एकाधिक अनुपात का नियम: Difference between revisions

From Vigyanwiki
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:


रसायन विज्ञान में, '''एकाधिक अनुपात का नियम''' कहता है कि यदि दो [[रासायनिक तत्व|तत्व]] एक से अधिक [[रासायनिक यौगिक]] बनाते हैं, तो पहले तत्व के निश्चित द्रव्यमान के साथ संयोजन करने वाले दूसरे तत्व के द्रव्यमान का अनुपात सदैव छोटी पूर्ण संख्याओं का अनुपात होगा।<ref name="Holmgren">{{Cite web|url=http://groups.molbiosci.northwestern.edu/holmgren/Glossary/Definitions/Def-L/law_multiple_proportions.html|title=एकाधिक अनुपात परिभाषा का कानून|website=groups.molbiosci.northwestern.edu|access-date=2017-10-26}}</ref> इस नियम को डाल्टन के नियम के नाम से भी जाना जाता है, जिसका नाम सबसे पहले इसे व्यक्त करने वाले रसायनज्ञ [[जॉन डाल्टन]] के नाम पर रखा गया था।
रसायन विज्ञान में, '''एकाधिक अनुपात का नियम''' कहता है कि यदि दो [[रासायनिक तत्व|तत्व]] एक से अधिक [[रासायनिक यौगिक]] बनाते हैं, तो पहले तत्व के निश्चित द्रव्यमान के साथ संयोजन करने वाले दूसरे तत्व के द्रव्यमान का अनुपात सदैव छोटी पूर्ण संख्याओं का अनुपात होगा।<ref name="Holmgren">{{Cite web|url=http://groups.molbiosci.northwestern.edu/holmgren/Glossary/Definitions/Def-L/law_multiple_proportions.html|title=एकाधिक अनुपात परिभाषा का कानून|website=groups.molbiosci.northwestern.edu|access-date=2017-10-26}}</ref> इस नियम को डाल्टन के नियम के नाम से भी जाना जाता है, जिसका नाम व्यक्त करने वाले सर्वप्रथम रसायनज्ञ [[जॉन डाल्टन]] के नाम पर रखा गया था।


