कार्टेशियन समन्वय प्रणाली: Difference between revisions
No edit summary |
No edit summary |
||
(93 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Most common coordinate system (geometry)}}[[File:Cartesian-coordinate-system.svg|thumb|right|250px|कार्तीय निर्देशांक तल का | {{Short description|Most common coordinate system (geometry)}}[[File:Cartesian-coordinate-system.svg|thumb|right|250px|कार्तीय निर्देशांक तल का चित्रण है। चार बिंदुओं को उनके निर्देशांक के साथ चिह्नित और लेबल किया गया है: {{nowrap|(2, 3)}} हरे में, {{nowrap|(−3, 1)}} लाल में, {{nowrap|(−1.5, −2.5)}} नीले रंग में, और मूल {{nowrap|(0, 0)}} बैंगनी रंग में।]]ज्यामिति में '''कार्टेशियन समन्वय प्रणाली''' समतल समन्वय प्रणाली है जो प्रत्येक [[ बिंदु (ज्यामिति) |बिंदु]] को विशिष्ट रूप से [[ संख्या |वास्तविक संख्याओं]] की जोड़ी द्वारा निर्दिष्ट करती है जिसे निर्देशांक कहा जाता है, जो इकाई लंबाई में मापी गई दो निश्चित लंबवत उन्मुख रेखाओं से बिंदु तक धनात्मक और ऋणात्मक संख्या दूरी हैं। प्रत्येक संदर्भ [[ समन्वय रेखा |समन्वय रेखा]] को प्रणाली का ''समन्वय अक्ष'' (बहुवचन''अक्ष'') कहा जाता है, और जिस बिंदु पर वे मिलते हैं वह उसका ''मूल (गणित)'' होता है। क्रमित युग्म {{nowrap|(0, 0)}} निर्देशांक को दो अक्षों पर बिंदु के ओर्थोगोनल प्रक्षेपण की स्थिति के रूप में भी परिभाषित किया जा सकता है, जिसे मूल से हस्ताक्षरित दूरी के रूप में व्यक्त किया जाता है। | ||
इसी प्रकार [[ आयाम |त्रि-आयामी समष्टि]] में किसी भी बिंदु की स्थिति को तीन कार्टेशियन निर्देशांक द्वारा निर्दिष्ट किया जा सकता है, जो बिंदु से तीन परस्पर लंबवत समतलों की हस्ताक्षरित दूरी हैं। सामान्यतः, ''n'' कार्टेशियन निर्देशांक किसी भी आयाम ''n'' के लिए ''n''-आयामी [[ यूक्लिडियन स्पेस |यूक्लिडियन]] समष्टि में बिंदु निर्दिष्ट करते हैं। ये निर्देशांक बिंदु से n परस्पर लंबवत निश्चित [[ हाइपरप्लेन |हाइपर]] अक्ष तक की हस्ताक्षरित दूरी हैं। | |||
[[File:Cartesian-coordinate-system-with-circle.svg|thumb|right|250px|लाल रंग में चिह्नित मूल बिंदु पर केन्द्रित त्रिज्या 2 के वृत्त के साथ कार्तीय समन्वय | [[File:Cartesian-coordinate-system-with-circle.svg|thumb|right|250px|लाल रंग में चिह्नित मूल बिंदु पर केन्द्रित त्रिज्या 2 के वृत्त के साथ कार्तीय समन्वय प्रणाली है। वृत्त का समीकरण है {{nowrap|1=(''x'' − ''a'')<sup>2</sup> + (''y'' − ''b'')<sup>2</sup> = ''r''<sup>2</sup>}} जहाँ a और b केंद्र के निर्देशांक हैं {{nowrap|(''a'', ''b'')}} और r त्रिज्या है।]]कार्टेशियन निर्देशांक का नाम रेने डेसकार्टेस के नाम पर रखा गया है, जिनके आविष्कार ने 17 के दशक में [[ यूक्लिडियन ज्यामिति |यूक्लिडियन ज्यामिति]] और [[ बीजगणित |बीजगणित]] के मध्य प्रथम व्यवस्थित लिंक प्रदान करके गणित में क्रांति ला दी। कार्तीय समन्वय प्रणाली का उपयोग करते हुए, ज्यामितीय आकृतियों (जैसे [[ वक्र |वक्र]]) को आकृति के बिंदुओं के निर्देशांक वाले [[ समीकरण |समीकरणों]] द्वारा वर्णित किया जा सकता है: बीजीय समीकरण जिसमें आकृति पर स्थित बिंदुओं के निर्देशांक सम्मिलित होते हैं। उदाहरण के लिए, त्रिज्या 2 का वृत्त, जो समतल के मूल बिंदु पर केन्द्रित है, उन सभी बिंदुओं के समुच्चय (गणित) के रूप में वर्णित किया जा सकता है, जिनके निर्देशांक x और y समीकरण {{nowrap|1=''x''<sup>2</sup> + ''y''<sup>2</sup> = 4}} को संतुष्ट करते हैं। | ||
कार्टेशियन निर्देशांक [[ विश्लेषणात्मक ज्यामिति |विश्लेषणात्मक ज्यामिति]] | कार्टेशियन निर्देशांक [[ विश्लेषणात्मक ज्यामिति |विश्लेषणात्मक ज्यामिति]] का आधार हैं, और गणित की अनेक अन्य शाखाओं जैसे रैखिक बीजगणित, [[ जटिल विश्लेषण |जटिल विश्लेषण]], [[ अंतर ज्यामिति |अंतर ज्यामिति]], बहुभिन्नरूपी कलन, [[ समूह सिद्धांत |समूह सिद्धांत]] और अधिक के लिए ज्ञानवर्धक ज्यामितीय व्याख्याएं प्रदान करते हैं। परिचित उदाहरण फलन के रेखाचित्र की अवधारणा है। कार्तीय निर्देशांक भी अधिकांश अनुप्रयुक्त विषयों के लिए आवश्यक उपकरण हैं जो ज्यामिति से संबंधित हैं, जिसमें [[ खगोल |खगोल]] विज्ञान, भौतिकी, [[ अभियांत्रिकी |अभियांत्रिकी]] और अनेक अन्य सम्मिलित हैं। वे [[ कंप्यूटर ग्राफिक्स |कंप्यूटर ग्राफिक्स]], [[ कंप्यूटर एडेड ज्यामितीय डिजाइन |कंप्यूटर एडेड ज्यामितीय डिजाइन]] और अन्य [[ कम्प्यूटेशनल ज्यामिति |कम्प्यूटेशनल ज्यामिति]] से संबंधित डेटा प्रोसेसिंग में उपयोग की जाने वाली सबसे सामान्य समन्वय प्रणाली हैं। | ||
==इतिहास== | ==इतिहास== | ||
विशेषण कार्टेशियन फ्रांसीसी [[ गणितज्ञ |गणितज्ञ]] और [[ दार्शनिक |दार्शनिक]] रेने डेसकार्टेस को संदर्भित करता है, जिन्होंने इस विचार को | विशेषण कार्टेशियन फ्रांसीसी [[ गणितज्ञ |गणितज्ञ]] और [[ दार्शनिक |दार्शनिक]] रेने डेसकार्टेस को संदर्भित करता है, जिन्होंने 1637 में इस विचार को प्रकाशित किया था, जब वह नीदरलैंड के निवासी थे। यह स्वतंत्र रूप से [[ पियरे डी फ़र्माटा |पियरे डी फ़र्माटा]] द्वारा शोध किया गया था, जिन्होंने तीन आयामों में भी कार्य किया था, चूँकि फ़र्मेट ने शोध को प्रकाशित नहीं किया था।<ref>{{Cite web|url=https://www.britannica.com/topic/analytic-geometry|title=विश्लेषणात्मक ज्यामिति|last1=Bix|first1=Robert A.|last2=D'Souza|first2=Harry J.|website=Encyclopædia Britannica|access-date=2017-08-06}}</ref> फ्रांसीसी मौलवी निकोल ओरेस्मे ने डेसकार्टेस और फ़र्मेट के समय से पूर्व कार्टेशियन निर्देशांक के समान निर्माण का उपयोग किया था।<ref>{{Cite book|url=https://books.google.com/books?id=EVRSDwAAQBAJ&q=Nicole+Oresme+coordinate&pg=PT307|title=मैपिंग और कार्टोग्राफी की रूटलेज हैंडबुक|last1=Kent|first1=Alexander J.|last2=Vujakovic|first2=Peter|date=2017-10-04|publisher=Routledge|isbn=9781317568216|language=en}}</ref> | ||
डेसकार्टेस और फ़र्मेट दोनों ने | |||
कार्टेशियन समन्वय प्रणाली का विकास [[ आइजैक न्यूटन |आइजैक न्यूटन]] और [[ गॉटफ्राइड विल्हेम लिबनिज़ो |गॉटफ्राइड विल्हेम लिबनिज़ो]] द्वारा कलन के विकास में मौलिक भूमिका निभाएगा।<ref>''A Tour of the Calculus'', David Berlinski.</ref> | डेसकार्टेस और फ़र्मेट दोनों ने अपनी प्रक्रिया में अक्ष का उपयोग किया और इस अक्ष के संदर्भ में मापी गई चर की लंबाई है। अक्षों की जोड़ी का उपयोग करने की अवधारणा को अंत में प्रस्तुत किया गया था, डेसकार्टेस के ला जियोमेट्री का 1649 में फ्रैंस वैन शूटेन और उनके छात्रों द्वारा लैटिन में अनुवाद किया गया था। डेसकार्टेस के कार्य में निहित विचारों को स्पष्ट करने का प्रयास करते हुए इन टिप्पणीकारों ने अनेक अवधारणाएं प्रस्तुत की थी।<ref>{{harvnb|Burton|2011|loc=p. 374}}.</ref> | ||
डेसकार्टेस के | |||
कार्टेशियन समन्वय प्रणाली का विकास [[ आइजैक न्यूटन |आइजैक न्यूटन]] और [[ गॉटफ्राइड विल्हेम लिबनिज़ो |गॉटफ्राइड विल्हेम लिबनिज़ो]] द्वारा कलन के विकास में मौलिक भूमिका निभाएगा।<ref>''A Tour of the Calculus'', David Berlinski.</ref> समतल के दो-समन्वित विवरण को अंत में [[ वेक्टर रिक्त स्थान |सदिश रिक्त समष्टि]] की अवधारणा में सामान्यीकृत किया गया था।<ref>{{Cite book|title=रैखिक बीजगणित सही हो गया - स्प्रिंगर|last=Axler|first=Sheldon|year=2015|isbn=978-3-319-11079-0|pages=1|doi=10.1007/978-3-319-11080-6|series = Undergraduate Texts in Mathematics|url=https://zenodo.org/record/4461746}}</ref> | |||
डेसकार्टेस के पश्चात से अनेक अन्य समन्वय प्रणाली विकसित की गई हैं, जैसे समतल के लिए [[ ध्रुवीय समन्वय प्रणाली |ध्रुवीय समन्वय प्रणाली]], और [[ गोलाकार समन्वय प्रणाली |गोलाकार समन्वय प्रणाली]] और त्रि-आयामी अंतरिक्ष के लिए [[ बेलनाकार समन्वय प्रणाली |बेलनाकार समन्वय प्रणाली]] सम्मिलित हैं। | |||
==विवरण== | ==विवरण== | ||
=== | === आयाम === | ||
{{Main|संख्या रेखा | {{Main|संख्या रेखा | ||
}} | }} | ||
आयामी समष्टि के लिए कार्टेशियन समन्वय प्रणाली का चयन करना- जो कि सीधी रेखा के लिए है- इसमें रेखा का बिंदु O (मूल), लंबाई की इकाई और रेखा के लिए अभिविन्यास चयन करना सम्मिलित है। अभिविन्यास चयन करता है कि O द्वारा निर्धारित दो अर्ध-रेखाओं में से कौन सी धनात्मक है और कौन सी ऋणात्मक है; पुनः हम कहते हैं कि रेखा ऋणात्मक अर्ध से धनात्मक अर्ध की ओर "उन्मुख (या "बिंदु") है"। पुनः रेखा के प्रत्येक बिंदु P को O से उसकी दूरी द्वारा निर्दिष्ट किया जा सकता है, जिसे + या - चिह्न के साथ लिया जाता है, जिसके आधार पर अर्ध रेखा में P होता है। | |||
चयन की गयी कार्तीय प्रणाली वाली रेखा को 'संख्या रेखा' कहा जाता है। रेखा पर प्रत्येक वास्तविक संख्या का विशिष्ट समष्टि होता है। इसके विपरीत, रेखा के प्रत्येक बिंदु को क्रमित सातत्य जैसे वास्तविक संख्याओं में संख्या के रूप में व्याख्या की जा सकती है। | |||
=== | === द्वि आयाम === | ||
{{Further|द्वि-आयामी स्थान}} | {{Further|द्वि-आयामी स्थान}} | ||
द्वि आयामों में कार्टेशियन समन्वय प्रणाली (जिसे आयताकार समन्वय प्रणाली या ऑर्थोगोनल समन्वय प्रणाली भी कहा जाता है)<ref name=":0" /> लंबवत रेखाओं (अक्षों) की क्रमबद्ध जोड़ी दोनों अक्षों के लिए लंबाई की इकाई, और प्रत्येक अक्ष के लिए अभिविन्यास द्वारा परिभाषित किया गया है। वह बिंदु जहां अक्ष मिलते हैं, दोनों के मूल बिंदु के रूप में लिया जाता है, इस प्रकार प्रत्येक अक्ष को संख्या रेखा में परिवर्तित कर दिया जाता है। किसी भी बिंदु P के लिए, प्रत्येक अक्ष पर P लंबवत के माध्यम से रेखा खींची जाती है, और वह स्थिति जहाँ वह अक्ष से मिलती है, संख्या के रूप में व्याख्या की जाती है। उस चयन किये गए क्रम में दो संख्याएँ, P के कार्तीय निर्देशांक हैं। विपरीत निर्माण किसी को उसके निर्देशांक दिए गए बिंदु P को निर्धारित करने की अनुमति देता है। | |||
मध्य और दूसरे निर्देशांक को क्रमशः P का [[ सूच्याकार आकृति का भुज |भुज और कोटि]] कहा जाता है; और जिस बिंदु पर अक्ष मिलते हैं, उसे समन्वय प्रणाली की उत्पत्ति कहा जाता है। निर्देशांक सामान्यतः कोष्ठक में दो संख्याओं के रूप में लिखे जाते हैं, उस क्रम में, अल्पविराम द्वारा भिन्न किए जाते हैं, जैसे कि {{nowrap|(3, −10.5)}} है। इस प्रकार मूल के निर्देशांक {{nowrap|(0, 0)}} हैं, और मूल से इकाई दूर धनात्मक अर्ध-अक्ष पर स्थित बिंदुओं के निर्देशांक {{nowrap|(1, 0)}} तथा {{nowrap|(0, 1)}} होते हैं। | |||
गणित, भौतिकी और | गणित, भौतिकी और अभियांत्रिकी में, प्रथम धुरी को सामान्यतः क्षैतिज और दाईं ओर उन्मुख के रूप में परिभाषित या चित्रित किया जाता है, और दूसरा अक्ष लंबवत और ऊपर की ओर उन्मुख होता है। (चूँकि, कुछ कंप्यूटर ग्राफिक्स संदर्भों में, समन्वय अक्ष नीचे की ओर उन्मुख हो सकता है।) मूल को प्रायः ''O'' लेबल किया जाता है, और दो निर्देशांक को प्रायः अक्षर ''X'' और Y, या x और y अक्षरों द्वारा दर्शाए जाते हैं। अक्षों को तब X-अक्ष और Y-अक्ष के रूप में संदर्भित किया जा सकता है। अक्षरों के विकल्प मूल परंपरा से आते हैं, जो अज्ञात मूल्यों को प्रदर्शित करने के लिए वर्णमाला के पश्चात के भाग का उपयोग करना है। ज्ञात मूल्यों को निर्दिष्ट करने के लिए वर्णमाला के प्रथम भाग का उपयोग किया गया था। | ||
