वृत्त समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Short description|Lie group of complex numbers of unit modulus; topologically a circle}}
{{Short description|Lie group of complex numbers of unit modulus; topologically a circle}}
{{for|जैज समूह|सर्कल (जैज बैंड)}}
{{Group theory sidebar}}
{{Group theory sidebar}}
{{Lie groups |Other}}
{{Lie groups |Other}}


गणित में, वृत्त समूह, द्वारा निरूपित किया जाता है <math>\mathbb T</math> या <math>\mathbb S^1</math>, निरपेक्ष मान [[जटिल संख्या]] 1 के साथ सभी सम्मिश्र संख्याओं का [[गुणक समूह]] है, जिससे, सम्मिश्र तल में इकाई वृत्त या केवल इकाई सम्मिश्र संख्याएँ है<ref name=":0">{{cite book |last1=James |first1=Robert C. |author-link=Robert C. James |last2=James |first2=Glenn |year=1992 |title=गणित शब्दकोश|edition=Fifth |publisher=Chapman & Hall |page=436 |isbn=9780412990410 |url=https://books.google.com/books?id=UyIfgBIwLMQC&q=%22unit+complex+number%22&pg=PA436 |quote=a ''unit complex number'' is a [[complex number]] of [[1|unit]] [[absolute value]]}}.</ref>  <math display=block>\mathbb T = \{ z \in \mathbb C : |z| = 1 \}.</math>
गणित में, '''वृत्त समूह''', द्वारा निरूपित किया जाता है <math>\mathbb T</math> या <math>\mathbb S^1</math>, निरपेक्ष मान [[जटिल संख्या]] 1 के साथ सभी सम्मिश्र संख्याओं का [[गुणक समूह]] है, जिससे, सम्मिश्र तल में इकाई वृत्त या केवल इकाई सम्मिश्र संख्याएँ है<ref name=":0">{{cite book |last1=James |first1=Robert C. |author-link=Robert C. James |last2=James |first2=Glenn |year=1992 |title=गणित शब्दकोश|edition=Fifth |publisher=Chapman & Hall |page=436 |isbn=9780412990410 |url=https://books.google.com/books?id=UyIfgBIwLMQC&q=%22unit+complex+number%22&pg=PA436 |quote=a ''unit complex number'' is a [[complex number]] of [[1|unit]] [[absolute value]]}}.</ref>  <math display=block>\mathbb T = \{ z \in \mathbb C : |z| = 1 \}.</math>




Line 113: Line 112:
==टिप्पणियाँ==
==टिप्पणियाँ==
{{reflist}}
{{reflist}}


==संदर्भ==
==संदर्भ==
*{{Cite book |last1=James |first1=Robert C. |last2=James |first2=Glenn |year=1992 |title=Mathematics Dictionary |edition=Fifth |publisher=Chapman & Hall |isbn=9780412990410 |url=https://books.google.com/books?id=UyIfgBIwLMQC }}
*{{Cite book |last1=James |first1=Robert C. |last2=James |first2=Glenn |year=1992 |title=Mathematics Dictionary |edition=Fifth |publisher=Chapman & Hall |isbn=9780412990410 |url=https://books.google.com/books?id=UyIfgBIwLMQC }}
==अग्रिम पठन==
==अग्रिम पठन==
* [[Hua Luogeng]] (1981) ''Starting with the unit circle'', [[Springer Verlag]], {{ISBN|0-387-90589-8}}.
* [[Hua Luogeng]] (1981) ''Starting with the unit circle'', [[Springer Verlag]], {{ISBN|0-387-90589-8}}.
==बाहरी संबंध==
==बाहरी संबंध==
*[https://www.youtube.com/watch?v=-ypicun4AbM&list=PL0F555888A4C2329B Homeomorphism and the Group Structure on a Circle]
*[https://www.youtube.com/watch?v=-ypicun4AbM&list=PL0F555888A4C2329B Homeomorphism and the Group Structure on a Circle]

Latest revision as of 17:12, 2 November 2023

गणित में, वृत्त समूह, द्वारा निरूपित किया जाता है या , निरपेक्ष मान जटिल संख्या 1 के साथ सभी सम्मिश्र संख्याओं का गुणक समूह है, जिससे, सम्मिश्र तल में इकाई वृत्त या केवल इकाई सम्मिश्र संख्याएँ है[1]


वृत्त समूह का उपसमूह बनाता है , सभी अशून्य सम्मिश्र संख्याओं का गुणन समूह। तब से एबेलियन समूह है, यह इस प्रकार है साथ ही है।

वृत्त समूह में इकाई जटिल संख्या मूल के बारे में जटिल विमान के रोटेशन (गणित) का प्रतिनिधित्व करती है और इसे कोण माप द्वारा पैरामीट्रिज किया जा सकता है।

यह वृत्त समूह के लिए घातीय मानचित्र (झूठ सिद्धांत) है। वृत्त समूह पोंट्रीगिन द्वैत में और झूठ समूह के सिद्धांत में केंद्रीय भूमिका निभाता है।