उदाहरण के लिए, डाल्टन को ज्ञात था कि [[कार्बन]] तत्व भिन्न-भिन्न अनुपात में [[ऑक्सीजन]] के साथ मिलकर दो [[ऑक्साइड]] बनाता है। कार्बन का निश्चित द्रव्यमान, मान लीजिए 100 ग्राम, 133 ग्राम ऑक्सीजन के साथ प्रतिक्रिया कर सकता है, या 266 ग्राम ऑक्सीजन के साथ प्रतिक्रिया करके दूसरा ऑक्साइड बना सकता है। 100 ग्राम कार्बन के साथ प्रतिक्रिया करने वाली ऑक्सीजन के द्रव्यमान का अनुपात 266:133 = 2:1 है, जो छोटी पूर्ण संख्याओं का अनुपात है।<ref>{{cite book |last1 = Petrucci |first1 = Ralph H. |last2 = Harwood |first2 = William S. |last3 = Herring |first3 = F. Geoffrey |date=2002 |title = General chemistry: principles and modern applications |url = https://archive.org/details/generalchemistry00hill |url-access = registration |edition=8th |location=Upper Saddle River, N.J |publisher=Prentice Hall |isbn = 978-0-13-014329-7 |lccn=2001032331 |oclc=46872308 |page=[https://archive.org/details/generalchemistry00hill/page/37 37] }}</ref> डाल्टन ने अपने परमाणु सिद्धांत में इस परिणाम की व्याख्या यह प्रस्तावित करके की (इस स्तिथि में सही है) कि दोनों ऑक्साइड में प्रत्येक कार्बन परमाणु के लिए क्रमशः एक और दो ऑक्सीजन परमाणु होते हैं। आधुनिक संकेतन में प्रथम है CO ([[कार्बन मोनोआक्साइड]]) और दूसरा CO<sub>2</sub> ([[कार्बन डाईऑक्साइड]]) है।
उदाहरण के लिए, डाल्टन को ज्ञात था कि [[कार्बन]] तत्व भिन्न-भिन्न अनुपात में [[ऑक्सीजन]] के साथ मिलकर दो [[ऑक्साइड]] बनाता है। कार्बन का निश्चित द्रव्यमान, मान लीजिए 100 ग्राम, 133 ग्राम ऑक्सीजन के साथ प्रतिक्रिया कर सकता है, या 266 ग्राम ऑक्सीजन के साथ प्रतिक्रिया करके दूसरा ऑक्साइड बना सकता है। 100 ग्राम कार्बन के साथ प्रतिक्रिया करने वाली ऑक्सीजन के द्रव्यमान का अनुपात 266:133 = 2:1 है, जो छोटी पूर्ण संख्याओं का अनुपात है।<ref>{{cite book |last1 = Petrucci |first1 = Ralph H. |last2 = Harwood |first2 = William S. |last3 = Herring |first3 = F. Geoffrey |date=2002 |title = General chemistry: principles and modern applications |url = https://archive.org/details/generalchemistry00hill |url-access = registration |edition=8th |location=Upper Saddle River, N.J |publisher=Prentice Hall |isbn = 978-0-13-014329-7 |lccn=2001032331 |oclc=46872308 |page=[https://archive.org/details/generalchemistry00hill/page/37 37] }}</ref> डाल्टन ने अपने परमाणु सिद्धांत में इस परिणाम की व्याख्या यह प्रस्तावित करके की (इस स्तिथि में सही है) कि दोनों ऑक्साइड में प्रत्येक कार्बन परमाणु के लिए क्रमशः एक और दो ऑक्सीजन परमाणु होते हैं। आधुनिक संकेतन में प्रथम है CO ([[कार्बन मोनोआक्साइड]]) और दूसरा CO<sub>2</sub> ([[कार्बन डाईऑक्साइड]]) है।


जॉन डाल्टन ने सर्वप्रथम यह अवलोकन 1804 में व्यक्त किया था।<ref>{{Cite news|url=http://www.britannica.com/EBchecked/topic/397165/law-of-multiple-proportions|title=law of multiple proportions {{!}} chemistry|work=Encyclopedia Britannica|access-date=2017-10-26|language=en}}</ref> कुछ वर्ष पूर्व, [[फ्रांस|फ्रांसीसी]] के रसायनशास्त्री [[जोसेफ प्राउस्ट]] ने [[निश्चित अनुपात का नियम]] प्रस्तावित किया था, जिसमें कहा गया था कि तत्व किसी भी अनुपात में मिश्रण करने के अतिरिक्त, कुछ निश्चित उत्तम प्रकार से परिभाषित अनुपात में यौगिक बनाते हैं; और [[एंटोनी लवॉज़िएर]] ने द्रव्यमान के संरक्षण के नियम को सिद्ध किया, जिससे डाल्टन को भी सहायता मिली। इन अनुपातों के वास्तविक संख्यात्मक मूल्यों के सावधानीपूर्वक अध्ययन ने डाल्टन को एकाधिक अनुपातों के अपने नियम को प्रस्ताव देने के लिए प्रेरित किया। यह परमाणु सिद्धांत की दिशा में महत्वपूर्ण चरण था जिसे उन्होंने उस वर्ष पश्चात में प्रस्तावित किया था, और इसने यौगिकों के लिए [[रासायनिक सूत्र|रासायनिक सूत्रों]] का आधार प्रारंभ किया।
जॉन डाल्टन ने सर्वप्रथम यह अवलोकन 1804 में व्यक्त किया था।<ref>{{Cite news|url=http://www.britannica.com/EBchecked/topic/397165/law-of-multiple-proportions|title=law of multiple proportions {{!}} chemistry|work=Encyclopedia Britannica|access-date=2017-10-26|language=en}}</ref> कुछ वर्ष पूर्व, [[फ्रांस|फ्रांसीसी]] के रसायनशास्त्री [[जोसेफ प्राउस्ट]] ने [[निश्चित अनुपात का नियम]] प्रस्तावित किया था, जिसमें कहा गया था कि तत्व किसी भी अनुपात में मिश्रण करने के अतिरिक्त, कुछ निश्चित उत्तम प्रकार से परिभाषित अनुपात में यौगिक बनाते हैं; और [[एंटोनी लवॉज़िएर]] ने द्रव्यमान के संरक्षण के नियम को सिद्ध किया, जिससे डाल्टन को भी सहायता मिली। इन अनुपातों के वास्तविक संख्यात्मक मानों के सावधानीपूर्वक अध्ययन ने डाल्टन को एकाधिक अनुपातों के अपने नियम को प्रस्ताव देने के लिए प्रेरित किया। यह परमाणु सिद्धांत की दिशा में महत्वपूर्ण चरण था जिसे उन्होंने उस वर्ष पश्चात में प्रस्तावित किया था, और इसने यौगिकों के लिए [[रासायनिक सूत्र|रासायनिक सूत्रों]] का आधार प्रारंभ किया।