चयन किये हुए कार्तीय निर्देशांक प्रणाली वाले [[ यूक्लिडियन विमान |यूक्लिडियन]] समतल को {{vanchor|कार्टेशियन तल }} 'कहा जाता है'। कार्टेशियन समतल में कुछ ज्यामितीय आकृतियों के विहित प्रतिनिधियों को परिभाषित किया जा सकता है, जैसे कि [[ यूनिट सर्कल |इकाई वृत्त]] (लंबाई की इकाई के समान त्रिज्या के साथ, और मूल में केंद्र), [[ इकाई वर्ग |इकाई वर्ग]] (जिसके विकर्ण अंत बिंदु {{nowrap|(0, 0)}} तथा {{nowrap|(1, 1)}} पर है), [[ इकाई अतिपरवलय |इकाई अतिपरवलय]], इत्यादि है। | |||
दो अक्ष समतल को चार [[ समकोण | | दो अक्ष समतल को चार [[ समकोण |समकोणों]] में विभाजित करते हैं, जिन्हें चतुर्थांश कहते हैं। चतुर्भुज को विभिन्न विधियों से नाम या क्रमांकित किया जा सकता है, किन्तु जिस चतुर्थांश में सभी निर्देशांक धनात्मक होते हैं उसे सामान्यतः प्रथम चतुर्थांश कहा जाता है। | ||
यदि किसी बिंदु के निर्देशांक | यदि किसी बिंदु के निर्देशांक {{nowrap|(''x'', ''y'')}} हैं, तो बिंदु से X-अक्ष से रेखा तक और Y-अक्ष से इसकी दूरी {{abs|''y''}} तथा {{abs|''x''}} हैं, क्रमश; जहाँ {{abs}} किसी संख्या के [[ निरपेक्ष मान (बीजगणित) |निरपेक्ष मान]] को दर्शाता है। | ||
=== | === त्रि आयाम === | ||
{{Further|त्रि-आयामी स्थान}} | {{Further|त्रि-आयामी स्थान}} | ||
[[File:Coord system CA 0.svg|thumb|240px| | [[File:Coord system CA 0.svg|thumb|240px|त्रि-आयामी कार्टेशियन समन्वय प्रणाली, मूल ''O'' और अक्ष रेखाओं ''X'', ''Y'' और ''Z'' के साथ, तीरों द्वारा दिखाए गए अनुसार उन्मुख है। अक्षों पर टिक के निशान लंबाई की इकाई हैं। काला बिंदु निर्देशांक के साथ बिंदु {{math|1=''x'' = 2}}, {{math|1=''y'' = 3}}, तथा {{math|1=''z'' = 4}}, या {{math|(2, 3, 4)}} दिखाता है। ]]त्रि-आयामी समष्टि के लिए कार्टेशियन समन्वय प्रणाली में आदेशित त्रिभुज रेखाएं (अक्ष) होती हैं जो सामान्य बिंदु (मूल) के माध्यम से जाती हैं,और जोड़ी-वार लंबवत होते हैं; प्रत्येक अक्ष के लिए अभिविन्यास; और त्रि अक्षों के लिए लंबाई की इकाई है। जैसा कि द्वि-आयामी स्थिति में होता है, प्रत्येक अक्ष संख्या रेखा बन जाती है। अंतरिक्ष के किसी भी बिंदु P के लिए, प्रत्येक समन्वय अक्ष पर P लंबवत के माध्यम से हाइपरअक्ष पर विचार करता है, और उस बिंदु की व्याख्या करता है जहां वह हाइपरअक्ष को संख्या के रूप में काटता है। P के कार्तीय निर्देशांक चयन किये हुए क्रम में वे तीन संख्याएँ हैं। विपरीत निर्माण बिंदु P को उसके तीन निर्देशांक दिए गए निर्धारित करता है। | ||
वैकल्पिक रूप से, बिंदु P के प्रत्येक निर्देशांक को P से अन्य दो अक्षों द्वारा परिभाषित | वैकल्पिक रूप से, बिंदु P के प्रत्येक निर्देशांक को P से अन्य दो अक्षों द्वारा परिभाषित हाइपरअक्ष तक की दूरी के रूप में लिया जा सकता है, जिसमें संबंधित अक्ष के उन्मुखीकरण द्वारा निर्धारित संकेत होता है। | ||
अक्षों की प्रत्येक जोड़ी समन्वय हाइपरअक्ष को परिभाषित करती है। ये हाइपरअक्ष अंतरिक्ष को [[ अष्टक (ठोस ज्यामिति) |अष्टक (ठोस ज्यामिति)]] में विभाजित करते हैं। अष्टक निम्नलिखित हैं: | |||
<math display=block> | <math display=block> | ||
Line 51: | Line 54: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
निर्देशांक सामान्यतः तीन संख्याओं (या बीजगणितीय सूत्रों) के रूप में लिखे जाते हैं जो कोष्ठक से घिरे होते हैं और अल्पविराम से भिन्न होते हैं, जैसे कि {{math|(3, −2.5, 1)}} या {{math|(''t'', ''u'' + ''v'', ''π''/2)}} | निर्देशांक सामान्यतः तीन संख्याओं (या बीजगणितीय सूत्रों) के रूप में लिखे जाते हैं जो कोष्ठक से घिरे होते हैं और अल्पविराम से भिन्न होते हैं, जैसे कि {{math|(3, −2.5, 1)}} या {{math|(''t'', ''u'' + ''v'', ''π''/2)}} हैं। इस प्रकार, मूल के निर्देशांक {{math|(0, 0, 0)}} हैं, और तीन अक्षों पर इकाई बिंदु {{math|(1, 0, 0)}}, {{math|(0, 1, 0)}}, तथा {{math|(0, 0, 1)}} हैं। | ||
तीन अक्षों में निर्देशांक के लिए कोई मानक नाम नहीं हैं ( | तीन अक्षों में निर्देशांक के लिए कोई मानक नाम नहीं हैं (चूँकि, एब्सिस्सा, ऑर्डिनेट और एप्लीकेट शब्द कभी-कभी उपयोग किए जाते हैं)। निर्देशांक प्रायः X, Y, और Z, या x, y, और z अक्षरों द्वारा निरूपित किए जाते हैं। अक्षों को क्रमशः X-अक्ष, Y-अक्ष और Z-अक्ष के रूप में संदर्भित किया जा सकता है। पुनः निर्देशांक हाइपरअक्षको XY-अक्ष, YZ-अक्ष और XZ-अक्ष के रूप में संदर्भित किया जा सकता है। | ||
गणित, भौतिकी और | गणित, भौतिकी और अभियांत्रिकीसंदर्भों में, प्रथम दो अक्षों को प्रायः क्षैतिज के रूप में परिभाषित या चित्रित किया जाता है, जिसमें त्रि अक्ष ऊपर की ओर प्रदर्शित करता है। उस स्थिति में त्रि निर्देशांक को ऊँचाई कहा जा सकता है। अभिविन्यास सामान्यतः चयन किया जाता है जिससे कि प्रथम धुरी से दूसरी धुरी तक 90 डिग्री का कोण बिंदु से देखे जाने पर वामावर्त दिखे {{math|(0, 0, 1)}}; सम्मेलन जिसे सामान्यतः [[ दाहिने हाथ का नियम |दाहिने हाथ का नियम]] कहा जाता है। | ||
[[File:Cartesian coordinate surfaces.png|thumb|240px|right| निर्देशांक प्रणाली | [[File:Cartesian coordinate surfaces.png|thumb|240px|right| निर्देशांक प्रणाली कार्तीय निर्देशांक की समन्वय सतह {{math|(''x'', ''y'', ''z'')}}. z-अक्ष लंबवत है और x-अक्ष हरे रंग में हाइलाइट किया गया है। इस प्रकार, लाल हाइपरअक्षबिंदुओं को दिखाता है {{math|1=''x'' = 1}}, नीला हाइपरअक्षबिंदुओं को दिखाता है {{math|1=''z'' = 1}}, और पीला हाइपरअक्षबिंदुओं को दिखाता है {{math|1=''y'' = −1}}. तीन सतह कार्तीय निर्देशांक के साथ बिंदु P (काले गोले के रूप में दिखाया गया है){{math|(1, −1, 1}}) पर प्रतिच्छेद करती हैं। ]] | ||
=== उच्च आयाम === | === उच्च आयाम === | ||
चूँकि कार्तीय निर्देशांक अद्वितीय और अस्पष्ट होते हैं, कार्तीय तल के बिंदुओं को [[ वास्तविक संख्या |वास्तविक | चूँकि कार्तीय निर्देशांक अद्वितीय और अस्पष्ट होते हैं, कार्तीय तल के बिंदुओं को [[ वास्तविक संख्या |वास्तविक संख्याओं]] के युग्मों से पहचाना जा सकता है; वह कार्टेशियन उत्पाद के साथ <math>\R^2 = \R\times\R</math> है, जहाँ <math>\R</math> सभी वास्तविक संख्याओं का समुच्चय है। इसी प्रकार, आयाम n के किसी भी यूक्लिडियन समष्टि के बिंदुओं को n वास्तविक संख्याओं के टुपल्स (सूचियों) से पहचाना जाना चाहिए; वह कार्टेशियन उत्पाद के साथ <math>\R^n</math>है। | ||
=== सामान्यीकरण === | === सामान्यीकरण === | ||
कार्टेशियन निर्देशांक की अवधारणा उन अक्षों को अनुमति देने के लिए सामान्यीकृत करती है जो दूसरे के लंबवत नहीं हैं, | कार्टेशियन निर्देशांक की अवधारणा उन अक्षों को अनुमति देने के लिए सामान्यीकृत करती है जो दूसरे के लंबवत नहीं हैं, प्रत्येक अक्ष के साथ भिन्न-भिन्न इकाइयां हैं। उस स्थिति में, प्रत्येक निर्देशांक बिंदु को अक्ष पर दिशा के साथ प्रक्षेपित करके प्राप्त किया जाता है जो अन्य अक्ष के समानांतर होता है (या, सामान्य रूप से, अन्य सभी अक्षों द्वारा परिभाषित हाइपरअक्ष के लिए होता है)। इस प्रकार की तिरछी समन्वय प्रणाली में दूरियों और कोणों की गणना को मानक कार्टेशियन प्रणालियों से संशोधित किया जाना चाहिए, और अनेक मानक सूत्र (जैसे दूरी के लिए पाइथागोरस सूत्र) धारण नहीं करते हैं (एफ़िन समतल देखें)। | ||
==सूचनाएं और परंपराएं== | ==सूचनाएं और परंपराएं== | ||
बिंदु के कार्टेशियन निर्देशांक सामान्यतः कोष्ठक में लिखे जाते हैं और अल्पविराम द्वारा भिन्न किए जाते हैं, जैसे कि {{nowrap|(10, 5)}} या {{nowrap|(3, 5, 7)}} है। मूल को प्रायः बड़े अक्षर O के साथ लेबल किया जाता है। विश्लेषणात्मक ज्यामिति में, अज्ञात या सामान्य निर्देशांक प्रायः समतल में अक्षरों (x, y) और त्रि-आयामी समष्टि में (x, y, z) द्वारा निरूपित होते हैं। यह प्रचलन बीजगणित के सम्मेलन से आता है, जो अज्ञात मानों के लिए वर्णमाला के अंत के निकट अक्षरों का उपयोग करता है (जैसे कि अनेक ज्यामितीय समस्याओं में बिंदुओं के निर्देशांक), और दी गई मात्राओं के लिए प्रारंभ के निकट के अक्षरों का उपयोग करता है। | |||
ये पारंपरिक नाम प्रायः अन्य डोमेन में उपयोग किए जाते हैं, जैसे कि भौतिकी और | ये पारंपरिक नाम प्रायः अन्य डोमेन में उपयोग किए जाते हैं, जैसे कि भौतिकी और अभियांत्रिकी में उपयोग किए जाते हैं, चूँकि अन्य अक्षरों का उपयोग किया जा सकता है। उदाहरण के लिए, आलेख में यह दर्शाता है कि [[ समय |समय]] के साथ [[ दबाव |दबाव]] कैसे परिवर्तित होता है, आलेख निर्देशांक को ''p'' और ''t'' द्वारा दर्शाया जा सकता है। प्रत्येक अक्ष को सामान्यतः उस निर्देशांक के नाम पर रखा जाता है जिसे उसके साथ मापा जाता है; तो कोई ''x''-अक्ष, ''y''-अक्ष, ''t''-अक्ष इत्यादि कहता है। | ||
समन्वय नामकरण के लिए अन्य | समन्वय नामकरण के लिए अन्य सामान्य परंपरा सबस्क्रिप्ट का उपयोग करना है, जैसे (x<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x<sub>n</sub>'') n-आयामी समष्टि में n निर्देशांक के लिए, विशेष रूप से जब n 3 से अधिक या अनिर्दिष्ट हो। कुछ लेखक क्रमित में रूचि रखते हैं (x<sub>0</sub>, x<sub>1</sub>, ..., x<sub>''n''−1</sub>) [[ कंप्यूटर प्रोग्रामिंग |कंप्यूटर प्रोग्रामिंग]] में ये संकेतन विशेष रूप से लाभप्रद हैं: बिंदु के निर्देशांक को [[ रिकॉर्ड (कंप्यूटर विज्ञान) |रिकॉर्ड (कंप्यूटर विज्ञान)]] के अतिरिक्त ऐरे डेटा प्रकार के रूप में संग्रहीत करके, [[ सबस्क्रिप्ट |सबस्क्रिप्ट]] निर्देशांक को अनुक्रमित करने का कार्य कर सकता है। | ||
द्वि-आयामी कार्टेशियन प्रणालियों के गणितीय दृष्टांतों में, | द्वि-आयामी कार्टेशियन प्रणालियों के गणितीय दृष्टांतों में, प्रथम निर्देशांक (पारंपरिक रूप से एब्सिसा कहा जाता है) को क्षैतिज समतल अक्ष के साथ मापा जाता है, जो बाएं से दाएं की ओर उन्मुख होता है। दूसरा निर्देशांक (कोर्डिनेट) तब [[ ऊर्ध्वाधर दिशा |ऊर्ध्वाधर दिशा]] अक्ष के साथ मापा जाता है, सामान्यतः नीचे से ऊपर की ओर उन्मुख होता है। कार्टेशियन प्रणाली सीखने वाले छोटे बच्चे सामान्यतः x-, y-, और z-अक्ष अवधारणाओं को ठोस करने से पूर्व मूल्यों को पढ़ने का क्रम सीखते हैं, 2 डी निमोनिक्स से प्रारंभ करते हैं (उदाहरण के लिए, 'हॉल के साथ चलो फिर सीढ़ियों तक' जैसे सीधे x-अक्ष के आर-पार और पुनः y-अक्ष के अनुदिश ऊर्ध्वमुखी)।<ref>{{Cite web|url=https://www.mindtools.com/pages/article/Charts_and_Diagrams.htm|title=चार्ट और ग्राफ: सही प्रारूप चुनना|website=www.mindtools.com|language=en|access-date=2017-08-29}}</ref> | ||
