सदिश क्षेत्र: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Assignment of a vector to each point in a subset of Euclidean space}} File:VectorField.svg|right|thumb|250px|वेक्टर फ़ील्ड का...")
 
 
(14 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{short description|Assignment of a vector to each point in a subset of Euclidean space}}
{{short description|Assignment of a vector to each point in a subset of Euclidean space}}
[[File:VectorField.svg|right|thumb|250px|वेक्टर फ़ील्ड का एक भाग (sin y, sin x)]][[वेक्टर कैलकुलस]] और भौतिकी में, एक वेक्टर फ़ील्ड एक स्पेस (गणित) में प्रत्येक बिंदु के लिए एक [[वेक्टर (ज्यामिति)]] का असाइनमेंट है, आमतौर पर [[ यूक्लिडियन स्थान ]] <math>\mathbb{R}^n</math>.<ref name="Galbis-2012-p12" /> एक समतल (ज्यामिति) पर एक सदिश क्षेत्र को दिए गए परिमाण और दिशाओं वाले तीरों के एक संग्रह के रूप में देखा जा सकता है, जिनमें से प्रत्येक समतल पर एक बिंदु से जुड़ा होता है। वेक्टर फ़ील्ड का उपयोग अक्सर मॉडल करने के लिए किया जाता है, उदाहरण के लिए, तीन आयामी अंतरिक्ष में चलती तरल पदार्थ की गति और दिशा, जैसे [[हवा]], या कुछ बल की [[ताकत]] और दिशा, जैसे [[चुंबकीय क्षेत्र]] या [[गुरुत्वाकर्षण]] बल, जब यह बदलता है एक बिंदु से दूसरे बिंदु तक.
[[File:VectorField.svg|right|thumb|250px|सदिश क्षेत्र का भाग (sin y, sin x)]]सदिश गणना और भौतिकी में, '''सदिश क्षेत्र''' किसी समष्टि के प्रत्येक बिंदु पर सदिश का असाइनमेंट होता है, सामान्यतः यूक्लिडियन समष्टि <math>\mathbb{R}^n</math>होता है।<ref name="Galbis-2012-p12" /> किसी समतल पर सदिश क्षेत्र को दिए गए परिमाण और दिशाओं वाले तीरों के संग्रह के रूप में देखा जा सकता है, जिनमें से प्रत्येक समतल पर बिंदु से जुड़ा होता है। सदिश क्षेत्र का उपयोग प्रायः मॉडल करने के लिए किया जाता है, उदाहरण के लिए, तीन आयामी समिष्ट में चलती तरल पदार्थ की गति और दिशा, जैसे कि वायु, या कुछ बल की शक्ति और दिशा, जैसे [[चुंबकीय क्षेत्र]] या [[गुरुत्वाकर्षण]] बल, क्योंकि यह एक बिंदु से दूसरे बिंदु तक परिवर्तित होता है।


[[विभेदक और अभिन्न कलन]] के तत्व स्वाभाविक रूप से वेक्टर क्षेत्रों तक विस्तारित होते हैं। जब एक सदिश क्षेत्र बल का प्रतिनिधित्व करता है, तो एक सदिश क्षेत्र का रेखा अभिन्न अंग एक पथ के साथ चलने वाले बल द्वारा किए गए [[कार्य (भौतिकी)]] का प्रतिनिधित्व करता है, और इस व्याख्या के तहत ऊर्जा के संरक्षण को कैलकुलस के मौलिक प्रमेय के एक विशेष मामले के रूप में प्रदर्शित किया जाता है। वेक्टर फ़ील्ड को उपयोगी रूप से अंतरिक्ष में गतिशील प्रवाह के वेग का प्रतिनिधित्व करने के रूप में सोचा जा सकता है, और यह भौतिक अंतर्ज्ञान [[विचलन]] (जो प्रवाह की मात्रा में परिवर्तन की दर का प्रतिनिधित्व करता है) और [[कर्ल (गणित)]] (जो प्रतिनिधित्व करता है) जैसी धारणाओं की ओर ले जाता है प्रवाह का घूर्णन)।
अवकल और अभिन्न कलन के तत्व स्वाभाविक रूप से सदिश क्षेत्रों तक विस्तारित होते हैं। जब सदिश क्षेत्र बल का प्रतिनिधित्व करता है, तो सदिश क्षेत्र का रेखा अभिन्न अंग पथ के साथ चलने वाले बल द्वारा किए गए [[कार्य (भौतिकी)|फलन]] का प्रतिनिधित्व करता है, और इस व्याख्या के अंतर्गत ऊर्जा के संरक्षण को गणना के मौलिक प्रमेय की विशेष स्थिति के रूप में प्रदर्शित किया जाता है। सदिश क्षेत्र को उपयोगी रूप से समिष्ट में गतिशील प्रवाह के वेग का प्रतिनिधित्व करने के रूप में सोचा जा सकता है, और यह भौतिक अंतर्ज्ञान [[विचलन]] (जो प्रवाह की मात्रा में परिवर्तन की दर का प्रतिनिधित्व करता है) और [[कर्ल (गणित)|कर्ल]] (जो प्रतिनिधित्व करता है) जैसी धारणाओं की ओर ले जाता है।


एक वेक्टर फ़ील्ड एक [[वेक्टर-मूल्यवान फ़ंक्शन]] का एक विशेष मामला है, जिसके डोमेन के आयाम का इसकी सीमा के आयाम से कोई संबंध नहीं है; उदाहरण के लिए, किसी [[अंतरिक्ष वक्र]] की [[स्थिति वेक्टर]] को केवल परिवेशीय स्थान के छोटे उपसमुच्चय के लिए परिभाषित किया गया है।
सदिश क्षेत्र [[वेक्टर-मूल्यवान फ़ंक्शन|वेक्टर-वैल्यू फलन]] की विशेष स्थिति है, जिसके डोमेन के आयाम का इसकी सीमा के आयाम से कोई संबंध नहीं है; उदाहरण के लिए, किसी समिष्ट वक्र की स्थिति सदिश को केवल परिवेशीय समष्टि के छोटे उपसमुच्चय के लिए परिभाषित किया गया है। इसी प्रकार, n निर्देशांक, n-आयामी यूक्लिडियन समष्टि में डोमेन पर सदिश क्षेत्र  <math>\mathbb{R}^n</math> को वेक्टर-वैल्यू फलन के रूप में दर्शाया जा सकता है जो डोमेन के प्रत्येक बिंदु पर वास्तविक संख्याओं के n-टुपल को जोड़ता है। सदिश क्षेत्र का यह प्रतिनिधित्व समन्वय प्रणाली पर निर्भर करता है, और एक समन्वय प्रणाली से दूसरे में जाने में उचित प्रकार से परिभाषित परिवर्तन नियम (सदिश का सहप्रसरण और विरोधाभास) होता है।
इसी तरह, एन [[निर्देशांक तरीका]], एन-डायमेंशनल यूक्लिडियन स्पेस में एक डोमेन पर एक वेक्टर फ़ील्ड <math>\mathbb{R}^n</math> इसे एक वेक्टर-वैल्यू फ़ंक्शन के रूप में दर्शाया जा सकता है जो डोमेन के प्रत्येक बिंदु पर वास्तविक संख्याओं के एन-टुपल को जोड़ता है। एक वेक्टर क्षेत्र का यह प्रतिनिधित्व समन्वय प्रणाली पर निर्भर करता है, और एक समन्वय प्रणाली से दूसरे में जाने में एक अच्छी तरह से परिभाषित परिवर्तन कानून (वेक्टर का सहप्रसरण और विरोधाभास) होता है।


वेक्टर फ़ील्ड की चर्चा अक्सर यूक्लिडियन स्पेस के खुले सेट पर की जाती है, लेकिन यह [[सतह (टोपोलॉजी)]] जैसे अन्य उपसमुच्चय पर भी समझ में आता है, जहां वे प्रत्येक बिंदु पर सतह पर स्पर्शरेखा वाले एक तीर को जोड़ते हैं (वक्रों की एक विभेदक ज्यामिति)।
सदिश क्षेत्र का वर्णन प्रायः यूक्लिडियन समष्टि के विवृत उपसमुच्चय पर की जाती है, किन्तु यह [[सतह (टोपोलॉजी)|सतहों]] जैसे अन्य उपसमुच्चय पर भी समझ में आता है, जहां वे प्रत्येक बिंदु पर सतह पर स्पर्शरेखा वाले तीर को जोड़ते हैं (वक्रों की अवकल ज्यामिति)। सामान्यतः, सदिश क्षेत्र को भिन्न-भिन्न मैनिफोल्ड्स पर परिभाषित किया जाता है, जो ऐसे समष्टि होते हैं जो छोटे स्तर पर यूक्लिडियन समष्टि के जैसे दिखते हैं, किन्तु बड़े स्तर पर अधिक जटिल संरचना हो सकती है। इस सेटिंग में, सदिश क्षेत्र मैनिफोल्ड के प्रत्येक बिंदु पर स्पर्शरेखा सदिश देता है (अर्थात, मैनिफोल्ड के [[स्पर्शरेखा बंडल]] का खंड)। सदिश क्षेत्र एक प्रकार का टेंसर क्षेत्र  है।
अधिक आम तौर पर, वेक्टर फ़ील्ड को अलग-अलग मैनिफोल्ड्स पर परिभाषित किया जाता है, जो ऐसे स्थान होते हैं जो छोटे पैमाने पर यूक्लिडियन अंतरिक्ष की तरह दिखते हैं, लेकिन बड़े पैमाने पर अधिक जटिल संरचना हो सकती है। इस सेटिंग में, एक वेक्टर फ़ील्ड मैनिफोल्ड के प्रत्येक बिंदु पर एक स्पर्शरेखा वेक्टर देता है (अर्थात, मैनिफोल्ड के [[स्पर्शरेखा बंडल]] का एक खंड (फाइबर बंडल)। वेक्टर फ़ील्ड एक प्रकार का [[टेंसर फ़ील्ड]] है।


==परिभाषा==
==परिभाषा==


===यूक्लिडियन अंतरिक्ष के उपसमुच्चय पर वेक्टर फ़ील्ड===
===यूक्लिडियन समष्टि के उपसमुच्चय पर सदिश क्षेत्र  ===
{{multiple image
{{multiple image
| footer    = Two representations of the same vector field: {{nowrap|1='''v'''(''x'', ''y'') = −'''r'''}}. The arrows depict the field at discrete points, however, the field exists everywhere.
| footer    = Two representations of the same vector field: {{nowrap|1='''v'''(''x'', ''y'') = −'''r'''}}. The arrows depict the field at discrete points, however, the field exists everywhere.
Line 24: Line 22:
}}
}}


एक उपसमुच्चय दिया गया {{math|''S''}} का {{math|'''R'''<sup>''n''</sup>}}, एक वेक्टर फ़ील्ड को वेक्टर-वैल्यू फ़ंक्शन द्वारा दर्शाया जाता है {{math|''V'': ''S'' → '''R'''<sup>''n''</sup>}} मानक कार्टेशियन निर्देशांक में {{math|(''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>)}}. यदि प्रत्येक घटक {{math|''V''}} तो सतत है {{math|''V''}} एक सतत सदिश क्षेत्र है. सुचारू वेक्टर फ़ील्ड पर ध्यान केंद्रित करना आम बात है, जिसका अर्थ है कि प्रत्येक घटक एक [[सुचारू कार्य]] है (किसी भी संख्या में भिन्न हो सकता है)। एक वेक्टर फ़ील्ड को ''एन''-आयामी स्थान के भीतर अलग-अलग बिंदुओं पर एक वेक्टर निर्दिष्ट करने के रूप में देखा जा सकता है।<ref name="Galbis-2012-p12">{{cite book|author1=Galbis, Antonio |author2=Maestre, Manuel |title=वेक्टर विश्लेषण बनाम वेक्टर कैलकुलस|publisher=Springer|year=2012|isbn=978-1-4614-2199-3|page=12|url=https://books.google.com/books?id=tdF8uTn2cnMC&pg=PA12}}</ref>
{{math|'''R'''<sup>''n''</sup>}} के उपसमुच्चय {{math|''S''}} को देखते हुए, सदिश क्षेत्र को मानक कार्टेशियन निर्देशांक में {{math|(''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>)}} में वेक्टर-वैल्यू फलन {{math|''V'': ''S'' → '''R'''<sup>''n''</sup>}} द्वारा दर्शाया जाता है। यदि {{math|''V''}} का प्रत्येक घटक सतत है तो {{math|''V''}} सतत सदिश क्षेत्र है। सुचारू सदिश क्षेत्र पर ध्यान केंद्रित करना सामान्य विषय है, जिसका अर्थ है कि प्रत्येक घटक सुचारू फलन है (किसी भी संख्या में भिन्न हो सकता है)। सदिश क्षेत्र  को ''n''-आयामी समष्टि के अंदर भिन्न-भिन्न बिंदुओं पर सदिश निर्दिष्ट करने के रूप में देखा जा सकता है।<ref name="Galbis-2012-p12">{{cite book|author1=Galbis, Antonio |author2=Maestre, Manuel |title=वेक्टर विश्लेषण बनाम वेक्टर कैलकुलस|publisher=Springer|year=2012|isbn=978-1-4614-2199-3|page=12|url=https://books.google.com/books?id=tdF8uTn2cnMC&pg=PA12}}</ref>
एक मानक संकेतन लिखना है <math>\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n}</math> निर्देशांक दिशाओं में इकाई सदिशों के लिए। इन शब्दों में, प्रत्येक सहज सदिश क्षेत्र <math>V</math> एक खुले उपसमुच्चय पर <math>S</math> का <math>{\mathbf R}^n</math> के रूप में लिखा जा सकता है
 
