एफ(आर) गुरुत्वाकर्षण: Difference between revisions
(Created page with "{{short description|Theory of gravity}} {{Technical|date=July 2019}} {{DISPLAYTITLE:<var>f</var>(<var>R</var>) gravity}}{{var|f}}({{var|R}}) सामान्य साप...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Theory of gravity}} | {{short description|Theory of gravity}} | ||
{{DISPLAYTITLE:<var>f</var>(<var>R</var>) gravity}}{{var|f}}({{var|R}}) [[सामान्य सापेक्षता]] सिद्धांत का प्रकार का विकल्प है जो अल्बर्ट आइंस्टीन|आइंस्टीन की सामान्य सापेक्षता का सामान्यीकरण करता है। {{var|f}}({{var|R}}) गुरुत्वाकर्षण वास्तव में सिद्धांतों का परिवार है, प्रत्येक को अलग कार्य द्वारा परिभाषित किया गया है, {{var|f}}, [[अदिश वक्रता]] का, {{var|R}}. सबसे सरल मामला केवल फलन का अदिश राशि के बराबर होना है; यह सामान्य सापेक्षता है. मनमाना फ़ंक्शन शुरू करने के परिणामस्वरूप, [[ काली ऊर्जा |काली ऊर्जा]] या [[ गहरे द्रव्य |गहरे द्रव्य]] के अज्ञात रूपों को जोड़े बिना त्वरित ब्रह्मांड और ब्रह्मांड की संरचना के गठन की व्याख्या करने की स्वतंत्रता हो सकती है। कुछ कार्यात्मक रूप [[क्वांटम गुरुत्व]] से उत्पन्न होने वाले सुधारों से प्रेरित हो सकते हैं। {{var|f}}({{var|R}}) गुरुत्वाकर्षण का प्रस्ताव पहली बार 1970 में [[हंस एडोल्फ बुचडाहल]] द्वारा किया गया था<ref>{{cite journal| title = गैर-रैखिक लैग्रेंजियन और ब्रह्माण्ड संबंधी सिद्धांत| last=Buchdahl |first=H. A.| journal = [[Monthly Notices of the Royal Astronomical Society]]| volume = 150| pages = 1–8| year = 1970| bibcode = 1970MNRAS.150....1B| doi=10.1093/mnras/150.1.1| doi-access = free}}</ref> (हालांकि {{var|ϕ}के स्थान पर } का प्रयोग किया गया {{var|f}} मनमाना फ़ंक्शन के नाम के लिए)। [[मुद्रास्फीति (ब्रह्मांड विज्ञान)]] पर [[एलेक्सी स्टारोबिंस्की]] के काम के बाद यह अनुसंधान का सक्रिय क्षेत्र बन गया है।<ref>{{cite journal| title = विलक्षणता के बिना एक नए प्रकार के आइसोट्रोपिक ब्रह्माण्ड संबंधी मॉडल| last=Starobinsky |first=A. A.| journal = [[Physics Letters B]] | volume = 91| pages = 99–102| year = 1980| issue=1 |doi = 10.1016/0370-2693(80)90670-X| bibcode = 1980PhLB...91...99S }}</ref> विभिन्न कार्यों को अपनाकर इस सिद्धांत से घटनाओं की विस्तृत श्रृंखला उत्पन्न की जा सकती है; हालाँकि, कई कार्यात्मक रूपों को अब अवलोकन के आधार पर, या रोग संबंधी सैद्धांतिक समस्याओं के कारण खारिज किया जा सकता है। | |||
{{DISPLAYTITLE:<var>f</var>(<var>R</var>) gravity}}{{var|f}}({{var|R}}) [[सामान्य सापेक्षता]] सिद्धांत का | |||
==परिचय== | ==परिचय== | ||
Line 27: | Line 26: | ||