कंप्यूटर ग्राफिक्स और [[ मूर्ति प्रोद्योगिकी |मूर्ति प्रोद्योगिकी]], चूँकि, प्रायः कंप्यूटर डिस्प्ले पर नीचे की ओर y-अक्ष के साथ समन्वय प्रणाली का उपयोग करते हैं। यह सम्मेलन 1960 के दशक (या पूर्व) में विकसित हुआ था, जिस प्रकार से छवियों को मूल रूप से [[ फ्रेम बफर |फ्रेम बफर]] में संग्रहीत किया गया था। | |||
3डी आरेखों के लिए, एब्सिस्सा और | त्रि-आयामी प्रणालियों के लिए, xy-अक्ष को क्षैतिज रूप से चित्रित करना है, ऊंचाई (धनात्मक ऊपर) का प्रतिनिधित्व करने के लिए z-अक्ष जोड़ा गया है। इसके अतिरिक्त, x-अक्ष को दर्शक की ओर उन्मुख करना है, जो दाएं या बाएं पक्षपाती है। यदि आरेख (3डी प्रक्षेपण या परिप्रेक्ष्य (ग्राफ़िकल)) क्रमशः x- और y-अक्ष को क्षैतिज और लंबवत रूप से दिखाता है, तो z-अक्ष को पृष्ठ के बाहर व्यूअर या कैमरे की ओर प्रदर्शित करते हुए दिखाया जाना चाहिए। 3डी समन्वय प्रणाली के ऐसे 2डी आरेख में, z-अक्ष प्रकल्पित व्यूअर या कैमरा परिप्रेक्ष्य (ग्राफ़िकल) के आधार पर नीचे और बाईं या नीचे और दाईं ओर प्रदर्शित करने वाली रेखा या किरण के रूप में दिखाई देगा। किसी भी आरेख या प्रदर्शन में, तीन अक्षों का उन्मुखीकरण, समग्र रूप से, इच्छानुसार होता है। चूँकि, एक-दूसरे के सापेक्ष अक्षों का उन्मुखीकरण सदैव दाहिने हाथ के नियम का पालन करना चाहिए, जब तक कि विशेष रूप से अन्यथा न कहा गया हो। भौतिकी और गणित के सभी नियम इस दाहिने हाथ को मानते हैं, जो निरंतरता सुनिश्चित करता है। | ||
3डी आरेखों के लिए, "एब्सिस्सा" और "ऑर्डिनेट" नाम क्रमशः x और y के लिए संभवतः ही कभी उपयोग किए जाते हैं। जब वे होते हैं, तो z-निर्देशांक को कभी-कभी 'एप्लिकेट' कहा जाता है। एब्सिस्सा, ऑर्डिनेट और एप्लिकेट शब्द कभी-कभी समन्वय मूल्यों के अतिरिक्त समन्वय अक्षों को संदर्भित करने के लिए उपयोग किए जाते हैं।<ref name=":0">{{Cite web|url=https://www.encyclopediaofmath.org/index.php/Cartesian_orthogonal_coordinate_system|title=कार्टेशियन ऑर्थोगोनल कोऑर्डिनेट सिस्टम|website=Encyclopedia of Mathematics|language=en|access-date=2017-08-06}}</ref> | |||
=== चतुर्थांश और अष्टक === | === चतुर्थांश और अष्टक === | ||
{{Main|ऑक्टेंट (ठोस ज्यामिति)|चतुर्थांश ( | {{Main|ऑक्टेंट (ठोस ज्यामिति)|चतुर्थांश (समतल ज्यामिति)}} | ||
[[File:Cartesian coordinates 2D.svg|thumb|240px|कार्तीय निर्देशांक प्रणाली के चार चतुर्थांश]] | [[File:Cartesian coordinates 2D.svg|thumb|240px|कार्तीय निर्देशांक प्रणाली के चार चतुर्थांश]]द्वि-आयामी कार्तीय प्रणाली के अक्षों ने समतल को चार अनंत क्षेत्रों में विभाजित करती हैं, जिन्हें चतुर्थांश कहते हैं,<ref name=":0" />प्रत्येक दो अर्ध-अक्षों से घिरा हुआ है। इन्हें प्रायः 1 से 4 तक गिना जाता है और [[ रोमन अंक |रोमन अंकों]] द्वारा निरूपित किया जाता है: (जहां निर्देशांक दोनों में धनात्मक संकेत होते हैं), II (जहां भुज ऋणात्मक है - और कोटि धनात्मक है +), III (जहां भुज और कोर्डिनेट दोनों हैं) हैं -), और IV (भुजा +, कोटि -)। जब अक्षों को गणितीय प्रचलन के अनुसार खींचा जाता है, तो नंबरिंग ऊपरी दाएं ("उत्तर-पूर्व") चतुर्थांश से प्रारम्भ होकर [[ दक्षिणावर्त |वामावर्त हो]] जाती है | | ||
इसी प्रकार , त्रि-आयामी कार्टेशियन प्रणाली अंतरिक्ष के विभाजन को आठ क्षेत्रों या अष्टक | इसी प्रकार, त्रि-आयामी कार्टेशियन प्रणाली अंतरिक्ष के विभाजन को आठ क्षेत्रों या अष्टक बिंदुओं के निर्देशांक के संकेतों के अनुसार परिभाषित करती है<ref name=":0" />। विशिष्ट अष्टक का नामकरण करने के लिए उपयोग की जाने वाली परंपरा इसके संकेतों को सूचीबद्ध करना है; उदाहरण के लिए, {{nowrap|(+ + +)}} या {{nowrap|(− + −)}} है। आयामों की इच्छानुसार संख्या के लिए चतुर्भुज और अष्टक का सामान्यीकरण [[ orthant |ऑर्थेंट]] है, और समान नामकरण प्रणाली प्रस्तावित होती है। | ||
== समतल के लिए कार्तीय सूत्र== | == समतल के लिए कार्तीय सूत्र== | ||
===दो बिंदुओं के मध्य की दूरी === | ===दो बिंदुओं के मध्य की दूरी === | ||
कार्टेशियन निर्देशांक के साथ | कार्टेशियन निर्देशांक के साथ समतल के दो बिंदुओं के मध्य [[ यूक्लिडियन दूरी |यूक्लिडियन दूरी]] <math>(x_1, y_1)</math> तथा <math>(x_2, y_2)</math> है | ||
<math display=block>d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}.</math> | <math display=block>d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}.</math> | ||
यह पाइथागोरस के प्रमेय का कार्टेशियन संस्करण है। त्रि-आयामी अंतरिक्ष में, बिंदुओं के मध्य की दूरी <math>(x_1,y_1,z_1)</math> तथा <math>(x_2,y_2,z_2)</math> है | यह पाइथागोरस के प्रमेय का कार्टेशियन संस्करण है। त्रि-आयामी अंतरिक्ष में, बिंदुओं के मध्य की दूरी <math>(x_1,y_1,z_1)</math> तथा <math>(x_2,y_2,z_2)</math> है: | ||
<math display=block>d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2+ (z_2-z_1)^2} ,</math> | <math display=block>d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2+ (z_2-z_1)^2} ,</math> | ||
जिसे पाइथागोरस प्रमेय के | जिसे पाइथागोरस प्रमेय के निरंतर दो अनुप्रयोगों द्वारा प्राप्त किया जा सकता है।<ref name="Hughes">{{cite book|last1=Hughes-Hallett|first1=Deborah|last2=McCallum|first2=William G.|last3=Gleason|first3=Andrew M.|title=कैलकुलस : सिंगल और मल्टीवेरिएबल|date=2013|publisher=John wiley|isbn=978-0470-88861-2|edition=6}}</ref> | ||
===यूक्लिडियन परिवर्तन === | ===यूक्लिडियन परिवर्तन === | ||
[[ यूक्लिडियन प्लेन आइसोमेट्री | यूक्लिडियन | [[ यूक्लिडियन प्लेन आइसोमेट्री | यूक्लिडियन परिवर्तन]] या यूक्लिडियन गतियाँ यूक्लिडियन समतल के बिंदुओं की (विशेषण) मानचित्र हैं जो बिंदुओं के मध्य की दूरी को बनाए रखते हैं। इन मानचित्रों के चार प्रकार (जिन्हें आइसोमेट्री भी कहा जाता है): [[ अनुवाद (ज्यामिति) |अनुवाद (ज्यामिति)]], [[ रोटेशन (गणित) |रोटेशन (गणित)]], परावर्तन (गणित) और ग्लाइड प्रतिबिंब हैं।<ref>{{harvnb|Smart|1998|loc=Chap. 2}}</ref> | ||
====अनुवाद ==== | ====अनुवाद ==== | ||
समतल के बिंदुओं का समुच्चय का अनुवाद करना, उनके मध्य की दूरी और दिशाओं को संरक्षित करना, समुच्चय में प्रत्येक बिंदु के कार्तीय निर्देशांक में संख्याओं {{nowrap|(''a'', ''b'')}} की निश्चित जोड़ी जोड़ने के समान है। अर्थात्, यदि किसी बिंदु के मूल निर्देशांक {{nowrap|(''x'', ''y'')}} हैं, वे अनुवाद के पश्चात होंगे | |||
<math display=block>(x', y') = (x + a, y + b) .</math> | <math display=block>(x', y') = (x + a, y + b) .</math> | ||
==== | ==== घूर्णन ==== | ||
किसी आकृति को मूल बिंदु के चारों ओर | किसी आकृति को मूल बिंदु के चारों ओर वामावर्त घुमाने के लिए किसी कोण से <math>\theta</math> निर्देशांक (x<nowiki>'</nowiki>,y<nowiki>'</nowiki>) वाले बिंदु द्वारा निर्देशांक (x,y) वाले प्रत्येक बिंदु को परिवर्तित करने के समान है, जहां | ||
<math display=block> | <math display=block> | ||
Line 111: | Line 115: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
इस प्रकार: | इस प्रकार है: | ||
<math display="block">(x',y') = ((x \cos \theta - y \sin \theta\,) , (x \sin \theta + y \cos \theta\,)) .</math> | <math display="block">(x',y') = ((x \cos \theta - y \sin \theta\,) , (x \sin \theta + y \cos \theta\,)) .</math> | ||
====प्रतिबिंब ==== | ====प्रतिबिंब ==== | ||
यदि {{nowrap|(''x'', ''y'')}} बिंदु के कार्तीय निर्देशांक हैं, तो {{nowrap|(−''x'', ''y'')}} दूसरे निर्देशांक अक्ष (y-अक्ष) | यदि {{nowrap|(''x'', ''y'')}} बिंदु के कार्तीय निर्देशांक हैं, तो {{nowrap|(−''x'', ''y'')}} दूसरे निर्देशांक अक्ष (y-अक्ष) पर इसके प्रतिबिंब के निर्देशांक हैं, जैसे कि वह रेखा दर्पण हो। इसी प्रकार, {{nowrap|(''x'', −''y'')}} प्रथम निर्देशांक अक्ष (x-अक्ष) पर इसके परावर्तन के निर्देशांक हैं। अधिक व्यापकता में, कोण बनाने वाली मूल रेखा के माध्यम से रेखा में प्रतिबिंब <math>\theta</math> x-अक्ष के साथ, निर्देशांक {{nowrap|(''x'', ''y'')}} वाले प्रत्येक बिंदु को निर्देशांक वाले बिंदु {{nowrap|(''x''′,''y''′)}} से परिवर्तित करने के समान है, जहाँ | ||
<math display=block> | <math display=block> | ||
Line 123: | Line 127: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
इस प्रकार: | इस प्रकार है: | ||
<math display="block">(x',y') = ((x \cos 2\theta + y \sin 2\theta\,) , (x \sin 2\theta - y \cos 2\theta\,)) .</math> | <math display="block">(x',y') = ((x \cos 2\theta + y \sin 2\theta\,) , (x \sin 2\theta - y \cos 2\theta\,)) .</math> | ||
==== ग्लाइड प्रतिबिंब ==== | ==== ग्लाइड प्रतिबिंब ==== | ||
ग्लाइड प्रतिबिंब उस रेखा की दिशा में अनुवाद के पश्चात रेखा के पार प्रतिबिंब की संरचना है। यह देखा जा सकता है कि इन परिचालनों का क्रम आशय नहीं रखता है (अनुवाद पूर्व में आ सकता है, उसके पश्चात प्रतिबिंब है)। | |||
==== परिवर्तनों का सामान्य | ==== परिवर्तनों का सामान्य आव्यूह रूप ==== | ||
आव्यूहों का उपयोग करके समतल के सभी एफ़िन परिवर्तनों को समान प्रकार से वर्णित किया जा सकता है। इस उद्देश्य के लिए निर्देशांक <math>(x,y)</math> बिंदु को सामान्यतः [[ कॉलम मैट्रिक्स |कॉलम आव्यूह]] <math>\begin{pmatrix}x\\y\end{pmatrix}.</math>के रूप में दर्शाया जाता है। परिणाम <math>(x', y')</math> बिंदु पर एफ़िन परिवर्तन प्रस्तावित करने के लिए <math>(x,y)</math> सूत्र द्वारा दिया जाता है: | |||
<math display=block>\begin{pmatrix}x'\\y'\end{pmatrix} = A \begin{pmatrix}x\\y\end{pmatrix} + b,</math> | <math display=block>\begin{pmatrix}x'\\y'\end{pmatrix} = A \begin{pmatrix}x\\y\end{pmatrix} + b,</math> | ||
जहाँ, | |||
<math display=block>A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}</math> | <math display=block>A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}</math> | ||
2×2 [[ स्क्वायर मैट्रिक्स |स्क्वायर आव्यूह]] है और <math>b=\begin{pmatrix}b_1\\b_2\end{pmatrix}</math> कॉलम आव्यूह है।<ref>{{harvnb|Brannan|Esplen|Gray|1998|loc=pg. 49}}</ref> वह है, | |||
<math display=block> | <math display=block> | ||
\begin{align} | \begin{align} | ||
Line 140: | Line 144: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
एफ़िन परिवर्तनों के मध्य, [[ यूक्लिडियन परिवर्तन |यूक्लिडियन | एफ़िन परिवर्तनों के मध्य, [[ यूक्लिडियन परिवर्तन |यूक्लिडियन परिवर्तनों]] को इस तथ्य की विशेषता है कि आव्यूह<math>A</math> [[ ओर्थोगोनल मैट्रिक्स |ओर्थोगोनल आव्यूह]] है; अर्थात्, इसके स्तंभ [[ यूक्लिडियन मानदंड |यूक्लिडियन मानदंड]] के [[ ओर्थोगोनल वैक्टर |ओर्थोगोनल सदिश]] हैं, या, स्पष्ट रूप से हैं, | ||
<math display=block>A_{1,1} A_{1, 2} + A_{2,1} A_{2, 2} = 0</math> | <math display=block>A_{1,1} A_{1, 2} + A_{2,1} A_{2, 2} = 0</math> | ||
