क्रम (समूह सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
 
(11 intermediate revisions by 4 users not shown)
Line 4: Line 4:
{{Refimprove|date=May 2011}}
{{Refimprove|date=May 2011}}
{{Group theory sidebar |Finite}}
{{Group theory sidebar |Finite}}
गणित में, एक [[परिमित समूह]] का क्रम उसके तत्वों की संख्या है। यदि कोई [[समूह (गणित)]] परिमित नहीं है, तो कोई कहता है कि इसका क्रम 'अनंत' है। एक समूह के एक तत्व का ''आदेश'' (जिसे अवधि की लंबाई या अवधि भी कहा जाता है) तत्व द्वारा उत्पन्न उपसमूह का क्रम है। यदि समूह संचालन को [[गुणक समूह]] के रूप में दर्शाया जाता है, तो तत्व का क्रम {{mvar|a}} समूह का, इस प्रकार सबसे छोटा [[सकारात्मक पूर्णांक]] है {{math|''m''}} ऐसा है कि {{math|1=''a''<sup>''m''</sup> = ''e''}}, कहाँ {{math|''e''}} समूह के [[पहचान तत्व]] को दर्शाता है, और {{math|''a''<sup>''m''</sup>}} के उत्पाद को दर्शाता है {{math|''m''}} की प्रतियां {{math|''a''}}. यदि ऐसा नहीं है {{math|''m''}} उपस्थित है, का क्रम {{math|''a''}} अनंत है।
गणित में, एक [[परिमित समूह]] का क्रम उसके तत्वों की संख्या होती है। यदि कोई [[समूह (गणित)|समूह]] परिमित रूप में नहीं है, तो इस प्रकार इसका क्रम 'अनंत' रूप में होता है। एक समूह के एक तत्व का क्रम तत्व द्वारा उत्पन्न उपसमूह के क्रम के रूप में होता है, जिसे अवधि की लंबाई या अवधि भी कहा जाता है। यदि समूह संचालन को [[गुणक समूह]] के रूप में दर्शाया जाता है, तो समूह के एक तत्व {{mvar|a}} का क्रम इस प्रकार सबसे छोटा[[सकारात्मक पूर्णांक]] {{math|''m''}} होता है, जैसे कि {{math|1=''a''<sup>''m''</sup> = ''e''}}, जहां {{math|''e''}} समूह के [[पहचान तत्व|तत्समक तत्व]] को दर्शाता है और {{math|''a''<sup>''m''</sup>}}, {{math|''m''}} के उत्पाद को दर्शाता है। यदि ऐसा कोई m उपस्थित नहीं है, तो {{math|''a''}} का क्रम अनंत होता है।


एक समूह का क्रम {{mvar|G}} द्वारा दर्शाया जाता है {{math|ord(''G'')}} या {{math|{{abs|''G''}}}}, और एक तत्व का क्रम {{math|''a''}} द्वारा दर्शाया जाता है {{math|ord(''a'')}} या {{math|{{abs|''a''}}}}, के अतिरिक्त <math>\operatorname{ord}(\langle a\rangle),</math> जहाँ कोष्ठक उत्पन्न समूह को दर्शाते हैं।
एक समूह का क्रम {{mvar|G}} द्वारा दर्शाया जाता है {{math|ord(''G'')}} या {{math|{{abs|''G''}}}} और एक अन्य तत्व का क्रम {{math|''a''}} द्वारा दर्शाया जाता है {{math|ord(''a'')}} या {{math|{{abs|''a''}}}}, के अतिरिक्त <math>\operatorname{ord}(\langle a\rangle),</math> जहाँ कोष्ठक उत्पन्न समूह को दर्शाते हैं।


लैग्रेंज का प्रमेय (समूह सिद्धांत)| लैग्रेंज का प्रमेय कहता है कि किसी भी उपसमूह के लिए {{math|''H''}} एक परिमित समूह का {{math|''G''}}, उपसमूह का क्रम समूह के क्रम को विभाजित करता है; वह है, {{math|{{abs|''H''}}}} का [[भाजक]] है {{math|{{abs|''G''}}}}. विशेष रूप से, आदेश {{math|{{abs|''a''}}}} किसी भी तत्व का भाजक है {{math|{{abs|''G''|}}}}.
लैग्रेंज के प्रमेय में कहा गया है कि परिमित समूह {{math|''G''}} के लिए किसी भी उपसमूह {{math|''H''}} के लिए उपसमूह का क्रम समूह के क्रम को विभाजित करता है और इस प्रकार वह {{math|{{abs|''H''}}}} का [[भाजक]] है {{math|{{abs|''G''}}}} और विशेष रूप से क्रम के रूप में होता है, {{math|{{abs|''a''}}}} किसी भी तत्व का भाजक है {{math|{{abs|''G''|}}}}.