&= R_{\mu\nu} \delta g^{\mu\nu} + g^{\mu\nu} \left (\nabla_\rho \delta \Gamma^\rho_{\nu\mu} - \nabla_\nu \delta \Gamma^\rho_{\rho\mu} \right ) | &= R_{\mu\nu} \delta g^{\mu\nu} + g^{\mu\nu} \left (\nabla_\rho \delta \Gamma^\rho_{\nu\mu} - \nabla_\nu \delta \Gamma^\rho_{\rho\mu} \right ) | ||
\end{align}</math> | \end{align}</math> | ||
दूसरे चरण के लिए आइंस्टीन-हिल्बर्ट कार्रवाई के बारे में लेख देखें। तब से <math>\delta\Gamma^\lambda_{\mu\nu}</math>दो कनेक्शनों का अंतर है, इसे | दूसरे चरण के लिए आइंस्टीन-हिल्बर्ट कार्रवाई के बारे में लेख देखें। तब से <math>\delta\Gamma^\lambda_{\mu\nu}</math>दो कनेक्शनों का अंतर है, इसे टेंसर के रूप में बदलना चाहिए। अत: इसे इस प्रकार लिखा जा सकता है | ||
<math display="block">\delta \Gamma^\lambda_{\mu\nu}=\frac{1}{2}g^{\lambda a}\left(\nabla_\mu\delta g_{a\nu}+\nabla_\nu\delta g_{a\mu}-\nabla_a\delta g_{\mu\nu} \right).</math> | |||
उपरोक्त समीकरण में प्रतिस्थापित करने पर: | उपरोक्त समीकरण में प्रतिस्थापित करने पर: | ||
<math display="block">\delta R= R_{\mu\nu} \delta g^{\mu\nu}+g_{\mu\nu}\Box \delta g^{\mu\nu}-\nabla_\mu \nabla_\nu \delta g^{\mu\nu}</math> | <math display="block">\delta R= R_{\mu\nu} \delta g^{\mu\nu}+g_{\mu\nu}\Box \delta g^{\mu\nu}-\nabla_\mu \nabla_\nu \delta g^{\mu\nu}</math> | ||
Line 59: | Line 58: | ||
===संशोधित न्यूटन स्थिरांक=== | ===संशोधित न्यूटन स्थिरांक=== | ||
इन सिद्धांतों की | इन सिद्धांतों की दिलचस्प विशेषता यह तथ्य है कि [[गुरुत्वाकर्षण स्थिरांक]] समय और पैमाने पर निर्भर है।<ref>{{cite journal| last1= Tsujikawa |first1=Shinji|title=डार्क एनर्जी के संशोधित गुरुत्वाकर्षण मॉडल में पदार्थ घनत्व गड़बड़ी और प्रभावी गुरुत्वाकर्षण स्थिरांक| journal =Physical Review D|date=2007|volume=76|issue=2|page=023514|doi=10.1103/PhysRevD.76.023514 |arxiv=0705.1032|bibcode=2007PhRvD..76b3514T|s2cid=119324187}}</ref> इसे देखने के लिए, मीट्रिक में छोटा अदिश गड़बड़ी जोड़ें ([[न्यूटोनियन गेज]] में): | ||
<math display="block">\mathrm{d}s^2 = -(1+2\Phi)\mathrm{d}t^2 +\alpha^2 (1-2\Psi)\delta_{ij}\mathrm{d}x^i \mathrm{d}x^j</math> | <math display="block">\mathrm{d}s^2 = -(1+2\Phi)\mathrm{d}t^2 +\alpha^2 (1-2\Psi)\delta_{ij}\mathrm{d}x^i \mathrm{d}x^j</math> | ||
कहाँ {{varserif|Φ}} और {{varserif|Ψ}} न्यूटोनियन क्षमताएं हैं और पहले क्रम में फ़ील्ड समीकरणों का उपयोग करें। कुछ लंबी गणनाओं के बाद, कोई फूरियर अंतरिक्ष में [[पॉइसन समीकरण]] को परिभाषित कर सकता है और दाहिनी ओर दिखाई देने वाले अतिरिक्त शब्दों को | कहाँ {{varserif|Φ}} और {{varserif|Ψ}} न्यूटोनियन क्षमताएं हैं और पहले क्रम में फ़ील्ड समीकरणों का उपयोग करें। कुछ लंबी गणनाओं के बाद, कोई फूरियर अंतरिक्ष में [[पॉइसन समीकरण]] को परिभाषित कर सकता है और दाहिनी ओर दिखाई देने वाले अतिरिक्त शब्दों को प्रभावी गुरुत्वाकर्षण स्थिरांक के रूप में प्रस्तुत कर सकता है। {{var|G}}<sub>eff</sub>. ऐसा करने पर, हमें गुरुत्वाकर्षण क्षमता (उप-ब्रह्मांड संबंधी क्षितिज तराजू पर मान्य) मिलती है {{nowrap|1={{var|k}}<sup>2</sup> ≫ {{var|a}}<sup>2</sup>{{var|H}}<sup>2</sup>}}): | ||
