Reverberation chamber test methods'', Ed. 2.0, January, 2011. ([http://webstore.iec.ch/Webstore/webstore.nsf/ArtNum_PK/44777!opendocument&preview=1])</ref> माध्य और अधिकतम मान जैसी सांख्यिकीय मात्राओं के लिए, प्रयुक्त डोमेन पर प्रभाव देने के लिए अधिक स्पष्ट नोटेशन का उपयोग किया जाता है। यहां, समष्टििक डोमेन (सबस्क्रिप्ट <math>s</math>) का अर्थ है कि मात्राएँ विभिन्न कक्ष स्थितियों और संयोजन डोमेन (सबस्क्रिप्ट <math>e</math>) के लिए ली जाती हैं, विभिन्न सीमा या उत्तेजना स्थितियों (जैसे ट्यूनर स्थिति) को संदर्भित करता है।
अंकन मुख्य रूप से [[इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन]]  मानक 61000-4-21 के समान है।<ref>IEC 61000-4-21: ''Electromagnetic compatibility (EMC) - Part 4-21: Testing and measurement techniques - Reverberation chamber test methods'', Ed. 2.0, January, 2011. ([http://webstore.iec.ch/Webstore/webstore.nsf/ArtNum_PK/44777!opendocument&preview=1])</ref> माध्य और अधिकतम मान जैसी सांख्यिकीय मात्राओं के लिए, प्रयुक्त डोमेन पर प्रभाव देने के लिए अधिक स्पष्ट नोटेशन का उपयोग किया जाता है। यहां, स्थानिक डोमेन (सबस्क्रिप्ट <math>s</math>) का अर्थ है कि मात्राएँ विभिन्न कक्ष स्थितियों और संयोजन डोमेन (सबस्क्रिप्ट <math>e</math>) के लिए ली जाती हैं, विभिन्न सीमा या उत्तेजना स्थितियों (जैसे ट्यूनर स्थिति) को संदर्भित करता है।


===सामान्य===
===सामान्य===
* <math>\vec{E}</math>: [[विद्युत क्षेत्र]] का [[वेक्टर (ज्यामितीय)]]।
* <math>\vec{E}</math>: [[विद्युत क्षेत्र]] का [[वेक्टर (ज्यामितीय)|सदिश (ज्यामितीय)]]।
* <math>\vec{H}</math>: [[चुंबकीय क्षेत्र]] का वेक्टर (ज्यामितीय)।
* <math>\vec{H}</math>: [[चुंबकीय क्षेत्र]] का सदिश (ज्यामितीय)।
* <math>E_T,\, H_T</math>: पूर्ण विद्युत या चुंबकीय क्षेत्र की शक्ति, अर्थात क्षेत्र वेक्टर (ज्यामितीय) का [[परिमाण (गणित)]]।
* <math>E_T,\, H_T</math>: पूर्ण विद्युत या चुंबकीय क्षेत्र की शक्ति, अर्थात क्षेत्र सदिश (ज्यामितीय) का [[परिमाण (गणित)]]।
* <math>E_R,\, H_R</math>: विद्युत या चुंबकीय क्षेत्र वेक्टर (ज्यामितीय) के [[आयताकार]] वेक्टर घटकों की क्षेत्र शक्ति (परिमाण (गणित))।
* <math>E_R,\, H_R</math>: विद्युत या चुंबकीय क्षेत्र सदिश (ज्यामितीय) के [[आयताकार]] सदिश घटकों की क्षेत्र शक्ति (परिमाण (गणित))।
* <math>Z_0=\frac{|\vec{E}|}{|\vec{H}|} \approx 120\cdot \pi\, \Omega</math>: मुक्त समष्टि की [[विशेषता प्रतिबाधा]]
* <math>Z_0=\frac{|\vec{E}|}{|\vec{H}|} \approx 120\cdot \pi\, \Omega</math>: फ्री स्पेस की [[विशेषता प्रतिबाधा|विशेषता प्रतिबाधा।]]
* <math>\eta_{\rm Tx}</math>: wikt: ट्रांसमिटिंग एंटीना की दक्षता (रेडियो)
* <math>\eta_{\rm Tx}</math>: ट्रांसमिटिंग एंटीना की दक्षता (रेडियो)
* <math>\eta_{\rm Rx}</math>: wikt: प्राप्त एंटीना की दक्षता (रेडियो)
* <math>\eta_{\rm Rx}</math>: रिसीविंग एंटीना की दक्षता (रेडियो)
* <math> P_{\rm fwd}, \, P_{\rm bwd}</math>: आगे और पीछे चलने वाली तरंगों की [[शक्ति (भौतिकी)]]।
* <math> P_{\rm fwd}, \, P_{\rm bwd}</math>: आगे और पीछे चलने वाली तरंगों की [[शक्ति (भौतिकी)]]।
* <math>Q</math>: [[गुणवत्ता कारक]].
* <math>Q</math>: [[गुणवत्ता कारक]]