मानक संकेतन <math>\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n}</math> निर्देशांक दिशाओं में इकाई सदिशों के लिए लिखना है। इन शब्दों में, प्रत्येक सहज सदिश क्षेत्र <math>V</math> विवृत उपसमुच्चय पर <math>S</math> को <math>{\mathbf R}^n</math> के रूप में लिखा जा सकता है:
:<math> \sum_{i=1}^n V_i(x_1,\ldots,x_n)\frac{\partial}{\partial x_i}</math>
:<math> \sum_{i=1}^n V_i(x_1,\ldots,x_n)\frac{\partial}{\partial x_i}</math>
कुछ सुचारु कार्यों के लिए <math>V_1,\ldots,V_n</math> पर <math>S</math>.<ref name="Tu-2010-p149" />इस अंकन का कारण यह है कि एक सदिश क्षेत्र सुचारु कार्यों के स्थान से स्वयं तक एक [[रेखीय मानचित्र]] निर्धारित करता है, <math>V\colon C^{\infty}(S)\to C^{\infty}(S)</math>, सदिश क्षेत्र की दिशा में अंतर करके दिया गया है।
कुछ सुचारु फलनों के लिए <math>V_1,\ldots,V_n</math> पर <math>S</math> है।<ref name="Tu-2010-p149" /> इस अंकन का कारण यह है कि सदिश क्षेत्र सुचारु फलनों के समष्टि से स्वयं तक [[रेखीय मानचित्र]] निर्धारित करता है, <math>V\colon C^{\infty}(S)\to C^{\infty}(S)</math>, सदिश क्षेत्र की दिशा में अंतर करके दिया गया है।


उदाहरण: वेक्टर फ़ील्ड <math>-x_2\frac{\partial}{\partial x_1}+x_1\frac{\partial}{\partial x_2}</math> में मूल के चारों ओर वामावर्त घुमाव का वर्णन करता है <math>\mathbf{R}^2</math>. यह दिखाने के लिए कि फ़ंक्शन <math>x_1^2+x_2^2</math> घूर्णी रूप से अपरिवर्तनीय है, गणना करें:
'''उदाहरण:''' सदिश क्षेत्र  <math>-x_2\frac{\partial}{\partial x_1}+x_1\frac{\partial}{\partial x_2}</math> में मूल के चारों ओर वामावर्त घुमाव <math>\mathbf{R}^2</math> का वर्णन करता है यह दिखाने के लिए कि फलन <math>x_1^2+x_2^2</math> घूर्णी रूप से अपरिवर्तनीय है, गणना करें:
:<math>\bigg(-x_2\frac{\partial}{\partial x_1}+x_1\frac{\partial}{\partial x_2}\bigg)(x_1^2+x_2^2) = -x_2(2x_1)+x_1(2x_2) = 0.</math>
:<math>\bigg(-x_2\frac{\partial}{\partial x_1}+x_1\frac{\partial}{\partial x_2}\bigg)(x_1^2+x_2^2) = -x_2(2x_1)+x_1(2x_2) = 0.</math>
दिए गए वेक्टर फ़ील्ड {{math|''V''}}, {{math|''W''}} पर परिभाषित किया गया {{math|''S''}} और एक सुचारू कार्य {{mvar|f}} पर परिभाषित किया गया {{math|''S''}}, अदिश गुणन और सदिश जोड़ की संक्रियाएँ,
दिए गए सदिश क्षेत्र  {{math|''V''}}, {{math|''W''}} पर परिभाषित किया गया {{math|''S''}} और सुचारू फलन {{mvar|f}} पर {{math|''S''}} परिभाषित किया गया अदिश गुणन और सदिश जोड़ की संक्रियाएँ,
<math display="block"> (fV)(p) := f(p)V(p)</math>
<math display="block"> (fV)(p) := f(p)V(p)</math>
<math display="block"> (V+W)(p) := V(p) + W(p),</math>
<math display="block"> (V+W)(p) := V(p) + W(p),</math>
स्मूथ वेक्टर फ़ील्ड्स को स्मूथ फ़ंक्शंस के रिंग (गणित) पर एक [[मॉड्यूल (गणित)]] में बनाएं, जहां फ़ंक्शंस के गुणन को बिंदुवार परिभाषित किया गया है।
स्मूथ सदिश फ़ील्ड्स को स्मूथ फलन के रिंग पर [[मॉड्यूल (गणित)|मॉड्यूल]] में बनाएं, जहां फलन के गुणन को बिंदुवार परिभाषित किया गया है।


===समन्वय परिवर्तन कानून===
===समन्वय परिवर्तन नियम ===
भौतिकी में, एक [[यूक्लिडियन वेक्टर]] को अतिरिक्त रूप से इस बात से अलग किया जाता है कि जब कोई एक ही वेक्टर को एक अलग पृष्ठभूमि समन्वय प्रणाली के संबंध में मापता है तो उसके निर्देशांक कैसे बदलते हैं। यूक्लिडियन वेक्टर#वेक्टर, स्यूडोवेक्टर और ट्रांसफ़ॉर्मेशन एक वेक्टर को स्केलर की एक साधारण सूची से, या एक [[कोवेक्टर]] से ज्यामितीय रूप से अलग इकाई के रूप में अलग करते हैं।
भौतिकी में, [[यूक्लिडियन वेक्टर|यूक्लिडियन]] सदिश को अतिरिक्त रूप से इस विषय से भिन्न किया जाता है कि जब कोई एक ही सदिश को भिन्न पृष्ठभूमि समन्वय प्रणाली के संबंध में मापता है तो उसके निर्देशांक कैसे परिवर्तित होते हैं। सदिश के परिवर्तन गुण सदिश को अदिश की साधारण सूची से, या सह सदिश से ज्यामितीय रूप से भिन्न इकाई के रूप में भिन्न करते हैं।


इस प्रकार, मान लीजिये {{math|(''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>)}} कार्टेशियन निर्देशांक का एक विकल्प है, जिसके संदर्भ में वेक्टर के घटक होते हैं {{mvar|V}} हैं
इस प्रकार, मान लीजिये {{math|(''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>)}} कार्टेशियन निर्देशांक का विकल्प है, जिसके संदर्भ में सदिश {{mvar|V}} के घटक होते हैं:
<math display="block">V_x = (V_{1,x}, \dots, V_{n,x})</math>
<math display="block">V_x = (V_{1,x}, \dots, V_{n,x})</math>
और मान लीजिए कि (y<sub>1</sub>,...,और<sub>''n''</sub>) x के n फलन हैं<sub>''i''</sub> एक अलग समन्वय प्रणाली को परिभाषित करना। फिर नए निर्देशांक में वेक्टर V के घटकों को परिवर्तन कानून को संतुष्ट करने की आवश्यकता होती है
और मान लीजिए कि (y<sub>1</sub>,...,और<sub>''n''</sub>) अलग समन्वय प्रणाली को परिभाषित करने वाले x<sub>''i''</sub> के n फलन हैं। फिर नए निर्देशांक में सदिश V के घटकों को परिवर्तन नियम को संतुष्ट करने की आवश्यकता होती है:
{{NumBlk||<math display="block">V_{i,y} = \sum_{j=1}^n \frac{\partial y_i}{\partial x_j} V_{j,x}.</math>|{{EquationRef|1}}}}
{{NumBlk||<math display="block">V_{i,y} = \sum_{j=1}^n \frac{\partial y_i}{\partial x_j} V_{j,x}.</math>|{{EquationRef|1}}}}


इस तरह के परिवर्तन नियम को सदिशों का सहप्रसरण और प्रतिप्रसरण कहा जाता है। एक समान परिवर्तन कानून भौतिकी में वेक्टर क्षेत्रों की विशेषता बताता है: विशेष रूप से, एक वेक्टर क्षेत्र परिवर्तन कानून के अधीन प्रत्येक समन्वय प्रणाली में एन कार्यों का एक विनिर्देश है ({{EquationNote|1}}) विभिन्न समन्वय प्रणालियों से संबंधित।
ऐसे परिवर्तन नियम को सदिशों का सहप्रसरण और प्रतिप्रसरण कहा जाता है। समान परिवर्तन नियम भौतिकी में सदिश क्षेत्रों की विशेषता बताता है: विशेष रूप से, सदिश क्षेत्र परिवर्तन नियम के अधीन प्रत्येक समन्वय प्रणाली में ''n'' फलन का विनिर्देश है ({{EquationNote|1}}) विभिन्न समन्वय प्रणालियों से संबंधित है।


इस प्रकार वेक्टर फ़ील्ड की तुलना [[अदिश क्षेत्र]] से की जाती है, जो अंतरिक्ष में प्रत्येक बिंदु पर एक संख्या या स्केलर को जोड़ती है, और स्केलर फ़ील्ड की सरल सूचियों से भी विपरीत होती है, जो समन्वय परिवर्तनों के तहत परिवर्तित नहीं होती हैं।
इस प्रकार सदिश क्षेत्र की तुलना [[अदिश क्षेत्र]] से की जाती है, जो समष्टि में प्रत्येक बिंदु पर संख्या या स्केलर को जोड़ती है, और स्केलर क्षेत्र  की सरल सूचियों से भी विपरीत होती है, जो समन्वय परिवर्तनों के अंतर्गत परिवर्तित नहीं होती हैं।


===मैनिफ़ोल्ड पर वेक्टर फ़ील्ड===
===मैनिफ़ोल्ड पर सदिश फ़ील्ड===
[[File:Vector sphere.svg|right|200px|thumb|एक गोले पर एक सदिश क्षेत्र]]एक भिन्न विविधता दी गई है <math>M</math>, एक वेक्टर फ़ील्ड पर <math>M</math> प्रत्येक बिंदु के लिए [[स्पर्शरेखा स्थान]] का एक असाइनमेंट है <math>M</math>.<ref name="Tu-2010-p149">{{cite book|author=Tu, Loring W.|chapter=Vector fields|title=मैनिफोल्ड्स का एक परिचय|publisher=Springer|year=2010|isbn=978-1-4419-7399-3|page=149|chapter-url=https://books.google.com/books?id=PZ8Pvk7b6bUC&pg=PA149}}</ref> अधिक सटीक रूप से, एक वेक्टर फ़ील्ड <math>F</math> से एक [[मानचित्र (गणित)]] है <math>M</math> स्पर्शरेखा बंडल में <math>TM</math> ताकि <math> p\circ F </math> पहचान मानचित्रण है
[[File:Vector sphere.svg|right|200px|thumb|गोले पर सदिश क्षेत्र]]भिन्न विविधता <math>M</math> दी गई है, सदिश क्षेत्र पर <math>M</math> प्रत्येक बिंदु के लिए [[स्पर्शरेखा स्थान|स्पर्शरेखा सदिश]] का असाइनमेंट <math>M</math> है।<ref name="Tu-2010-p149">{{cite book|author=Tu, Loring W.|chapter=Vector fields|title=मैनिफोल्ड्स का एक परिचय|publisher=Springer|year=2010|isbn=978-1-4419-7399-3|page=149|chapter-url=https://books.google.com/books?id=PZ8Pvk7b6bUC&pg=PA149}}</ref> अधिक त्रुटिहीन रूप से, सदिश क्षेत्र <math>F</math> से [[मानचित्र (गणित)|मानचित्र]] है <math>M</math> स्पर्शरेखा बंडल में <math>TM</math> जिससे कि<math> p\circ F </math> पहचान मानचित्रण है जहां <math>p</math> से प्रक्षेपण <math>TM</math> को <math>M</math> द्वारा दर्शाता है। दूसरे शब्दों में, सदिश क्षेत्र स्पर्शरेखा बंडल का खंड है।
कहाँ <math>p</math> से प्रक्षेपण को दर्शाता है <math>TM</math> को <math>M</math>. दूसरे शब्दों में, एक वेक्टर फ़ील्ड स्पर्शरेखा बंडल का एक खंड (फाइबर बंडल) है।


एक वैकल्पिक परिभाषा: एक सहज वेक्टर क्षेत्र <math>X</math> अनेक गुना पर <math>M</math> एक रेखीय मानचित्र है <math>X: C^\infty(M) \to C^\infty(M)</math> ऐसा है कि <math>X</math> एक [[व्युत्पत्ति (विभेदक बीजगणित)]] है: <math>X(fg) = fX(g)+X(f)g</math> सभी के लिए <math>f,g \in C^\infty(M)</math>.<ref>{{cite web |title=विभेदक ज्यामिति का एक परिचय|first=Eugene |last=Lerman |date=August 19, 2011 |url=https://faculty.math.illinois.edu/~lerman/518/f11/8-19-11.pdf#page=18 |at=Definition 3.23 }}</ref>
'''वैकल्पिक परिभाषा:''' सहज सदिश क्षेत्र <math>X</math> मैनिफोल्ड पर <math>M</math> रेखीय मानचित्र है <math>X: C^\infty(M) \to C^\infty(M)</math> ऐसा है कि <math>X</math> व्युत्पत्ति (अवकल बीजगणित) है: <math>X(fg) = fX(g)+X(f)g</math> सभी के लिए <math>f,g \in C^\infty(M)</math> है।<ref>{{cite web |title=विभेदक ज्यामिति का एक परिचय|first=Eugene |last=Lerman |date=August 19, 2011 |url=https://faculty.math.illinois.edu/~lerman/518/f11/8-19-11.pdf#page=18 |at=Definition 3.23 }}</ref>
यदि अनेक गुना <math>M</math> सुचारू या [[विश्लेषणात्मक कार्य]] है - अर्थात, निर्देशांक का परिवर्तन सुचारू (विश्लेषणात्मक) है - तब कोई सुचारू (विश्लेषणात्मक) वेक्टर क्षेत्रों की धारणा को समझ सकता है। स्मूथ मैनिफोल्ड पर सभी स्मूथ वेक्टर फ़ील्ड्स का संग्रह <math>M</math> प्रायः द्वारा दर्शाया जाता है <math>\Gamma (TM)</math> या <math>C^\infty (M,TM)</math> (विशेषकर जब वेक्टर फ़ील्ड को अनुभाग (फाइबर बंडल) के रूप में सोचते हैं); सभी सुचारु सदिश क्षेत्रों के संग्रह को भी इसके द्वारा निरूपित किया जाता है <math display="inline"> \mathfrak{X} (M)</math> (एक फ्रैक्टुर (टाइपफेस उप-वर्गीकरण) एक्स)
 
यदि मैनिफोल्ड <math>M</math> सुचारू या विश्लेषणात्मक फलन है - अर्थात, निर्देशांक का परिवर्तन सुचारू (विश्लेषणात्मक) है - तब कोई सुचारू (विश्लेषणात्मक) सदिश क्षेत्रों की धारणा को समझ सकता है। स्मूथ मैनिफोल्ड पर सभी स्मूथ सदिश फ़ील्ड्स का संग्रह <math>M</math> प्रायः <math>\Gamma (TM)</math> या <math>C^\infty (M,TM)</math> द्वारा दर्शाया जाता है  (विशेषकर जब सदिश क्षेत्र  को अनुभाग (फाइबर बंडल) के रूप में सोचते हैं); सभी सुचारु सदिश क्षेत्रों के संग्रह को भी इसके <math display="inline"> \mathfrak{X} (M)</math> (फ्रैक्टुर (टाइपफेस उप-वर्गीकरण) एक्स) द्वारा निरूपित किया जाता है।