== उदाहरण ==
== उदाहरण ==
[[सममित समूह]] एस<sub>3</sub> निम्नलिखित केली तालिका है।
[[सममित समूह]] S<sub>3</sub> में निम्नलिखित गुणन सारणी के रूप में होती है।
:{| class="wikitable"
:{| class="wikitable"
|-
|-
Line 35: Line 35:
| ''w'' || ''v'' || ''u'' || ''t'' || ''s'' || <span style="color:#009246">''e''</span>
| ''w'' || ''v'' || ''u'' || ''t'' || ''s'' || <span style="color:#009246">''e''</span>
|}
|}
इस समूह में छह तत्व हैं, इसलिए {{math|1=ord(S<sub>3</sub>)&nbsp;= 6}}. परिभाषा के अनुसार, पहचान का क्रम, {{math|''e''}}, एक है, चूंकि {{math|1=''e'' <sup>1</sup> = ''e''}}. की प्रत्येक {{math|''s''}}, {{math|''t''}}, और {{math|''w''}} वर्ग से {{math|''e''}}, इसलिए इन समूह तत्वों का क्रम दो है: {{math|1={{!}}''s''{{!}} = {{!}}''t''{{!}} = {{!}}''w''{{!}} = 2}}. आखिरकार, {{math|''u''}} और {{math|''v''}} के बाद से आदेश 3 है {{math|1=''u''<sup>3</sup>&nbsp;= ''vu''&nbsp;= ''e''}}, और {{math|1=''v''<sup>3</sup>&nbsp;= ''uv''&nbsp;= ''e''}}.
इस समूह में छह तत्व होते है, इसलिए {{math|1=ord(S<sub>3</sub>)&nbsp;= 6}}. परिभाषा के अनुसार तत्समक का क्रम {{math|''e''}}, के रूप में है, चूंकि {{math|1=''e'' <sup>1</sup> = ''e''}}. की प्रत्येक {{math|''s''}}, {{math|''t''}}, और {{math|''w''}} वर्ग से {{math|''e''}} है, इसलिए इन समूह तत्वों का क्रम दो है, {{math|1={{!}}''s''{{!}} = {{!}}''t''{{!}} = {{!}}''w''{{!}} = 2}}. अंततः {{math|''u''}} और {{math|''v''}} के बाद के क्रम 3 है और इस प्रकार {{math|1=''u''<sup>3</sup>&nbsp;= ''vu''&nbsp;= ''e''}}, और {{math|1=''v''<sup>3</sup>&nbsp;= ''uv''&nbsp;= ''e''}} के रूप में होते है।


== क्रम और संरचना ==
== क्रम और संरचना ==
समूह G का क्रम और उसके तत्वों का क्रम समूह की संरचना के बारे में अधिक जानकारी देता है। मोटे तौर पर कहा जाए तो, |G| का [[गुणन]]खंड जितना जटिल होता है, G की संरचना उतनी ही जटिल होती है।
समूह G का क्रम और उसके तत्वों का क्रम समूह की संरचना के बारे में अधिक जानकारी देता है। सामान्य रूप में कहा जाए तो, |G| का [[गुणन|गुणनखंड]] जितना जटिल होता है, G की संरचना उतनी ही जटिल होती है।


के लिए |जी| = 1, समूह [[तुच्छ समूह]] है। किसी भी समूह में, केवल पहचान तत्व a = e में ord(a) = 1 है। यदि G में प्रत्येक गैर-पहचान तत्व इसके व्युत्क्रम के बराबर है (जिससे कि a<sup>2</sup> = ई), तो ord(a) = 2; इसका मतलब है कि जी [[ एबेलियन समूह ]] ग्रुप थ्योरी # एब का व्युत्क्रम है <math>ab=(ab)^{-1}=b^{-1}a^{-1}=ba</math>. इसका उलट सत्य नहीं है; उदाहरण के लिए, (योगात्मक) [[चक्रीय समूह]] Z<sub>6</sub> पूर्णांकों का [[मॉड्यूलर अंकगणित]] 6 एबेलियन है, लेकिन संख्या 2 का क्रम 3 है:
|G| = 1 के लिए समूह [[तुच्छ समूह|त्रिविअल]] रूप में होता है। किसी भी समूह में, केवल तत्समक तत्व a = e में ord(a) = 1 के रूप में है। यदि G में प्रत्येक गैर तत्समक तत्व इसके व्युत्क्रम के बराबर होता है, जिससे कि ''a''<sup>2</sup> = ''e के रूप में है'', तो ord(a) = 2; इसका अर्थ है कि G[[ एबेलियन समूह ]]ग्रुप सिद्धांत <math>ab=(ab)^{-1}=b^{-1}a^{-1}=ba</math>. इसका व्युत्क्रम सत्य नहीं है उदाहरण के लिए पूर्णांक मॉडुलो 6 का योज्य [[चक्रीय समूह]] Z<sub>6</sub> पूर्णांकों का [[मॉड्यूलर अंकगणित]] 6 एबेलियन समूह के रूप में होते है, लेकिन संख्या 2 का क्रम 3 है।


:<math>2+2+2=6 \equiv 0 \pmod {6}</math>.
:<math>2+2+2=6 \equiv 0 \pmod {6}</math>.