===सांख्यिकी===
===सांख्यिकी===
* <math>{}_s\langle X \rangle_N</math>: का समष्टििक माध्य <math>X</math> के लिए <math>N</math> वस्तुएं (अंतरिक्ष में स्थिति)।
* <math>{}_s\langle X \rangle_N</math>: <math>N</math> वस्तुएं (अंतरिक्ष में स्थिति) के लिए <math>X</math> का स्थानिक माध्य है।
* <math>{}_e\langle X \rangle_N</math>: समुच्चय का तात्पर्य है <math>X</math> के लिए <math>N</math> वस्तुएं (सीमाएं, अर्थात ट्यूनर स्थिति)।
* <math>{}_e\langle X \rangle_N</math>: <math>N</math> वस्तुएं (सीमाएं, अर्थात ट्यूनर स्थिति) के लिए <math>X</math> का समुच्चय माध्य है।
* <math>\langle X \rangle</math>: के समान <math>\langle X \rangle_\infty</math>. आंकड़ों में यह [[अपेक्षित मूल्य]] है.
* <math>\langle X \rangle</math>: <math>\langle X \rangle_\infty</math> के समान है। आंकड़ों में यह [[अपेक्षित मूल्य]] है।
* <math>{}_s\lceil X \rceil_N</math>: समष्टििक अधिकतम <math>X</math> के लिए <math>N</math> वस्तुएं (अंतरिक्ष में स्थिति)।
* <math>{}_s\lceil X \rceil_N</math>: <math>N</math> वस्तुएं (अंतरिक्ष में स्थिति) के लिए <math>X</math> का स्थानिक अधिकतम है।
* <math>{}_e\lceil X \rceil_N</math>: अधिकतम का समूह <math>X</math> के लिए <math>N</math> वस्तुएं (सीमाएं, अर्थात ट्यूनर स्थिति)।
* <math>{}_e\lceil X \rceil_N</math>: <math>N</math> वस्तुएं (सीमाएं, अर्थात ट्यूनर स्थिति) के लिए <math>X</math> का अधिकतम संयोजन है।
* <math>\lceil X \rceil</math>: के समान <math>\lceil X \rceil_\infty</math>.
* <math>\lceil X \rceil</math>: <math>\lceil X \rceil_\infty</math> के समान है।
* <math>{}_s\!\dagger\!(X)_N</math>: समष्टििक डोमेन में अधिकतम माध्य अनुपात।
* <math>{}_s\!\dagger\!(X)_N</math>: स्थानिक डोमेन में अधिकतम माध्य अनुपात।
* <math>{}_e\!\dagger\!(X)_N</math>: समुच्चय क्षेत्र में अधिकतम माध्य अनुपात।
* <math>{}_e\!\dagger\!(X)_N</math>: समुच्चय क्षेत्र में अधिकतम माध्य अनुपात।


Line 35: Line 35:
===कैविटी अनुनादक===
===कैविटी अनुनादक===


प्रतिध्वनि कक्ष कैविटी प्रतिध्वनि यंत्र है - सामान्यतः स्क्रीन वाला कमरा - जो कि ओवरमोडेड क्षेत्र में संचालित होता है। इसका तात्पर्य समझने के लिए हमें कैविटी अनुनादक की संक्षेप में शोध करनी होगी।
प्रतिध्वनि कक्ष कैविटी अनुनादक है - सामान्यतः स्क्रीन वाला कमरा - जो कि ओवरमोडेड क्षेत्र में संचालित होता है। इसका तात्पर्य समझने के लिए हमें कैविटी अनुनादक की संक्षेप में शोध करनी होती है।