<math display="block">\Phi = -4\pi G_\mathrm{eff} \frac{a^2}{k^2} \delta\rho_\mathrm{m} </math> | <math display="block">\Phi = -4\pi G_\mathrm{eff} \frac{a^2}{k^2} \delta\rho_\mathrm{m} </math> | ||
कहाँ {{var|δ}}{{var|ρ}}<sub>m</sub> पदार्थ के घनत्व में गड़बड़ी है, {{var|k}} फूरियर स्केल है और {{var|G}}<sub>eff</sub> है: | कहाँ {{var|δ}}{{var|ρ}}<sub>m</sub> पदार्थ के घनत्व में गड़बड़ी है, {{var|k}} फूरियर स्केल है और {{var|G}}<sub>eff</sub> है: | ||
Line 71: | Line 70: | ||
=== विशाल [[[[गुरुत्वाकर्षण]] तरंग]]ें === | === विशाल [[[[गुरुत्वाकर्षण]] तरंग]]ें === | ||
सिद्धांतों का यह वर्ग जब रैखिककृत होता है तो गुरुत्वाकर्षण तरंगों के लिए तीन ध्रुवीकरण मोड प्रदर्शित करता है, जिनमें से दो द्रव्यमानहीन गुरुत्वाकर्षण (हेलिकॉप्टर ±2) के अनुरूप होते हैं और तीसरा (स्केलर) इस तथ्य से आता है कि यदि हम | सिद्धांतों का यह वर्ग जब रैखिककृत होता है तो गुरुत्वाकर्षण तरंगों के लिए तीन ध्रुवीकरण मोड प्रदर्शित करता है, जिनमें से दो द्रव्यमानहीन गुरुत्वाकर्षण (हेलिकॉप्टर ±2) के अनुरूप होते हैं और तीसरा (स्केलर) इस तथ्य से आता है कि यदि हम अनुरूप परिवर्तन को ध्यान में रखते हैं, तो चतुर्थ क्रम सिद्धांत {{var|f}}({{var|R}}) सामान्य सापेक्षता प्लस [[अदिश क्षेत्र]] बन जाता है। ये देखना है तो पहचानो | ||
<math display="block"> \Phi \to f'(R) \quad \textrm{and} \quad \frac{dV}{d\Phi}\to\frac{2f(R)-R f'(R)}{3},</math> | <math display="block"> \Phi \to f'(R) \quad \textrm{and} \quad \frac{dV}{d\Phi}\to\frac{2f(R)-R f'(R)}{3},</math> | ||
और प्राप्त करने के लिए उपरोक्त फ़ील्ड समीकरणों का उपयोग करें | और प्राप्त करने के लिए उपरोक्त फ़ील्ड समीकरणों का उपयोग करें | ||
Line 78: | Line 77: | ||
<math display="block"> g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu} </math> | <math display="block"> g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu} </math> | ||
<math display="block"> \Phi=\Phi_0+\delta \Phi</math> | <math display="block"> \Phi=\Phi_0+\delta \Phi</math> | ||
और कुछ कठिन बीजगणित के बाद, कोई मीट्रिक गड़बड़ी को हल कर सकता है, जो गुरुत्वाकर्षण तरंगों से मेल खाती है। में फैलने वाली तरंग के लिए | और कुछ कठिन बीजगणित के बाद, कोई मीट्रिक गड़बड़ी को हल कर सकता है, जो गुरुत्वाकर्षण तरंगों से मेल खाती है। में फैलने वाली तरंग के लिए विशेष आवृत्ति घटक {{var|z}}-दिशा, के रूप में लिखा जा सकता है | ||