तथा | तथा | ||
<math display=block>A_{1, 1}^2 + A_{2,1}^2 = A_{1,2}^2 + A_{2, 2}^2 = 1.</math> | <math display=block>A_{1, 1}^2 + A_{2,1}^2 = A_{1,2}^2 + A_{2, 2}^2 = 1.</math> | ||
यह कहने के समान है कि {{math|''A''}} | यह कहने के समान है कि {{math|''A''}} अनेक बार इसका समष्टिान्तरण [[ पहचान मैट्रिक्स |पहचान आव्यूह]] है। यदि ये प्रावधान प्रस्तावित नहीं होते हैं, तो सूत्र अधिक सामान्य एफ़िन परिवर्तन का वर्णन करता है। | ||
परिवर्तन अनुवाद है [[ अगर और केवल अगर | | परिवर्तन अनुवाद है [[ अगर और केवल अगर |यदि केवल]] {{math|''A''}} पहचान आव्यूह है। परिवर्तन किसी बिंदु के चारों ओर घूर्णन है यदि केवल {{math|''A''}} [[ रोटेशन मैट्रिक्स |घूर्णन आव्यूह]] है, जिसका अर्थ है कि यह ओर्थोगोनल है और | ||
<math display=block> A_{1, 1} A_{2, 2} - A_{2, 1} A_{1, 2} = 1 .</math> | <math display=block> A_{1, 1} A_{2, 2} - A_{2, 1} A_{1, 2} = 1 .</math> | ||
परावर्तन या ग्लाइड प्रतिबिंब प्राप्त होता है जब, | |||
<math display=block> A_{1, 1} A_{2, 2} - A_{2, 1} A_{1, 2} = -1 .</math> | <math display=block> A_{1, 1} A_{2, 2} - A_{2, 1} A_{1, 2} = -1 .</math> | ||
यह मानते हुए कि अनुवादों का उपयोग नहीं किया जाता है (अर्थात, <math>b_1=b_2=0</math>) रूपांतरण केवल संबंधित परिवर्तन | यह मानते हुए कि अनुवादों का उपयोग नहीं किया जाता है (अर्थात, <math>b_1=b_2=0</math>) रूपांतरण केवल संबंधित परिवर्तन आव्यूह को गुणा करके कार्य संरचना हो सकते हैं। सामान्य स्थिति में, परिवर्तन के [[ संवर्धित मैट्रिक्स |संवर्धित आव्यूह]] का उपयोग करना होता है; अर्थात परिवर्तन सूत्र को पुनः लिखना होता है: | ||
<math display=block>\begin{pmatrix}x'\\y'\\1\end{pmatrix} = A' \begin{pmatrix}x\\y\\1\end{pmatrix},</math> | <math display=block>\begin{pmatrix}x'\\y'\\1\end{pmatrix} = A' \begin{pmatrix}x\\y\\1\end{pmatrix},</math> | ||
जहाँ, | |||
<math display=block>A' = \begin{pmatrix} A_{1,1} & A_{1,2}&b_1 \\ A_{2,1} & A_{2,2}&b_2\\0&0&1 \end{pmatrix}.</math> | |||
इस ट्रिक के साथ, संवर्धित | इस ट्रिक के साथ, संवर्धित आव्यूह को गुणा करके एफ़िन परिवर्तन की संरचना प्राप्त की जाती है। | ||
=== एफ़िन परिवर्तन === | === एफ़िन परिवर्तन === | ||
[[File:2D_affine_transformation_matrix.svg|thumb| | [[File:2D_affine_transformation_matrix.svg|thumb|इकाई वर्ग पर विभिन्न 2D एफ़िन परिवर्तन आव्यूह प्रस्तावित करने का प्रभाव है।(प्रतिबिंब स्केलिंग की विशेष स्थिति हैं।)]]यूक्लिडियन समतल के एफ़िन परिवर्तन ऐसे परिवर्तन हैं जो रेखाओं को मानचित्रित करते हैं, किन्तु दूरियों और कोणों को परिवर्तित कर सकते हैं। जैसा कि पिछले खंड में कहा गया है, उन्हें संवर्धित आव्यूह के साथ दर्शाया जा सकता है: | ||
<math display=block>\begin{pmatrix} A_{1,1} & A_{2,1} & b_{1} \\ A_{1,2} & A_{2,2} & b_{2} \\ 0 & 0 & 1 \end{pmatrix} | <math display=block>\begin{pmatrix} A_{1,1} & A_{2,1} & b_{1} \\ A_{1,2} & A_{2,2} & b_{2} \\ 0 & 0 & 1 \end{pmatrix} | ||
\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} | \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} | ||
= | = | ||
\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.</math> यूक्लिडियन | \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}.</math> यूक्लिडियन परिवर्तन एफाइन परिवर्तन हैं जैसे कि 2×2 आव्यूह <math>A_{i,j}</math> ऑर्थोगोनल आव्यूह है। | ||
संवर्धित | संवर्धित आव्यूह जो दो एफ़िन परिवर्तनों की कार्य संरचना का प्रतिनिधित्व करता है, उनके संवर्धित आव्यूह को गुणा करके प्राप्त किया जाता है। | ||
कुछ एफाइन | कुछ एफाइन परिवर्तन जो यूक्लिडियन परिवर्तन नहीं हैं, उन्हें विशिष्ट नाम मिले हैं। | ||
==== स्केलिंग ==== | ==== स्केलिंग ==== | ||
स्केलिंग द्वारा एफ़िन परिवर्तन का उदाहरण दिया गया है, जो यूक्लिडियन नहीं है। किसी आकृति को बड़ा या छोटा करना प्रत्येक बिंदु के कार्तीय निर्देशांक को उसी धनात्मक संख्या m से गुणा करने के समान है। यदि {{nowrap|(''x'', ''y'')}} मूल आकृति पर बिंदु के निर्देशांक हैं, स्केल की गई आकृति पर संबंधित बिंदु के निर्देशांक हैं | |||
<math display=block>(x',y') = (m x, m y).</math> | <math display=block>(x',y') = (m x, m y).</math> | ||
यदि m 1 से बड़ा है, तो आंकड़ा बड़ा हो जाता है; यदि m 0 और 1 के मध्य हो तो यह छोटा हो जाता है। | यदि m,1 से बड़ा है, तो आंकड़ा बड़ा हो जाता है; यदि m, 0 और 1 के मध्य हो तो यह छोटा हो जाता है। | ||
==== | ==== शियरिंग ==== | ||
समांतर चतुर्भुज बनाने के लिए [[ कतरनी मानचित्रण |शियरिंग परिवर्तन]] वर्ग के शीर्ष पर धक्का देगा। क्षैतिज अक्ष द्वारा परिभाषित किया गया है: | |||
<math display=block>(x',y') = (x+y s, y)</math> | <math display=block>(x',y') = (x+y s, y)</math> | ||
शियरिंग को लंबवत रूप से भी लगाया जा सकता है: | |||
<math display=block>(x',y') = (x, x s+y)</math> | <math display=block>(x',y') = (x, x s+y)</math> | ||
== | == अभिविन्यास और हैंडनेस == | ||
{{Main|उन्मुखता}} | {{Main|उन्मुखता}} | ||
{{See also|दाहिने हाथ का नियम| | {{See also|दाहिने हाथ का नियम|अक्ष कन्वेंशन्स }} | ||
=== दो आयामों में === | === दो आयामों में === | ||
[[File:Rechte-hand-regel.jpg|left|thumb|दाहिने हाथ का नियम]]x-अक्ष को ठीक करना या | [[File:Rechte-hand-regel.jpg|left|thumb|दाहिने हाथ का नियम]]x-अक्ष को ठीक करना या चयन करना y-अक्ष को दिशा तक निर्धारित करता है। अर्थात्, y-अक्ष आवश्यक रूप से x-अक्ष पर बिंदु 0 के माध्यम से x-अक्ष पर लंबवत है। किन्तु यह विकल्प है कि लंबवत पर दो अर्ध रेखाओं में से किसे धनात्मक और किसको ऋणात्मक के रूप में नामित किया जाए। इन दो विकल्पों में से प्रत्येक कार्तीय तल के भिन्न अभिविन्यास (जिसे हैंडनेस भी कहा जाता है) को निर्धारित करता है। | ||
समतल को ओरिएंट करने | समतल को ओरिएंट करने की सामान्य विधि, धनात्मक x-अक्ष की ओर प्रदर्शित करते हुए दाईं ओर और धनात्मक y-अक्ष की ओर प्रदर्शित करते हुए (x-अक्ष प्रथम और y-अक्ष दूसरा अक्ष है), को धनात्मक या मानक अभिविन्यास माना जाता है , जिसे दाहिने हाथ का अभिविन्यास भी कहा जाता है। | ||
धनात्मक अभिविन्यास को परिभाषित करने के लिए सामान्यतः उपयोग किया जाने वाला स्मरक दाहिने हाथ का नियम है। धनात्मक रूप से उन्मुख समन्वय प्रणाली में, अंगूठे के साथ समतल पर कुछ सीमा तक बंद दाहिने हाथ को रखकर, उंगलियां x-अक्ष से y-अक्ष की ओर प्रदर्शित करते हैं। | |||
समतल को उन्मुख करने की दूसरी विधि बाएं हाथ के नियम का पालन करती है, बाएं हाथ को अंगूठे के साथ समतल पर रखना है। | |||
जब अंगूठे को मूल बिंदु से अक्ष के साथ | जब अंगूठे को मूल बिंदु से अक्ष के साथ धनात्मक की ओर प्रदर्शित किया जाता है, तो उंगलियों की वक्रता उस अक्ष के साथ धनात्मक घुमाव को प्रदर्शित करती है। | ||
समतलको उन्मुख करने के लिए उपयोग किए जाने वाले नियम के अतिरिक्त, समन्वय प्रणाली को घुमाने से अभिविन्यास संरक्षित रहेगा। किसी अक्ष को स्विच करने से ओरिएंटेशन के विपरीत हो जाएगा, किन्तु दोनों को स्विच करने से ओरिएंटेशन अपरिवर्तित रहेगा। | |||
=== | ===त्रि आयामों में === | ||
[[File:Cartesian coordinate system handedness.svg|left|200px|thumb|चित्र 7 - बाएँ हाथ के अभिविन्यास को बाईं ओर और दाएँ हाथ को दाईं ओर दिखाया गया है।]] | [[File:Cartesian coordinate system handedness.svg|left|200px|thumb|चित्र 7 - बाएँ हाथ के अभिविन्यास को बाईं ओर और दाएँ हाथ को दाईं ओर दिखाया गया है।]] | ||
[[File:Right hand cartesian.svg|right|thumb|200px| | [[File:Right hand cartesian.svg|right|thumb|200px|चित्र 8 - समन्वय समतलों को प्रदर्शित करने वाली दाएं हाथ की कार्टेशियन समन्वय प्रणाली है।]]एक बार x- और y-अक्ष निर्दिष्ट हो जाने पर, वे उस [[ रेखा (ज्यामिति) |रेखा (ज्यामिति)]] का निर्धारण करते हैं जिसके साथ z-अक्ष स्थित होना चाहिए, किन्तु इस रेखा के लिए दो संभावित अभिविन्यास हैं। दो संभावित समन्वय प्रणालियां जो परिणाम देती हैं उन्हें 'दाएं हाथ' और 'बाएं हाथ' कहा जाता है। मानक अभिविन्यास, जहां x-अक्ष क्षैतिज है और z-अक्ष प्रदर्शित करता है (और x- और y-अक्ष x-अक्ष में धनात्मक रूप से उन्मुख दो-आयामी समन्वय प्रणाली बनाते हैं यदि x-अक्ष के ऊपर से देखा जाता है ) को 'दाहिने हाथ' या 'धनात्मक' कहा जाता है। | ||
[[File:3D Cartesian Coodinate Handedness.jpg|thumb|3डी कार्टेशियन समन्वय सौहार्द]]नाम दाहिने हाथ के नियम से निकला है। यदि दाहिने हाथ की [[ तर्जनी |तर्जनी]] को आगे की ओर प्रदर्शित किया जाता है, मध्यमा को समकोण पर अंदर की ओर झुकाया जाता है, और अंगूठे को दोनों के समकोण पर रखा जाता है, तो तीनों उंगलियां x-, y- के सापेक्ष अभिविन्यास को दर्शाती हैं। और दाएं हाथ की प्रणाली में z- | [[File:3D Cartesian Coodinate Handedness.jpg|thumb|3डी कार्टेशियन समन्वय सौहार्द]]नाम दाहिने हाथ के नियम से निकला है। यदि दाहिने हाथ की [[ तर्जनी |तर्जनी]] को आगे की ओर प्रदर्शित किया जाता है, मध्यमा को समकोण पर अंदर की ओर झुकाया जाता है, और अंगूठे को दोनों के समकोण पर रखा जाता है, तो तीनों उंगलियां x-, y- के सापेक्ष अभिविन्यास को दर्शाती हैं। और दाएं हाथ की प्रणाली में z-अक्ष हैं। अंगूठा x-अक्ष, तर्जनी y-अक्ष और मध्यमा अंगुली z-अक्ष को दर्शाता है। इसके विपरीत, यदि बाएं हाथ से भी ऐसा ही किया जाता है, तो बाएं हाथ की प्रणाली का परिणाम होता है। | ||
चित्र 7 बाएं और दाएं हाथ की समन्वय प्रणाली को दर्शाता है। क्योंकि द्वि-आयामी स्क्रीन पर त्रि-आयामी वस्तु का प्रतिनिधित्व किया जाता है, विरूपण और अस्पष्टता परिणाम है। नीचे की ओर (और दाईं ओर) अक्ष को प्रेक्षक की ओर प्रदर्शित करने के लिए भी है, जबकि मध्य-अक्ष पर्यवेक्षक से दूर प्रदर्शित करने के लिए है। लाल वृत्त क्षैतिज xy-तल के समानांतर है और x-अक्ष से y-अक्ष तक (दोनों स्थितियों में) घूर्णन को प्रदर्शित करता है। इसलिए लाल तीर z-अक्ष के सामने से निकलता है। | |||
चित्र 8 दाहिने हाथ की समन्वय प्रणाली को चित्रित करने का | चित्र 8 दाहिने हाथ की समन्वय प्रणाली को चित्रित करने का प्रयास है। पुनः, समतल में त्रि-आयामी समन्वय प्रणाली प्रस्तुत करने के कारण अस्पष्टता है। अनेक पर्यवेक्षक चित्र 8 को विकट: उत्तल घन और विकट: अवतल कोने के मध्य अंदर और बाहर फ़्लिप करते हुए देखते हैं। यह अंतरिक्ष के दो संभावित झुकावों से युग्मित होती है। आकृति को उत्तल के रूप में देखने से बाएं हाथ की समन्वय प्रणाली मिलती है। इस प्रकार चित्र 8 को देखने का सही विधि यह है कि x-अक्ष को प्रेक्षक की ओर प्रदर्शित करते हुए और इस प्रकार अवतल कोने को देखकर कल्पना की जाए। | ||
== मानक आधार पर | == मानक आधार पर सदिश का प्रतिनिधित्व करना == | ||