आयताकार कैविटीओं के लिए, अनुनाद आवृत्ति (या [[स्वयं की आवृत्ति]], या [[प्राकृतिक आवृत्ति]]) <math>f_{mnp}</math> द्वारा दिए गए हैं
आयताकार कैविटीओं के लिए, अनुकंपन फ्रीक्वेंसी (या [[स्वयं की आवृत्ति|ईजेनफ़्रीक्वेंसी]], या [[प्राकृतिक आवृत्ति|नेचुरल फ्रीक्वेंसी]]) <math>f_{mnp}</math> द्वारा दिए गए हैं,


<math>
<math>
f_{mnp} = \frac{c}{2}\sqrt{\left(\frac{m}{l}\right)^2+\left(\frac{n}{w}\right)^2+\left(\frac{p}{h}\right)^2},
f_{mnp} = \frac{c}{2}\sqrt{\left(\frac{m}{l}\right)^2+\left(\frac{n}{w}\right)^2+\left(\frac{p}{h}\right)^2},
</math>जहाँ <math>c</math> [[प्रकाश की गति]] है, <math>l</math>, <math>w</math> और <math>h</math> कैविटी की लंबाई, चौड़ाई और ऊंचाई, हैं औ र<math>m</math> , <math>n</math>, <math>p</math> गैर-ऋणात्मक [[पूर्णांक]] हैं (अधिकतम उनमें से [[0 (संख्या)|0( संख्या)]] हो सकता है)।
</math>जहाँ <math>c</math> [[प्रकाश की गति]] है, <math>l</math>, <math>w</math> और <math>h</math> कैविटी की लंबाई, चौड़ाई और ऊंचाई हैं, और <math>m</math> , <math>n</math>, <math>p</math> गैर-ऋणात्मक [[पूर्णांक]] हैं (अधिकतम उनमें [[0 (संख्या)|शून्य ( संख्या)]] हो सकता है)।


उस समीकरण के साथ, किसी दी गई सीमा से कम ईजेनफ़्रीक्वेंसी वाले [[सामान्य मोड]] की संख्या <math>f</math>, <math>N(f)</math>, गिना जा सकता है. इसका परिणाम चरणीय फ़ंक्शन होता है. सिद्धांत रूप में, दो मोड- ट्रांसवर्सल इलेक्ट्रिक मोड <math>TE_{mnp}</math> और  अनुप्रस्थ चुंबकीय मोड <math>TM_{mnp}</math>-प्रत्येक ईजेनफ़्रीक्वेंसी के लिए उपस्थित है।
उस समीकरण के साथ, किसी दी गई सीमा से कम ईजेनफ़्रीक्वेंसी वाले [[सामान्य मोड]] की संख्या <math>f</math>, <math>N(f)</math>, गिना जा सकता है। इसका परिणाम चरणीय   कार्य होता है। सिद्धांत रूप में, दो मोड- ट्रांसवर्सल इलेक्ट्रिक मोड <math>TE_{mnp}</math> और  अनुप्रस्थ चुंबकीय मोड <math>TM_{mnp}</math>-प्रत्येक ईजेनफ़्रीक्वेंसी के लिए उपस्थित है।


चैम्बर स्थिति में फ़ील्ड <math>(x,y,z)</math> द्वारा दिए गए हैं
चैम्बर स्थिति में फ़ील्ड <math>(x,y,z)</math> द्वारा दिए गए हैं
Line 89: Line 89:
<math>
<math>
\overline{N}(f) = \frac{8\pi}{3}lwh\left(\frac{f}{c}\right)^3 - (l+w+h)\frac{f}{c} +\frac{1}{2}
\overline{N}(f) = \frac{8\pi}{3}lwh\left(\frac{f}{c}\right)^3 - (l+w+h)\frac{f}{c} +\frac{1}{2}
</math> अग्रणी शब्द कक्ष [[आयतन]] और [[आवृत्ति]] की तीसरी शक्ति के लिए [[आनुपातिकता (गणित)]] है। यह शब्द [[वेल]] के सूत्र के समान है।
</math> अग्रणी शब्द कक्ष [[आयतन]] और [[आवृत्ति|फ्रीक्वेंसी]] की तीसरी शक्ति के लिए [[आनुपातिकता (गणित)]] है। यह शब्द [[वेल]] के सूत्र के समान है।