<math display="block">h_{\mu\nu}(t,z;\omega)=A^{+}(\omega)\exp(-i\omega(t-z))e^{+}_{\mu\nu}+A^{\times}(\omega)\exp(-i\omega(t-z))e^{\times}_{\mu\nu} +h_f(v_\mathrm{g} t-z;\omega) \eta_{\mu\nu} </math> | <math display="block">h_{\mu\nu}(t,z;\omega)=A^{+}(\omega)\exp(-i\omega(t-z))e^{+}_{\mu\nu}+A^{\times}(\omega)\exp(-i\omega(t-z))e^{\times}_{\mu\nu} +h_f(v_\mathrm{g} t-z;\omega) \eta_{\mu\nu} </math> | ||
कहाँ | कहाँ | ||
<math display="block"> h_f\equiv \frac{\delta \Phi}{\Phi_0},</math> | <math display="block"> h_f\equiv \frac{\delta \Phi}{\Phi_0},</math> | ||
और {{var|v}}<sub>g</sub>({{var|ω}})=डी{{var|ω}}/डी{{var|k}} | और {{var|v}}<sub>g</sub>({{var|ω}})=डी{{var|ω}}/डी{{var|k}} तरंग पैकेट का [[समूह वेग]] है {{var|h}}<sub>{{var|f}}</sub> वेव-वेक्टर पर केन्द्रित {{var|k}}. पहले दो पद सामान्य सापेक्षता से सामान्य गुरुत्वाकर्षण तरंगों#रैखिक सन्निकटन से मेल खाते हैं, जबकि तीसरा नए विशाल ध्रुवीकरण मोड से मेल खाता है {{var|f}}({{var|R}}) सिद्धांत. यह मोड द्रव्यमान रहित अनुप्रस्थ श्वास मोड (लेकिन ट्रेसलेस नहीं) और बड़े पैमाने पर अनुदैर्ध्य स्केलर मोड का मिश्रण है। <ref>{{cite journal |doi=10.1103/PhysRevD.95.104034 |title=एफ(आर) गुरुत्वाकर्षण में गुरुत्वाकर्षण तरंगों का ध्रुवीकरण|journal=Phys. Rev. D |volume=95 |pages=104034 |year=2017 | last1=Liang | first1=Dicong | last2=Gong |first2= Yungui | last3=Hou |first3= Shaoqi | last4=Liu |first4= Yunqi |issue=10 |arxiv=1701.05998 |bibcode=2017PhRvD..95j4034L |s2cid=119005163 }}</ref> <ref>{{cite journal |doi=10.1140/epjc/s10052-020-08684-3 |title=एक नया f(R) गुरुत्वाकर्षण मॉडल और उसमें गुरुत्वाकर्षण तरंगों के गुण|journal=The European Physical Journal C |volume=80 |pages=1101 |year=2020 | last1=Gogoi | first1=Dhruba Jyoti | last2=Dev Goswami |first2= Umananda |issue=12 |arxiv= 2006.04011 |bibcode=2020EPJC...80.1101G |s2cid=219530929 }}</ref> अनुप्रस्थ और ट्रेसलेस मोड (जिसे टेंसर मोड के रूप में भी जाना जाता है) [[प्रकाश की गति]] से फैलता है, लेकिन विशाल स्केलर मोड तेज गति से चलता है {{var|v}}<sub>G</sub>< 1 (इकाइयों में जहां {{var|c}}=1), यह मोड फैलावशील है। हालाँकि, में {{var|f}}({{var|R}}) मॉडल के लिए गुरुत्वाकर्षण मीट्रिक औपचारिकता <math> f(R) = \alpha R^2 </math> (शुद्ध के रूप में भी जाना जाता है <math> R^2 </math> मॉडल), तीसरा ध्रुवीकरण मोड शुद्ध श्वास मोड है और स्पेसटाइम के माध्यम से प्रकाश की गति से फैलता है। <ref>{{cite journal |doi=10.1007/s12648-020-01998-8 |title=एफ(आर) गुरुत्वाकर्षण शक्ति कानून मॉडल में गुरुत्वाकर्षण तरंगें|journal=Indian Journal of Physics |year=2022 | last1=Gogoi | first1=Dhruba Jyoti | last2=Dev Goswami |first2= Umananda |volume=96 |issue=2 |page=637 |arxiv= 1901.11277 |bibcode=2022InJPh..96..637G |s2cid=231655238 }}</ref> | ||