नियम का अन्य उदाहरण ईथेन (C<sub>2</sub>H<sub>6</sub>) की प्रोपेन (C<sub>3</sub>H<sub>8</sub>) से तुलना करके देखा जा सकता है। 1 ग्राम कार्बन के साथ जुड़ने वाले हाइड्रोजन का भार ईथेन में 0.252 ग्राम और प्रोपेन में 0.224 ग्राम होता है। उन भारों का अनुपात 1.125 है, जिसे दो छोटी संख्याओं के अनुपात 9:8 के रूप में व्यक्त किया जा सकता है।
नियम का अन्य उदाहरण ईथेन (C<sub>2</sub>H<sub>6</sub>) के प्रोपेन (C<sub>3</sub>H<sub>8</sub>) से तुलना करके देखा जा सकता है। 1 ग्राम कार्बन के साथ जुड़ने वाले हाइड्रोजन का भार ईथेन में 0.252 ग्राम और प्रोपेन में 0.224 ग्राम होता है। उन भारों का अनुपात 1.125 है, जिसे दो छोटी संख्याओं के अनुपात 9:8 के रूप में व्यक्त किया जा सकता है।


==सीमाएँ==
==सीमाएँ==
अनेक अनुपातों के नियम को सरल यौगिकों का उपयोग करके सर्वोत्तम रूप से प्रदर्शित किया जाता है। उदाहरण के लिए, यदि किसी ने [[हाइड्रोकार्बन]] [[डिकैन]] (रासायनिक सूत्र सी) का उपयोग करके इसे प्रदर्शित करने का प्रयास किया<sub>10</sub>H<sub>22</sub>) और [[ undecane ]] (सी<sub>11</sub>H<sub>24</sub>), कोई यह पाएगा कि 100 ग्राम कार्बन 18.46 ग्राम हाइड्रोजन के साथ प्रतिक्रिया करके डेकेन उत्पन्न कर सकता है या 18.31 ग्राम हाइड्रोजन के साथ अनडेकेन उत्पन्न कर सकता है, 121:120 के हाइड्रोजन द्रव्यमान के अनुपात के लिए, जो शायद ही छोटी पूर्ण संख्याओं का अनुपात है .
एकाधिक अनुपातों के नियम को सरल यौगिकों का उपयोग करके सर्वोत्तम रूप से प्रदर्शित किया जाता है। उदाहरण के लिए, यदि किसी ने [[हाइड्रोकार्बन]] [[डिकैन]] (रासायनिक सूत्र C<sub>10</sub>H<sub>22</sub>) और [[ undecane |अनडेकेन]] (C<sub>11</sub>H<sub>24</sub>) का उपयोग करके इसे प्रदर्शित करने का प्रयास करता है, तो उसे ज्ञात होता है कि 100 ग्राम कार्बन 18.46 ग्राम हाइड्रोजन के साथ प्रतिक्रिया करके डेकेन उत्पन्न कर सकता है या 18.31 ग्राम हाइड्रोजन के साथ प्रतिक्रिया करके उत्पादन कर सकता है। 121:120 के हाइड्रोजन द्रव्यमान के अनुपात के लिए अनडेकेन, जो संभवतः ही "छोटी" पूर्ण संख्याओं का अनुपात है।