==उदाहरण==
==उदाहरण==
[[File:Cessna 182 model-wingtip-vortex.jpg|thumb|250px|हवाई जहाज के चारों ओर प्रवाह क्षेत्र आर में एक वेक्टर क्षेत्र है<sup>3</sup>, यहां बुलबुले द्वारा कल्पना की गई है जो स्ट्रीमलाइन, स्ट्रीकलाइन और पथहीनता का अनुसरण करते हुए एक [[विंगटिप भंवर]] दिखाते हैं।]]
[[File:Cessna 182 model-wingtip-vortex.jpg|thumb|250px|वायुयान के चारों ओर प्रवाह क्षेत्र R<sup>3</sup> में सदिश क्षेत्र है, यहां बुलबुले द्वारा कल्पना की गई है जो स्ट्रीमलाइन, स्ट्रीकलाइन और पथहीनता का अनुसरण करते हुए विंगटिप भंवर दिखाते हैं।]]
[[File:Bezier curves composition ray-traced in 3D.png|thumb|वेक्टर फ़ील्ड का उपयोग आमतौर पर [[कंप्यूटर चित्रलेख]] में पैटर्न बनाने के लिए किया जाता है। यहां: [[ओपनसिम्पलेक्स शोर]] से उत्पन्न वेक्टर फ़ील्ड के बाद वक्रों की अमूर्त संरचना।]]* पृथ्वी पर हवा की गति के लिए एक वेक्टर क्षेत्र पृथ्वी की सतह पर प्रत्येक बिंदु के लिए हवा की गति और उस बिंदु की दिशा के साथ एक वेक्टर को संबद्ध करेगा। इसे हवा का प्रतिनिधित्व करने के लिए तीरों का उपयोग करके खींचा जा सकता है; तीर की लंबाई ([[परिमाण (गणित)]]) हवा की गति का संकेत होगी। सामान्य बैरोमीटर के दबाव मानचित्र पर एक उच्च तब एक स्रोत (तीर की ओर इशारा करता है) के रूप में कार्य करेगा, और एक निचला एक सिंक (तीर की ओर इशारा करता है) होगा, क्योंकि हवा उच्च दबाव वाले क्षेत्रों से कम दबाव वाले क्षेत्रों की ओर बढ़ती है।
[[File:Bezier curves composition ray-traced in 3D.png|thumb|सदिश क्षेत्र  का उपयोग सामान्यतः[[कंप्यूटर चित्रलेख]] में पैटर्न बनाने के लिए किया जाता है। यहां: [[ओपनसिम्पलेक्स शोर]] से उत्पन्न सदिश क्षेत्र के पश्चात वक्रों की अमूर्त संरचना है।]]* पृथ्वी पर वायु की गति के लिए सदिश क्षेत्र पृथ्वी की सतह पर प्रत्येक बिंदु के लिए वायु की गति और उस बिंदु की दिशा के साथ सदिश को संबद्ध करेगा। इसे वायु का प्रतिनिधित्व करने के लिए तीरों का उपयोग करके खींचा जा सकता है; तीर की लंबाई ([[परिमाण (गणित)|परिमाण]]) वायु की गति का संकेत होगी। सामान्य बैरोमीटर के दबाव मानचित्र पर "उच्च" तब स्रोत के रूप में फलन करेगा (तीर दूर कीओर संकेत करता है) और "निम्न" सिंक (तीर की ओर संकेत करता है) होगा, क्योंकि वायु उच्च दबाव वाले क्षेत्रों से कम दबाव वाले क्षेत्रों की ओर बढ़ती है।
* गतिमान द्रव का [[वेग]] क्षेत्र। इस मामले में, द्रव में प्रत्येक बिंदु से एक वेग वेक्टर जुड़ा होता है।
* किसी गतिशील तरल पदार्थ का [[वेग]] क्षेत्र इस स्थिति में, द्रव में प्रत्येक बिंदु से वेग सदिश जुड़ा होता है।
* स्ट्रीमलाइन्स, स्ट्रीकलाइन्स और पाथलाइन्स|स्ट्रीमलाइन्स, स्ट्रीकलाइन्स और पाथलाइन्स 3 प्रकार की लाइनें हैं जिन्हें (समय-निर्भर) वेक्टर फ़ील्ड से बनाया जा सकता है। वे हैं:
* स्ट्रीमलाइन्स, स्ट्रीकलाइन्स और पाथलाइन्स 3 प्रकार की रेखाएं हैं जिन्हें (समय-निर्भर) सदिश क्षेत्र से बनाया जा सकता है। वे हैं:
** स्ट्रीकलाइन्स: विभिन्न समयों में एक विशिष्ट निश्चित बिंदु से गुजरने वाले कणों द्वारा निर्मित रेखा
** '''स्ट्रीकलाइन्स:''' विभिन्न समयों में विशिष्ट निश्चित बिंदु से निकलने वाले कणों द्वारा निर्मित रेखा है।
** पथरेखाएँ: वह पथ दिखाना जिसका कोई दिया गया कण (शून्य द्रव्यमान का) अनुसरण करेगा।
** '''पथरेखाएँ:''' वह पथ दिखाती हैं जिसका कोई दिया गया कण (शून्य द्रव्यमान का) अनुसरण करेगा।
** स्ट्रीमलाइन (या फील्डलाइन): तात्कालिक क्षेत्र से प्रभावित कण का पथ (यानी, यदि क्षेत्र को स्थिर रखा जाता है तो कण का पथ)
** '''स्ट्रीमलाइन (या फील्डलाइन):''' तात्कालिक क्षेत्र से प्रभावित कण का पथ (अर्थात, यदि क्षेत्र को स्थिर रखा जाता है तो कण का पथ) होता है।
* चुंबकीय क्षेत्र। छोटे लोहे के बुरादे का उपयोग करके फ़ील्डलाइन को प्रकट किया जा सकता है।
* '''चुंबकीय क्षेत्र:''' छोटे लोहे के बुरादे का उपयोग करके फ़ील्डलाइन को प्रकट किया जा सकता है।
* मैक्सवेल के समीकरण हमें यूक्लिडियन अंतरिक्ष में प्रत्येक बिंदु के लिए, उस बिंदु पर चार्ज किए गए परीक्षण कण द्वारा अनुभव किए गए बल के लिए एक परिमाण और दिशा निकालने के लिए प्रारंभिक और सीमा स्थितियों के दिए गए सेट का उपयोग करने की अनुमति देते हैं; परिणामी वेक्टर क्षेत्र [[विद्युत चुम्बकीय]] क्षेत्र है।
* मैक्सवेल के समीकरण हमें यूक्लिडियन समष्टि में प्रत्येक बिंदु के लिए, उस बिंदु पर चार्ज किए गए परीक्षण कण द्वारा अनुभव किए गए बल के लिए परिमाण और दिशा निकालने के लिए प्रारंभिक और सीमा स्थितियों के दिए गए सेट का उपयोग करने की अनुमति देते हैं; परिणामी सदिश क्षेत्र विद्युत चुम्बकीय क्षेत्र है।
* किसी भी विशाल वस्तु द्वारा उत्पन्न [[गुरुत्वाकर्षण क्षेत्र]] भी एक सदिश क्षेत्र होता है। उदाहरण के लिए, गोलाकार रूप से सममित पिंड के लिए गुरुत्वाकर्षण क्षेत्र के सभी सदिश गोले के केंद्र की ओर इंगित करेंगे और पिंड से रेडियल दूरी बढ़ने पर सदिशों का परिमाण कम हो जाएगा।
* किसी भी विशाल वस्तु द्वारा उत्पन्न गुरुत्वाकर्षण क्षेत्र भी सदिश क्षेत्र होता है। उदाहरण के लिए, गोलाकार रूप से सममित पिंड के लिए गुरुत्वाकर्षण क्षेत्र के सभी सदिश गोले के केंद्र की ओर प्रदर्शित करेंगे और पिंड से रेडियल दूरी बढ़ने पर सदिशों का परिमाण कम हो जाएगा।


===यूक्लिडियन स्थानों में ढाल क्षेत्र===
===यूक्लिडियन समष्टियों में प्रवणता क्षेत्र===
[[File:Irrotationalfield.svg|thumb|300px|एक वेक्टर फ़ील्ड जिसमें एक बिंदु के बारे में परिसंचरण होता है उसे किसी फ़ंक्शन के ग्रेडिएंट के रूप में नहीं लिखा जा सकता है।]]
[[File:Irrotationalfield.svg|thumb|300px|सदिश क्षेत्र जिसमें बिंदु के विषय में परिसंचरण होता है उसे किसी फलन के ग्रेडिएंट के रूप में नहीं लिखा जा सकता है।]]
{{details|Gradient}}
{{details|प्रवणता}}


[[ ग्रेडियेंट ]] ऑपरेटर ([[ की ]]: ∇ द्वारा चिह्नित) का उपयोग करके स्केलर फ़ील्ड से वेक्टर फ़ील्ड का निर्माण किया जा सकता है।<ref>{{cite book|author=Dawber, P.G. | title=वेक्टर और वेक्टर ऑपरेटर| publisher=CRC Press| isbn=978-0-85274-585-4| year=1987| page=29 |url=https://books.google.com/books?id=luBlL7oGgUIC&pg=PA29}}</ref>
[[ ग्रेडियेंट | प्रवणता]] ऑपरेटर ([[ की |डेल]]: ∇ द्वारा चिह्नित) का उपयोग करके अदिश क्षेत्र से सदिश क्षेत्र का निर्माण किया जा सकता है।<ref>{{cite book|author=Dawber, P.G. | title=वेक्टर और वेक्टर ऑपरेटर| publisher=CRC Press| isbn=978-0-85274-585-4| year=1987| page=29 |url=https://books.google.com/books?id=luBlL7oGgUIC&pg=PA29}}</ref>
एक खुले सेट S पर परिभाषित एक वेक्टर फ़ील्ड V को 'ग्रेडिएंट फ़ील्ड' या 'रूढ़िवादी फ़ील्ड' कहा जाता है यदि S पर कोई वास्तविक-मूल्य फ़ंक्शन (एक स्केलर फ़ील्ड) f मौजूद है जैसे कि
 
विवृत समुच्चय S पर परिभाषित सदिश क्षेत्र V को 'प्रवणता क्षेत्र' या 'रूढ़िवादी क्षेत्र' कहा जाता है यदि S पर कोई वास्तविक-मूल्य फलन (अदिश क्षेत्र) f उपस्थित है जैसे कि;
<math display="block">V = \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}, \dots ,\frac{\partial f}{\partial x_n}\right).</math>
<math display="block">V = \nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}, \dots ,\frac{\partial f}{\partial x_n}\right).</math>
सम्बद्ध [[प्रवाह (गणित)]] कहलाता है{{visible anchor|gradient flow}}, और [[ ढतला हुआ वंश ]] की विधि में उपयोग किया जाता है।
सम्बद्ध [[प्रवाह (गणित)|प्रवाह]] को {{visible anchor|प्रवणता प्रवाह}} कहा जाता है, और इसका उपयोग ग्रेडिएंट डिसेंट की विधि में किया जाता है।


एक रूढ़िवादी क्षेत्र में किसी भी [[बंद वक्र]] ''γ'' (''γ''(0) = ''γ''(1)) के साथ अभिन्न रेखा शून्य है:
रूढ़िवादी क्षेत्र में किसी भी संवृत वक्र ''γ'' (''γ''(0) = ''γ''(1)) के साथ अभिन्न पथ शून्य है:
<math display="block"> \oint_\gamma V(\mathbf {x})\cdot \mathrm{d}\mathbf {x} = \oint_\gamma \nabla f(\mathbf {x}) \cdot \mathrm{d}\mathbf {x}  = f(\gamma(1)) - f(\gamma(0)).</math>
<math display="block"> \oint_\gamma V(\mathbf {x})\cdot \mathrm{d}\mathbf {x} = \oint_\gamma \nabla f(\mathbf {x}) \cdot \mathrm{d}\mathbf {x}  = f(\gamma(1)) - f(\gamma(0)).</math>
 
===यूक्लिडियन समष्टियों में केंद्रीय क्षेत्र===
 
{{math|'''R'''<sup>''n''</sup> \ {0}<nowiki/>}} पर {{math|''C''<sup></sup>}}-सदिश क्षेत्र को केंद्रीय क्षेत्र कहा जाता है यदि;
===यूक्लिडियन स्थानों में केंद्रीय क्षेत्र===
{{math|''C''<sup></sup>}}-वेक्टर फ़ील्ड खत्म {{math|'''R'''<sup>''n''</sup> \ {0}<nowiki/>}} को केंद्रीय क्षेत्र कहा जाता है यदि
<math display="block">V(T(p)) = T(V(p)) \qquad (T \in \mathrm{O}(n, \R))</math>
<math display="block">V(T(p)) = T(V(p)) \qquad (T \in \mathrm{O}(n, \R))</math>
कहाँ {{math|O(''n'', '''R''')}} [[ऑर्थोगोनल समूह]] है। हम कहते हैं कि केंद्रीय क्षेत्र 0 के आसपास [[ऑर्थोगोनल मैट्रिक्स]] के तहत [[अपरिवर्तनीय (गणित)]] हैं।
जहां {{math|O(''n'', '''R''')}} लंबकोणीय समूह है। हम कहते हैं कि केंद्रीय क्षेत्र 0 के निकट [[ऑर्थोगोनल मैट्रिक्स|लंबकोणीय परिवर्तनों]] के अंतर्गत [[अपरिवर्तनीय (गणित)|अपरिवर्तनीय]] हैं।


बिंदु 0 को क्षेत्र का केंद्र कहा जाता है।
बिंदु 0 को क्षेत्र का केंद्र कहा जाता है।