== समतुल्य औपचारिकता == | == समतुल्य औपचारिकता == | ||
कुछ अतिरिक्त शर्तों के तहत<ref>{{cite journal|last1=De Felice|first1=Antonio|last2=Tsujikawa|first2=Shinji|title=एफ(आर) सिद्धांत|journal=Living Reviews in Relativity|date=2010|volume=13|issue=1|page=3|doi=10.12942/lrr-2010-3|pmid=28179828|pmc=5255939|arxiv=1002.4928|bibcode=2010LRR....13....3D}}</ref> हम इसके विश्लेषण को सरल बना सकते हैं {{var|f}}({{var|R}}) | कुछ अतिरिक्त शर्तों के तहत<ref>{{cite journal|last1=De Felice|first1=Antonio|last2=Tsujikawa|first2=Shinji|title=एफ(आर) सिद्धांत|journal=Living Reviews in Relativity|date=2010|volume=13|issue=1|page=3|doi=10.12942/lrr-2010-3|pmid=28179828|pmc=5255939|arxiv=1002.4928|bibcode=2010LRR....13....3D}}</ref> हम इसके विश्लेषण को सरल बना सकते हैं {{var|f}}({{var|R}}) [[सहायक क्षेत्र]] का परिचय देकर सिद्धांत {{varserif|Φ}}. यह मानते हुए <math>f''(R) \neq 0</math> सभी के लिए {{var|R}}, होने देना {{var|V}}({{var|Φ}}) का लीजेंड्रे रूपांतरण हो {{var|f}}({{var|R}}) ताकि <math>\Phi = f'(R)</math> और <math>R=V'(\Phi)</math>. फिर, व्यक्ति को O'Hanlon (1972) क्रिया प्राप्त होती है: | ||
<math display="block">S = \int d^4x \sqrt{-g} \left[ \frac{1}{2\kappa}\left(\Phi R - V(\Phi)\right) + \mathcal{L}_{\text{m}}\right].</math> | <math display="block">S = \int d^4x \sqrt{-g} \left[ \frac{1}{2\kappa}\left(\Phi R - V(\Phi)\right) + \mathcal{L}_{\text{m}}\right].</math> | ||
हमारे पास यूलर-लैग्रेंज समीकरण हैं | हमारे पास यूलर-लैग्रेंज समीकरण हैं | ||
Line 104: | Line 103: | ||
<math display="block">S = \int \mathrm{d}^4x \sqrt{-\tilde{g}}\frac{1}{2\kappa}\left[ \tilde{R} - \frac{1}{2}\left(\tilde{\nabla}\tilde{\Phi}\right)^2 - \tilde{V}(\tilde{\Phi}) \right]</math> | <math display="block">S = \int \mathrm{d}^4x \sqrt{-\tilde{g}}\frac{1}{2\kappa}\left[ \tilde{R} - \frac{1}{2}\left(\tilde{\nabla}\tilde{\Phi}\right)^2 - \tilde{V}(\tilde{\Phi}) \right]</math> | ||
<math display="block">\tilde{V}(\tilde{\Phi}) = e^{-\frac{2}{\sqrt{3}} \tilde{\Phi}} V \left (e^{\tilde{\Phi}/\sqrt{3}} \right ).</math> | <math display="block">\tilde{V}(\tilde{\Phi}) = e^{-\frac{2}{\sqrt{3}} \tilde{\Phi}} V \left (e^{\tilde{\Phi}/\sqrt{3}} \right ).</math> | ||