आदेश की दो अवधारणाओं के बीच संबंध इस प्रकार है: यदि हम लिखते हैं
क्रम की दो अवधारणाओं के बीच संबंध रूप में होता है, यदि हम लिखते हैं।
:<math>\langle a \rangle = \{ a^{k}\colon k \in \mathbb{Z} \} </math>
:<math>\langle a \rangle = \{ a^{k}\colon k \in \mathbb{Z} \} </math>
[[उपसमूह]] के लिए ए द्वारा समूह का जनरेटिंग सेट, तब
a द्वारा उत्पन्न [[उपसमूह]] के लिए हैं, तब इसे इस रूप में दिखाते है।
:<math>\operatorname{ord} (a) = \operatorname{ord}(\langle a \rangle).</math>
:<math>\operatorname{ord} (a) = \operatorname{ord}(\langle a \rangle).</math>
किसी पूर्णांक k के लिए, हमारे पास है
किसी पूर्णांक k के लिए इस रूप में होते है।
:<sup>k</sup> = e   यदि और केवल यदि   ord(a) भाजक k.
:''a<sup>k</sup>'' = ''e'' यदि और केवल यदि ord(a) भाजक k का है,.


सामान्यता , G के किसी भी उपसमूह का क्रम G के क्रम को विभाजित करता है। अधिक यथार्थ रूप से: यदि H, G का एक उपसमूह है, तो
सामान्यता, G के किसी भी उपसमूह का क्रम G के क्रम को विभाजित करता है। और इस प्रकार अधिक यथार्थ रूप से यदि H, G का एक उपसमूह है, तो
:ord(G) / ord(H) = [G : H], जहां [G : H] को G में H के [[एक उपसमूह का सूचकांक]] कहा जाता है, एक पूर्णांक। यह लैग्रेंज का प्रमेय (समूह सिद्धांत) है | लैग्रेंज का प्रमेय। (हालांकि, यह केवल तभी सत्य है जब G का परिमित क्रम हो। यदि ord(G) = ∞, भागफल ord(G) / ord(H) का कोई अर्थ नहीं है।)
:ord(G) / ord(H) = [G : H], जहां [G : H] को G में H के [[एक उपसमूह का सूचकांक]] कहा जाता है और यह एक पूर्णांक के रूप में है। यह लैग्रेंज का प्रमेय समूह सिद्धांत है | लैग्रेंज का प्रमेय चूंकि, यह केवल तभी सत्य है जब G का परिमित क्रम के रूप में होता है। यदि ord(G) = ∞, भागफल ord(G) / ord(H) का कोई अर्थ नहीं है।


उपरोक्त के तत्काल परिणाम के रूप में, हम देखते हैं कि समूह के प्रत्येक तत्व का क्रम समूह के क्रम को विभाजित करता है। उदाहरण के लिए, ऊपर दिखाए गए सममित समूह में, जहाँ ord(S<sub>3</sub>) = 6, तत्वों के संभावित क्रम 1, 2, 3 या 6 हैं।
उपरोक्त के तत्क्षण परिणाम के रूप में, हम देखते हैं कि समूह के प्रत्येक तत्व का क्रम समूह के क्रम को विभाजित करता है। उदाहरण के लिए ऊपर दिखाए गए सममित समूह में, जहाँ ord(S<sub>3</sub>) = 6, तत्वों के संभावित क्रम 1, 2, 3 या 6 के रूप में होते है।