कार्टेशियन समन्वय प्रणाली में अंतरिक्ष में बिंदु को [[ यूक्लिडियन वेक्टर |यूक्लिडियन सदिश]] की स्थिति द्वारा भी दर्शाया जा सकता है, जिसे समन्वय प्रणाली की उत्पत्ति से बिंदु तक प्रदर्शित करने वाले तीर के रूप में माना जा सकता है।<ref>{{harvnb|Brannan|Esplen|Gray|1998|loc=Appendix 2, pp. 377–382}}</ref> यदि निर्देशांक समष्टििक स्थिति (विस्थापन) का प्रतिनिधित्व करते हैं, तो सदिश को मूल से रुचि के बिंदु <math>\mathbf{r}</math> तक सदिश का प्रतिनिधित्व करना सामान्य है, द्वि आयामों में, मूल से बिंदु तक कार्तीय निर्देशांक (x, y) के साथ सदिश को इस प्रकार लिखा जा सकता है: | |||
<math display=block> \mathbf{r} = x \mathbf{i} + y \mathbf{j},</math> | <math display=block> \mathbf{r} = x \mathbf{i} + y \mathbf{j},</math> | ||
जहाँ <math>\mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}</math> तथा <math>\mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}</math> क्रमशः x-अक्ष और y-अक्ष की दिशा में इकाई सदिश हैं, जिन्हें सामान्यतः [[ मानक आधार |मानक आधार]] के रूप में संदर्भित किया जाता है (कुछ अनुप्रयोग में इन क्षेत्रों को [[ मैं मुड़ा |छंद]] भी कहा जा सकता है)। इसी प्रकार, त्रि आयामों में, मूल से बिंदु तक कार्तीय निर्देशांक के साथ सदिश <math>(x,y,z)</math> के रूप में लिखा जा सकता है:<ref>{{Cite book | author = David J. Griffiths | title = इलेक्ट्रोडायनामिक्स का परिचय| publisher = Prentice Hall | year = 1999 | isbn = 978-0-13-805326-0 | url-access = registration | url = https://archive.org/details/introductiontoel00grif_0 }}</ref> | |||
<math display=block> \mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k},</math> | <math display=block> \mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k},</math> | ||
जहाँ <math>\mathbf{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},</math> <math>\mathbf{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},</math> तथा <math>\mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.</math> | |||
सभी आयामों में | |||
सभी आयामों में कार्य करने वाले अन्य सदिश प्राप्त करने के लिए सदिश को गुणा करने की कोई प्राकृतिक व्याख्या नहीं है, चूँकि इस प्रकार के गुणन को प्रदान करने के लिए [[ जटिल संख्या |जटिल संख्याओं]] के उपयोग करने की विधि है। द्वि-आयामी कार्तीय तल में, के साथ बिंदु की पहचान करें {{nowrap|(''x'', ''y'')}} सम्मिश्र संख्या {{nowrap|1=''z'' = ''x'' + ''iy''}} के साथ निर्देशांक यहाँ, i [[ काल्पनिक इकाई |काल्पनिक इकाई]] है और इसे निर्देशांक {{nowrap|(0, 1)}} वाले बिंदु से पहचाना जाता है, इसलिए यह x-अक्ष की दिशा में इकाई सदिश नहीं है। चूँकि सम्मिश्र संख्याओं को अन्य सम्मिश्र संख्या देकर गुणा किया जा सकता है, यह पहचान सदिशों को गुणा करने का साधन प्रदान करती है। त्रि-आयामी कार्तीय समष्टि में इसी प्रकार की पहचान को [[ quaternion |चतुष्कोणों]] के उपसमुच्चय के साथ बनाया जा सकता है। | |||
== | == अनुप्रयोग == | ||
कार्टेशियन निर्देशांक अमूर्तता है जिसमें वास्तविक | कार्टेशियन निर्देशांक अमूर्तता है जिसमें वास्तविक विश्व में अनेक संभावित अनुप्रयोग होते हैं। चूँकि, समस्या अनुप्रयोग पर निर्देशांक को सुपरइम्पोज़ करने में तीन रचनात्मक चरण सम्मिलित हैं। | ||
# निर्देशांक के रूप में उपयोग की जाने वाली संख्याओं द्वारा दर्शाए गए | # दूरी की इकाइयों को निर्देशांक के रूप में उपयोग की जाने वाली संख्याओं द्वारा दर्शाए गए समष्टििक आकार को परिभाषित करने का निर्णय लिया जाना चाहिए। | ||
# | # मूल समष्टि विशिष्ट समष्टििक समष्टि या स्थलचिह्न को निर्दिष्ट किया जाना चाहिए। | ||
# | # अक्ष को त्यागकर सभी के लिए उपलब्ध दिशात्मक संकेतों का उपयोग करके अक्षों के अभिविन्यास को परिभाषित किया जाना चाहिए। | ||
उदाहरण के रूप में पृथ्वी पर सभी बिंदुओं (अर्थात, भू-समष्टििक 3D) पर 3D कार्टेशियन निर्देशांक को सुपरइम्पोज़ करने पर विचार करें। किलोमीटर इकाइयों का श्रेष्ठ विकल्प है, क्योंकि किलोमीटर की मूल परिभाषा भू-समष्टििक थी, भूमध्य रेखा से उत्तरी ध्रुव तक सतह की दूरी के समान {{val|10000|u=km|fmt=commas}} है। समरूपता के आधार पर, पृथ्वी का गुरुत्वाकर्षण केंद्र उत्पत्ति के प्राकृतिक समष्टि का विचार देता है (जिसे उपग्रह कक्षाओं के माध्यम से अनुभूत किया जा सकता है)। पृथ्वी के घूर्णन की धुरी X, Y और Z अक्षों के लिए प्राकृतिक अभिविन्यास प्रदान करती है, जो "ऊपर के प्रति नीचे" से दृढ़ता से जुड़ी हुई है, इसलिए धनात्मक Z भू-केंद्र से उत्तरी ध्रुव की दिशा को स्वीकार कर सकता है। ''X''-अक्ष को परिभाषित करने के लिए भूमध्य रेखा पर समष्टि की आवश्यकता होती है, और [[ प्रधानमंत्री मध्याह्न |प्रमुख मध्याह्न रेखा]] संदर्भ अभिविन्यास के रूप में सामने आती है, इसलिए ''X''-अक्ष अभिविन्यास को भू-केंद्र {{val|0|u=डिग्री}} देशांतर, {{val|0|u=डिग्री}} अक्षांश तक ले जाता है। ध्यान दें कि X और Z के लिए त्रि आयामों और दो लंबवत अक्षों के साथ, Y-अक्ष पूर्व में दो विकल्पों द्वारा निर्धारित किया जाता है। दाहिने हाथ के नियम का पालन करने के लिए, Y-अक्ष को भू-केंद्र से {{val|90|u=डिग्री}} देशांतर, {{val|0|u=डिग्री}} अक्षांश की ओर प्रदर्शित करना चाहिए। {{val|−73.985656|u=डिग्री}} के देशांतर से, अक्षांश {{val|40.748433|u=डिग्री}} से, और 40,000 / 2π किमी की पृथ्वी त्रिज्या से, और गोलाकार से कार्टेशियन निर्देशांक में परिवर्तित होने पर, कोई एम्पायर स्टेट बिल्डिंग के भू-केंद्रीय निर्देशांक का अनुमान लगा सकता है,{{math|1=(''x'', ''y'', ''z'') = ({{val|1330.53|u=km|fmt=commas}}, {{val|4635.75|u=km|fmt=commas}}, {{val|4155.46|u=km|fmt=commas}})}} जीपीएस नेविगेशन ऐसे भूकेंद्रीय निर्देशांक पर निर्भर करता है। | |||
अभियांत्रिकी परियोजनाओं में, निर्देशांक की परिभाषा पर सहमति महत्वपूर्ण आधार है। कोई यह नहीं मान सकता है कि निर्देशांक उपन्यास अनुप्रयोग के लिए पूर्वनिर्धारित होते हैं, इसलिए रेने डेसकार्टेस की सोच को प्रस्तावित करने के लिए समन्वय प्रणाली के लिए जहां पूर्व में ऐसी कोई समन्वय प्रणाली नहीं थी, समन्वय प्रणाली को कैसे खड़ा किया जाए, इसका ज्ञान आवश्यक है। | |||
जबकि | जबकि समष्टििक अनुप्रयोग व्यवसाय और वैज्ञानिक अनुप्रयोगों में सभी अक्षों के साथ समान इकाइयों को नियोजित करते हैं, प्रत्येक अक्ष में इसके साथ जुड़े माप की भिन्न-भिन्न इकाइयाँ हो सकती हैं (जैसे किलोग्राम, सेकंड, पाउंड, आदि)। यद्यपि चार- और उच्च-आयामी रिक्त समष्टि की कल्पना करना कठिन है, कार्टेशियन निर्देशांक के बीजगणित को अपेक्षाकृत सरलता से चार या अधिक चरों तक बढ़ाया जा सकता है, जिससे कि अनेक चरों को सम्मिलित करने वाली कुछ गणनाएं की जा सकें। (इस प्रकार का बीजगणितीय विस्तार वह है जो उच्च-आयामी रिक्त समष्टि की ज्यामिति को परिभाषित करने के लिए उपयोग किया जाता है।) इसके विपरीत, अनेक-समष्टििक चर दो या तीन आयामों में कार्टेशियन निर्देशांक की ज्यामिति का उपयोग करना प्रायः सहायक होता है। जिससे कि दो या तीन के मध्य बीजगणितीय संबंधों की कल्पना की जा सके। | ||
किसी फलन या संबंध का | किसी फलन या संबंध का आलेख उस फलन या संबंध को संतुष्ट करने वाले सभी बिंदुओं का समुच्चय है। चर के फलन के लिए, f, सभी बिंदुओं का समुच्चय {{math|(''x'', ''y'')}}, जहाँ {{math|1=''y'' = ''f''(''x'')}} फलन f का आलेख है। दो चरों के फलन g के लिए, सभी बिंदुओं का समुच्चय {{math|(''x'', ''y'', ''z'')}}, जहाँ {{math|1=''z'' = ''g''(''x'', ''y'')}} फलन g का आलेख है। इस प्रकार के फलन या संबंध के आलेख के स्केच में फलन या संबंध के सभी मुख्य भाग सम्मिलित होंगे जिसमें इसके सापेक्ष एक्स्ट्रेमा, इसकी [[ अवतल कार्य |अवतलता]] और विभक्ति के बिंदु, विच्छिन्नता के किसी भी बिंदु और इसके अंतिम व्यवहार सम्मिलित होंगे। इन सभी प्रावधानों को कैलकुलस में प्रत्येक प्रकार से परिभाषित किया गया है। इस प्रकार के आलेख किसी फलन या संबंध की प्रकृति और व्यवहार को समझने के लिए कैलकुलस में उपयोगी होते हैं। | ||
==यह भी देखें== | ==यह भी देखें== | ||
Line 241: | Line 246: | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
== स्रोत == | == स्रोत == | ||
Line 267: | Line 271: | ||
* [https://github.com/DanIsraelMalta/CoordSysJS open source JavaScript class for 2D/3D Cartesian coordinate system manipulation] | * [https://github.com/DanIsraelMalta/CoordSysJS open source JavaScript class for 2D/3D Cartesian coordinate system manipulation] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Cartesian Coordinate System]] | |||
[[Category:CS1 English-language sources (en)|Cartesian Coordinate System]] | |||
[[Category:Collapse templates|Cartesian Coordinate System]] | |||
[[Category:Created On 11/11/2022|Cartesian Coordinate System]] | |||
[[Category: | [[Category:Lua-based templates|Cartesian Coordinate System]] | ||
[[Category: | [[Category:Machine Translated Page|Cartesian Coordinate System]] | ||
[[Category: | [[Category:Navigational boxes| ]] | ||
[[Category: त्रि-आयामी समन्वय प्रणाली]] | [[Category:Navigational boxes without horizontal lists|Cartesian Coordinate System]] | ||
[[Category:Pages with script errors|Cartesian Coordinate System]] | |||
[[ | [[Category:Short description with empty Wikidata description|Cartesian Coordinate System]] | ||
[[Category:Sidebars with styles needing conversion|Cartesian Coordinate System]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category: | [[Category:Templates Vigyan Ready|Cartesian Coordinate System]] | ||
[[Category: | [[Category:Templates generating microformats|Cartesian Coordinate System]] | ||
[[Category:Templates that add a tracking category|Cartesian Coordinate System]] | |||
[[Category:Templates that are not mobile friendly|Cartesian Coordinate System]] | |||
[[Category:Templates that generate short descriptions|Cartesian Coordinate System]] | |||
[[Category:Templates using TemplateData|Cartesian Coordinate System]] | |||
[[Category:Wikipedia metatemplates|Cartesian Coordinate System]] | |||
[[Category:ऑर्थोगोनल कोऑर्डिनेट सिस्टम|Cartesian Coordinate System]] | |||
[[Category:त्रि-आयामी समन्वय प्रणाली|Cartesian Coordinate System]] | |||
[[Category:प्राथमिक गणित|Cartesian Coordinate System]] | |||
[[Category:रेने डेसकार्टेस|Cartesian Coordinate System]] | |||
[[Category:विश्लेषणात्मक ज्यामिति|Cartesian Coordinate System]] |
Latest revision as of 15:55, 27 October 2023