यह कानून [[गैर-स्टोइकोमेट्रिक यौगिक]]ों के साथ विफल रहता है और [[पॉलिमर]] और [[oligomers]] के साथ भी अच्छी तरह से काम नहीं करता है।
यह नियम [[गैर-स्टोइकोमेट्रिक यौगिक|अस्टोइकोमेट्रिक यौगिकों]] के साथ विफल रहता है [[पॉलिमर]] और [[oligomers|ऑलिगोमर्स]] के साथ भी उत्तम प्रकार से कार्य नहीं करता है।


==इतिहास==
==इतिहास==
अनेक अनुपातों का नियम परमाणु सिद्धांत का प्रमुख प्रमाण था, लेकिन यह अनिश्चित है कि क्या डाल्टन ने दुर्घटनावश अनेक अनुपातों के नियम की खोज की और फिर इसे समझाने के लिए परमाणु सिद्धांत का उपयोग किया, या क्या उनका कानून  परिकल्पना थी जिसे उन्होंने जांच के लिए प्रस्तावित किया था परमाणु सिद्धांत की वैधता.<ref>[[#refRoscoeHarden1896|Roscoe & Harden (1896). ''New View of Dalton's Atomic Theory'', p. 4]]</ref>
एकाधिक अनुपातों का नियम परमाणु सिद्धांत का प्रमुख प्रमाण था, किंतु यह अनिश्चित है कि क्या डाल्टन ने दुर्घटनावश एकाधिक अनुपातों के नियम का शोध किया और फिर इसे समझाने के लिए परमाणु सिद्धांत का उपयोग किया, क्या यह उस नियम की परिकल्पना थी जिसे उन्होंने परमाणु सिद्धांत की वैधता परीक्षण के लिए प्रस्तावित किया था।<ref>[[#refRoscoeHarden1896|Roscoe & Harden (1896). ''New View of Dalton's Atomic Theory'', p. 4]]</ref>
1792 में, [[बर्ट्रेंड पेलेटियर]] ने पता लगाया कि टिन की  निश्चित मात्रा  निश्चित मात्रा में ऑक्सीजन के साथ मिलकर  टिन ऑक्साइड बनाएगी, या ऑक्सीजन की दोगुनी मात्रा से  भिन्न ऑक्साइड बनाएगी।<ref>[[#refPelletier1792|Pelletier (1792). ''Annales de Chimie'', vol. 12, pp. 225-240]]</ref><ref>[[#refProust1800|Proust (1800). ''Journal de Physique'', vol. 51, p. 173]]</ref> जोसेफ प्राउस्ट ने पेलेटियर की खोज की पुष्टि की और संरचना का माप प्रदान किया:  [[टिन(II) ऑक्साइड]] 87 भाग टिन और 13 भाग ऑक्सीजन है, और दूसरा 78.4 भाग टिन और 21.6 भाग ऑक्सीजन है। ये संभवतः टिन (II) ऑक्साइड (SnO) और [[टिन डाइऑक्साइड]] (SnO) थे<sub>2</sub>), और उनकी वास्तविक संरचना 88.1% टिन-11.9% ऑक्सीजन, और 78.7% टिन-21.3% ऑक्सीजन है।