चूंकि ऑर्थोगोनल परिवर्तन वास्तव में घूर्णन और प्रतिबिंब हैं, अपरिवर्तनीय स्थितियों का मतलब है कि केंद्रीय क्षेत्र के वैक्टर हमेशा 0 की ओर या उससे दूर निर्देशित होते हैं; यह एक वैकल्पिक (और सरल) परिभाषा है। एक केंद्रीय क्षेत्र हमेशा एक ग्रेडिएंट फ़ील्ड होता है, क्योंकि इसे एक अर्ध-अक्ष पर परिभाषित करने और एकीकृत करने से एक एंटीग्रेडिएंट मिलता है।
चूंकि लंबकोणीय परिवर्तन वास्तव में घूर्णन और प्रतिबिंब हैं, अपरिवर्तनीय स्थितियों का तात्पर्य है कि केंद्रीय क्षेत्र के सदिश सदैव 0 की ओर या उससे दूर निर्देशित होते हैं; यह वैकल्पिक (और सरल) परिभाषा है। केंद्रीय क्षेत्र सदैव प्रवणता क्षेत्र होता है, क्योंकि इसे अर्ध-अक्ष पर परिभाषित करने और एकीकृत करने से एंटीग्रेडिएंट मिलता है।


==वेक्टर फ़ील्ड पर संचालन==
==सदिश क्षेत्र  पर संचालन==


===रेखा अभिन्न===
===रेखा समाकलन ===
{{Main|Line integral}}
{{Main|रेखा समाकलन}}
भौतिकी में एक सामान्य तकनीक एक वेक्टर क्षेत्र को वक्रों की विभेदक ज्यामिति के साथ एकीकृत करना है, जिसे इसकी रेखा अभिन्न का निर्धारण भी कहा जाता है। सहज रूप से यह सभी सदिश घटकों को वक्र की स्पर्शरेखाओं के अनुरूप सारांशित करता है, जिसे उनके अदिश उत्पादों के रूप में व्यक्त किया जाता है। उदाहरण के लिए, बल क्षेत्र (जैसे गुरुत्वाकर्षण) में एक कण दिया गया है, जहां अंतरिक्ष में किसी बिंदु पर प्रत्येक वेक्टर कण पर कार्यरत बल का प्रतिनिधित्व करता है, एक निश्चित पथ के साथ अभिन्न रेखा कण पर किया गया कार्य है, जब यह यात्रा करता है इस रास्ते पर. सहज रूप से, यह बल वेक्टर के अदिश उत्पादों और वक्र के प्रत्येक बिंदु पर छोटे स्पर्शरेखा वेक्टर का योग है।


लाइन इंटीग्रल का निर्माण [[ रीमैन अभिन्न ]] के अनुरूप किया जाता है और यह तब मौजूद होता है जब वक्र सुधार योग्य होता है (परिमित लंबाई होती है) और वेक्टर क्षेत्र निरंतर होता है।
भौतिकी में सामान्य प्रौद्योगिकी सदिश क्षेत्र को वक्रों की अवकल ज्यामिति के साथ एकीकृत करना है, जिसे इसकी रेखा समाकलन का निर्धारण भी कहा जाता है। सहज रूप से यह सभी सदिश घटकों को वक्र की स्पर्शरेखाओं के अनुरूप सारांशित करता है, जिसे उनके अदिश उत्पादों के रूप में व्यक्त किया जाता है। उदाहरण के लिए, बल क्षेत्र (जैसे गुरुत्वाकर्षण) में कण दिया गया है, जहां समष्टि में किसी बिंदु पर प्रत्येक सदिश कण पर फलनरत बल का प्रतिनिधित्व करता है, निश्चित पथ के साथ अभिन्न रेखा कण पर किया गया फलन है, जब यह यात्रा करता है इस पथ पर सहज रूप से, यह बल सदिश के अदिश उत्पादों और वक्र के प्रत्येक बिंदु पर छोटे स्पर्शरेखा सदिश का योग है।


एक वेक्टर फ़ील्ड दिया गया है {{mvar|V}} और एक वक्र {{mvar|γ}}, [[पैरामीट्रिक समीकरण]] द्वारा {{mvar|t}} में {{closed-closed|''a'', ''b''}} (कहाँ {{mvar|a}} और {{mvar|b}} [[वास्तविक संख्या]]एँ हैं), रेखा समाकलन को इस प्रकार परिभाषित किया गया है
रेखा समाकलन का निर्माण रीमैन समाकलन के अनुरूप किया जाता है और यह तब उपस्थित होता है जब वक्र सुधार योग्य होता है (परिमित लंबाई होती है) और सदिश क्षेत्र निरंतर होता है।
 
सदिश क्षेत्र दिया गया है {{mvar|V}} और वक्र {{mvar|γ}} को देखते हुए, {{closed-closed|''a'', ''b''}} में {{mvar|t}} द्वारा पैरामीट्रिक समीकरण (जहाँ {{mvar|a}} और {{mvar|b}} [[वास्तविक संख्या|वास्तविक संख्याएँ]] हैं), रेखा समाकलन को इस प्रकार परिभाषित किया गया है:
<math display="block">\int_\gamma V(\mathbf {x}) \cdot \mathrm{d}\mathbf {x}  = \int_a^b  V(\gamma(t)) \cdot \dot \gamma(t)\, \mathrm{d}t.</math>
<math display="block">\int_\gamma V(\mathbf {x}) \cdot \mathrm{d}\mathbf {x}  = \int_a^b  V(\gamma(t)) \cdot \dot \gamma(t)\, \mathrm{d}t.</math>
वेक्टर फ़ील्ड टोपोलॉजी दिखाने के लिए कोई [[लाइन इंटीग्रल कनवल्शन]] का उपयोग कर सकता है।
सदिश क्षेत्र टोपोलॉजी दिखाने के लिए कोई रेखा समाकलन कनवल्शन का उपयोग कर सकता है।


===विचलन===
===विचलन===
{{Main|Divergence}}
{{Main|विचलन}}
यूक्लिडियन अंतरिक्ष पर एक सदिश क्षेत्र का विचलन एक फलन (या अदिश क्षेत्र) है। तीन-आयामों में, विचलन को परिभाषित किया गया है
यूक्लिडियन समष्टि पर सदिश क्षेत्र का विचलन फलन (या अदिश क्षेत्र) है। तीन-आयामों में, विचलन को परिभाषित किया गया है:
<math display="block">\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z},</math>
<math display="block">\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z},</math>
मनमाने आयामों के स्पष्ट सामान्यीकरण के साथ। एक बिंदु पर विचलन उस डिग्री का प्रतिनिधित्व करता है जिस तक बिंदु के चारों ओर एक छोटी मात्रा वेक्टर प्रवाह के लिए एक स्रोत या सिंक है, जिसका परिणाम [[विचलन प्रमेय]] द्वारा सटीक बनाया गया है।
इच्छानुसार आयामों के स्पष्ट सामान्यीकरण के साथ बिंदु पर विचलन उस डिग्री का प्रतिनिधित्व करता है जिस तक बिंदु के चारों ओर छोटी मात्रा सदिश प्रवाह के लिए स्रोत या सिंक है, जिसका परिणाम [[विचलन प्रमेय]] द्वारा त्रुटिहीन बनाया गया है।


विचलन को [[रीमैनियन मैनिफोल्ड]] पर भी परिभाषित किया जा सकता है, यानी, [[रीमैनियन मीट्रिक]] के साथ मैनिफोल्ड जो वैक्टर की लंबाई को मापता है।
विचलन को रीमैनियन मैनिफोल्ड पर भी परिभाषित किया जा सकता है, अर्थात, रीमैनियन मीट्रिक के साथ मैनिफोल्ड जो सदिश की लंबाई को मापता है।


===तीन आयामों में कर्ल===
===तीन आयामों में कर्ल===
{{Main|Curl  (mathematics)}}
{{Main|
कर्ल (गणित) एक ऑपरेशन है जो एक वेक्टर फ़ील्ड लेता है और एक अन्य वेक्टर फ़ील्ड उत्पन्न करता है। कर्ल को केवल तीन आयामों में परिभाषित किया गया है, लेकिन कर्ल के कुछ गुणों को [[बाहरी व्युत्पन्न]] के साथ उच्च आयामों में कैप्चर किया जा सकता है। इसे तीन आयामों में परिभाषित किया गया है
कर्ल (गणित)}}
 
कर्ल ऑपरेशन है जो सदिश क्षेत्र लेता है और अन्य सदिश क्षेत्र  त्पन्न करता है। कर्ल को केवल तीन आयामों में परिभाषित किया गया है, किन्तु कर्ल के कुछ गुणों को [[बाहरी व्युत्पन्न]] के साथ उच्च आयामों में कैप्चर किया जा सकता है। इसे तीन आयामों में परिभाषित किया गया है;
<math display="block">\operatorname{curl}\mathbf{F} = \nabla \times \mathbf{F} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right)\mathbf{e}_1 - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\right)\mathbf{e}_2 + \left(\frac{\partial F_2}{\partial x}- \frac{\partial F_1}{\partial y}\right)\mathbf{e}_3.</math>
<math display="block">\operatorname{curl}\mathbf{F} = \nabla \times \mathbf{F} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right)\mathbf{e}_1 - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\right)\mathbf{e}_2 + \left(\frac{\partial F_2}{\partial x}- \frac{\partial F_1}{\partial y}\right)\mathbf{e}_3.</math>
कर्ल एक बिंदु पर वेक्टर प्रवाह के कोणीय गति के घनत्व को मापता है, अर्थात, वह मात्रा जिस तक प्रवाह एक निश्चित अक्ष के चारों ओर घूमता है। यह सहज विवरण स्टोक्स के प्रमेय द्वारा सटीक बनाया गया है।
कर्ल बिंदु पर सदिश प्रवाह के कोणीय गति के घनत्व को मापता है, अर्थात, वह मात्रा जिस तक प्रवाह निश्चित अक्ष के चारों ओर घूमता है। यह सहज विवरण स्टोक्स के प्रमेय द्वारा त्रुटिहीन बनाया गया है।
 
===सदिश क्षेत्र  का सूचकांक===
सदिश क्षेत्र का सूचकांक पूर्णांक होता है जो पृथक शून्य (अर्थात, क्षेत्र की पृथक विलक्षणता) के निकट सदिश क्षेत्र के व्यवहार का वर्णन करने में सहायता करता है। समतल में, सूचकांक सैडल विलक्षणता पर मान -1 लेता है किन्तु स्रोत या सिंक विलक्षणता पर +1 लेता है।


===एक वेक्टर फ़ील्ड का सूचकांक===
मान लीजिए n उस मैनिफ़ोल्ड का आयाम है जिस पर सदिश क्षेत्र परिभाषित है। शून्य के चारों ओर संवृत सतह ((n-1)-गोले के लिए होमियोमोर्फिक) S लें, जिससे कि कोई अन्य शून्य S के आंतरिक भाग में न हो। इस क्षेत्र से आयाम n -1 के इकाई क्षेत्र तक मानचित्र का निर्माण किया जा सकता है इस गोले पर प्रत्येक सदिश को उसकी लंबाई से विभाजित करके इकाई लंबाई सदिश बनाया जाता है, जो इकाई क्षेत्र S<sup>n−1</sup> पर बिंदु है। यह S से S<sup>n−1</sup> तक सतत मानचित्र को परिभाषित करता है। बिंदु पर सदिश क्षेत्र का सूचकांक इस मानचित्र की डिग्री है। यह दिखाया जा सकता है कि यह पूर्णांक S की रूचि पर निर्भर नहीं है, और इसलिए केवल सदिश क्षेत्र पर ही निर्भर करता है।
एक सदिश क्षेत्र का सूचकांक एक पूर्णांक होता है जो एक पृथक शून्य (यानी, क्षेत्र की एक पृथक विलक्षणता) के आसपास एक सदिश क्षेत्र के व्यवहार का वर्णन करने में मदद करता है। समतल में, सूचकांक सैडल विलक्षणता पर मान -1 लेता है लेकिन स्रोत या सिंक विलक्षणता पर +1 लेता है।


मान लीजिए कि मैनिफ़ोल्ड का आयाम जिस पर वेक्टर फ़ील्ड परिभाषित है n है। शून्य के चारों ओर एक बंद सतह (होमियोमॉर्फिक (एन-1)-गोले) एस लें, ताकि कोई अन्य शून्य एस के आंतरिक भाग में न हो। इस क्षेत्र से आयाम एन -1 के एक इकाई क्षेत्र तक एक मानचित्र का निर्माण किया जा सकता है इस गोले पर प्रत्येक वेक्टर को उसकी लंबाई से विभाजित करके एक इकाई लंबाई वेक्टर बनाया जाता है, जो इकाई क्षेत्र S पर एक बिंदु है<sup>n−1</sup>. यह S से S तक एक सतत मानचित्र को परिभाषित करता है<sup>n−1</sup>. बिंदु पर वेक्टर फ़ील्ड का सूचकांक इस मानचित्र की सतत मैपिंग#डिफ़रेंशियल टोपोलॉजी की डिग्री है। यह दिखाया जा सकता है कि यह पूर्णांक S की पसंद पर निर्भर नहीं है, और इसलिए केवल वेक्टर फ़ील्ड पर ही निर्भर करता है।
सूचकांक को किसी भी गैर-एकवचन बिंदु (अर्थात, बिंदु जहां सदिश गैर-शून्य है) पर परिभाषित नहीं किया गया है। यह स्रोत के चारों ओर +1 के समान है, और सामान्यतः काठी के चारों ओर (−1)<sup>k</sup> के समान है जिसमें k संकुचन आयाम और n−k विस्तार आयाम हैं।


'वेक्टर फ़ील्ड का सूचकांक' समग्र रूप से तब परिभाषित किया जाता है जब इसमें शून्य की एक सीमित संख्या होती है। इस मामले में, सभी शून्य अलग-थलग हैं, और वेक्टर फ़ील्ड के सूचकांक को सभी शून्यों पर सूचकांकों के योग के रूप में परिभाषित किया गया है।
संपूर्ण सदिश क्षेत्र का सूचकांक तब परिभाषित किया जाता है जब इसमें अत्यधिक शून्य होते हैं। इस स्थिति में, सभी शून्य भिन्न-भिन्न हैं, और सदिश क्षेत्र के सूचकांक को सभी शून्यों पर सूचकांकों के योग के रूप में परिभाषित किया गया है।