[[File:cummodes.svg|thumb|लार्ज मैगडेबर्ग रिवर्बरेशन चैंबर के लिए मोड की सटीक और सुचारु संख्या की अपेक्षा।]]पर आधारित <math>\overline{N}(f)</math> मोड घनत्व <math>\overline{n}(f)</math> द्वारा दिया गया है
[[File:cummodes.svg|thumb|लार्ज मैगडेबर्ग रिवर्बरेशन चैंबर के लिए मोड की सटीक और सुचारु संख्या की अपेक्षा।]]पर आधारित <math>\overline{N}(f)</math> मोड घनत्व <math>\overline{n}(f)</math> द्वारा दिया गया है
Line 95: Line 95:
<math>
<math>
\overline{n}(f)=\frac{d\overline{N}(f)}{df} = \frac{8\pi}{c}lwh\left(\frac{f}{c}\right)^2 - (l+w+h)\frac{1}{c}
\overline{n}(f)=\frac{d\overline{N}(f)}{df} = \frac{8\pi}{c}lwh\left(\frac{f}{c}\right)^2 - (l+w+h)\frac{1}{c}
</math> महत्वपूर्ण मात्रा  निश्चित आवृत्ति [[अंतराल (गणित)]] में मोड की संख्या है <math>\Delta f</math>, <math>\overline{N}_{\Delta f}(f)</math>, वह द्वारा दिया गया है
</math> महत्वपूर्ण मात्रा  निश्चित फ्रीक्वेंसी [[अंतराल (गणित)]] में मोड की संख्या है <math>\Delta f</math>, <math>\overline{N}_{\Delta f}(f)</math>, वह द्वारा दिया गया है


<math>
<math>
Line 109: Line 109:
क्यू फैक्टर (या क्यू फैक्टर) सभी [[गुंजयमान]] प्रणालियों के लिए महत्वपूर्ण मात्रा है। सामान्यतः, क्यू फैक्टर को इस प्रकार परिभाषित किया जाता है,<math>
क्यू फैक्टर (या क्यू फैक्टर) सभी [[गुंजयमान]] प्रणालियों के लिए महत्वपूर्ण मात्रा है। सामान्यतः, क्यू फैक्टर को इस प्रकार परिभाषित किया जाता है,<math>
Q=\omega\frac{\rm maximum\; stored\; energy}{\rm average\; power\; loss} = \omega \frac{W_s}{P_l},
Q=\omega\frac{\rm maximum\; stored\; energy}{\rm average\; power\; loss} = \omega \frac{W_s}{P_l},
</math> जहां  चक्र में अधिकतम और औसत लिया जाता है, और <math>\omega=2\pi f</math> [[कोणीय आवृत्ति]] है.
</math> जहां  चक्र में अधिकतम और औसत लिया जाता है, और <math>\omega=2\pi f</math> [[कोणीय आवृत्ति|कोणीय फ्रीक्वेंसी]] है.


TE और TM मोड के कारक क्यू की गणना फ़ील्ड से की जा सकती है। संग्रहित ऊर्जा <math>W_s</math> द्वारा दिया गया है,
TE और TM मोड के कारक क्यू की गणना फ़ील्ड से की जा सकती है। संग्रहित ऊर्जा <math>W_s</math> द्वारा दिया गया है,
Line 167: Line 167:
</math>
</math>