अंकन वृत्त समूह के लिए इस तथ्य से उपजा है कि, मानक टोपोलॉजी (नीचे देखें) के साथ, वृत्त समूह 1-टोरस्र्स है। सामान्यतः अधिक, (समूहों का प्रत्यक्ष उत्पाद स्वयं के साथ टाइम्स) ज्यामितीय रूप से -टोरस है।

वृत्त ग्रुप विशेष ऑर्थोगोनल ग्रुप के लिए ग्रुप आइसोमोर्फिज्म है।

प्रारंभिक परिचय

वृत्त समूह पर गुणा कोणों के योग के बराबर है।

वृत्त समूह के बारे में सोचने का विधि यह है कि यह वर्णन करता है कि कोणों को कैसे जोड़ा जाए, जहाँ केवल 0° और 360° के बीच के कोण हों या या अनुमति है। उदाहरण के लिए, आरेख दिखाता है कि 150° को 270° में कैसे जोड़ा जाए। उत्तर है 150° + 270° = 420°, लेकिन वृत्त समूह के संदर्भ में सोचते समय, हम इस तथ्य को भूल सकते हैं कि हमने वृत्त के चारों ओर लपेट लिया है। इसलिए, हम अपने उत्तर को 360° से समायोजित करते हैं, जो देता है 420° ≡ 60° (mod 360°).

अन्य विवरण साधारण (वास्तविक) जोड़ के संदर्भ में है, जहां केवल 0 और 1 के बीच की संख्या की अनुमति है (1 पूर्ण घुमाव के अनुरूप: 360° या ), जिससे वास्तविक संख्याएँ पूर्णांकों को मापती हैं: . इसे दशमलव बिंदु से पहले आने वाले अंकों को हटाकर प्राप्त किया जा सकता है। उदाहरण के लिए, जब हम व्यायाम करते हैं 0.4166... + 0.75, उत्तर 1.1666 है..., लेकिन हम अग्रणी 1 को निकाल सकते हैं, इसलिए उत्तर (वृत्त समूह में) सिर्फ है कुछ वरीयता के साथ 0.166..., क्योंकि .है।

सामयिक और विश्लेषणात्मक संरचना

वृत्त समूह केवल सार बीजगणितीय वस्तु से अधिक है। इसकी प्राकृतिक टोपोलॉजी है जब इसे जटिल विमान के उप-क्षेत्र (टोपोलॉजी) के रूप में माना जाता है। चूंकि गुणा और व्युत्क्रमण निरंतर फलन (टोपोलॉजी) पर होते हैं , वृत्त समूह में सामयिक समूह की संरचना होती है। इसके अतिरिक्त, चूंकि यूनिट वृत्त जटिल विमान का बंद उपसमुच्चय है, वृत्त समूह का बंद उपसमूह है (स्वयं को सामयिक समूह के रूप में माना जाता है।

कोई और भी कह सकता है। वृत्त 1-आयामी वास्तविक कई गुना है, और गुणा और व्युत्क्रम विश्लेषणात्मक कार्य हैं। चक्र पर वास्तविक-विश्लेषणात्मक मानचित्र है। यह वृत्त समूह को पैरामीटर समूह की संरचना देता है, लाई समूह का उदाहरण। वास्तव में, आइसोमोर्फिज्म तक, यह अद्वितीय 1-आयामी कॉम्पैक्ट जगह , जुड़ा हुआ स्थान ली ग्रुप है। इसके अतिरिक्त, हर -डायमेंशनल कॉम्पैक्ट, कनेक्टेड, एबेलियन लाइ ग्रुप आइसोमॉर्फिक है

समाकृतिकता

वृत्त समूह गणित में विभिन्न रूपों में दिखाई देता है। हम यहां कुछ अधिक सामान्य रूपों की सूची दे रहे हैं। विशेष रूप से, हम दिखाते हैं।

ध्यान दें कि स्लैश (/) यहाँ भागफल समूह को दर्शाता है।

सभी 1×1 एकात्मक मैट्रिक्स का सेट वृत्त समूह के साथ स्पष्ट रूप से मेल खाता है; एकात्मक स्थिति इस स्थिति के समतुल्य है कि इसके तत्व का पूर्ण मान 1 है। इसलिए, वृत्त समूह कैनोनिक रूप से आइसोमोर्फिक है , पहला एकात्मक समूह है

घातीय कार्य एक समूह समरूपता को जन्म देता है योज्य वास्तविक संख्याओं से मंडली समूह को मानचित्र के माध्यम से

अंतिम समानता यूलर का सूत्र या जटिल घातांक है। वास्तविक संख्या θ इकाई वृत्त पर कोण (कांति में) से मेल खाती है, जैसा कि धनात्मक x अक्ष से वामावर्त मापा जाता है। यह मानचित्र समरूपता है इस तथ्य से अनुसरण करता है कि इकाई जटिल संख्याओं का गुणन कोणों के जोड़ से मेल खाता है:

यह घातीय मानचित्र स्पष्ट रूप से विशेषण कार्य है को . चुकीं , यह इंजेक्शन नहीं है। इस मानचित्र का कर्नेल (समूह सिद्धांत) सभी पूर्णांक गुणकों का समूह है पहले समरूपता प्रमेय द्वारा वह हमारे पास है।