सूचकांक को किसी भी गैर-एकवचन बिंदु (यानी, एक बिंदु जहां वेक्टर गैर-शून्य है) पर परिभाषित नहीं किया गया है। यह किसी स्रोत के आसपास +1 के बराबर है, और अधिक सामान्यतः (−1) के बराबर है<sup>k</sup> एक काठी के चारों ओर जिसमें k संकुचन आयाम और n−k विस्तार आयाम हैं। त्रि-आयामी अंतरिक्ष में एक साधारण (2-आयामी) क्षेत्र के लिए, यह दिखाया जा सकता है कि गोले पर किसी भी वेक्टर क्षेत्र का सूचकांक 2 होना चाहिए। इससे पता चलता है कि ऐसे प्रत्येक वेक्टर क्षेत्र में शून्य होना चाहिए। इसका तात्पर्य [[बालों वाली गेंद प्रमेय]] से है, जो बताता है कि यदि 'आर' में एक वेक्टर<sup>इकाई क्षेत्र S के प्रत्येक बिंदु को 3</sup> सौंपा गया है<sup>2</sup>निरंतर तरीके से, फिर बालों को सपाट रूप से कंघी करना असंभव है, यानी, वैक्टर को निरंतर तरीके से चुनना ताकि वे सभी गैर-शून्य हों और एस के स्पर्शरेखा हों<sup>2</sup>.
त्रि-आयामी समष्टि में साधारण (2-आयामी) क्षेत्र के लिए, यह दिखाया जा सकता है कि गोले पर किसी भी सदिश क्षेत्र का सूचकांक 2 होना चाहिए। इससे ज्ञात होता है कि ऐसे प्रत्येक सदिश क्षेत्र में शून्य होना चाहिए। इसका तात्पर्य [[बालों वाली गेंद प्रमेय|हेयरी बॉल प्रमेय]] से है।


शून्य की एक सीमित संख्या के साथ एक कॉम्पैक्ट मैनिफोल्ड पर एक वेक्टर फ़ील्ड के लिए, पोंकारे-हॉप प्रमेय बताता है कि वेक्टर फ़ील्ड का सूचकांक मैनिफोल्ड की [[यूलर विशेषता]] के बराबर है।
सीमित संख्या में शून्य वाले कॉम्पैक्ट मैनिफोल्ड पर सदिश क्षेत्र के लिए, पोंकारे-हॉप प्रमेय बताता है कि सदिश क्षेत्र का सूचकांक मैनिफोल्ड की [[यूलर विशेषता]] है।


==शारीरिक अंतर्ज्ञान==
==शारीरिक अंतर्ज्ञान==
[[File:Magnet0873.png|thumb|लोहे की छड़ की [[चुंबकत्व]] क्षेत्र रेखाएं ([[चुंबकीय द्विध्रुव]])]][[माइकल फैराडे]] ने बल की रेखाओं की अपनी अवधारणा में इस बात पर जोर दिया कि क्षेत्र स्वयं अध्ययन का एक उद्देश्य होना चाहिए, जो कि [[क्षेत्र सिद्धांत (भौतिकी)]] के रूप में संपूर्ण भौतिकी में बन गया है।
[[File:Magnet0873.png|thumb|लोहे की छड़ की [[चुंबकत्व]] क्षेत्र रेखाएं ([[चुंबकीय द्विध्रुव]])]][[माइकल फैराडे]] ने बल की रेखाओं की अपनी अवधारणा में इस विषय पर जोर दिया कि क्षेत्र स्वयं अध्ययन का उद्देश्य होना चाहिए, जो कि [[क्षेत्र सिद्धांत (भौतिकी)|क्षेत्र सिद्धांत]] के रूप में संपूर्ण भौतिकी में बन गया है।
 
चुंबकीय क्षेत्र के अलावा, फैराडे द्वारा प्रतिरूपित की गई अन्य घटनाओं में विद्युत क्षेत्र और [[प्रकाश क्षेत्र]] शामिल हैं।
 
हाल के दशकों में भौतिकी में अपरिवर्तनीय गतिशीलता और विकास समीकरणों के कई घटनात्मक सूत्रीकरण, जटिल तरल पदार्थ और ठोस के यांत्रिकी से लेकर रासायनिक कैनेटीक्स और क्वांटम थर्मोडायनामिक्स तक, एक सतत सार्वभौमिक मॉडलिंग ढांचे के रूप में तीव्र एन्ट्रापी चढ़ाई या ढाल प्रवाह के ज्यामितीय विचार की ओर एकत्रित हुए हैं जो कि ऊष्मप्रवैगिकी के दूसरे नियम के साथ अनुकूलता की गारंटी देता है और सुप्रसिद्ध निकट-संतुलन परिणामों जैसे कि ऑनसेगर पारस्परिकता को दूर-गैर-संतुलन क्षेत्र तक विस्तारित करता है।<ref>{{cite journal | last1=Beretta | first1=Gian Paolo  | title=The fourth law of thermodynamics: steepest entropy ascent | journal=Philosophical Transactions of the Royal Society A | volume=378 | issue=2170 | date=2020-05-01 | issn=1471-2962 | doi=10.1098/rsta.2019.0168 |  page=20190168|arxiv=1908.05768 | bibcode=2020RSPTA.37890168B | s2cid=201058607 }}</ref>


चुंबकीय क्षेत्र के अतिरिक्त, फैराडे द्वारा प्रतिरूपित की गई अन्य घटनाओं में विद्युत क्षेत्र और [[प्रकाश क्षेत्र]] सम्मिलित हैं।


वर्तमान के दशकों में भौतिकी में अपरिवर्तनीय गतिशीलता और विकास समीकरणों के कई घटनात्मक सूत्रीकरण, जटिल तरल पदार्थ और ठोस के यांत्रिकी से लेकर रासायनिक कैनेटीक्स और क्वांटम थर्मोडायनामिक्स तक, सतत सार्वभौमिक मॉडलिंग प्रारूप के रूप में तीव्र एन्ट्रापी चढ़ाई या ढाल प्रवाह के ज्यामितीय विचार की ओर एकत्रित हुए हैं जो कि ऊष्मप्रवैगिकी के दूसरे नियम के साथ अनुकूलता की आश्वासन देता है और सुप्रसिद्ध निकट-संतुलन परिणामों जैसे कि ऑनसेगर पारस्परिकता को दूर-गैर-संतुलन क्षेत्र तक विस्तारित करता है।<ref>{{cite journal | last1=Beretta | first1=Gian Paolo  | title=The fourth law of thermodynamics: steepest entropy ascent | journal=Philosophical Transactions of the Royal Society A | volume=378 | issue=2170 | date=2020-05-01 | issn=1471-2962 | doi=10.1098/rsta.2019.0168 |  page=20190168|arxiv=1908.05768 | bibcode=2020RSPTA.37890168B | s2cid=201058607 }}</ref>
==प्रवाह वक्र==
==प्रवाह वक्र==
{{Main|Integral curve}}
{{Main|अविभाज्य वक्र}}
अंतरिक्ष के एक क्षेत्र से होकर तरल पदार्थ के प्रवाह पर विचार करें। किसी भी समय, द्रव के किसी भी बिंदु के साथ एक विशेष वेग जुड़ा होता है; इस प्रकार किसी भी प्रवाह से जुड़ा एक सदिश क्षेत्र होता है। इसका विपरीत भी सत्य है: किसी प्रवाह को उस सदिश क्षेत्र से जोड़ना संभव है, जिसका वेग उस सदिश क्षेत्र के रूप में हो।
अंतरिक्ष के क्षेत्र से होकर तरल पदार्थ के प्रवाह पर विचार करें। किसी भी समय, द्रव के किसी भी बिंदु के साथ विशेष वेग जुड़ा होता है; इस प्रकार किसी भी प्रवाह से जुड़ा सदिश क्षेत्र होता है। इसका विपरीत भी सत्य है: किसी प्रवाह को उस सदिश क्षेत्र से जोड़ना संभव है, जिसका वेग उस सदिश क्षेत्र के रूप में हो।


एक वेक्टर फ़ील्ड दिया गया है <math>V</math> पर परिभाषित <math>S</math>, एक वक्र परिभाषित करता है <math>\gamma(t)</math> पर <math>S</math> ऐसा कि प्रत्येक के लिए <math>t</math> एक अंतराल में <math>I</math>,
सदिश क्षेत्र दिया गया है <math>V</math> पर परिभाषित <math>S</math>, वक्र परिभाषित करता है <math>\gamma(t)</math> पर <math>S</math> ऐसा कि प्रत्येक के लिए <math>t</math> अंतराल में <math>I</math> है,
<math display="block">\gamma'(t) = V(\gamma(t))\,.</math>
<math display="block">\gamma'(t) = V(\gamma(t))\,.</math>
पिकार्ड-लिंडेलोफ़ प्रमेय द्वारा, यदि <math>V</math> [[लिप्सचिट्ज़ निरंतरता]] है वहाँ एक अद्वितीय है <math>C^1</math>-वक्र <math>\gamma_x</math> प्रत्येक बिंदु के लिए <math>x</math> में <math>S</math> ताकि, कुछ के लिए <math>\varepsilon > 0</math>,
पिकार्ड-लिंडेलोफ़ प्रमेय द्वारा, यदि <math>V</math> [[लिप्सचिट्ज़ निरंतरता]] है वहाँ अद्वितीय है <math>C^1</math>-वक्र <math>\gamma_x</math> प्रत्येक बिंदु के लिए <math>x</math> में <math>S</math> जिससे कि, कुछ के लिए <math>\varepsilon > 0</math>,
<math display="block">\begin{align}
<math display="block">\begin{align}
\gamma_x(0) &= x\\
\gamma_x(0) &= x\\
\gamma'_x(t) &= V(\gamma_x(t)) \qquad \forall t \in (-\varepsilon, +\varepsilon) \subset \R.
\gamma'_x(t) &= V(\gamma_x(t)) \qquad \forall t \in (-\varepsilon, +\varepsilon) \subset \R.
\end{align}</math>
\end{align}</math>
वक्र <math>\gamma_x</math> सदिश क्षेत्र के अभिन्न वक्र या प्रक्षेप पथ (या कम सामान्यतः, प्रवाह रेखाएं) कहलाते हैं <math>V</math> और विभाजन <math>S</math> समतुल्य वर्गों में। अंतराल को बढ़ाना हमेशा संभव नहीं होता है <math>(-\varepsilon,+\varepsilon)</math> संपूर्ण [[वास्तविक संख्या रेखा]] तक. उदाहरण के लिए, प्रवाह किनारे तक पहुँच सकता है <math>S</math> एक सीमित समय में.
वक्र <math>\gamma_x</math> सदिश क्षेत्र के अभिन्न वक्र या प्रक्षेप पथ (या कम सामान्यतः, प्रवाह रेखाएं) <math>V</math> और विभाजन <math>S</math> समतुल्य वर्गों में कहलाते हैं। अंतराल <math>(-\varepsilon,+\varepsilon)</math> को संपूर्ण [[वास्तविक संख्या रेखा]] तक बढ़ाना सदैव संभव नहीं होता है। उदाहरण के लिए, प्रवाह <math>S</math> सीमित समय में किनारे तक पहुँच सकता है। दो या तीन आयामों में कोई प्रवाह को उत्पन्न करने वाले सदिश क्षेत्र <math>S</math> के रूप में देख सकता है। यदि हम इस प्रवाह में बिंदु <math>p</math> पर कण छोड़ते हैं यह वक्र <math>\gamma_p</math> के अनुदिश गति करेगा प्रारंभिक बिंदु <math>p</math> के आधार पर प्रवाह में यदि <math>p</math> का स्थिर बिंदु <math>V</math> है (अर्थात्, सदिश क्षेत्र बिंदु पर शून्य सदिश <math>p</math> के समान है), तो कण <math>p</math> पर रहेगा।
<!--Integrating the vector field along any flow curve γ yields
<math display="block">\int_\gamma \langle \mathbf{F}( \mathbf{x} ), d\mathbf{x} \rangle = \int_a^b \langle \mathbf{F}( \boldsymbol{\gamma}(t) ), \boldsymbol{\gamma}'(t) \rangle dt = \int_a^b dt = \mbox{constant}. </math>
-->
दो या तीन आयामों में कोई वेक्टर क्षेत्र को प्रवाह (गणित) को जन्म देने के रूप में देख सकता है <math>S</math>. यदि हम इस प्रवाह में एक बिंदु पर एक कण छोड़ते हैं <math>p</math> यह वक्र के अनुदिश गति करेगा <math>\gamma_p</math> प्रारंभिक बिंदु के आधार पर प्रवाह में <math>p</math>. अगर <math>p</math> का एक स्थिर बिंदु है <math>V</math> (अर्थात्, सदिश क्षेत्र बिंदु पर शून्य सदिश के बराबर है <math>p</math>), तो कण पर रहेगा <math>p</math>.


विशिष्ट अनुप्रयोग स्ट्रीमलाइन, स्ट्रीकलाइन और [[द्रव प्रवाह]], [[जियोडेसिक प्रवाह]] और [[एक-पैरामीटर उपसमूह]]ों में पथरेखाएं और लाई समूहों में [[घातीय मानचित्र (झूठ सिद्धांत)]] हैं।
विशिष्ट अनुप्रयोग द्रव, [[जियोडेसिक प्रवाह]] और [[एक-पैरामीटर उपसमूह|एक-पैरामीटर उपसमूहों]] में पथ रेखाएं और लाई समूहों में [[घातीय मानचित्र (झूठ सिद्धांत)|घातीय मानचित्र]] हैं।