जिन विद्वानों ने प्राउस्ट के लेखन की समीक्षा की है, उन्होंने पाया कि उनके पास स्वयं कई अनुपातों के नियम की खोज करने के लिए पर्याप्त डेटा था, लेकिन किसी तरह उन्होंने ऐसा नहीं किया। उपर्युक्त टिन ऑक्साइड के संबंध में, यदि प्राउस्ट ने दोनों ऑक्साइड के लिए 100 भागों की टिन सामग्री के लिए अपने आंकड़ों को समायोजित किया होता, तो उन्होंने देखा होता कि टिन के 100 भाग ऑक्सीजन के 14.9 या 27.6 भागों के साथ संयोजित होंगे। 14.9 और 27.6 का अनुपात 1:1.85 है, जो प्रयोगात्मक त्रुटि को माफ करने पर 1:2 है। ऐसा लगता है कि यह प्राउस्ट के साथ नहीं हुआ, बल्कि डाल्टन के साथ हुआ।<ref>[[#refHenry1854|Henry (1854). ''Memoirs...'']], p. 82</ref>
1792 में, [[बर्ट्रेंड पेलेटियर]] ने ज्ञात किया कि टिन की निश्चित मात्रा ऑक्सीजन के साथ मिलकर टिन ऑक्साइड बनाएगी, या ऑक्सीजन की दोगुनी मात्रा से भिन्न ऑक्साइड बनाएगी।<ref>[[#refPelletier1792|Pelletier (1792). ''Annales de Chimie'', vol. 12, pp. 225-240]]</ref><ref>[[#refProust1800|Proust (1800). ''Journal de Physique'', vol. 51, p. 173]]</ref> जोसेफ प्राउस्ट ने पेलेटियर के शोध की पुष्टि की और संरचना का माप प्रदान किया: [[टिन(II) ऑक्साइड]] 87 भाग टिन और 13 भाग ऑक्सीजन है, और दूसरा 78.4 भाग टिन और 21.6 भाग ऑक्सीजन है। ये संभवतः टिन (II) ऑक्साइड (SnO) और [[टिन डाइऑक्साइड]] (SnO<sub>2</sub>) थे), और उनकी वास्तविक संरचना 88.1% टिन-11.9% ऑक्सीजन और 78.7% टिन-21.3% ऑक्सीजन है।
 
जिन विद्वानों ने प्राउस्ट के लेखन की समीक्षा की है, उन्होंने अध्ययन में ज्ञात किया कि उनके पास स्वयं कई अनुपातों के नियम के शोध करने के लिए पर्याप्त डेटा था, किंतु किसी प्रकार उन्होंने ऐसा नहीं किया। उपर्युक्त टिन ऑक्साइड के संबंध में, यदि प्राउस्ट ने दोनों ऑक्साइड के लिए 100 भागों की टिन सामग्री के लिए अपने आंकड़ों को समायोजित किया होता, तो उन्होंने देखा होता कि टिन के 100 भाग ऑक्सीजन के 14.9 या 27.6 भागों के साथ संयोजित होंगे। 14.9 और 27.6 का अनुपात 1:1.85 है, जिसकी प्रयोगात्मक त्रुटि 1:2 है। ऐसा लगता है कि यह प्राउस्ट के साथ नहीं हुआ, अन्यथा डाल्टन के साथ हुआ था।<ref>[[#refHenry1854|Henry (1854). ''Memoirs...'']], p. 82</ref>


== फ़ुटनोट ==
== फ़ुटनोट ==
Line 34: Line 35:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 14/08/2023]]
[[Category:Created On 14/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 22:14, 10 October 2023

रसायन विज्ञान में, एकाधिक अनुपात का नियम कहता है कि यदि दो तत्व एक से अधिक रासायनिक यौगिक बनाते हैं, तो पहले तत्व के निश्चित द्रव्यमान के साथ संयोजन करने वाले दूसरे तत्व के द्रव्यमान का अनुपात सदैव छोटी पूर्ण संख्याओं का अनुपात होगा।[1] इस नियम को डाल्टन के नियम के नाम से भी जाना जाता है, जिसका नाम व्यक्त करने वाले सर्वप्रथम रसायनज्ञ जॉन डाल्टन के नाम पर रखा गया था।