रीस्केलिंग के बाद हम यह भी कह सकते हैं के लिए आइसोमोर्फिक है .है।

यदि जटिल संख्याएं 2 × 2 वास्तविक मैट्रिक्स (गणित) (जटिल संख्या देखें) के रूप में अनुभव की जाती हैं, तो इकाई जटिल संख्याएं इकाई निर्धारक के साथ 2 × 2 ऑर्थोगोनल मेट्रिसेस के अनुरूप होती हैं। विशेष रूप से, हमारे पास है।

यह फलन दिखाता है कि विशेष ऑर्थोगोनल समूह के लिए वृत्त समूह समूह समरूपता है तब से
कहाँ मैट्रिक्स गुणन है।

इस समरूपता की ज्यामितीय व्याख्या है कि इकाई सम्मिश्र संख्या द्वारा गुणा करना सम्मिश्र (और वास्तविक) तल में उचित घूर्णन है, और ऐसा प्रत्येक घूर्णन इसी रूप का है।

गुण

हर कॉम्पैक्ट झूठ समूह आयाम का > 0 का उपसमूह वृत्त समूह के समरूपी है। इसका अर्थ यह है कि, समरूपता के संदर्भ में सोचने पर, लगातार कार्य करने वाले कॉम्पैक्ट समरूपता समूह से एक-पैरामीटर वृत्त उपसमूहों के अभिनय की उम्मीद की जा सकती है; भौतिक प्रणालियों में परिणाम देखे जाते हैं, उदाहरण के लिए, घूर्णी आक्रमण और सहज समरूपता टूटने पर। वृत्त समूह में कई उपसमूह होते हैं, लेकिन इसका एकमात्र उचित बंद उपसमूह एकता की जड़ से बना होता है: प्रत्येक पूर्णांक के लिए ,-एकता की जड़ें एक चक्रीय समूह बनाती हैं order , जो समरूपता तक अद्वितीय है।

ठीक उसी तरह जैसे कि वास्तविक संख्याएँ द्विअर्थी परिमेय की पूर्णता (टोपोलॉजी) हैं बी-ऐडिक परिमेय प्रत्येक प्राकृतिक संख्या के लिए , वृत्त समूह प्रूफ़र समूह का समापन है के लिए , प्रत्यक्ष सीमा द्वारा दिया गया .

प्रतिनिधित्व

वृत्त समूह के समूह प्रतिनिधित्व का वर्णन करना आसान है। शूर के लेम्मा से यह पता चलता है कि एबेलियन समूह के इरेड्यूसिबल प्रतिनिधित्व जटिल संख्या प्रतिनिधित्व सभी 1-आयामी हैं। चूंकि वृत्त समूह कॉम्पैक्ट है, कोई भी प्रतिनिधित्व है।

में मान लेना चाहिए . इसलिए, वृत्त समूह के अलघुकरणीय अभ्यावेदन केवल वृत्त समूह से स्वयं के लिए समूह समरूपता हैं।

ये अभ्यावेदन सभी असमान हैं। प्रतिनिधित्व संयुग्मित प्रतिनिधित्व है।

ये निरूपण केवल वृत्त समूह के वर्ण (गणित) हैं। का वर्ण समूह स्पष्ट रूप से द्वारा उत्पन्न अनंत चक्रीय समूह है।

वृत्त समूह के अलघुकरणीय वास्तविक संख्या निरूपण तुच्छ निरूपण (जो 1-आयामी है) और निरूपण हैं।
मान लेना . यहाँ हमारे पास केवल धनात्मक पूर्णांक हैं , प्रतिनिधित्व के बाद से के बराबर है।

समूह संरचना

मंडल समूह विभाज्य समूह है। इसका मरोड़ उपसमूह सभी के सेट द्वारा दिया गया है -सभी के लिए एकता की जड़ और आइसोमॉर्फिक है . विभाज्य समूह # विभाज्य समूहों के लिए विभाज्य समूहों की संरचना प्रमेय और पसंद के स्वयंसिद्ध एक साथ हमें बताते हैं कि के एबेलियन समूहों के प्रत्यक्ष योग के लिए आइसोमोर्फिक है की कई प्रतियों के साथ .है।

प्रतियों की संख्या होना चाहिए (सातत्य की कार्डिनैलिटी) प्रत्यक्ष योग की कार्डिनैलिटी के सही होने के लिए। लेकिन का सीधा योग की प्रतियां के लिए आइसोमोर्फिक है , जैसा आयाम का सदिश स्थान है ऊपर . इस प्रकार है।

समरूपता

उसी तरह साबित किया जा सकता है, चूंकि विभाज्य एबेलियन समूह भी है जिसका मरोड़ उपसमूह मरोड़ उपसमूह के समान है।

यह भी देखें

टिप्पणियाँ

  1. James, Robert C.; James, Glenn (1992). गणित शब्दकोश (Fifth ed.). Chapman & Hall. p. 436. ISBN 9780412990410. a unit complex number is a complex number of unit absolute value.

संदर्भ

अग्रिम पठन

बाहरी संबंध