निम्नलिखित आंशिक विलोम परिमित समूहों के लिए सत्य है: यदि d समूह G के क्रम को विभाजित करता है और d एक [[अभाज्य संख्या]] है, तो G में क्रम d का एक तत्व उपस्थित होता है (इसे कभी-कभी कॉची का प्रमेय (समूह सिद्धांत) कहा जाता है| कॉची का प्रमेय) ). बयान संयुक्त संख्या के आदेश के लिए नहीं है, उदा। [[क्लेन चार-समूह]] में क्रम चार का कोई तत्व नहीं है)। इसे [[आगमनात्मक प्रमाण]] द्वारा दिखाया जा सकता है।<ref>{{Cite journal|title=कॉची प्रमेय का प्रमाण|url=http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cauchypf.pdf|first=Keith|last=Conrad|format=PDF|access-date=May 14, 2011}}</ref> प्रमेय के परिणामों में सम्मिलित  हैं: समूह जी का क्रम एक प्रमुख पी की शक्ति है यदि और केवल यदि जी में हर एक के लिए पी की कुछ शक्ति है।<ref>{{Cite journal|title=कॉची प्रमेय के परिणाम|url=http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cauchyapp.pdf|first=Keith|last=Conrad|format=PDF|access-date=May 14, 2011}}</ref>
निम्नलिखित आंशिक विलोम परिमित समूहों के लिए सत्य है, यदि d समूह G के क्रम को विभाजित करता है और d एक [[अभाज्य संख्या]] के रूप में है, तो G में क्रम d का एक तत्व उपस्थित होता है इसे कभी-कभी कॉची का प्रमेय समूह सिद्धांत कहा जाता है और इस प्रकार समग्र क्रम के लिए कथन सही नहीं है, उदाहरण [[क्लेन चार-समूह]] में क्रम चार का कोई तत्व नहीं होता है। इसे [[आगमनात्मक प्रमाण]] द्वारा दिखाया जा सकता है।<ref>{{Cite journal|title=कॉची प्रमेय का प्रमाण|url=http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cauchypf.pdf|first=Keith|last=Conrad|format=PDF|access-date=May 14, 2011}}</ref> प्रमेय के परिणाम इस रूप में हैं और समूह G का क्रम एक प्रमुख P की शक्ति है और यदि केवल G में प्रत्येक एक के लिए P की कुछ शक्ति होती है।<ref>{{Cite journal|title=कॉची प्रमेय के परिणाम|url=http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cauchyapp.pdf|first=Keith|last=Conrad|format=PDF|access-date=May 14, 2011}}</ref>
यदि a का क्रम अनंत है, तो a की सभी अशून्य घातों का भी अनंत क्रम है। यदि a की परिमित कोटि है, तो a की घातों के क्रम के लिए हमारे पास निम्न सूत्र है:
 
:ऑर्ड (<sup>k</sup>) = ord(a) / महत्तम समापवर्तक (ord(a), k)<ref>Dummit, David; Foote, Richard. ''Abstract Algebra'', {{isbn|978-0471433347}}, pp. 57</ref>
यदि a का क्रम अनंत है, तो a की सभी अशून्य घातों का भी अनंत क्रम है। यदि a की परिमित कोटि है, तो a की घातों के क्रम के लिए निम्नलिखित सूत्र है:,
प्रत्येक पूर्णांक k के लिए। विशेष रूप से, ए और इसके व्युत्क्रम <sup>-1</sup> का क्रम समान है।
:ord(''a<sup>k</sup>'') = ord(''a'') / gcd(ord(''a''), ''k''<ref>Dummit, David; Foote, Richard. ''Abstract Algebra'', {{isbn|978-0471433347}}, pp. 57</ref>  
प्रत्येक पूर्णांक k के लिए विशेष रूप से a और इसके व्युत्क्रम a<sup>-1</sup> का क्रम समान है।


किसी भी समूह में,
किसी भी समूह में,
:<math> \operatorname{ord}(ab) = \operatorname{ord}(ba)</math>
:<math> \operatorname{ord}(ab) = \operatorname{ord}(ba)</math>
और बी के ऑर्डर के लिए उत्पाद एबी के ऑर्डर से संबंधित कोई सामान्य सूत्र नहीं है। वास्तव में, यह संभव है कि a और b दोनों की सीमित कोटि हो जबकि ab की अनंत कोटि हो, या कि a और b दोनों की अनंत कोटि हो जबकि ab की परिमित कोटि हो। पूर्व का एक उदाहरण a(x) = 2−x, b(x) = 1−x है जिसमें ab(x) = x−1 समूह में है <math>Sym(\mathbb{Z})</math>. बाद वाले का एक उदाहरण है a(x) = x+1, b(x) = x−1 जिसमें ab(x) = x है। यदि ab = ba, तो हम कम से कम यह कह सकते हैं कि ord(ab) लघुत्तम समापवर्त्य (ord(a), ord(b)) को विभाजित करता है। परिणामस्वरूप, कोई यह सिद्ध कर सकता है कि एक परिमित एबेलियन समूह में, यदि m समूह के तत्वों के सभी आदेशों के अधिकतम को दर्शाता है, तो प्रत्येक तत्व का क्रम m को विभाजित करता है।
a और b के क्रम के लिए उत्पाद ab के क्रम से संबंधित कोई सामान्य सूत्र नहीं है और इस प्रकार वास्तव में, यह संभव है कि a और b दोनों की सीमित कोटि हो, जबकि ab की अनंत कोटि होती है या कि a और b दोनों की अनंत कोटि हो जबकि ab की परिमित कोटि हो। जैसा की उदहारण में दिखाया गया है a(x) = 2−x, b(x) = 1−x है जिसमें ab(x) = x−1 समूह में है <math>Sym(\mathbb{Z})</math>. बाद वाले का एक उदाहरण है a(x) = x+1, b(x) = x−1 जिसमें ab(x) = x के रूप में है। यदि ab = ba, तो हम कम से कम यह कह सकते हैं कि ord(ab) लघुत्तम समापवर्त्य (ord(a), ord(b)) को विभाजित करता है। परिणामस्वरूप कोई यह सिद्ध कर सकता है कि एक परिमित एबेलियन समूह के रूप में होते है, यदि m समूह के तत्वों के सभी क्रम के अधिकतम को दर्शाता है, तो प्रत्येक तत्व का क्रम m को विभाजित करता है।