उदाहरण के लिए, डाल्टन को ज्ञात था कि कार्बन तत्व भिन्न-भिन्न अनुपात में ऑक्सीजन के साथ मिलकर दो ऑक्साइड बनाता है। कार्बन का निश्चित द्रव्यमान, मान लीजिए 100 ग्राम, 133 ग्राम ऑक्सीजन के साथ प्रतिक्रिया कर सकता है, या 266 ग्राम ऑक्सीजन के साथ प्रतिक्रिया करके दूसरा ऑक्साइड बना सकता है। 100 ग्राम कार्बन के साथ प्रतिक्रिया करने वाली ऑक्सीजन के द्रव्यमान का अनुपात 266:133 = 2:1 है, जो छोटी पूर्ण संख्याओं का अनुपात है।[2] डाल्टन ने अपने परमाणु सिद्धांत में इस परिणाम की व्याख्या यह प्रस्तावित करके की (इस स्तिथि में सही है) कि दोनों ऑक्साइड में प्रत्येक कार्बन परमाणु के लिए क्रमशः एक और दो ऑक्सीजन परमाणु होते हैं। आधुनिक संकेतन में प्रथम है CO (कार्बन मोनोआक्साइड) और दूसरा CO2 (कार्बन डाईऑक्साइड) है।

जॉन डाल्टन ने सर्वप्रथम यह अवलोकन 1804 में व्यक्त किया था।[3] कुछ वर्ष पूर्व, फ्रांसीसी के रसायनशास्त्री जोसेफ प्राउस्ट ने निश्चित अनुपात का नियम प्रस्तावित किया था, जिसमें कहा गया था कि तत्व किसी भी अनुपात में मिश्रण करने के अतिरिक्त, कुछ निश्चित उत्तम प्रकार से परिभाषित अनुपात में यौगिक बनाते हैं; और एंटोनी लवॉज़िएर ने द्रव्यमान के संरक्षण के नियम को सिद्ध किया, जिससे डाल्टन को भी सहायता मिली। इन अनुपातों के वास्तविक संख्यात्मक मानों के सावधानीपूर्वक अध्ययन ने डाल्टन को एकाधिक अनुपातों के अपने नियम को प्रस्ताव देने के लिए प्रेरित किया। यह परमाणु सिद्धांत की दिशा में महत्वपूर्ण चरण था जिसे उन्होंने उस वर्ष पश्चात में प्रस्तावित किया था, और इसने यौगिकों के लिए रासायनिक सूत्रों का आधार प्रारंभ किया।

नियम का अन्य उदाहरण ईथेन (C2H6) के प्रोपेन (C3H8) से तुलना करके देखा जा सकता है। 1 ग्राम कार्बन के साथ जुड़ने वाले हाइड्रोजन का भार ईथेन में 0.252 ग्राम और प्रोपेन में 0.224 ग्राम होता है। उन भारों का अनुपात 1.125 है, जिसे दो छोटी संख्याओं के अनुपात 9:8 के रूप में व्यक्त किया जा सकता है।

सीमाएँ

एकाधिक अनुपातों के नियम को सरल यौगिकों का उपयोग करके सर्वोत्तम रूप से प्रदर्शित किया जाता है। उदाहरण के लिए, यदि किसी ने हाइड्रोकार्बन डिकैन (रासायनिक सूत्र C10H22) और अनडेकेन (C11H24) का उपयोग करके इसे प्रदर्शित करने का प्रयास करता है, तो उसे ज्ञात होता है कि 100 ग्राम कार्बन 18.46 ग्राम हाइड्रोजन के साथ प्रतिक्रिया करके डेकेन उत्पन्न कर सकता है या 18.31 ग्राम हाइड्रोजन के साथ प्रतिक्रिया करके उत्पादन कर सकता है। 121:120 के हाइड्रोजन द्रव्यमान के अनुपात के लिए अनडेकेन, जो संभवतः ही "छोटी" पूर्ण संख्याओं का अनुपात है।