<math>\tilde{Q_s}</math> इसमें केवल चैम्बर की दीवारों की सीमित चालकता के कारण होने वाले हानि शामिल हैं और इसलिए यह ऊपरी सीमा है। अन्य हानियाँ परावैद्युत हानियाँ जैसे एंटीना समर्थन संरचनाओं में, दीवार कोटिंग के कारण होने वाले हानि, और रिसाव के हानि हैं। निचली आवृत्ति रेंज के लिए प्रमुख हानि कमरे में ऊर्जा को जोड़ने (एंटीना, Tx संचारित करने) और कक्ष में फ़ील्ड की सुरक्षा करने (एंटीना, Rx प्राप्त करने) के लिए उपयोग किए जाने वाले एंटीना के कारण होती है। यह एंटीना हानि <math>Q_a</math> द्वारा दिया गया है, <math>
<math>\tilde{Q_s}</math> इसमें केवल चैम्बर की दीवारों की सीमित चालकता के कारण होने वाले हानि शामिल हैं और इसलिए यह ऊपरी सीमा है। अन्य हानियाँ परावैद्युत हानियाँ जैसे एंटीना समर्थन संरचनाओं में, दीवार कोटिंग के कारण होने वाले हानि, और रिसाव के हानि हैं। निचली फ्रीक्वेंसी रेंज के लिए प्रमुख हानि कमरे में ऊर्जा को जोड़ने (एंटीना, Tx संचारित करने) और कक्ष में फ़ील्ड की सुरक्षा करने (एंटीना, Rx प्राप्त करने) के लिए उपयोग किए जाने वाले एंटीना के कारण होती है। यह एंटीना हानि <math>Q_a</math> द्वारा दिया गया है, <math>
Q_a = \frac{16\pi^2 V f^3}{c^3 N_{a}},
Q_a = \frac{16\pi^2 V f^3}{c^3 N_{a}},
</math> जहाँ <math>N_a</math> चैम्बर में एंटीना की संख्या है।
</math> जहाँ <math>N_a</math> चैम्बर में एंटीना की संख्या है।
Line 175: Line 175:
<math>
<math>
\frac{1}{Q} = \sum_i \frac{1}{Q_i}
\frac{1}{Q} = \sum_i \frac{1}{Q_i}
</math> परिमित गुणवत्ता कारक के परिणामस्वरूप ईजेनमोड आवृत्ति में व्यापक होते हैं, अर्थात मोड उत्तेजित हो सकता है, अपितु ऑपरेटिंग आवृत्ति ईजेनफ्रीक्वेंसी के समान नहीं होता है। इसलिए, एक ही समय में किसी दी गई आवृत्ति के लिए अधिक ईजेनमोड बाहर निकल जाते हैं।
</math> परिमित गुणवत्ता कारक के परिणामस्वरूप ईजेनमोड फ्रीक्वेंसी में व्यापक होते हैं, अर्थात मोड उत्तेजित हो सकता है, अपितु ऑपरेटिंग फ्रीक्वेंसी ईजेनफ्रीक्वेंसी के समान नहीं होता है। इसलिए, एक ही समय में किसी दी गई फ्रीक्वेंसी के लिए अधिक ईजेनमोड बाहर निकल जाते हैं।


क्यू-बैंडविड्थ <math>{\rm BW}_Q</math> आवृत्ति बैंडविड्थ का माप है जिस पर पुनर्संयोजन कक्ष में मोड सहसंबद्ध होते हैं। <math>{\rm BW}_Q</math> प्रतिध्वनि कक्ष की गणना निम्नलिखित का उपयोग करके की जा सकती है:
क्यू-बैंडविड्थ <math>{\rm BW}_Q</math> फ्रीक्वेंसी बैंडविड्थ का माप है जिस पर पुनर्संयोजन कक्ष में मोड सहसंबद्ध होते हैं। <math>{\rm BW}_Q</math> प्रतिध्वनि कक्ष की गणना निम्नलिखित का उपयोग करके की जा सकती है:


<math>{\rm BW}_Q=\frac{f}{Q}</math>, सूत्र  <math>\overline{N}_{\Delta f}(f)</math> का उपयोग करके अंदर उत्साहित मोड की संख्या <math>{\rm BW}_Q</math> परिणाम
<math>{\rm BW}_Q=\frac{f}{Q}</math>, सूत्र  <math>\overline{N}_{\Delta f}(f)</math> का उपयोग करके अंदर उत्साहित मोड की संख्या <math>{\rm BW}_Q</math> परिणाम