=== पूर्ण वेक्टर फ़ील्ड ===
=== पूर्ण सदिश क्षेत्र ===
परिभाषा के अनुसार, एक सदिश क्षेत्र पर <math>M</math> पूर्ण तब कहलाता है जब इसका प्रत्येक प्रवाह वक्र सदैव विद्यमान रहता है।<ref>{{cite book |last=Sharpe | first= R.|title=विभेदक ज्यामिति|publisher=Springer-Verlag|year=1997|isbn=0-387-94732-9}}</ref> विशेष रूप से, मैनिफोल्ड पर [[ कॉम्पैक्ट समर्थन ]] वेक्टर फ़ील्ड पूर्ण हो गए हैं। अगर  <math>X</math> पर एक पूर्ण वेक्टर फ़ील्ड है <math>M</math>, फिर प्रवाह द्वारा उत्पन्न [[भिन्नता]]ओं का [[एक-पैरामीटर समूह]] <math>X</math> हर समय मौजूद है; इसका वर्णन एक सहज मानचित्रण द्वारा किया गया है
परिभाषा के अनुसार, सदिश क्षेत्र पर <math>M</math> पूर्ण कहा जाता है यदि इसका प्रत्येक प्रवाह वक्र सदैव विद्यमान रहता है।<ref>{{cite book |last=Sharpe | first= R.|title=विभेदक ज्यामिति|publisher=Springer-Verlag|year=1997|isbn=0-387-94732-9}}</ref> विशेष रूप से, मैनिफोल्ड पर [[ कॉम्पैक्ट समर्थन |कॉम्पैक्ट रूप से समर्थित]] सदिश क्षेत्र पूर्ण हैं। यदि <math>X</math> <math>M</math> पर पूर्ण सदिश क्षेत्र है, फिर प्रवाह द्वारा उत्पन्न [[भिन्नता|भिन्नताओं]] का [[एक-पैरामीटर समूह]] <math>X</math> प्रत्येक समय उपस्थित है; इसका वर्णन सहज मानचित्रण द्वारा किया गया है:
:<math>\mathbf{R}\times M\to M.</math>
:<math>\mathbf{R}\times M\to M.</math>
सीमा के बिना एक कॉम्पैक्ट मैनिफोल्ड पर, प्रत्येक स्मूथ वेक्टर फ़ील्ड पूर्ण है। अपूर्ण वेक्टर फ़ील्ड का एक उदाहरण <math>V</math> असली लाइन पर <math>\mathbb R</math> द्वारा दिया गया है <math>V(x) = x^2</math>. के लिए, विभेदक समीकरण <math display="inline">x'(t) = x^2</math>, प्रारंभिक स्थिति के साथ <math>x(0) = x_0 </math>, इसका अनूठा समाधान है <math display="inline">x(t) = \frac{x_0}{1 - t x_0}</math> अगर <math>x_0 \neq 0</math> (और <math>x(t) = 0</math> सभी के लिए <math>t \in \R</math> अगर  <math>x_0 = 0</math>). इसलिए के लिए <math>x_0 \neq 0</math>, <math>x(t)</math> पर अपरिभाषित है <math display="inline">t = \frac{1}{x_0}</math> इसलिए सभी मानों के लिए परिभाषित नहीं किया जा सकता <math>t</math>.
सीमा के बिना कॉम्पैक्ट मैनिफोल्ड पर, प्रत्येक स्मूथ सदिश क्षेत्र पूर्ण है। अपूर्ण सदिश क्षेत्र का उदाहरण <math>V</math> वास्तविक रेखा पर <math>\mathbb R</math> द्वारा <math>V(x) = x^2</math> दिया गया है। अवकल समीकरण <math display="inline">x'(t) = x^2</math> के लिए, प्रारंभिक स्थिति के साथ <math>x(0) = x_0 </math>, इसका अनूठा समाधान <math display="inline">x(t) = \frac{x_0}{1 - t x_0}</math> है यदि<math>x_0 \neq 0</math> (और <math>x(t) = 0</math> सभी के लिए <math>t \in \R</math> यदि <math>x_0 = 0</math>) है इसलिए <math>x_0 \neq 0</math>, <math>x(t)</math> पर अपरिभाषित है <math display="inline">t = \frac{1}{x_0}</math> इसलिए सभी मानों के लिए <math>t</math> परिभाषित नहीं किया जा सकता है।


===झूठ कोष्ठक===
===लाई कोष्ठक===
दो सदिश क्षेत्रों से जुड़े प्रवाह को एक दूसरे के साथ क्रमविनिमेय गुण की आवश्यकता नहीं है। आवागमन में उनकी विफलता को दो वेक्टर फ़ील्ड के [[लेट ब्रैकेट]] द्वारा वर्णित किया गया है, जो फिर से एक वेक्टर फ़ील्ड है। सुचारू कार्यों पर वेक्टर फ़ील्ड की कार्रवाई के संदर्भ में लाई ब्रैकेट की एक सरल परिभाषा है <math>f</math>:
दो सदिश क्षेत्रों से जुड़े प्रवाह को एक दूसरे के साथ क्रमविनिमेय गुण की आवश्यकता नहीं है। आवागमन में उनकी विफलता को दो सदिश क्षेत्र के [[लेट ब्रैकेट|लाई कोष्ठक]] द्वारा वर्णित किया गया है, जो पुनः सदिश क्षेत्र  है। सुचारू फलनों पर सदिश क्षेत्र की कार्रवाई के संदर्भ में लाई कोष्ठक की सरल परिभाषा है <math>f</math>:
:<math>[X,Y](f):=X(Y(f))-Y(X(f)).</math>
:<math>[X,Y](f):=X(Y(f))-Y(X(f)).</math>
==''f''-संबद्धता==
मैनिफोल्ड्स के मध्य सुचारू फलन को देखते हुए, <math>f:M\to N</math>, व्युत्पन्न स्पर्शरेखा बंडलों पर प्रेरित मानचित्र <math>f_*:TM\to TN</math> है, दिए गए सदिश क्षेत्र <math>V:M\to TM</math> और <math>W:N\to TN</math> हैं, हम ऐसा कहते हैं <math>W</math> है <math>f</math>-संबंधित <math>V</math> यदि समीकरण <math>W\circ f = f_*\circ V</math> धारण करता है।


 
यदि <math>V_i</math> है <math>f</math>-संदर्भ के <math>W_i</math>, <math>i=1,2</math>, फिर लाई ब्रैकेट <math>[V_1,V_2]</math> है <math>f</math>-संदर्भ के <math>[W_1,W_2]</math> है।
==एफ-संबंध==
मैनिफोल्ड्स के बीच एक सुचारू कार्य को देखते हुए, <math>f:M\to N</math>, व्युत्पन्न स्पर्शरेखा बंडलों पर एक प्रेरित मानचित्र है, <math>f_*:TM\to TN</math>. दिए गए वेक्टर फ़ील्ड <math>V:M\to TM</math> और <math>W:N\to TN</math>, हम ऐसा कहते हैं <math>W</math> है <math>f</math>-संदर्भ के <math>V</math> यदि समीकरण <math>W\circ f = f_*\circ V</math> धारण करता है.
 
अगर <math>V_i</math> है <math>f</math>-संदर्भ के <math>W_i</math>, <math>i=1,2</math>, फिर लाई ब्रैकेट <math>[V_1,V_2]</math> है <math>f</math>-संदर्भ के <math>[W_1,W_2]</math>.


==सामान्यीकरण==
==सामान्यीकरण==
सदिशों को p-वेक्टर|p-वेक्टरों (वेक्टरों की pth बाह्य शक्ति) द्वारा प्रतिस्थापित करने से p-वेक्टर क्षेत्र प्राप्त होते हैं; दोहरे स्थान और बाहरी शक्तियों को लेने से विभेदक रूप | विभेदक k-रूप प्राप्त होते हैं, और इन्हें संयोजित करने से सामान्य टेंसर फ़ील्ड प्राप्त होते हैं।
सदिशों को p-सदिश(सदिश की pth बाह्य शक्ति) द्वारा प्रतिस्थापित करने से p-सदिश क्षेत्र प्राप्त होते हैं; दोहरे समष्टि और बाहरी शक्तियों को लेने से अवकल k-रूप प्राप्त होते हैं, और इन्हें संयोजित करने से सामान्य टेंसर क्षेत्र प्राप्त होते हैं।


बीजगणितीय रूप से, सदिश क्षेत्रों को मैनिफोल्ड पर सुचारु कार्यों के बीजगणित की [[व्युत्पत्ति (अमूर्त बीजगणित)]] के रूप में चित्रित किया जा सकता है, जो क्रमविनिमेय बीजगणित पर एक सदिश क्षेत्र को बीजगणित पर व्युत्पत्ति के रूप में परिभाषित करने की ओर ले जाता है, जिसे विभेदक कलन के सिद्धांत में विकसित किया गया है। क्रमविनिमेय बीजगणित पर।
बीजगणितीय रूप से, सदिश क्षेत्रों को मैनिफोल्ड पर सुचारु फलनों के बीजगणित की [[व्युत्पत्ति (अमूर्त बीजगणित)|व्युत्पत्ति]] के रूप में चित्रित किया जा सकता है, जो क्रमविनिमेय बीजगणित पर सदिश क्षेत्र को बीजगणित पर व्युत्पत्ति के रूप में परिभाषित करने की ओर ले जाता है, जिसे क्रमविनिमेय बीजगणित पर अवकल कलन के सिद्धांत में विकसित किया गया है।


==यह भी देखें==
==यह भी देखें{{Portal|Mathematics}}==
{{Portal|Mathematics}}
{{div col|colwidth=22em}}
{{div col|colwidth=22em}}
* ईसेनबड-लेविन-खिमशियाश्विली हस्ताक्षर सूत्र
* ईसेनबड-लेविन-खिमशियाश्विली हस्ताक्षर सूत्र
* [[फ़ील्ड लाइन]]
* [[फ़ील्ड लाइन]]
* [[फील्ड की छमता]]
* [[फील्ड की छमता]]
*संतुलित प्रवाह#[[वायुमंडलीय गतिशीलता]] में क्रमिक प्रवाह
*[[वायुमंडलीय गतिशीलता]] में क्रमिक प्रवाह और संतुलित प्रवाह
* [[झूठ व्युत्पन्न]]
* [[लाई व्युत्पन्न]]
* अदिश क्षेत्र
* अदिश क्षेत्र
* [[समय-निर्भर वेक्टर क्षेत्र]]
* [[समय-निर्भर सदिश क्षेत्र]]
* [[बेलनाकार और गोलाकार निर्देशांक में वेक्टर फ़ील्ड]]
* [[बेलनाकार और गोलाकार निर्देशांक में सदिश क्षेत्र]]
* [[टेंसर फ़ील्ड]]
* [[टेंसर क्षेत्र]]
{{div col end}}
{{div col end}}


==संदर्भ==
==संदर्भ==
{{refimprove|date=April 2012}}
{{reflist}}
{{reflist}}


==ग्रन्थसूची==
==ग्रन्थसूची==
Line 196: Line 188:
* {{cite book | last =Warner | first = Frank | title = Foundations of differentiable manifolds and Lie groups | orig-year = 1971 | year = 1983 | publisher =  Springer-Verlag | location = New York-Berlin | isbn = 0-387-90894-3 }}
* {{cite book | last =Warner | first = Frank | title = Foundations of differentiable manifolds and Lie groups | orig-year = 1971 | year = 1983 | publisher =  Springer-Verlag | location = New York-Berlin | isbn = 0-387-90894-3 }}
* {{cite book | last = Boothby | first = William |author-link=William M. Boothby| title = An introduction to differentiable manifolds and Riemannian geometry | url = https://archive.org/details/introductiontodi0000boot | url-access = registration | edition = second  | series = Pure and Applied Mathematics, volume 120 | publisher = Academic Press | location = Orlando, FL | year = 1986 | isbn = 0-12-116053-X }}
* {{cite book | last = Boothby | first = William |author-link=William M. Boothby| title = An introduction to differentiable manifolds and Riemannian geometry | url = https://archive.org/details/introductiontodi0000boot | url-access = registration | edition = second  | series = Pure and Applied Mathematics, volume 120 | publisher = Academic Press | location = Orlando, FL | year = 1986 | isbn = 0-12-116053-X }}
==बाहरी संबंध==
==बाहरी संबंध==
{{Commonscat|Vector fields}}
*[https://anvaka.github.io/fieldplay/ Online Vector Field Editor]
*[https://anvaka.github.io/fieldplay/ Online Vector Field Editor]
*{{springer|title=Vector field|id=p/v096420}}
*{{springer|title=Vector field|id=p/v096420}}
Line 208: Line 197:
*[http://www.vias.org/simulations/simusoft_vectorfields.html Vector field simulation] An interactive application to show the effects of vector fields
*[http://www.vias.org/simulations/simusoft_vectorfields.html Vector field simulation] An interactive application to show the effects of vector fields


{{Manifolds}}
{{DEFAULTSORT:Vector Field}}
 
{{DEFAULTSORT:Vector Field}}[[Category: विभेदक टोपोलॉजी]] [[Category: वेक्टर कैलकुलस|फ़ील्ड]]
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Vector Field]]
[[Category:Created On 03/07/2023]]
[[Category:Collapse templates|Vector Field]]
[[Category:Commons category link is locally defined|Vector Field]]
[[Category:Created On 03/07/2023|Vector Field]]
[[Category:Lua-based templates|Vector Field]]
[[Category:Machine Translated Page|Vector Field]]
[[Category:Multi-column templates|Vector Field]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Vector Field]]
[[Category:Pages using div col with small parameter|Vector Field]]
[[Category:Pages with empty portal template|Vector Field]]
[[Category:Pages with script errors|Vector Field]]
[[Category:Portal templates with redlinked portals|Vector Field]]
[[Category:Short description with empty Wikidata description|Vector Field]]
[[Category:Sidebars with styles needing conversion|Vector Field]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Vector Field]]
[[Category:Templates generating microformats|Vector Field]]
[[Category:Templates that add a tracking category|Vector Field]]
[[Category:Templates that are not mobile friendly|Vector Field]]
[[Category:Templates that generate short descriptions|Vector Field]]
[[Category:Templates using TemplateData|Vector Field]]
[[Category:Templates using under-protected Lua modules|Vector Field]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates|Vector Field]]
[[Category:विभेदक टोपोलॉजी|Vector Field]]
[[Category:वेक्टर कैलकुलस|फ़ील्ड]]

Latest revision as of 11:52, 1 November 2023

सदिश क्षेत्र का भाग (sin y, sin x)

सदिश गणना और भौतिकी में, सदिश क्षेत्र किसी समष्टि के प्रत्येक बिंदु पर सदिश का असाइनमेंट होता है, सामान्यतः यूक्लिडियन समष्टि होता है।[1] किसी समतल पर सदिश क्षेत्र को दिए गए परिमाण और दिशाओं वाले तीरों के संग्रह के रूप में देखा जा सकता है, जिनमें से प्रत्येक समतल पर बिंदु से जुड़ा होता है। सदिश क्षेत्र का उपयोग प्रायः मॉडल करने के लिए किया जाता है, उदाहरण के लिए, तीन आयामी समिष्ट में चलती तरल पदार्थ की गति और दिशा, जैसे कि वायु, या कुछ बल की शक्ति और दिशा, जैसे चुंबकीय क्षेत्र या गुरुत्वाकर्षण बल, क्योंकि यह एक बिंदु से दूसरे बिंदु तक परिवर्तित होता है।