== तत्वों के क्रम से गिनती ==
== तत्वों के क्रम से गिनती ==
मान लीजिए G, कोटि n का परिमित समूह है, और d, n का एक भाजक है। G में ऑर्डर d तत्वों की संख्या φ(d) (संभवत: शून्य) का गुणक है, जहां φ यूलर का कुल फलन है, जो धनात्मक पूर्णांकों की संख्या को d और इसके सहअभाज्य से बड़ा नहीं देता है। उदाहरण के लिए, एस के स्थितियों े में<sub>3</sub>, φ(3) = 2, और हमारे पास क्रम 3 के बिल्कुल दो तत्व हैं। प्रमेय क्रम 2 के तत्वों के बारे में कोई उपयोगी जानकारी प्रदान नहीं करता है, क्योंकि φ(2) = 1, और समग्र d जैसे d के लिए केवल सीमित उपयोगिता है = 6, चूंकि φ(6) = 2, और एस में क्रम 6 के शून्य तत्व हैं<sub>3</sub>.
मान लीजिए G, कोटि n का परिमित समूह है और d, n का एक भाजक है और इस प्रकार G में क्रम d तत्वों की संख्या φ(d) संभवत: शून्य का गुणक है, जहां φ यूलर का कुल फलन के रूप में है, जो धनात्मक पूर्णांकों की संख्या को d और इसके सहअभाज्य से बड़ा नहीं देता है। उदाहरण के लिए S<sub>3</sub>, φ(3) = 2 के स्थितियों में और इसके पास क्रम 3 के दो तत्व हैं। प्रमेय क्रम 2 के तत्वों के बारे में कोई उपयोगी जानकारी प्रदान नहीं करता है क्योंकि φ(2) = 1 और समग्र d जैसे ''d'' = 6 के लिए केवल सीमित उपयोगिता के रूप में होते है, चूंकि φ(6) = 2, और S<sub>3</sub> के क्रम 6 के शून्य तत्व के रूप में होते है


== समरूपता के संबंध में ==
== समरूपता के संबंध में ==
[[समूह समरूपता]] तत्वों के क्रम को कम करती है: यदि f: G → H एक समरूपता है, और a परिमित क्रम के G का एक तत्व है, तो ord(f(a)) ord(a) को विभाजित करता है। यदि एफ [[इंजेक्शन]] है, तो ord(f(a)) = ord(a). यह अधिकांशतः यह सिद्ध करने के लिए उपयोग किया जा सकता है कि दो स्पष्ट रूप से दिए गए समूहों के बीच कोई समरूपता या कोई इंजेक्शन समरूपता नहीं है। (उदाहरण के लिए, कोई गैर-तुच्छ समरूपता h: S नहीं हो सकती है<sub>3</sub>→ जेड<sub>5</sub>, क्योंकि Z में शून्य को छोड़कर हर संख्या<sub>5</sub> ऑर्डर 5 है, जो एस में तत्वों के ऑर्डर 1, 2 और 3 को विभाजित नहीं करता है<sub>3</sub>।) एक और परिणाम यह है कि [[संयुग्मन वर्ग]] का एक ही क्रम है।
[[समूह समरूपता]] तत्वों के क्रम को कम करती है, यदि f: G → H एक समरूपता के रूप में है और a परिमित क्रम के G का एक तत्व है, तो ord(f(a)) ord(a) को विभाजित करता है। यदि f [[इंजेक्शन|एएकैकी फलन]] के रूप में है, तो ord(f(a)) = ord(a).अधिकांशतः यह सिद्ध करने के लिए उपयोग किया जा सकता है कि दो स्पष्ट रूप से दिए गए समूहों के बीच कोई समरूपता या कोई एकैकी समरूपता नहीं है। उदाहरण के लिए कोई गैर-त्रिविअल समरूपता ''h'': S<sub>3</sub> → '''Z'''<sub>5</sub> नहीं हो सकती है, क्योंकि Z<sub>5</sub> में शून्य को छोड़कर प्रत्येक संख्या क्रम 5 है, जो S<sub>3</sub> में तत्वों के क्रम 1, 2 और 3 को विभाजित नहीं करता है और इस प्रकार एक और परिणाम यह है कि [[संयुग्मन वर्ग]] का एक ही क्रम है।