Revision as of 11:20, 23 September 2023

जर्मनी के ओटो-वॉन-गुएरिके-यूनिवर्सिटी मैगडेबर्ग में (बड़े) रिवर्बरेशन चैंबर के अंदर का दृश्य। बाईं ओर वर्टिकल मोड स्टिरर (या ट्यूनर) है, जो (सांख्यिकीय रूप से) सजातीय क्षेत्र वितरण सुनिश्चित करने के लिए विद्युत चुम्बकीय सीमाओं को बदलता है।

इलेक्ट्रोमैग्नेटिक रिवर्बरेशन चैंबर (जिसे रीवरब चैंबर (आरवीसी) या मोड-स्टिरर्ड चैंबर (एमएससी) के रूप में भी जाना जाता है) इलेक्ट्रोमैग्नेटिक कम्पैटिबिलिटी (ईएमसी) परीक्षण और अन्य इलेक्ट्रोमैग्नेटिक शोध के लिए वातावरण है। विद्युत चुम्बकीय प्रतिध्वनि कक्षों को सर्वप्रथम एच.ए. मेंडेस द्वारा 1968 में प्रस्तुत किया गया था।[1] पुनर्संयोजन कक्ष विद्युत चुम्बकीय विकिरण ऊर्जा के न्यूनतम अवशोषण (विद्युत चुम्बकीय विकिरण) के साथ स्क्रीन किया गया कमरा होता है। कम अवशोषण के कारण मध्यम इनपुट शक्ति के साथ अधिक क्षेत्र शक्ति प्राप्त की जा सकती है। प्रतिध्वनि कक्ष उच्च क्यू कारक वाला कैविटी रेजोनेटर है। इस प्रकार, विद्युत और चुंबकीय क्षेत्र की शक्तियों का समष्टििक वितरण दृढ़ता से अमानवीय (खड़ी तरंगें) है। इस विषमता को कम करने के लिए या अधिक ट्यूनर (स्टिरर) का उपयोग किया जाता है। ट्यूनर बड़े धातु परावर्तकों के साथ निर्माण है जिसे विभिन्न सीमा स्थितियों को प्राप्त करने के लिए विभिन्न अभिविन्यासों में ले जाया जा सकता है। पुनर्संयोजन कक्ष की न्यूनतम उपयोग योग्य फ्रीक्वेंसी (एलयूएफ) कक्ष के आकार और ट्यूनर के डिजाइन पर निर्भर करती है। छोटे कक्षों में बड़े कक्षों की अपेक्षा में अधिक एलयूएफ होता है।

प्रतिध्वनि कक्ष की अवधारणा माइक्रोवेव ओवन से तुलनीय है।

शब्दावली/नोटेशन

प्रस्तावना

अंकन मुख्य रूप से इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन मानक 61000-4-21 के समान है।[2] माध्य और अधिकतम मान जैसी सांख्यिकीय मात्राओं के लिए, प्रयुक्त डोमेन पर प्रभाव देने के लिए अधिक स्पष्ट नोटेशन का उपयोग किया जाता है। यहां, स्थानिक डोमेन (सबस्क्रिप्ट ) का अर्थ है कि मात्राएँ विभिन्न कक्ष स्थितियों और संयोजन डोमेन (सबस्क्रिप्ट ) के लिए ली जाती हैं, विभिन्न सीमा या उत्तेजना स्थितियों (जैसे ट्यूनर स्थिति) को संदर्भित करता है।

सामान्य

  • : विद्युत क्षेत्र का सदिश (ज्यामितीय)
  • : चुंबकीय क्षेत्र का सदिश (ज्यामितीय)।
  • : पूर्ण विद्युत या चुंबकीय क्षेत्र की शक्ति, अर्थात क्षेत्र सदिश (ज्यामितीय) का परिमाण (गणित)
  • : विद्युत या चुंबकीय क्षेत्र सदिश (ज्यामितीय) के आयताकार सदिश घटकों की क्षेत्र शक्ति (परिमाण (गणित))।
  • : फ्री स्पेस की विशेषता प्रतिबाधा।
  • : ट्रांसमिटिंग एंटीना की दक्षता (रेडियो)।
  • : रिसीविंग एंटीना की दक्षता (रेडियो)।
  • : आगे और पीछे चलने वाली तरंगों की शक्ति (भौतिकी)
  • : गुणवत्ता कारक