अवकल और अभिन्न कलन के तत्व स्वाभाविक रूप से सदिश क्षेत्रों तक विस्तारित होते हैं। जब सदिश क्षेत्र बल का प्रतिनिधित्व करता है, तो सदिश क्षेत्र का रेखा अभिन्न अंग पथ के साथ चलने वाले बल द्वारा किए गए फलन का प्रतिनिधित्व करता है, और इस व्याख्या के अंतर्गत ऊर्जा के संरक्षण को गणना के मौलिक प्रमेय की विशेष स्थिति के रूप में प्रदर्शित किया जाता है। सदिश क्षेत्र को उपयोगी रूप से समिष्ट में गतिशील प्रवाह के वेग का प्रतिनिधित्व करने के रूप में सोचा जा सकता है, और यह भौतिक अंतर्ज्ञान विचलन (जो प्रवाह की मात्रा में परिवर्तन की दर का प्रतिनिधित्व करता है) और कर्ल (जो प्रतिनिधित्व करता है) जैसी धारणाओं की ओर ले जाता है।

सदिश क्षेत्र वेक्टर-वैल्यू फलन की विशेष स्थिति है, जिसके डोमेन के आयाम का इसकी सीमा के आयाम से कोई संबंध नहीं है; उदाहरण के लिए, किसी समिष्ट वक्र की स्थिति सदिश को केवल परिवेशीय समष्टि के छोटे उपसमुच्चय के लिए परिभाषित किया गया है। इसी प्रकार, n निर्देशांक, n-आयामी यूक्लिडियन समष्टि में डोमेन पर सदिश क्षेत्र को वेक्टर-वैल्यू फलन के रूप में दर्शाया जा सकता है जो डोमेन के प्रत्येक बिंदु पर वास्तविक संख्याओं के n-टुपल को जोड़ता है। सदिश क्षेत्र का यह प्रतिनिधित्व समन्वय प्रणाली पर निर्भर करता है, और एक समन्वय प्रणाली से दूसरे में जाने में उचित प्रकार से परिभाषित परिवर्तन नियम (सदिश का सहप्रसरण और विरोधाभास) होता है।

सदिश क्षेत्र का वर्णन प्रायः यूक्लिडियन समष्टि के विवृत उपसमुच्चय पर की जाती है, किन्तु यह सतहों जैसे अन्य उपसमुच्चय पर भी समझ में आता है, जहां वे प्रत्येक बिंदु पर सतह पर स्पर्शरेखा वाले तीर को जोड़ते हैं (वक्रों की अवकल ज्यामिति)। सामान्यतः, सदिश क्षेत्र को भिन्न-भिन्न मैनिफोल्ड्स पर परिभाषित किया जाता है, जो ऐसे समष्टि होते हैं जो छोटे स्तर पर यूक्लिडियन समष्टि के जैसे दिखते हैं, किन्तु बड़े स्तर पर अधिक जटिल संरचना हो सकती है। इस सेटिंग में, सदिश क्षेत्र मैनिफोल्ड के प्रत्येक बिंदु पर स्पर्शरेखा सदिश देता है (अर्थात, मैनिफोल्ड के स्पर्शरेखा बंडल का खंड)। सदिश क्षेत्र एक प्रकार का टेंसर क्षेत्र है।

परिभाषा

यूक्लिडियन समष्टि के उपसमुच्चय पर सदिश क्षेत्र

Sparse vector field representation
Dense vector field representation.
Two representations of the same vector field: v(x, y) = −r. The arrows depict the field at discrete points, however, the field exists everywhere.

Rn के उपसमुच्चय S को देखते हुए, सदिश क्षेत्र को मानक कार्टेशियन निर्देशांक में (x1, …, xn) में वेक्टर-वैल्यू फलन V: SRn द्वारा दर्शाया जाता है। यदि V का प्रत्येक घटक सतत है तो V सतत सदिश क्षेत्र है। सुचारू सदिश क्षेत्र पर ध्यान केंद्रित करना सामान्य विषय है, जिसका अर्थ है कि प्रत्येक घटक सुचारू फलन है (किसी भी संख्या में भिन्न हो सकता है)। सदिश क्षेत्र को n-आयामी समष्टि के अंदर भिन्न-भिन्न बिंदुओं पर सदिश निर्दिष्ट करने के रूप में देखा जा सकता है।[1]

मानक संकेतन निर्देशांक दिशाओं में इकाई सदिशों के लिए लिखना है। इन शब्दों में, प्रत्येक सहज सदिश क्षेत्र विवृत उपसमुच्चय पर को के रूप में लिखा जा सकता है:

कुछ सुचारु फलनों के लिए पर है।[2] इस अंकन का कारण यह है कि सदिश क्षेत्र सुचारु फलनों के समष्टि से स्वयं तक रेखीय मानचित्र निर्धारित करता है, , सदिश क्षेत्र की दिशा में अंतर करके दिया गया है।

उदाहरण: सदिश क्षेत्र में मूल के चारों ओर वामावर्त घुमाव का वर्णन करता है यह दिखाने के लिए कि फलन घूर्णी रूप से अपरिवर्तनीय है, गणना करें:

दिए गए सदिश क्षेत्र V, W पर परिभाषित किया गया S और सुचारू फलन f पर S परिभाषित किया गया अदिश गुणन और सदिश जोड़ की संक्रियाएँ,

स्मूथ सदिश फ़ील्ड्स को स्मूथ फलन के रिंग पर मॉड्यूल में बनाएं, जहां फलन के गुणन को बिंदुवार परिभाषित किया गया है।

समन्वय परिवर्तन नियम

भौतिकी में, यूक्लिडियन सदिश को अतिरिक्त रूप से इस विषय से भिन्न किया जाता है कि जब कोई एक ही सदिश को भिन्न पृष्ठभूमि समन्वय प्रणाली के संबंध में मापता है तो उसके निर्देशांक कैसे परिवर्तित होते हैं। सदिश के परिवर्तन गुण सदिश को अदिश की साधारण सूची से, या सह सदिश से ज्यामितीय रूप से भिन्न इकाई के रूप में भिन्न करते हैं।

इस प्रकार, मान लीजिये (x1, ..., xn) कार्टेशियन निर्देशांक का विकल्प है, जिसके संदर्भ में सदिश V के घटक होते हैं:

और मान लीजिए कि (y1,...,औरn) अलग समन्वय प्रणाली को परिभाषित करने वाले xi के n फलन हैं। फिर नए निर्देशांक में सदिश V के घटकों को परिवर्तन नियम को संतुष्ट करने की आवश्यकता होती है:

 

 

 

 

(1)

ऐसे परिवर्तन नियम को सदिशों का सहप्रसरण और प्रतिप्रसरण कहा जाता है। समान परिवर्तन नियम भौतिकी में सदिश क्षेत्रों की विशेषता बताता है: विशेष रूप से, सदिश क्षेत्र परिवर्तन नियम के अधीन प्रत्येक समन्वय प्रणाली में n फलन का विनिर्देश है (1) विभिन्न समन्वय प्रणालियों से संबंधित है।

इस प्रकार सदिश क्षेत्र की तुलना अदिश क्षेत्र से की जाती है, जो समष्टि में प्रत्येक बिंदु पर संख्या या स्केलर को जोड़ती है, और स्केलर क्षेत्र की सरल सूचियों से भी विपरीत होती है, जो समन्वय परिवर्तनों के अंतर्गत परिवर्तित नहीं होती हैं।

मैनिफ़ोल्ड पर सदिश फ़ील्ड

गोले पर सदिश क्षेत्र

भिन्न विविधता दी गई है, सदिश क्षेत्र पर प्रत्येक बिंदु के लिए स्पर्शरेखा सदिश का असाइनमेंट है।[2] अधिक त्रुटिहीन रूप से, सदिश क्षेत्र से मानचित्र है स्पर्शरेखा बंडल में जिससे कि पहचान मानचित्रण है जहां से प्रक्षेपण को द्वारा दर्शाता है। दूसरे शब्दों में, सदिश क्षेत्र स्पर्शरेखा बंडल का खंड है।

वैकल्पिक परिभाषा: सहज सदिश क्षेत्र मैनिफोल्ड पर रेखीय मानचित्र है ऐसा है कि व्युत्पत्ति (अवकल बीजगणित) है: सभी के लिए है।[3]

यदि मैनिफोल्ड सुचारू या विश्लेषणात्मक फलन है - अर्थात, निर्देशांक का परिवर्तन सुचारू (विश्लेषणात्मक) है - तब कोई सुचारू (विश्लेषणात्मक) सदिश क्षेत्रों की धारणा को समझ सकता है। स्मूथ मैनिफोल्ड पर सभी स्मूथ सदिश फ़ील्ड्स का संग्रह प्रायः या द्वारा दर्शाया जाता है (विशेषकर जब सदिश क्षेत्र को अनुभाग (फाइबर बंडल) के रूप में सोचते हैं); सभी सुचारु सदिश क्षेत्रों के संग्रह को भी इसके (फ्रैक्टुर (टाइपफेस उप-वर्गीकरण) एक्स) द्वारा निरूपित किया जाता है।

उदाहरण

वायुयान के चारों ओर प्रवाह क्षेत्र R3 में सदिश क्षेत्र है, यहां बुलबुले द्वारा कल्पना की गई है जो स्ट्रीमलाइन, स्ट्रीकलाइन और पथहीनता का अनुसरण करते हुए विंगटिप भंवर दिखाते हैं।
सदिश क्षेत्र का उपयोग सामान्यतःकंप्यूटर चित्रलेख में पैटर्न बनाने के लिए किया जाता है। यहां: ओपनसिम्पलेक्स शोर से उत्पन्न सदिश क्षेत्र के पश्चात वक्रों की अमूर्त संरचना है।

* पृथ्वी पर वायु की गति के लिए सदिश क्षेत्र पृथ्वी की सतह पर प्रत्येक बिंदु के लिए वायु की गति और उस बिंदु की दिशा के साथ सदिश को संबद्ध करेगा। इसे वायु का प्रतिनिधित्व करने के लिए तीरों का उपयोग करके खींचा जा सकता है; तीर की लंबाई (परिमाण) वायु की गति का संकेत होगी। सामान्य बैरोमीटर के दबाव मानचित्र पर "उच्च" तब स्रोत के रूप में फलन करेगा (तीर दूर कीओर संकेत करता है) और "निम्न" सिंक (तीर की ओर संकेत करता है) होगा, क्योंकि वायु उच्च दबाव वाले क्षेत्रों से कम दबाव वाले क्षेत्रों की ओर बढ़ती है।

  • किसी गतिशील तरल पदार्थ का वेग क्षेत्र इस स्थिति में, द्रव में प्रत्येक बिंदु से वेग सदिश जुड़ा होता है।
  • स्ट्रीमलाइन्स, स्ट्रीकलाइन्स और पाथलाइन्स 3 प्रकार की रेखाएं हैं जिन्हें (समय-निर्भर) सदिश क्षेत्र से बनाया जा सकता है। वे हैं:
    • स्ट्रीकलाइन्स: विभिन्न समयों में विशिष्ट निश्चित बिंदु से निकलने वाले कणों द्वारा निर्मित रेखा है।
    • पथरेखाएँ: वह पथ दिखाती हैं जिसका कोई दिया गया कण (शून्य द्रव्यमान का) अनुसरण करेगा।
    • स्ट्रीमलाइन (या फील्डलाइन): तात्कालिक क्षेत्र से प्रभावित कण का पथ (अर्थात, यदि क्षेत्र को स्थिर रखा जाता है तो कण का पथ) होता है।
  • चुंबकीय क्षेत्र: छोटे लोहे के बुरादे का उपयोग करके फ़ील्डलाइन को प्रकट किया जा सकता है।
  • मैक्सवेल के समीकरण हमें यूक्लिडियन समष्टि में प्रत्येक बिंदु के लिए, उस बिंदु पर चार्ज किए गए परीक्षण कण द्वारा अनुभव किए गए बल के लिए परिमाण और दिशा निकालने के लिए प्रारंभिक और सीमा स्थितियों के दिए गए सेट का उपयोग करने की अनुमति देते हैं; परिणामी सदिश क्षेत्र विद्युत चुम्बकीय क्षेत्र है।
  • किसी भी विशाल वस्तु द्वारा उत्पन्न गुरुत्वाकर्षण क्षेत्र भी सदिश क्षेत्र होता है। उदाहरण के लिए, गोलाकार रूप से सममित पिंड के लिए गुरुत्वाकर्षण क्षेत्र के सभी सदिश गोले के केंद्र की ओर प्रदर्शित करेंगे और पिंड से रेडियल दूरी बढ़ने पर सदिशों का परिमाण कम हो जाएगा।

यूक्लिडियन समष्टियों में प्रवणता क्षेत्र

सदिश क्षेत्र जिसमें बिंदु के विषय में परिसंचरण होता है उसे किसी फलन के ग्रेडिएंट के रूप में नहीं लिखा जा सकता है।

प्रवणता ऑपरेटर (डेल: ∇ द्वारा चिह्नित) का उपयोग करके अदिश क्षेत्र से सदिश क्षेत्र का निर्माण किया जा सकता है।[4]

विवृत समुच्चय S पर परिभाषित सदिश क्षेत्र V को 'प्रवणता क्षेत्र' या 'रूढ़िवादी क्षेत्र' कहा जाता है यदि S पर कोई वास्तविक-मूल्य फलन (अदिश क्षेत्र) f उपस्थित है जैसे कि;

सम्बद्ध प्रवाह को प्रवणता प्रवाह कहा जाता है, और इसका उपयोग ग्रेडिएंट डिसेंट की विधि में किया जाता है।

रूढ़िवादी क्षेत्र में किसी भी संवृत वक्र γ (γ(0) = γ(1)) के साथ अभिन्न पथ शून्य है:

यूक्लिडियन समष्टियों में केंद्रीय क्षेत्र

Rn \ {0} पर C-सदिश क्षेत्र को केंद्रीय क्षेत्र कहा जाता है यदि;

जहां O(n, R) लंबकोणीय समूह है। हम कहते हैं कि केंद्रीय क्षेत्र 0 के निकट लंबकोणीय परिवर्तनों के अंतर्गत अपरिवर्तनीय हैं।

बिंदु 0 को क्षेत्र का केंद्र कहा जाता है।

चूंकि लंबकोणीय परिवर्तन वास्तव में घूर्णन और प्रतिबिंब हैं, अपरिवर्तनीय स्थितियों का तात्पर्य है कि केंद्रीय क्षेत्र के सदिश सदैव 0 की ओर या उससे दूर निर्देशित होते हैं; यह वैकल्पिक (और सरल) परिभाषा है। केंद्रीय क्षेत्र सदैव प्रवणता क्षेत्र होता है, क्योंकि इसे अर्ध-अक्ष पर परिभाषित करने और एकीकृत करने से एंटीग्रेडिएंट मिलता है।