== वर्ग समीकरण<!--linked from 'Vertical bar'-->==
== वर्ग समीकरण<!--linked from 'Vertical bar'-->==
[[वर्ग समीकरण]] के बारे में एक महत्वपूर्ण परिणाम वर्ग समीकरण है; यह एक परिमित समूह G के क्रम को उसके समूह Z(G) के केंद्र के क्रम और उसके गैर-तुच्छ संयुग्मन वर्गों के आकार से संबंधित करता है:
[[वर्ग समीकरण]] के बारे में एक महत्वपूर्ण परिणाम वर्ग समीकरण है; यह एक परिमित समूह G के क्रम को उसके केंद्र Z(G) के क्रम और उसके गैर-त्रिविअल संयुग्मन वर्गों के आकार से संबंधित होता है
:<math>|G| = |Z(G)| + \sum_{i}d_i\;</math>
:<math>|G| = |Z(G)| + \sum_{i}d_i\;</math>
जहां डी<sub>i</sub>गैर-तुच्छ संयुग्मी वर्गों के आकार हैं; ये |G| के उचित विभाजक हैं एक से बड़ा है, और वे गैर-तुच्छ संयुग्मन वर्गों के प्रतिनिधियों के जी में केंद्रीयकर्ताओं के सूचकांकों के बराबर भी हैं। उदाहरण के लिए, एस का केंद्र<sub>3</sub> एकल तत्व के साथ केवल तुच्छ समूह है, और समीकरण पढ़ता है |एस<sub>3</sub>| = 1+2+3.
जहां d<sub>i</sub> गैर-त्रिविअल संयुग्मी वर्गों के आकार के रूप में होता है; ये |G| के उचित विभाजक हैं एक से बड़ा है और वे गैर-त्रिविअल संयुग्मन वर्गों के प्रतिनिधियों के G में केंद्रीयकर्ताओं के सूचकांकों के बराबर होते है। उदाहरण के लिए S<sub>3</sub> का केंद्र एकल तत्व e के साथ केवल त्रिविअल समूह के रूप में है और समीकरण |S<sub>3</sub>| = 1+2+3..को पढ़ता है।


== यह भी देखें ==
== यह भी देखें ==
Line 88: Line 89:


{{Authority control}}
{{Authority control}}
[[Category: समूह सिद्धांत]] [[Category: तत्वों के बीजगणितीय गुण]]


[[Category: Machine Translated Page]]
[[Category:All articles needing additional references]]
[[Category:Articles needing additional references from May 2011]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:CS1 errors]]
[[Category:Created On 26/04/2023]]
[[Category:Created On 26/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematics sidebar templates]]
[[Category:Pages with script errors]]
[[Category:Physics sidebar templates]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:तत्वों के बीजगणितीय गुण]]
[[Category:समूह सिद्धांत]]

Latest revision as of 15:38, 7 November 2023

गणित में, एक परिमित समूह का क्रम उसके तत्वों की संख्या होती है। यदि कोई समूह परिमित रूप में नहीं है, तो इस प्रकार इसका क्रम 'अनंत' रूप में होता है। एक समूह के एक तत्व का क्रम तत्व द्वारा उत्पन्न उपसमूह के क्रम के रूप में होता है, जिसे अवधि की लंबाई या अवधि भी कहा जाता है। यदि समूह संचालन को गुणक समूह के रूप में दर्शाया जाता है, तो समूह के एक तत्व a का क्रम इस प्रकार सबसे छोटासकारात्मक पूर्णांक m होता है, जैसे कि am = e, जहां e समूह के तत्समक तत्व को दर्शाता है और am, m के उत्पाद को दर्शाता है। यदि ऐसा कोई m उपस्थित नहीं है, तो a का क्रम अनंत होता है।

एक समूह का क्रम G द्वारा दर्शाया जाता है ord(G) या |G| और एक अन्य तत्व का क्रम a द्वारा दर्शाया जाता है ord(a) या |a|, के अतिरिक्त जहाँ कोष्ठक उत्पन्न समूह को दर्शाते हैं।

लैग्रेंज के प्रमेय में कहा गया है कि परिमित समूह G के लिए किसी भी उपसमूह H के लिए उपसमूह का क्रम समूह के क्रम को विभाजित करता है और इस प्रकार वह |H| का भाजक है |G| और विशेष रूप से क्रम के रूप में होता है, |a| किसी भी तत्व का भाजक है |G|.