सांख्यिकी

  • : वस्तुएं (अंतरिक्ष में स्थिति) के लिए का स्थानिक माध्य है।
  • : वस्तुएं (सीमाएं, अर्थात ट्यूनर स्थिति) के लिए का समुच्चय माध्य है।
  • : के समान है। आंकड़ों में यह अपेक्षित मूल्य है।
  • : वस्तुएं (अंतरिक्ष में स्थिति) के लिए का स्थानिक अधिकतम है।
  • : वस्तुएं (सीमाएं, अर्थात ट्यूनर स्थिति) के लिए का अधिकतम संयोजन है।
  • : के समान है।
  • : स्थानिक डोमेन में अधिकतम माध्य अनुपात।
  • : समुच्चय क्षेत्र में अधिकतम माध्य अनुपात।

सिद्धांत

कैविटी अनुनादक

प्रतिध्वनि कक्ष कैविटी अनुनादक है - सामान्यतः स्क्रीन वाला कमरा - जो कि ओवरमोडेड क्षेत्र में संचालित होता है। इसका तात्पर्य समझने के लिए हमें कैविटी अनुनादक की संक्षेप में शोध करनी होती है।

आयताकार कैविटीओं के लिए, अनुकंपन फ्रीक्वेंसी (या ईजेनफ़्रीक्वेंसी, या नेचुरल फ्रीक्वेंसी) द्वारा दिए गए हैं,

जहाँ प्रकाश की गति है, , और कैविटी की लंबाई, चौड़ाई और ऊंचाई हैं, और , , गैर-ऋणात्मक पूर्णांक हैं (अधिकतम उनमें शून्य ( संख्या) हो सकता है)।

उस समीकरण के साथ, किसी दी गई सीमा से कम ईजेनफ़्रीक्वेंसी वाले सामान्य मोड की संख्या , , गिना जा सकता है। इसका परिणाम चरणीय कार्य होता है। सिद्धांत रूप में, दो मोड- ट्रांसवर्सल इलेक्ट्रिक मोड और अनुप्रस्थ चुंबकीय मोड -प्रत्येक ईजेनफ़्रीक्वेंसी के लिए उपस्थित है।

चैम्बर स्थिति में फ़ील्ड द्वारा दिए गए हैं

  • टीएम मोड के लिए ()

 
 
 
 
 
  • TE मोड के लिए ()

 
 
 
 

E- और H फ़ील्ड के लिए सीमा प्रतिबंधों के कारण, कुछ मोड उपस्थित नहीं हैं। प्रतिबंध हैं:[3]

  • TM मोड के लिए: m और n शून्य नहीं हो सकते, p शून्य हो सकता है
  • TE मोड के लिए: m या n शून्य हो सकता है (परन्तु दोनों शून्य नहीं हो सकते), p शून्य नहीं हो सकता

का सहज अनुमान , , द्वारा दिया गया है

अग्रणी शब्द कक्ष आयतन और फ्रीक्वेंसी की तीसरी शक्ति के लिए आनुपातिकता (गणित) है। यह शब्द वेल के सूत्र के समान है।

File:Cummodes.svg
लार्ज मैगडेबर्ग रिवर्बरेशन चैंबर के लिए मोड की सटीक और सुचारु संख्या की अपेक्षा।

पर आधारित मोड घनत्व द्वारा दिया गया है

महत्वपूर्ण मात्रा निश्चित फ्रीक्वेंसी अंतराल (गणित) में मोड की संख्या है , , वह द्वारा दिया गया है

गुणवत्ता कारक

क्यू फैक्टर (या क्यू फैक्टर) सभी गुंजयमान प्रणालियों के लिए महत्वपूर्ण मात्रा है। सामान्यतः, क्यू फैक्टर को इस प्रकार परिभाषित किया जाता है, जहां चक्र में अधिकतम और औसत लिया जाता है, और कोणीय फ्रीक्वेंसी है.