सदिश क्षेत्र पर संचालन

रेखा समाकलन

भौतिकी में सामान्य प्रौद्योगिकी सदिश क्षेत्र को वक्रों की अवकल ज्यामिति के साथ एकीकृत करना है, जिसे इसकी रेखा समाकलन का निर्धारण भी कहा जाता है। सहज रूप से यह सभी सदिश घटकों को वक्र की स्पर्शरेखाओं के अनुरूप सारांशित करता है, जिसे उनके अदिश उत्पादों के रूप में व्यक्त किया जाता है। उदाहरण के लिए, बल क्षेत्र (जैसे गुरुत्वाकर्षण) में कण दिया गया है, जहां समष्टि में किसी बिंदु पर प्रत्येक सदिश कण पर फलनरत बल का प्रतिनिधित्व करता है, निश्चित पथ के साथ अभिन्न रेखा कण पर किया गया फलन है, जब यह यात्रा करता है इस पथ पर सहज रूप से, यह बल सदिश के अदिश उत्पादों और वक्र के प्रत्येक बिंदु पर छोटे स्पर्शरेखा सदिश का योग है।

रेखा समाकलन का निर्माण रीमैन समाकलन के अनुरूप किया जाता है और यह तब उपस्थित होता है जब वक्र सुधार योग्य होता है (परिमित लंबाई होती है) और सदिश क्षेत्र निरंतर होता है।

सदिश क्षेत्र दिया गया है V और वक्र γ को देखते हुए, [a, b] में t द्वारा पैरामीट्रिक समीकरण (जहाँ a और b वास्तविक संख्याएँ हैं), रेखा समाकलन को इस प्रकार परिभाषित किया गया है:

सदिश क्षेत्र टोपोलॉजी दिखाने के लिए कोई रेखा समाकलन कनवल्शन का उपयोग कर सकता है।

विचलन

यूक्लिडियन समष्टि पर सदिश क्षेत्र का विचलन फलन (या अदिश क्षेत्र) है। तीन-आयामों में, विचलन को परिभाषित किया गया है:

इच्छानुसार आयामों के स्पष्ट सामान्यीकरण के साथ बिंदु पर विचलन उस डिग्री का प्रतिनिधित्व करता है जिस तक बिंदु के चारों ओर छोटी मात्रा सदिश प्रवाह के लिए स्रोत या सिंक है, जिसका परिणाम विचलन प्रमेय द्वारा त्रुटिहीन बनाया गया है।

विचलन को रीमैनियन मैनिफोल्ड पर भी परिभाषित किया जा सकता है, अर्थात, रीमैनियन मीट्रिक के साथ मैनिफोल्ड जो सदिश की लंबाई को मापता है।

तीन आयामों में कर्ल

कर्ल ऑपरेशन है जो सदिश क्षेत्र लेता है और अन्य सदिश क्षेत्र त्पन्न करता है। कर्ल को केवल तीन आयामों में परिभाषित किया गया है, किन्तु कर्ल के कुछ गुणों को बाहरी व्युत्पन्न के साथ उच्च आयामों में कैप्चर किया जा सकता है। इसे तीन आयामों में परिभाषित किया गया है;

कर्ल बिंदु पर सदिश प्रवाह के कोणीय गति के घनत्व को मापता है, अर्थात, वह मात्रा जिस तक प्रवाह निश्चित अक्ष के चारों ओर घूमता है। यह सहज विवरण स्टोक्स के प्रमेय द्वारा त्रुटिहीन बनाया गया है।

सदिश क्षेत्र का सूचकांक

सदिश क्षेत्र का सूचकांक पूर्णांक होता है जो पृथक शून्य (अर्थात, क्षेत्र की पृथक विलक्षणता) के निकट सदिश क्षेत्र के व्यवहार का वर्णन करने में सहायता करता है। समतल में, सूचकांक सैडल विलक्षणता पर मान -1 लेता है किन्तु स्रोत या सिंक विलक्षणता पर +1 लेता है।

मान लीजिए n उस मैनिफ़ोल्ड का आयाम है जिस पर सदिश क्षेत्र परिभाषित है। शून्य के चारों ओर संवृत सतह ((n-1)-गोले के लिए होमियोमोर्फिक) S लें, जिससे कि कोई अन्य शून्य S के आंतरिक भाग में न हो। इस क्षेत्र से आयाम n -1 के इकाई क्षेत्र तक मानचित्र का निर्माण किया जा सकता है इस गोले पर प्रत्येक सदिश को उसकी लंबाई से विभाजित करके इकाई लंबाई सदिश बनाया जाता है, जो इकाई क्षेत्र Sn−1 पर बिंदु है। यह S से Sn−1 तक सतत मानचित्र को परिभाषित करता है। बिंदु पर सदिश क्षेत्र का सूचकांक इस मानचित्र की डिग्री है। यह दिखाया जा सकता है कि यह पूर्णांक S की रूचि पर निर्भर नहीं है, और इसलिए केवल सदिश क्षेत्र पर ही निर्भर करता है।

सूचकांक को किसी भी गैर-एकवचन बिंदु (अर्थात, बिंदु जहां सदिश गैर-शून्य है) पर परिभाषित नहीं किया गया है। यह स्रोत के चारों ओर +1 के समान है, और सामान्यतः काठी के चारों ओर (−1)k के समान है जिसमें k संकुचन आयाम और n−k विस्तार आयाम हैं।

संपूर्ण सदिश क्षेत्र का सूचकांक तब परिभाषित किया जाता है जब इसमें अत्यधिक शून्य होते हैं। इस स्थिति में, सभी शून्य भिन्न-भिन्न हैं, और सदिश क्षेत्र के सूचकांक को सभी शून्यों पर सूचकांकों के योग के रूप में परिभाषित किया गया है।

त्रि-आयामी समष्टि में साधारण (2-आयामी) क्षेत्र के लिए, यह दिखाया जा सकता है कि गोले पर किसी भी सदिश क्षेत्र का सूचकांक 2 होना चाहिए। इससे ज्ञात होता है कि ऐसे प्रत्येक सदिश क्षेत्र में शून्य होना चाहिए। इसका तात्पर्य हेयरी बॉल प्रमेय से है।

सीमित संख्या में शून्य वाले कॉम्पैक्ट मैनिफोल्ड पर सदिश क्षेत्र के लिए, पोंकारे-हॉप प्रमेय बताता है कि सदिश क्षेत्र का सूचकांक मैनिफोल्ड की यूलर विशेषता है।

शारीरिक अंतर्ज्ञान

लोहे की छड़ की चुंबकत्व क्षेत्र रेखाएं (चुंबकीय द्विध्रुव)

माइकल फैराडे ने बल की रेखाओं की अपनी अवधारणा में इस विषय पर जोर दिया कि क्षेत्र स्वयं अध्ययन का उद्देश्य होना चाहिए, जो कि क्षेत्र सिद्धांत के रूप में संपूर्ण भौतिकी में बन गया है।

चुंबकीय क्षेत्र के अतिरिक्त, फैराडे द्वारा प्रतिरूपित की गई अन्य घटनाओं में विद्युत क्षेत्र और प्रकाश क्षेत्र सम्मिलित हैं।

वर्तमान के दशकों में भौतिकी में अपरिवर्तनीय गतिशीलता और विकास समीकरणों के कई घटनात्मक सूत्रीकरण, जटिल तरल पदार्थ और ठोस के यांत्रिकी से लेकर रासायनिक कैनेटीक्स और क्वांटम थर्मोडायनामिक्स तक, सतत सार्वभौमिक मॉडलिंग प्रारूप के रूप में तीव्र एन्ट्रापी चढ़ाई या ढाल प्रवाह के ज्यामितीय विचार की ओर एकत्रित हुए हैं जो कि ऊष्मप्रवैगिकी के दूसरे नियम के साथ अनुकूलता की आश्वासन देता है और सुप्रसिद्ध निकट-संतुलन परिणामों जैसे कि ऑनसेगर पारस्परिकता को दूर-गैर-संतुलन क्षेत्र तक विस्तारित करता है।[5]

प्रवाह वक्र

अंतरिक्ष के क्षेत्र से होकर तरल पदार्थ के प्रवाह पर विचार करें। किसी भी समय, द्रव के किसी भी बिंदु के साथ विशेष वेग जुड़ा होता है; इस प्रकार किसी भी प्रवाह से जुड़ा सदिश क्षेत्र होता है। इसका विपरीत भी सत्य है: किसी प्रवाह को उस सदिश क्षेत्र से जोड़ना संभव है, जिसका वेग उस सदिश क्षेत्र के रूप में हो।

सदिश क्षेत्र दिया गया है पर परिभाषित , वक्र परिभाषित करता है पर ऐसा कि प्रत्येक के लिए अंतराल में है,

पिकार्ड-लिंडेलोफ़ प्रमेय द्वारा, यदि लिप्सचिट्ज़ निरंतरता है वहाँ अद्वितीय है -वक्र प्रत्येक बिंदु के लिए में जिससे कि, कुछ के लिए ,
वक्र सदिश क्षेत्र के अभिन्न वक्र या प्रक्षेप पथ (या कम सामान्यतः, प्रवाह रेखाएं) और विभाजन समतुल्य वर्गों में कहलाते हैं। अंतराल को संपूर्ण वास्तविक संख्या रेखा तक बढ़ाना सदैव संभव नहीं होता है। उदाहरण के लिए, प्रवाह सीमित समय में किनारे तक पहुँच सकता है। दो या तीन आयामों में कोई प्रवाह को उत्पन्न करने वाले सदिश क्षेत्र के रूप में देख सकता है। यदि हम इस प्रवाह में बिंदु पर कण छोड़ते हैं यह वक्र के अनुदिश गति करेगा प्रारंभिक बिंदु के आधार पर प्रवाह में यदि का स्थिर बिंदु है (अर्थात्, सदिश क्षेत्र बिंदु पर शून्य सदिश के समान है), तो कण पर रहेगा।

विशिष्ट अनुप्रयोग द्रव, जियोडेसिक प्रवाह और एक-पैरामीटर उपसमूहों में पथ रेखाएं और लाई समूहों में घातीय मानचित्र हैं।

पूर्ण सदिश क्षेत्र

परिभाषा के अनुसार, सदिश क्षेत्र पर पूर्ण कहा जाता है यदि इसका प्रत्येक प्रवाह वक्र सदैव विद्यमान रहता है।[6] विशेष रूप से, मैनिफोल्ड पर कॉम्पैक्ट रूप से समर्थित सदिश क्षेत्र पूर्ण हैं। यदि पर पूर्ण सदिश क्षेत्र है, फिर प्रवाह द्वारा उत्पन्न भिन्नताओं का एक-पैरामीटर समूह प्रत्येक समय उपस्थित है; इसका वर्णन सहज मानचित्रण द्वारा किया गया है:

सीमा के बिना कॉम्पैक्ट मैनिफोल्ड पर, प्रत्येक स्मूथ सदिश क्षेत्र पूर्ण है। अपूर्ण सदिश क्षेत्र का उदाहरण वास्तविक रेखा पर द्वारा दिया गया है। अवकल समीकरण के लिए, प्रारंभिक स्थिति के साथ , इसका अनूठा समाधान है यदि (और सभी के लिए यदि ) है इसलिए , पर अपरिभाषित है इसलिए सभी मानों के लिए परिभाषित नहीं किया जा सकता है।

लाई कोष्ठक

दो सदिश क्षेत्रों से जुड़े प्रवाह को एक दूसरे के साथ क्रमविनिमेय गुण की आवश्यकता नहीं है। आवागमन में उनकी विफलता को दो सदिश क्षेत्र के लाई कोष्ठक द्वारा वर्णित किया गया है, जो पुनः सदिश क्षेत्र है। सुचारू फलनों पर सदिश क्षेत्र की कार्रवाई के संदर्भ में लाई कोष्ठक की सरल परिभाषा है :

f-संबद्धता

मैनिफोल्ड्स के मध्य सुचारू फलन को देखते हुए, , व्युत्पन्न स्पर्शरेखा बंडलों पर प्रेरित मानचित्र है, दिए गए सदिश क्षेत्र और हैं, हम ऐसा कहते हैं है -संबंधित यदि समीकरण धारण करता है।

यदि है -संदर्भ के , , फिर लाई ब्रैकेट है -संदर्भ के है।

सामान्यीकरण

सदिशों को p-सदिश(सदिश की pth बाह्य शक्ति) द्वारा प्रतिस्थापित करने से p-सदिश क्षेत्र प्राप्त होते हैं; दोहरे समष्टि और बाहरी शक्तियों को लेने से अवकल k-रूप प्राप्त होते हैं, और इन्हें संयोजित करने से सामान्य टेंसर क्षेत्र प्राप्त होते हैं।

बीजगणितीय रूप से, सदिश क्षेत्रों को मैनिफोल्ड पर सुचारु फलनों के बीजगणित की व्युत्पत्ति के रूप में चित्रित किया जा सकता है, जो क्रमविनिमेय बीजगणित पर सदिश क्षेत्र को बीजगणित पर व्युत्पत्ति के रूप में परिभाषित करने की ओर ले जाता है, जिसे क्रमविनिमेय बीजगणित पर अवकल कलन के सिद्धांत में विकसित किया गया है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Galbis, Antonio; Maestre, Manuel (2012). वेक्टर विश्लेषण बनाम वेक्टर कैलकुलस. Springer. p. 12. ISBN 978-1-4614-2199-3.
  2. 2.0 2.1 Tu, Loring W. (2010). "Vector fields". मैनिफोल्ड्स का एक परिचय. Springer. p. 149. ISBN 978-1-4419-7399-3.
  3. Lerman, Eugene (August 19, 2011). "विभेदक ज्यामिति का एक परिचय" (PDF). Definition 3.23.
  4. Dawber, P.G. (1987). वेक्टर और वेक्टर ऑपरेटर. CRC Press. p. 29. ISBN 978-0-85274-585-4.
  5. Beretta, Gian Paolo (2020-05-01). "The fourth law of thermodynamics: steepest entropy ascent". Philosophical Transactions of the Royal Society A. 378 (2170): 20190168. arXiv:1908.05768. Bibcode:2020RSPTA.37890168B. doi:10.1098/rsta.2019.0168. ISSN 1471-2962. S2CID 201058607.
  6. Sharpe, R. (1997). विभेदक ज्यामिति. Springer-Verlag. ISBN 0-387-94732-9.

ग्रन्थसूची

बाहरी संबंध