उदाहरण

सममित समूह S3 में निम्नलिखित गुणन सारणी के रूप में होती है।

e s t u v w
e e s t u v w
s s e v w t u
t t u e s w v
u u t w v e s
v v w s e u t
w w v u t s e

इस समूह में छह तत्व होते है, इसलिए ord(S3) = 6. परिभाषा के अनुसार तत्समक का क्रम e, के रूप में है, चूंकि e 1 = e. की प्रत्येक s, t, और w वर्ग से e है, इसलिए इन समूह तत्वों का क्रम दो है, |s| = |t| = |w| = 2. अंततः u और v के बाद के क्रम 3 है और इस प्रकार u3 = vu = e, और v3 = uv = e के रूप में होते है।

क्रम और संरचना

समूह G का क्रम और उसके तत्वों का क्रम समूह की संरचना के बारे में अधिक जानकारी देता है। सामान्य रूप में कहा जाए तो, |G| का गुणनखंड जितना जटिल होता है, G की संरचना उतनी ही जटिल होती है।

|G| = 1 के लिए समूह त्रिविअल रूप में होता है। किसी भी समूह में, केवल तत्समक तत्व a = e में ord(a) = 1 के रूप में है। यदि G में प्रत्येक गैर तत्समक तत्व इसके व्युत्क्रम के बराबर होता है, जिससे कि a2 = e के रूप में है, तो ord(a) = 2; इसका अर्थ है कि Gएबेलियन समूह ग्रुप सिद्धांत . इसका व्युत्क्रम सत्य नहीं है उदाहरण के लिए पूर्णांक मॉडुलो 6 का योज्य चक्रीय समूह Z6 पूर्णांकों का मॉड्यूलर अंकगणित 6 एबेलियन समूह के रूप में होते है, लेकिन संख्या 2 का क्रम 3 है।

.

क्रम की दो अवधारणाओं के बीच संबंध रूप में होता है, यदि हम लिखते हैं।

a द्वारा उत्पन्न उपसमूह के लिए हैं, तब इसे इस रूप में दिखाते है।

किसी पूर्णांक k के लिए इस रूप में होते है।

ak = e यदि और केवल यदि ord(a) भाजक k का है,.

सामान्यता, G के किसी भी उपसमूह का क्रम G के क्रम को विभाजित करता है। और इस प्रकार अधिक यथार्थ रूप से यदि H, G का एक उपसमूह है, तो

ord(G) / ord(H) = [G : H], जहां [G : H] को G में H के एक उपसमूह का सूचकांक कहा जाता है और यह एक पूर्णांक के रूप में है। यह लैग्रेंज का प्रमेय समूह सिद्धांत है | लैग्रेंज का प्रमेय चूंकि, यह केवल तभी सत्य है जब G का परिमित क्रम के रूप में होता है। यदि ord(G) = ∞, भागफल ord(G) / ord(H) का कोई अर्थ नहीं है।

उपरोक्त के तत्क्षण परिणाम के रूप में, हम देखते हैं कि समूह के प्रत्येक तत्व का क्रम समूह के क्रम को विभाजित करता है। उदाहरण के लिए ऊपर दिखाए गए सममित समूह में, जहाँ ord(S3) = 6, तत्वों के संभावित क्रम 1, 2, 3 या 6 के रूप में होते है।

निम्नलिखित आंशिक विलोम परिमित समूहों के लिए सत्य है, यदि d समूह G के क्रम को विभाजित करता है और d एक अभाज्य संख्या के रूप में है, तो G में क्रम d का एक तत्व उपस्थित होता है इसे कभी-कभी कॉची का प्रमेय समूह सिद्धांत कहा जाता है और इस प्रकार समग्र क्रम के लिए कथन सही नहीं है, उदाहरण क्लेन चार-समूह में क्रम चार का कोई तत्व नहीं होता है। इसे आगमनात्मक प्रमाण द्वारा दिखाया जा सकता है।[1] प्रमेय के परिणाम इस रूप में हैं और समूह G का क्रम एक प्रमुख P की शक्ति है और यदि केवल G में प्रत्येक एक के लिए P की कुछ शक्ति होती है।[2]

यदि a का क्रम अनंत है, तो a की सभी अशून्य घातों का भी अनंत क्रम है। यदि a की परिमित कोटि है, तो a की घातों के क्रम के लिए निम्नलिखित सूत्र है:,

ord(ak) = ord(a) / gcd(ord(a), k[3]