ज्यामिति में कार्टेशियन समन्वय प्रणाली समतल समन्वय प्रणाली है जो प्रत्येक बिंदु को विशिष्ट रूप से वास्तविक संख्याओं की जोड़ी द्वारा निर्दिष्ट करती है जिसे निर्देशांक कहा जाता है, जो इकाई लंबाई में मापी गई दो निश्चित लंबवत उन्मुख रेखाओं से बिंदु तक धनात्मक और ऋणात्मक संख्या दूरी हैं। प्रत्येक संदर्भ समन्वय रेखा को प्रणाली का समन्वय अक्ष (बहुवचनअक्ष) कहा जाता है, और जिस बिंदु पर वे मिलते हैं वह उसका मूल (गणित) होता है। क्रमित युग्म (0, 0) निर्देशांक को दो अक्षों पर बिंदु के ओर्थोगोनल प्रक्षेपण की स्थिति के रूप में भी परिभाषित किया जा सकता है, जिसे मूल से हस्ताक्षरित दूरी के रूप में व्यक्त किया जाता है।
इसी प्रकार त्रि-आयामी समष्टि में किसी भी बिंदु की स्थिति को तीन कार्टेशियन निर्देशांक द्वारा निर्दिष्ट किया जा सकता है, जो बिंदु से तीन परस्पर लंबवत समतलों की हस्ताक्षरित दूरी हैं। सामान्यतः, n कार्टेशियन निर्देशांक किसी भी आयाम n के लिए n-आयामी यूक्लिडियन समष्टि में बिंदु निर्दिष्ट करते हैं। ये निर्देशांक बिंदु से n परस्पर लंबवत निश्चित हाइपर अक्ष तक की हस्ताक्षरित दूरी हैं।
कार्टेशियन निर्देशांक का नाम रेने डेसकार्टेस के नाम पर रखा गया है, जिनके आविष्कार ने 17 के दशक में यूक्लिडियन ज्यामिति और बीजगणित के मध्य प्रथम व्यवस्थित लिंक प्रदान करके गणित में क्रांति ला दी। कार्तीय समन्वय प्रणाली का उपयोग करते हुए, ज्यामितीय आकृतियों (जैसे वक्र) को आकृति के बिंदुओं के निर्देशांक वाले समीकरणों द्वारा वर्णित किया जा सकता है: बीजीय समीकरण जिसमें आकृति पर स्थित बिंदुओं के निर्देशांक सम्मिलित होते हैं। उदाहरण के लिए, त्रिज्या 2 का वृत्त, जो समतल के मूल बिंदु पर केन्द्रित है, उन सभी बिंदुओं के समुच्चय (गणित) के रूप में वर्णित किया जा सकता है, जिनके निर्देशांक x और y समीकरण x2 + y2 = 4 को संतुष्ट करते हैं।
कार्टेशियन निर्देशांक विश्लेषणात्मक ज्यामिति का आधार हैं, और गणित की अनेक अन्य शाखाओं जैसे रैखिक बीजगणित, जटिल विश्लेषण, अंतर ज्यामिति, बहुभिन्नरूपी कलन, समूह सिद्धांत और अधिक के लिए ज्ञानवर्धक ज्यामितीय व्याख्याएं प्रदान करते हैं। परिचित उदाहरण फलन के रेखाचित्र की अवधारणा है। कार्तीय निर्देशांक भी अधिकांश अनुप्रयुक्त विषयों के लिए आवश्यक उपकरण हैं जो ज्यामिति से संबंधित हैं, जिसमें खगोल विज्ञान, भौतिकी, अभियांत्रिकी और अनेक अन्य सम्मिलित हैं। वे कंप्यूटर ग्राफिक्स, कंप्यूटर एडेड ज्यामितीय डिजाइन और अन्य कम्प्यूटेशनल ज्यामिति से संबंधित डेटा प्रोसेसिंग में उपयोग की जाने वाली सबसे सामान्य समन्वय प्रणाली हैं।
इतिहास
विशेषण कार्टेशियन फ्रांसीसी गणितज्ञ और दार्शनिक रेने डेसकार्टेस को संदर्भित करता है, जिन्होंने 1637 में इस विचार को प्रकाशित किया था, जब वह नीदरलैंड के निवासी थे। यह स्वतंत्र रूप से पियरे डी फ़र्माटा द्वारा शोध किया गया था, जिन्होंने तीन आयामों में भी कार्य किया था, चूँकि फ़र्मेट ने शोध को प्रकाशित नहीं किया था।[1] फ्रांसीसी मौलवी निकोल ओरेस्मे ने डेसकार्टेस और फ़र्मेट के समय से पूर्व कार्टेशियन निर्देशांक के समान निर्माण का उपयोग किया था।[2]
डेसकार्टेस और फ़र्मेट दोनों ने अपनी प्रक्रिया में अक्ष का उपयोग किया और इस अक्ष के संदर्भ में मापी गई चर की लंबाई है। अक्षों की जोड़ी का उपयोग करने की अवधारणा को अंत में प्रस्तुत किया गया था, डेसकार्टेस के ला जियोमेट्री का 1649 में फ्रैंस वैन शूटेन और उनके छात्रों द्वारा लैटिन में अनुवाद किया गया था। डेसकार्टेस के कार्य में निहित विचारों को स्पष्ट करने का प्रयास करते हुए इन टिप्पणीकारों ने अनेक अवधारणाएं प्रस्तुत की थी।[3]
कार्टेशियन समन्वय प्रणाली का विकास आइजैक न्यूटन और गॉटफ्राइड विल्हेम लिबनिज़ो द्वारा कलन के विकास में मौलिक भूमिका निभाएगा।[4] समतल के दो-समन्वित विवरण को अंत में सदिश रिक्त समष्टि की अवधारणा में सामान्यीकृत किया गया था।[5]
डेसकार्टेस के पश्चात से अनेक अन्य समन्वय प्रणाली विकसित की गई हैं, जैसे समतल के लिए ध्रुवीय समन्वय प्रणाली, और गोलाकार समन्वय प्रणाली और त्रि-आयामी अंतरिक्ष के लिए बेलनाकार समन्वय प्रणाली सम्मिलित हैं।
विवरण
आयाम
आयामी समष्टि के लिए कार्टेशियन समन्वय प्रणाली का चयन करना- जो कि सीधी रेखा के लिए है- इसमें रेखा का बिंदु O (मूल), लंबाई की इकाई और रेखा के लिए अभिविन्यास चयन करना सम्मिलित है। अभिविन्यास चयन करता है कि O द्वारा निर्धारित दो अर्ध-रेखाओं में से कौन सी धनात्मक है और कौन सी ऋणात्मक है; पुनः हम कहते हैं कि रेखा ऋणात्मक अर्ध से धनात्मक अर्ध की ओर "उन्मुख (या "बिंदु") है"। पुनः रेखा के प्रत्येक बिंदु P को O से उसकी दूरी द्वारा निर्दिष्ट किया जा सकता है, जिसे + या - चिह्न के साथ लिया जाता है, जिसके आधार पर अर्ध रेखा में P होता है।
चयन की गयी कार्तीय प्रणाली वाली रेखा को 'संख्या रेखा' कहा जाता है। रेखा पर प्रत्येक वास्तविक संख्या का विशिष्ट समष्टि होता है। इसके विपरीत, रेखा के प्रत्येक बिंदु को क्रमित सातत्य जैसे वास्तविक संख्याओं में संख्या के रूप में व्याख्या की जा सकती है।
द्वि आयाम
द्वि आयामों में कार्टेशियन समन्वय प्रणाली (जिसे आयताकार समन्वय प्रणाली या ऑर्थोगोनल समन्वय प्रणाली भी कहा जाता है)[6] लंबवत रेखाओं (अक्षों) की क्रमबद्ध जोड़ी दोनों अक्षों के लिए लंबाई की इकाई, और प्रत्येक अक्ष के लिए अभिविन्यास द्वारा परिभाषित किया गया है। वह बिंदु जहां अक्ष मिलते हैं, दोनों के मूल बिंदु के रूप में लिया जाता है, इस प्रकार प्रत्येक अक्ष को संख्या रेखा में परिवर्तित कर दिया जाता है। किसी भी बिंदु P के लिए, प्रत्येक अक्ष पर P लंबवत के माध्यम से रेखा खींची जाती है, और वह स्थिति जहाँ वह अक्ष से मिलती है, संख्या के रूप में व्याख्या की जाती है। उस चयन किये गए क्रम में दो संख्याएँ, P के कार्तीय निर्देशांक हैं। विपरीत निर्माण किसी को उसके निर्देशांक दिए गए बिंदु P को निर्धारित करने की अनुमति देता है।
मध्य और दूसरे निर्देशांक को क्रमशः P का भुज और कोटि कहा जाता है; और जिस बिंदु पर अक्ष मिलते हैं, उसे समन्वय प्रणाली की उत्पत्ति कहा जाता है। निर्देशांक सामान्यतः कोष्ठक में दो संख्याओं के रूप में लिखे जाते हैं, उस क्रम में, अल्पविराम द्वारा भिन्न किए जाते हैं, जैसे कि (3, −10.5) है। इस प्रकार मूल के निर्देशांक (0, 0) हैं, और मूल से इकाई दूर धनात्मक अर्ध-अक्ष पर स्थित बिंदुओं के निर्देशांक (1, 0) तथा (0, 1) होते हैं।
गणित, भौतिकी और अभियांत्रिकी में, प्रथम धुरी को सामान्यतः क्षैतिज और दाईं ओर उन्मुख के रूप में परिभाषित या चित्रित किया जाता है, और दूसरा अक्ष लंबवत और ऊपर की ओर उन्मुख होता है। (चूँकि, कुछ कंप्यूटर ग्राफिक्स संदर्भों में, समन्वय अक्ष नीचे की ओर उन्मुख हो सकता है।) मूल को प्रायः O लेबल किया जाता है, और दो निर्देशांक को प्रायः अक्षर X और Y, या x और y अक्षरों द्वारा दर्शाए जाते हैं। अक्षों को तब X-अक्ष और Y-अक्ष के रूप में संदर्भित किया जा सकता है। अक्षरों के विकल्प मूल परंपरा से आते हैं, जो अज्ञात मूल्यों को प्रदर्शित करने के लिए वर्णमाला के पश्चात के भाग का उपयोग करना है। ज्ञात मूल्यों को निर्दिष्ट करने के लिए वर्णमाला के प्रथम भाग का उपयोग किया गया था।
चयन किये हुए कार्तीय निर्देशांक प्रणाली वाले यूक्लिडियन समतल को कार्टेशियन तल 'कहा जाता है'। कार्टेशियन समतल में कुछ ज्यामितीय आकृतियों के विहित प्रतिनिधियों को परिभाषित किया जा सकता है, जैसे कि इकाई वृत्त (लंबाई की इकाई के समान त्रिज्या के साथ, और मूल में केंद्र), इकाई वर्ग (जिसके विकर्ण अंत बिंदु (0, 0) तथा (1, 1) पर है), इकाई अतिपरवलय, इत्यादि है।
दो अक्ष समतल को चार समकोणों में विभाजित करते हैं, जिन्हें चतुर्थांश कहते हैं। चतुर्भुज को विभिन्न विधियों से नाम या क्रमांकित किया जा सकता है, किन्तु जिस चतुर्थांश में सभी निर्देशांक धनात्मक होते हैं उसे सामान्यतः प्रथम चतुर्थांश कहा जाता है।
यदि किसी बिंदु के निर्देशांक (x, y) हैं, तो बिंदु से X-अक्ष से रेखा तक और Y-अक्ष से इसकी दूरी |y| तथा |x| हैं, क्रमश; जहाँ | · | किसी संख्या के निरपेक्ष मान को दर्शाता है।
त्रि आयाम
त्रि-आयामी समष्टि के लिए कार्टेशियन समन्वय प्रणाली में आदेशित त्रिभुज रेखाएं (अक्ष) होती हैं जो सामान्य बिंदु (मूल) के माध्यम से जाती हैं,और जोड़ी-वार लंबवत होते हैं; प्रत्येक अक्ष के लिए अभिविन्यास; और त्रि अक्षों के लिए लंबाई की इकाई है। जैसा कि द्वि-आयामी स्थिति में होता है, प्रत्येक अक्ष संख्या रेखा बन जाती है। अंतरिक्ष के किसी भी बिंदु P के लिए, प्रत्येक समन्वय अक्ष पर P लंबवत के माध्यम से हाइपरअक्ष पर विचार करता है, और उस बिंदु की व्याख्या करता है जहां वह हाइपरअक्ष को संख्या के रूप में काटता है। P के कार्तीय निर्देशांक चयन किये हुए क्रम में वे तीन संख्याएँ हैं। विपरीत निर्माण बिंदु P को उसके तीन निर्देशांक दिए गए निर्धारित करता है।
वैकल्पिक रूप से, बिंदु P के प्रत्येक निर्देशांक को P से अन्य दो अक्षों द्वारा परिभाषित हाइपरअक्ष तक की दूरी के रूप में लिया जा सकता है, जिसमें संबंधित अक्ष के उन्मुखीकरण द्वारा निर्धारित संकेत होता है।
अक्षों की प्रत्येक जोड़ी समन्वय हाइपरअक्ष को परिभाषित करती है। ये हाइपरअक्ष अंतरिक्ष को अष्टक (ठोस ज्यामिति) में विभाजित करते हैं। अष्टक निम्नलिखित हैं:
तीन अक्षों में निर्देशांक के लिए कोई मानक नाम नहीं हैं (चूँकि, एब्सिस्सा, ऑर्डिनेट और एप्लीकेट शब्द कभी-कभी उपयोग किए जाते हैं)। निर्देशांक प्रायः X, Y, और Z, या x, y, और z अक्षरों द्वारा निरूपित किए जाते हैं। अक्षों को क्रमशः X-अक्ष, Y-अक्ष और Z-अक्ष के रूप में संदर्भित किया जा सकता है। पुनः निर्देशांक हाइपरअक्षको XY-अक्ष, YZ-अक्ष और XZ-अक्ष के रूप में संदर्भित किया जा सकता है।
गणित, भौतिकी और अभियांत्रिकीसंदर्भों में, प्रथम दो अक्षों को प्रायः क्षैतिज के रूप में परिभाषित या चित्रित किया जाता है, जिसमें त्रि अक्ष ऊपर की ओर प्रदर्शित करता है। उस स्थिति में त्रि निर्देशांक को ऊँचाई कहा जा सकता है। अभिविन्यास सामान्यतः चयन किया जाता है जिससे कि प्रथम धुरी से दूसरी धुरी तक 90 डिग्री का कोण बिंदु से देखे जाने पर वामावर्त दिखे (0, 0, 1); सम्मेलन जिसे सामान्यतः दाहिने हाथ का नियम कहा जाता है।
उच्च आयाम
चूँकि कार्तीय निर्देशांक अद्वितीय और अस्पष्ट होते हैं, कार्तीय तल के बिंदुओं को वास्तविक संख्याओं के युग्मों से पहचाना जा सकता है; वह कार्टेशियन उत्पाद के साथ है, जहाँ सभी वास्तविक संख्याओं का समुच्चय है। इसी प्रकार, आयाम n के किसी भी यूक्लिडियन समष्टि के बिंदुओं को n वास्तविक संख्याओं के टुपल्स (सूचियों) से पहचाना जाना चाहिए; वह कार्टेशियन उत्पाद के साथ है।
सामान्यीकरण
कार्टेशियन निर्देशांक की अवधारणा उन अक्षों को अनुमति देने के लिए सामान्यीकृत करती है जो दूसरे के लंबवत नहीं हैं, प्रत्येक अक्ष के साथ भिन्न-भिन्न इकाइयां हैं। उस स्थिति में, प्रत्येक निर्देशांक बिंदु को अक्ष पर दिशा के साथ प्रक्षेपित करके प्राप्त किया जाता है जो अन्य अक्ष के समानांतर होता है (या, सामान्य रूप से, अन्य सभी अक्षों द्वारा परिभाषित हाइपरअक्ष के लिए होता है)। इस प्रकार की तिरछी समन्वय प्रणाली में दूरियों और कोणों की गणना को मानक कार्टेशियन प्रणालियों से संशोधित किया जाना चाहिए, और अनेक मानक सूत्र (जैसे दूरी के लिए पाइथागोरस सूत्र) धारण नहीं करते हैं (एफ़िन समतल देखें)।