TE और TM मोड के कारक क्यू की गणना फ़ील्ड से की जा सकती है। संग्रहित ऊर्जा द्वारा दिया गया है,

हानि धातु की दीवारों में होती है। यदि दीवार की विद्युत चालकता है और इसकी पारगम्यता (विद्युत चुम्बकत्व) है, सतह प्रतिरोध है,

जहाँ दीवार सामग्री की स्किन डेप्थ है।

घाटा के अनुसार गणना की जाती है

आयताकार कैविटी के लिए इस प्रकार है[4]

  • टीई मोड के लिए:


  • टीएम मोड के लिए:


व्यक्तिगत मोड के क्यू मानों का उपयोग करते हुए, औसत समग्र गुणवत्ता कारक प्राप्त किया जा सकता है:[5]

इसमें केवल चैम्बर की दीवारों की सीमित चालकता के कारण होने वाले हानि शामिल हैं और इसलिए यह ऊपरी सीमा है। अन्य हानियाँ परावैद्युत हानियाँ जैसे एंटीना समर्थन संरचनाओं में, दीवार कोटिंग के कारण होने वाले हानि, और रिसाव के हानि हैं। निचली फ्रीक्वेंसी रेंज के लिए प्रमुख हानि कमरे में ऊर्जा को जोड़ने (एंटीना, Tx संचारित करने) और कक्ष में फ़ील्ड की सुरक्षा करने (एंटीना, Rx प्राप्त करने) के लिए उपयोग किए जाने वाले एंटीना के कारण होती है। यह एंटीना हानि द्वारा दिया गया है, जहाँ चैम्बर में एंटीना की संख्या है।

सभी हानियों सहित गुणवत्ता कारक सभी एकल हानि प्रक्रियाओं के कारकों का हार्मोनिक योग है:

परिमित गुणवत्ता कारक के परिणामस्वरूप ईजेनमोड फ्रीक्वेंसी में व्यापक होते हैं, अर्थात मोड उत्तेजित हो सकता है, अपितु ऑपरेटिंग फ्रीक्वेंसी ईजेनफ्रीक्वेंसी के समान नहीं होता है। इसलिए, एक ही समय में किसी दी गई फ्रीक्वेंसी के लिए अधिक ईजेनमोड बाहर निकल जाते हैं।

क्यू-बैंडविड्थ फ्रीक्वेंसी बैंडविड्थ का माप है जिस पर पुनर्संयोजन कक्ष में मोड सहसंबद्ध होते हैं। प्रतिध्वनि कक्ष की गणना निम्नलिखित का उपयोग करके की जा सकती है:

, सूत्र का उपयोग करके अंदर उत्साहित मोड की संख्या परिणाम

चैम्बर गुणवत्ता कारक से संबंधित चैम्बर समय स्थिरांक द्वारा है,

यदि इनपुट पावर संवृत कर दी जाती है तो यह चैम्बर के क्षेत्र (घातांकीय क्षय) की मुक्त ऊर्जा विश्राम का समय स्थिरांक है।

यह भी देखें

टिप्पणियाँ

  1. Mendes, H.A.: A new approach to electromagnetic field-strength measurements in shielded enclosures., Wescon Tech. Papers, Los Angeles, CA., August, 1968.
  2. IEC 61000-4-21: Electromagnetic compatibility (EMC) - Part 4-21: Testing and measurement techniques - Reverberation chamber test methods, Ed. 2.0, January, 2011. ([1])
  3. Cheng, D.K.: Field and Wave Electromagnetics, Addison-Wesley Publishing Company Inc., Edition 2, 1998. ISBN 0-201-52820-7
  4. Chang, K.: Handbook of Microwave and Optical Components, Volume 1, John Wiley & Sons Inc., 1989. ISBN 0-471-61366-5.
  5. Liu, B.H., Chang, D.C., Ma, M.T.: Eigenmodes and the Composite Quality Factor of a Reverberating Chamber, NBS Technical Note 1066, National Bureau of Standards, Boulder, CO., August 1983.

संदर्भ

  • Crawford, M.L.; Koepke, G.H.: Design, Evaluation, and Use of a Reverberation Chamber for Performing Electromagnetic Susceptibility/Vulnerability Measurements, NBS Technical Note 1092, National Bureau od Standards, Boulder, CO, April, 1986.
  • Ladbury, J.M.; Koepke, G.H.: Reverberation chamber relationships: corrections and improvements or three wrongs can (almost) make a right, Electromagnetic Compatibility, 1999 IEEE International Symposium on, Volume 1, 1-6, 2–6 August 1999.