प्रत्येक पूर्णांक k के लिए विशेष रूप से a और इसके व्युत्क्रम a-1 का क्रम समान है।

किसी भी समूह में,

a और b के क्रम के लिए उत्पाद ab के क्रम से संबंधित कोई सामान्य सूत्र नहीं है और इस प्रकार वास्तव में, यह संभव है कि a और b दोनों की सीमित कोटि हो, जबकि ab की अनंत कोटि होती है या कि a और b दोनों की अनंत कोटि हो जबकि ab की परिमित कोटि हो। जैसा की उदहारण में दिखाया गया है a(x) = 2−x, b(x) = 1−x है जिसमें ab(x) = x−1 समूह में है . बाद वाले का एक उदाहरण है a(x) = x+1, b(x) = x−1 जिसमें ab(x) = x के रूप में है। यदि ab = ba, तो हम कम से कम यह कह सकते हैं कि ord(ab) लघुत्तम समापवर्त्य (ord(a), ord(b)) को विभाजित करता है। परिणामस्वरूप कोई यह सिद्ध कर सकता है कि एक परिमित एबेलियन समूह के रूप में होते है, यदि m समूह के तत्वों के सभी क्रम के अधिकतम को दर्शाता है, तो प्रत्येक तत्व का क्रम m को विभाजित करता है।

तत्वों के क्रम से गिनती

मान लीजिए G, कोटि n का परिमित समूह है और d, n का एक भाजक है और इस प्रकार G में क्रम d तत्वों की संख्या φ(d) संभवत: शून्य का गुणक है, जहां φ यूलर का कुल फलन के रूप में है, जो धनात्मक पूर्णांकों की संख्या को d और इसके सहअभाज्य से बड़ा नहीं देता है। उदाहरण के लिए S3, φ(3) = 2 के स्थितियों में और इसके पास क्रम 3 के दो तत्व हैं। प्रमेय क्रम 2 के तत्वों के बारे में कोई उपयोगी जानकारी प्रदान नहीं करता है क्योंकि φ(2) = 1 और समग्र d जैसे d = 6 के लिए केवल सीमित उपयोगिता के रूप में होते है, चूंकि φ(6) = 2, और S3 के क्रम 6 के शून्य तत्व के रूप में होते है

समरूपता के संबंध में

समूह समरूपता तत्वों के क्रम को कम करती है, यदि f: G → H एक समरूपता के रूप में है और a परिमित क्रम के G का एक तत्व है, तो ord(f(a)) ord(a) को विभाजित करता है। यदि f एएकैकी फलन के रूप में है, तो ord(f(a)) = ord(a).अधिकांशतः यह सिद्ध करने के लिए उपयोग किया जा सकता है कि दो स्पष्ट रूप से दिए गए समूहों के बीच कोई समरूपता या कोई एकैकी समरूपता नहीं है। उदाहरण के लिए कोई गैर-त्रिविअल समरूपता h: S3Z5 नहीं हो सकती है, क्योंकि Z5 में शून्य को छोड़कर प्रत्येक संख्या क्रम 5 है, जो S3 में तत्वों के क्रम 1, 2 और 3 को विभाजित नहीं करता है और इस प्रकार एक और परिणाम यह है कि संयुग्मन वर्ग का एक ही क्रम है।

वर्ग समीकरण

वर्ग समीकरण के बारे में एक महत्वपूर्ण परिणाम वर्ग समीकरण है; यह एक परिमित समूह G के क्रम को उसके केंद्र Z(G) के क्रम और उसके गैर-त्रिविअल संयुग्मन वर्गों के आकार से संबंधित होता है

जहां di गैर-त्रिविअल संयुग्मी वर्गों के आकार के रूप में होता है; ये |G| के उचित विभाजक हैं एक से बड़ा है और वे गैर-त्रिविअल संयुग्मन वर्गों के प्रतिनिधियों के G में केंद्रीयकर्ताओं के सूचकांकों के बराबर होते है। उदाहरण के लिए S3 का केंद्र एकल तत्व e के साथ केवल त्रिविअल समूह के रूप में है और समीकरण |S3| = 1+2+3..को पढ़ता है।

यह भी देखें

टिप्पणियाँ

  1. Conrad, Keith. "कॉची प्रमेय का प्रमाण" (PDF). Retrieved May 14, 2011. {{cite journal}}: Cite journal requires |journal= (help)
  2. Conrad, Keith. "कॉची प्रमेय के परिणाम" (PDF). Retrieved May 14, 2011. {{cite journal}}: Cite journal requires |journal= (help)
  3. Dummit, David; Foote, Richard. Abstract Algebra, ISBN 978-0471433347, pp. 57


संदर्भ