यह नियम अस्टोइकोमेट्रिक यौगिकों के साथ विफल रहता है पॉलिमर और ऑलिगोमर्स के साथ भी उत्तम प्रकार से कार्य नहीं करता है।

इतिहास

एकाधिक अनुपातों का नियम परमाणु सिद्धांत का प्रमुख प्रमाण था, किंतु यह अनिश्चित है कि क्या डाल्टन ने दुर्घटनावश एकाधिक अनुपातों के नियम का शोध किया और फिर इसे समझाने के लिए परमाणु सिद्धांत का उपयोग किया, क्या यह उस नियम की परिकल्पना थी जिसे उन्होंने परमाणु सिद्धांत की वैधता परीक्षण के लिए प्रस्तावित किया था।[4]

1792 में, बर्ट्रेंड पेलेटियर ने ज्ञात किया कि टिन की निश्चित मात्रा ऑक्सीजन के साथ मिलकर टिन ऑक्साइड बनाएगी, या ऑक्सीजन की दोगुनी मात्रा से भिन्न ऑक्साइड बनाएगी।[5][6] जोसेफ प्राउस्ट ने पेलेटियर के शोध की पुष्टि की और संरचना का माप प्रदान किया: टिन(II) ऑक्साइड 87 भाग टिन और 13 भाग ऑक्सीजन है, और दूसरा 78.4 भाग टिन और 21.6 भाग ऑक्सीजन है। ये संभवतः टिन (II) ऑक्साइड (SnO) और टिन डाइऑक्साइड (SnO2) थे), और उनकी वास्तविक संरचना 88.1% टिन-11.9% ऑक्सीजन और 78.7% टिन-21.3% ऑक्सीजन है।

जिन विद्वानों ने प्राउस्ट के लेखन की समीक्षा की है, उन्होंने अध्ययन में ज्ञात किया कि उनके पास स्वयं कई अनुपातों के नियम के शोध करने के लिए पर्याप्त डेटा था, किंतु किसी प्रकार उन्होंने ऐसा नहीं किया। उपर्युक्त टिन ऑक्साइड के संबंध में, यदि प्राउस्ट ने दोनों ऑक्साइड के लिए 100 भागों की टिन सामग्री के लिए अपने आंकड़ों को समायोजित किया होता, तो उन्होंने देखा होता कि टिन के 100 भाग ऑक्सीजन के 14.9 या 27.6 भागों के साथ संयोजित होंगे। 14.9 और 27.6 का अनुपात 1:1.85 है, जिसकी प्रयोगात्मक त्रुटि 1:2 है। ऐसा लगता है कि यह प्राउस्ट के साथ नहीं हुआ, अन्यथा डाल्टन के साथ हुआ था।[7]

फ़ुटनोट

  1. "एकाधिक अनुपात परिभाषा का कानून". groups.molbiosci.northwestern.edu. Retrieved 2017-10-26.
  2. Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey (2002). General chemistry: principles and modern applications (8th ed.). Upper Saddle River, N.J: Prentice Hall. p. 37. ISBN 978-0-13-014329-7. LCCN 2001032331. OCLC 46872308.
  3. "law of multiple proportions | chemistry". Encyclopedia Britannica (in English). Retrieved 2017-10-26.
  4. Roscoe & Harden (1896). New View of Dalton's Atomic Theory, p. 4
  5. Pelletier (1792). Annales de Chimie, vol. 12, pp. 225-240
  6. Proust (1800). Journal de Physique, vol. 51, p. 173
  7. Henry (1854). Memoirs..., p. 82

ग्रन्थसूची