सूचनाएं और परंपराएं
बिंदु के कार्टेशियन निर्देशांक सामान्यतः कोष्ठक में लिखे जाते हैं और अल्पविराम द्वारा भिन्न किए जाते हैं, जैसे कि (10, 5) या (3, 5, 7) है। मूल को प्रायः बड़े अक्षर O के साथ लेबल किया जाता है। विश्लेषणात्मक ज्यामिति में, अज्ञात या सामान्य निर्देशांक प्रायः समतल में अक्षरों (x, y) और त्रि-आयामी समष्टि में (x, y, z) द्वारा निरूपित होते हैं। यह प्रचलन बीजगणित के सम्मेलन से आता है, जो अज्ञात मानों के लिए वर्णमाला के अंत के निकट अक्षरों का उपयोग करता है (जैसे कि अनेक ज्यामितीय समस्याओं में बिंदुओं के निर्देशांक), और दी गई मात्राओं के लिए प्रारंभ के निकट के अक्षरों का उपयोग करता है।
ये पारंपरिक नाम प्रायः अन्य डोमेन में उपयोग किए जाते हैं, जैसे कि भौतिकी और अभियांत्रिकी में उपयोग किए जाते हैं, चूँकि अन्य अक्षरों का उपयोग किया जा सकता है। उदाहरण के लिए, आलेख में यह दर्शाता है कि समय के साथ दबाव कैसे परिवर्तित होता है, आलेख निर्देशांक को p और t द्वारा दर्शाया जा सकता है। प्रत्येक अक्ष को सामान्यतः उस निर्देशांक के नाम पर रखा जाता है जिसे उसके साथ मापा जाता है; तो कोई x-अक्ष, y-अक्ष, t-अक्ष इत्यादि कहता है।
समन्वय नामकरण के लिए अन्य सामान्य परंपरा सबस्क्रिप्ट का उपयोग करना है, जैसे (x1, x2, ..., xn) n-आयामी समष्टि में n निर्देशांक के लिए, विशेष रूप से जब n 3 से अधिक या अनिर्दिष्ट हो। कुछ लेखक क्रमित में रूचि रखते हैं (x0, x1, ..., xn−1) कंप्यूटर प्रोग्रामिंग में ये संकेतन विशेष रूप से लाभप्रद हैं: बिंदु के निर्देशांक को रिकॉर्ड (कंप्यूटर विज्ञान) के अतिरिक्त ऐरे डेटा प्रकार के रूप में संग्रहीत करके, सबस्क्रिप्ट निर्देशांक को अनुक्रमित करने का कार्य कर सकता है।
द्वि-आयामी कार्टेशियन प्रणालियों के गणितीय दृष्टांतों में, प्रथम निर्देशांक (पारंपरिक रूप से एब्सिसा कहा जाता है) को क्षैतिज समतल अक्ष के साथ मापा जाता है, जो बाएं से दाएं की ओर उन्मुख होता है। दूसरा निर्देशांक (कोर्डिनेट) तब ऊर्ध्वाधर दिशा अक्ष के साथ मापा जाता है, सामान्यतः नीचे से ऊपर की ओर उन्मुख होता है। कार्टेशियन प्रणाली सीखने वाले छोटे बच्चे सामान्यतः x-, y-, और z-अक्ष अवधारणाओं को ठोस करने से पूर्व मूल्यों को पढ़ने का क्रम सीखते हैं, 2 डी निमोनिक्स से प्रारंभ करते हैं (उदाहरण के लिए, 'हॉल के साथ चलो फिर सीढ़ियों तक' जैसे सीधे x-अक्ष के आर-पार और पुनः y-अक्ष के अनुदिश ऊर्ध्वमुखी)।[7]
कंप्यूटर ग्राफिक्स और मूर्ति प्रोद्योगिकी, चूँकि, प्रायः कंप्यूटर डिस्प्ले पर नीचे की ओर y-अक्ष के साथ समन्वय प्रणाली का उपयोग करते हैं। यह सम्मेलन 1960 के दशक (या पूर्व) में विकसित हुआ था, जिस प्रकार से छवियों को मूल रूप से फ्रेम बफर में संग्रहीत किया गया था।
त्रि-आयामी प्रणालियों के लिए, xy-अक्ष को क्षैतिज रूप से चित्रित करना है, ऊंचाई (धनात्मक ऊपर) का प्रतिनिधित्व करने के लिए z-अक्ष जोड़ा गया है। इसके अतिरिक्त, x-अक्ष को दर्शक की ओर उन्मुख करना है, जो दाएं या बाएं पक्षपाती है। यदि आरेख (3डी प्रक्षेपण या परिप्रेक्ष्य (ग्राफ़िकल)) क्रमशः x- और y-अक्ष को क्षैतिज और लंबवत रूप से दिखाता है, तो z-अक्ष को पृष्ठ के बाहर व्यूअर या कैमरे की ओर प्रदर्शित करते हुए दिखाया जाना चाहिए। 3डी समन्वय प्रणाली के ऐसे 2डी आरेख में, z-अक्ष प्रकल्पित व्यूअर या कैमरा परिप्रेक्ष्य (ग्राफ़िकल) के आधार पर नीचे और बाईं या नीचे और दाईं ओर प्रदर्शित करने वाली रेखा या किरण के रूप में दिखाई देगा। किसी भी आरेख या प्रदर्शन में, तीन अक्षों का उन्मुखीकरण, समग्र रूप से, इच्छानुसार होता है। चूँकि, एक-दूसरे के सापेक्ष अक्षों का उन्मुखीकरण सदैव दाहिने हाथ के नियम का पालन करना चाहिए, जब तक कि विशेष रूप से अन्यथा न कहा गया हो। भौतिकी और गणित के सभी नियम इस दाहिने हाथ को मानते हैं, जो निरंतरता सुनिश्चित करता है।
3डी आरेखों के लिए, "एब्सिस्सा" और "ऑर्डिनेट" नाम क्रमशः x और y के लिए संभवतः ही कभी उपयोग किए जाते हैं। जब वे होते हैं, तो z-निर्देशांक को कभी-कभी 'एप्लिकेट' कहा जाता है। एब्सिस्सा, ऑर्डिनेट और एप्लिकेट शब्द कभी-कभी समन्वय मूल्यों के अतिरिक्त समन्वय अक्षों को संदर्भित करने के लिए उपयोग किए जाते हैं।[6]
चतुर्थांश और अष्टक
द्वि-आयामी कार्तीय प्रणाली के अक्षों ने समतल को चार अनंत क्षेत्रों में विभाजित करती हैं, जिन्हें चतुर्थांश कहते हैं,[6]प्रत्येक दो अर्ध-अक्षों से घिरा हुआ है। इन्हें प्रायः 1 से 4 तक गिना जाता है और रोमन अंकों द्वारा निरूपित किया जाता है: (जहां निर्देशांक दोनों में धनात्मक संकेत होते हैं), II (जहां भुज ऋणात्मक है - और कोटि धनात्मक है +), III (जहां भुज और कोर्डिनेट दोनों हैं) हैं -), और IV (भुजा +, कोटि -)। जब अक्षों को गणितीय प्रचलन के अनुसार खींचा जाता है, तो नंबरिंग ऊपरी दाएं ("उत्तर-पूर्व") चतुर्थांश से प्रारम्भ होकर वामावर्त हो जाती है |
इसी प्रकार, त्रि-आयामी कार्टेशियन प्रणाली अंतरिक्ष के विभाजन को आठ क्षेत्रों या अष्टक बिंदुओं के निर्देशांक के संकेतों के अनुसार परिभाषित करती है[6]। विशिष्ट अष्टक का नामकरण करने के लिए उपयोग की जाने वाली परंपरा इसके संकेतों को सूचीबद्ध करना है; उदाहरण के लिए, (+ + +) या (− + −) है। आयामों की इच्छानुसार संख्या के लिए चतुर्भुज और अष्टक का सामान्यीकरण ऑर्थेंट है, और समान नामकरण प्रणाली प्रस्तावित होती है।
समतल के लिए कार्तीय सूत्र
दो बिंदुओं के मध्य की दूरी
कार्टेशियन निर्देशांक के साथ समतल के दो बिंदुओं के मध्य यूक्लिडियन दूरी तथा है
यूक्लिडियन परिवर्तन
यूक्लिडियन परिवर्तन या यूक्लिडियन गतियाँ यूक्लिडियन समतल के बिंदुओं की (विशेषण) मानचित्र हैं जो बिंदुओं के मध्य की दूरी को बनाए रखते हैं। इन मानचित्रों के चार प्रकार (जिन्हें आइसोमेट्री भी कहा जाता है): अनुवाद (ज्यामिति), रोटेशन (गणित), परावर्तन (गणित) और ग्लाइड प्रतिबिंब हैं।[9]
अनुवाद
समतल के बिंदुओं का समुच्चय का अनुवाद करना, उनके मध्य की दूरी और दिशाओं को संरक्षित करना, समुच्चय में प्रत्येक बिंदु के कार्तीय निर्देशांक में संख्याओं (a, b) की निश्चित जोड़ी जोड़ने के समान है। अर्थात्, यदि किसी बिंदु के मूल निर्देशांक (x, y) हैं, वे अनुवाद के पश्चात होंगे
घूर्णन
किसी आकृति को मूल बिंदु के चारों ओर वामावर्त घुमाने के लिए किसी कोण से निर्देशांक (x',y') वाले बिंदु द्वारा निर्देशांक (x,y) वाले प्रत्येक बिंदु को परिवर्तित करने के समान है, जहां
प्रतिबिंब
यदि (x, y) बिंदु के कार्तीय निर्देशांक हैं, तो (−x, y) दूसरे निर्देशांक अक्ष (y-अक्ष) पर इसके प्रतिबिंब के निर्देशांक हैं, जैसे कि वह रेखा दर्पण हो। इसी प्रकार, (x, −y) प्रथम निर्देशांक अक्ष (x-अक्ष) पर इसके परावर्तन के निर्देशांक हैं। अधिक व्यापकता में, कोण बनाने वाली मूल रेखा के माध्यम से रेखा में प्रतिबिंब x-अक्ष के साथ, निर्देशांक (x, y) वाले प्रत्येक बिंदु को निर्देशांक वाले बिंदु (x′,y′) से परिवर्तित करने के समान है, जहाँ
ग्लाइड प्रतिबिंब
ग्लाइड प्रतिबिंब उस रेखा की दिशा में अनुवाद के पश्चात रेखा के पार प्रतिबिंब की संरचना है। यह देखा जा सकता है कि इन परिचालनों का क्रम आशय नहीं रखता है (अनुवाद पूर्व में आ सकता है, उसके पश्चात प्रतिबिंब है)।
परिवर्तनों का सामान्य आव्यूह रूप
आव्यूहों का उपयोग करके समतल के सभी एफ़िन परिवर्तनों को समान प्रकार से वर्णित किया जा सकता है। इस उद्देश्य के लिए निर्देशांक बिंदु को सामान्यतः कॉलम आव्यूह के रूप में दर्शाया जाता है। परिणाम बिंदु पर एफ़िन परिवर्तन प्रस्तावित करने के लिए सूत्र द्वारा दिया जाता है:
परिवर्तन अनुवाद है यदि केवल A पहचान आव्यूह है। परिवर्तन किसी बिंदु के चारों ओर घूर्णन है यदि केवल A घूर्णन आव्यूह है, जिसका अर्थ है कि यह ओर्थोगोनल है और
एफ़िन परिवर्तन
यूक्लिडियन समतल के एफ़िन परिवर्तन ऐसे परिवर्तन हैं जो रेखाओं को मानचित्रित करते हैं, किन्तु दूरियों और कोणों को परिवर्तित कर सकते हैं। जैसा कि पिछले खंड में कहा गया है, उन्हें संवर्धित आव्यूह के साथ दर्शाया जा सकता है:
संवर्धित आव्यूह जो दो एफ़िन परिवर्तनों की कार्य संरचना का प्रतिनिधित्व करता है, उनके संवर्धित आव्यूह को गुणा करके प्राप्त किया जाता है।
कुछ एफाइन परिवर्तन जो यूक्लिडियन परिवर्तन नहीं हैं, उन्हें विशिष्ट नाम मिले हैं।
स्केलिंग
स्केलिंग द्वारा एफ़िन परिवर्तन का उदाहरण दिया गया है, जो यूक्लिडियन नहीं है। किसी आकृति को बड़ा या छोटा करना प्रत्येक बिंदु के कार्तीय निर्देशांक को उसी धनात्मक संख्या m से गुणा करने के समान है। यदि (x, y) मूल आकृति पर बिंदु के निर्देशांक हैं, स्केल की गई आकृति पर संबंधित बिंदु के निर्देशांक हैं
शियरिंग
समांतर चतुर्भुज बनाने के लिए शियरिंग परिवर्तन वर्ग के शीर्ष पर धक्का देगा। क्षैतिज अक्ष द्वारा परिभाषित किया गया है:
अभिविन्यास और हैंडनेस
दो आयामों में
x-अक्ष को ठीक करना या चयन करना y-अक्ष को दिशा तक निर्धारित करता है। अर्थात्, y-अक्ष आवश्यक रूप से x-अक्ष पर बिंदु 0 के माध्यम से x-अक्ष पर लंबवत है। किन्तु यह विकल्प है कि लंबवत पर दो अर्ध रेखाओं में से किसे धनात्मक और किसको ऋणात्मक के रूप में नामित किया जाए। इन दो विकल्पों में से प्रत्येक कार्तीय तल के भिन्न अभिविन्यास (जिसे हैंडनेस भी कहा जाता है) को निर्धारित करता है।
समतल को ओरिएंट करने की सामान्य विधि, धनात्मक x-अक्ष की ओर प्रदर्शित करते हुए दाईं ओर और धनात्मक y-अक्ष की ओर प्रदर्शित करते हुए (x-अक्ष प्रथम और y-अक्ष दूसरा अक्ष है), को धनात्मक या मानक अभिविन्यास माना जाता है , जिसे दाहिने हाथ का अभिविन्यास भी कहा जाता है।
धनात्मक अभिविन्यास को परिभाषित करने के लिए सामान्यतः उपयोग किया जाने वाला स्मरक दाहिने हाथ का नियम है। धनात्मक रूप से उन्मुख समन्वय प्रणाली में, अंगूठे के साथ समतल पर कुछ सीमा तक बंद दाहिने हाथ को रखकर, उंगलियां x-अक्ष से y-अक्ष की ओर प्रदर्शित करते हैं।
समतल को उन्मुख करने की दूसरी विधि बाएं हाथ के नियम का पालन करती है, बाएं हाथ को अंगूठे के साथ समतल पर रखना है।
जब अंगूठे को मूल बिंदु से अक्ष के साथ धनात्मक की ओर प्रदर्शित किया जाता है, तो उंगलियों की वक्रता उस अक्ष के साथ धनात्मक घुमाव को प्रदर्शित करती है।
समतलको उन्मुख करने के लिए उपयोग किए जाने वाले नियम के अतिरिक्त, समन्वय प्रणाली को घुमाने से अभिविन्यास संरक्षित रहेगा। किसी अक्ष को स्विच करने से ओरिएंटेशन के विपरीत हो जाएगा, किन्तु दोनों को स्विच करने से ओरिएंटेशन अपरिवर्तित रहेगा।
त्रि आयामों में
एक बार x- और y-अक्ष निर्दिष्ट हो जाने पर, वे उस रेखा (ज्यामिति) का निर्धारण करते हैं जिसके साथ z-अक्ष स्थित होना चाहिए, किन्तु इस रेखा के लिए दो संभावित अभिविन्यास हैं। दो संभावित समन्वय प्रणालियां जो परिणाम देती हैं उन्हें 'दाएं हाथ' और 'बाएं हाथ' कहा जाता है। मानक अभिविन्यास, जहां x-अक्ष क्षैतिज है और z-अक्ष प्रदर्शित करता है (और x- और y-अक्ष x-अक्ष में धनात्मक रूप से उन्मुख दो-आयामी समन्वय प्रणाली बनाते हैं यदि x-अक्ष के ऊपर से देखा जाता है ) को 'दाहिने हाथ' या 'धनात्मक' कहा जाता है।
नाम दाहिने हाथ के नियम से निकला है। यदि दाहिने हाथ की तर्जनी को आगे की ओर प्रदर्शित किया जाता है, मध्यमा को समकोण पर अंदर की ओर झुकाया जाता है, और अंगूठे को दोनों के समकोण पर रखा जाता है, तो तीनों उंगलियां x-, y- के सापेक्ष अभिविन्यास को दर्शाती हैं। और दाएं हाथ की प्रणाली में z-अक्ष हैं। अंगूठा x-अक्ष, तर्जनी y-अक्ष और मध्यमा अंगुली z-अक्ष को दर्शाता है। इसके विपरीत, यदि बाएं हाथ से भी ऐसा ही किया जाता है, तो बाएं हाथ की प्रणाली का परिणाम होता है।
चित्र 7 बाएं और दाएं हाथ की समन्वय प्रणाली को दर्शाता है। क्योंकि द्वि-आयामी स्क्रीन पर त्रि-आयामी वस्तु का प्रतिनिधित्व किया जाता है, विरूपण और अस्पष्टता परिणाम है। नीचे की ओर (और दाईं ओर) अक्ष को प्रेक्षक की ओर प्रदर्शित करने के लिए भी है, जबकि मध्य-अक्ष पर्यवेक्षक से दूर प्रदर्शित करने के लिए है। लाल वृत्त क्षैतिज xy-तल के समानांतर है और x-अक्ष से y-अक्ष तक (दोनों स्थितियों में) घूर्णन को प्रदर्शित करता है। इसलिए लाल तीर z-अक्ष के सामने से निकलता है।
चित्र 8 दाहिने हाथ की समन्वय प्रणाली को चित्रित करने का प्रयास है। पुनः, समतल में त्रि-आयामी समन्वय प्रणाली प्रस्तुत करने के कारण अस्पष्टता है। अनेक पर्यवेक्षक चित्र 8 को विकट: उत्तल घन और विकट: अवतल कोने के मध्य अंदर और बाहर फ़्लिप करते हुए देखते हैं। यह अंतरिक्ष के दो संभावित झुकावों से युग्मित होती है। आकृति को उत्तल के रूप में देखने से बाएं हाथ की समन्वय प्रणाली मिलती है। इस प्रकार चित्र 8 को देखने का सही विधि यह है कि x-अक्ष को प्रेक्षक की ओर प्रदर्शित करते हुए और इस प्रकार अवतल कोने को देखकर कल्पना की जाए।
मानक आधार पर सदिश का प्रतिनिधित्व करना
कार्टेशियन समन्वय प्रणाली में अंतरिक्ष में बिंदु को यूक्लिडियन सदिश की स्थिति द्वारा भी दर्शाया जा सकता है, जिसे समन्वय प्रणाली की उत्पत्ति से बिंदु तक प्रदर्शित करने वाले तीर के रूप में माना जा सकता है।[11] यदि निर्देशांक समष्टििक स्थिति (विस्थापन) का प्रतिनिधित्व करते हैं, तो सदिश को मूल से रुचि के बिंदु तक सदिश का प्रतिनिधित्व करना सामान्य है, द्वि आयामों में, मूल से बिंदु तक कार्तीय निर्देशांक (x, y) के साथ सदिश को इस प्रकार लिखा जा सकता है:
सभी आयामों में कार्य करने वाले अन्य सदिश प्राप्त करने के लिए सदिश को गुणा करने की कोई प्राकृतिक व्याख्या नहीं है, चूँकि इस प्रकार के गुणन को प्रदान करने के लिए जटिल संख्याओं के उपयोग करने की विधि है। द्वि-आयामी कार्तीय तल में, के साथ बिंदु की पहचान करें (x, y) सम्मिश्र संख्या z = x + iy के साथ निर्देशांक यहाँ, i काल्पनिक इकाई है और इसे निर्देशांक (0, 1) वाले बिंदु से पहचाना जाता है, इसलिए यह x-अक्ष की दिशा में इकाई सदिश नहीं है। चूँकि सम्मिश्र संख्याओं को अन्य सम्मिश्र संख्या देकर गुणा किया जा सकता है, यह पहचान सदिशों को गुणा करने का साधन प्रदान करती है। त्रि-आयामी कार्तीय समष्टि में इसी प्रकार की पहचान को चतुष्कोणों के उपसमुच्चय के साथ बनाया जा सकता है।
अनुप्रयोग
कार्टेशियन निर्देशांक अमूर्तता है जिसमें वास्तविक विश्व में अनेक संभावित अनुप्रयोग होते हैं। चूँकि, समस्या अनुप्रयोग पर निर्देशांक को सुपरइम्पोज़ करने में तीन रचनात्मक चरण सम्मिलित हैं।
- दूरी की इकाइयों को निर्देशांक के रूप में उपयोग की जाने वाली संख्याओं द्वारा दर्शाए गए समष्टििक आकार को परिभाषित करने का निर्णय लिया जाना चाहिए।
- मूल समष्टि विशिष्ट समष्टििक समष्टि या स्थलचिह्न को निर्दिष्ट किया जाना चाहिए।
- अक्ष को त्यागकर सभी के लिए उपलब्ध दिशात्मक संकेतों का उपयोग करके अक्षों के अभिविन्यास को परिभाषित किया जाना चाहिए।
उदाहरण के रूप में पृथ्वी पर सभी बिंदुओं (अर्थात, भू-समष्टििक 3D) पर 3D कार्टेशियन निर्देशांक को सुपरइम्पोज़ करने पर विचार करें। किलोमीटर इकाइयों का श्रेष्ठ विकल्प है, क्योंकि किलोमीटर की मूल परिभाषा भू-समष्टििक थी, भूमध्य रेखा से उत्तरी ध्रुव तक सतह की दूरी के समान 10,000 km है। समरूपता के आधार पर, पृथ्वी का गुरुत्वाकर्षण केंद्र उत्पत्ति के प्राकृतिक समष्टि का विचार देता है (जिसे उपग्रह कक्षाओं के माध्यम से अनुभूत किया जा सकता है)। पृथ्वी के घूर्णन की धुरी X, Y और Z अक्षों के लिए प्राकृतिक अभिविन्यास प्रदान करती है, जो "ऊपर के प्रति नीचे" से दृढ़ता से जुड़ी हुई है, इसलिए धनात्मक Z भू-केंद्र से उत्तरी ध्रुव की दिशा को स्वीकार कर सकता है। X-अक्ष को परिभाषित करने के लिए भूमध्य रेखा पर समष्टि की आवश्यकता होती है, और प्रमुख मध्याह्न रेखा संदर्भ अभिविन्यास के रूप में सामने आती है, इसलिए X-अक्ष अभिविन्यास को भू-केंद्र 0 डिग्री देशांतर, 0 डिग्री अक्षांश तक ले जाता है। ध्यान दें कि X और Z के लिए त्रि आयामों और दो लंबवत अक्षों के साथ, Y-अक्ष पूर्व में दो विकल्पों द्वारा निर्धारित किया जाता है। दाहिने हाथ के नियम का पालन करने के लिए, Y-अक्ष को भू-केंद्र से 90 डिग्री देशांतर, 0 डिग्री अक्षांश की ओर प्रदर्शित करना चाहिए। −73.985656 डिग्री के देशांतर से, अक्षांश 40.748433 डिग्री से, और 40,000 / 2π किमी की पृथ्वी त्रिज्या से, और गोलाकार से कार्टेशियन निर्देशांक में परिवर्तित होने पर, कोई एम्पायर स्टेट बिल्डिंग के भू-केंद्रीय निर्देशांक का अनुमान लगा सकता है,(x, y, z) = (1,330.53 km, 4,635.75 km, 4,155.46 km) जीपीएस नेविगेशन ऐसे भूकेंद्रीय निर्देशांक पर निर्भर करता है।
अभियांत्रिकी परियोजनाओं में, निर्देशांक की परिभाषा पर सहमति महत्वपूर्ण आधार है। कोई यह नहीं मान सकता है कि निर्देशांक उपन्यास अनुप्रयोग के लिए पूर्वनिर्धारित होते हैं, इसलिए रेने डेसकार्टेस की सोच को प्रस्तावित करने के लिए समन्वय प्रणाली के लिए जहां पूर्व में ऐसी कोई समन्वय प्रणाली नहीं थी, समन्वय प्रणाली को कैसे खड़ा किया जाए, इसका ज्ञान आवश्यक है।
जबकि समष्टििक अनुप्रयोग व्यवसाय और वैज्ञानिक अनुप्रयोगों में सभी अक्षों के साथ समान इकाइयों को नियोजित करते हैं, प्रत्येक अक्ष में इसके साथ जुड़े माप की भिन्न-भिन्न इकाइयाँ हो सकती हैं (जैसे किलोग्राम, सेकंड, पाउंड, आदि)। यद्यपि चार- और उच्च-आयामी रिक्त समष्टि की कल्पना करना कठिन है, कार्टेशियन निर्देशांक के बीजगणित को अपेक्षाकृत सरलता से चार या अधिक चरों तक बढ़ाया जा सकता है, जिससे कि अनेक चरों को सम्मिलित करने वाली कुछ गणनाएं की जा सकें। (इस प्रकार का बीजगणितीय विस्तार वह है जो उच्च-आयामी रिक्त समष्टि की ज्यामिति को परिभाषित करने के लिए उपयोग किया जाता है।) इसके विपरीत, अनेक-समष्टििक चर दो या तीन आयामों में कार्टेशियन निर्देशांक की ज्यामिति का उपयोग करना प्रायः सहायक होता है। जिससे कि दो या तीन के मध्य बीजगणितीय संबंधों की कल्पना की जा सके।
किसी फलन या संबंध का आलेख उस फलन या संबंध को संतुष्ट करने वाले सभी बिंदुओं का समुच्चय है। चर के फलन के लिए, f, सभी बिंदुओं का समुच्चय (x, y), जहाँ y = f(x) फलन f का आलेख है। दो चरों के फलन g के लिए, सभी बिंदुओं का समुच्चय (x, y, z), जहाँ z = g(x, y) फलन g का आलेख है। इस प्रकार के फलन या संबंध के आलेख के स्केच में फलन या संबंध के सभी मुख्य भाग सम्मिलित होंगे जिसमें इसके सापेक्ष एक्स्ट्रेमा, इसकी अवतलता और विभक्ति के बिंदु, विच्छिन्नता के किसी भी बिंदु और इसके अंतिम व्यवहार सम्मिलित होंगे। इन सभी प्रावधानों को कैलकुलस में प्रत्येक प्रकार से परिभाषित किया गया है। इस प्रकार के आलेख किसी फलन या संबंध की प्रकृति और व्यवहार को समझने के लिए कैलकुलस में उपयोगी होते हैं।
यह भी देखें
- क्षैतिज और लंबवत
- जोन्स आरेख , जो दो के अतिरिक्त चार चरों को प्लॉट करता है
- ऑर्थोगोनल निर्देशांक
- ध्रुवीय समन्वय प्रणाली
- नियमित ग्रिड
- गोलाकार समन्वय प्रणाली
संदर्भ
- ↑ Bix, Robert A.; D'Souza, Harry J. "विश्लेषणात्मक ज्यामिति". Encyclopædia Britannica. Retrieved 2017-08-06.
- ↑ Kent, Alexander J.; Vujakovic, Peter (2017-10-04). मैपिंग और कार्टोग्राफी की रूटलेज हैंडबुक (in English). Routledge. ISBN 9781317568216.
- ↑ Burton 2011, p. 374.
- ↑ A Tour of the Calculus, David Berlinski.
- ↑ Axler, Sheldon (2015). रैखिक बीजगणित सही हो गया - स्प्रिंगर. Undergraduate Texts in Mathematics. p. 1. doi:10.1007/978-3-319-11080-6. ISBN 978-3-319-11079-0.
- ↑ 6.0 6.1 6.2 6.3 "कार्टेशियन ऑर्थोगोनल कोऑर्डिनेट सिस्टम". Encyclopedia of Mathematics (in English). Retrieved 2017-08-06.
- ↑ "चार्ट और ग्राफ: सही प्रारूप चुनना". www.mindtools.com (in English). Retrieved 2017-08-29.
- ↑ Hughes-Hallett, Deborah; McCallum, William G.; Gleason, Andrew M. (2013). कैलकुलस : सिंगल और मल्टीवेरिएबल (6 ed.). John wiley. ISBN 978-0470-88861-2.
- ↑ Smart 1998, Chap. 2
- ↑ Brannan, Esplen & Gray 1998, pg. 49
- ↑ Brannan, Esplen & Gray 1998, Appendix 2, pp. 377–382
- ↑ David J. Griffiths (1999). इलेक्ट्रोडायनामिक्स का परिचय. Prentice Hall. ISBN 978-0-13-805326-0.
स्रोत
- Brannan, David A.; Esplen, Matthew F.; Gray, Jeremy J. (1998), Geometry, Cambridge: Cambridge University Press, ISBN 978-0-521-59787-6
- Burton, David M. (2011), The History of Mathematics/An Introduction (7th ed.), New York: McGraw-Hill, ISBN 978-0-07-338315-6
- Smart, James R. (1998), Modern Geometries (5th ed.), Pacific Grove: Brooks/Cole, ISBN 978-0-534-35188-5
अग्रिम पठन
- Descartes, René (2001). Discourse on Method, Optics, Geometry, and Meteorology. Translated by Paul J. Oscamp (Revised ed.). Indianapolis, IN: Hackett Publishing. ISBN 978-0-87220-567-3. OCLC 488633510.
- Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers (1st ed.). New York: McGraw-Hill. pp. 55–79. LCCN 59-14456. OCLC 19959906.
- Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. LCCN 55-10911.
- Moon P, Spencer DE (1988). "Rectangular Coordinates (x, y, z)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd, 3rd print ed.). New York: Springer-Verlag. pp. 9–11 (Table 1.01). ISBN 978-0-387-18430-2.
- Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. ISBN 978-0-07-043316-8. LCCN 52-11515.
- Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. LCCN 67-25285.
बाहरी संबंध
- Cartesian Coordinate System
- MathWorld description of Cartesian coordinates
- Coordinate Converter – converts between polar, Cartesian and spherical coordinates
- Coordinates of a point Interactive tool to explore coordinates of a point
- open source JavaScript class for 2D/3D Cartesian coordinate system manipulation