यह वास्तविक अदिश क्षेत्र से जुड़ी सामान्य सापेक्षता है: उपयोग करना {{var|f}}({{var|R}}) त्वरित ब्रह्मांड का वर्णन करने के लिए सिद्धांत व्यावहारिक रूप से [[सर्वोत्कृष्टता (भौतिकी)]] का उपयोग करने के बराबर है। (कम से कम, इस चेतावनी के समतुल्य कि हमने अभी तक पदार्थ युग्मन निर्दिष्ट नहीं किया है, इसलिए (उदाहरण के लिए) {{var|f}}({{var|R}}) गुरुत्वाकर्षण जिसमें पदार्थ न्यूनतम रूप से मीट्रिक से जुड़ा होता है (अर्थात, जॉर्डन फ्रेम में) | यह वास्तविक अदिश क्षेत्र से जुड़ी सामान्य सापेक्षता है: उपयोग करना {{var|f}}({{var|R}}) त्वरित ब्रह्मांड का वर्णन करने के लिए सिद्धांत व्यावहारिक रूप से [[सर्वोत्कृष्टता (भौतिकी)]] का उपयोग करने के बराबर है। (कम से कम, इस चेतावनी के समतुल्य कि हमने अभी तक पदार्थ युग्मन निर्दिष्ट नहीं किया है, इसलिए (उदाहरण के लिए) {{var|f}}({{var|R}}) गुरुत्वाकर्षण जिसमें पदार्थ न्यूनतम रूप से मीट्रिक से जुड़ा होता है (अर्थात, जॉर्डन फ्रेम में) सर्वोत्कृष्ट सिद्धांत के बराबर है जिसमें अदिश क्षेत्र गुरुत्वाकर्षण शक्ति के साथ पांचवें बल की मध्यस्थता करता है।) | ||
==प्लैटिनम {{var|f}}({{var|R}})गुरुत्वाकर्षण== | ==प्लैटिनम {{var|f}}({{var|R}})गुरुत्वाकर्षण== | ||
Line 119: | Line 118: | ||
चूंकि इसके कई संभावित रूप हैं {{var|f}}({{var|R}}) गुरुत्वाकर्षण, सामान्य परीक्षण खोजना कठिन है। इसके अतिरिक्त, चूंकि कुछ मामलों में सामान्य सापेक्षता से विचलन को मनमाने ढंग से छोटा किया जा सकता है, इसलिए कुछ संशोधनों को निर्णायक रूप से बाहर करना असंभव है। कार्य को कोई ठोस रूप दिए बिना भी कुछ प्रगति की जा सकती है {{var|f}}({{var|R}}) [[टेलर श्रृंखला]] द्वारा | चूंकि इसके कई संभावित रूप हैं {{var|f}}({{var|R}}) गुरुत्वाकर्षण, सामान्य परीक्षण खोजना कठिन है। इसके अतिरिक्त, चूंकि कुछ मामलों में सामान्य सापेक्षता से विचलन को मनमाने ढंग से छोटा किया जा सकता है, इसलिए कुछ संशोधनों को निर्णायक रूप से बाहर करना असंभव है। कार्य को कोई ठोस रूप दिए बिना भी कुछ प्रगति की जा सकती है {{var|f}}({{var|R}}) [[टेलर श्रृंखला]] द्वारा | ||
<math display="block">f(R) = a_0 + a_1 R + a_2 R^2 + \cdots</math> | <math display="block">f(R) = a_0 + a_1 R + a_2 R^2 + \cdots</math> | ||
पहला पद [[ब्रह्माण्ड संबंधी स्थिरांक]] की तरह है और छोटा होना चाहिए। अगला गुणांक {{var|a}}<sub>1</sub> सामान्य सापेक्षता की तरह | पहला पद [[ब्रह्माण्ड संबंधी स्थिरांक]] की तरह है और छोटा होना चाहिए। अगला गुणांक {{var|a}}<sub>1</sub> सामान्य सापेक्षता की तरह पर सेट किया जा सकता है। मीट्रिक के लिए {{var|f}}({{var|R}}) गुरुत्वाकर्षण (पालाटिनी या मीट्रिक-एफ़िन के विपरीत)। {{var|f}}({{var|R}}) गुरुत्वाकर्षण), द्विघात शब्द को पांचवें बल माप द्वारा सर्वोत्तम रूप से नियंत्रित किया जाता है, क्योंकि यह गुरुत्वाकर्षण क्षमता में युकावा संभावित सुधार की ओर ले जाता है। सर्वोत्तम वर्तमान सीमाएँ हैं {{nowrap|{{abs|{{var|a}}<sub>2</sub>}} < {{val|4|e=−9|u=m2}}}} या समकक्ष {{nowrap|{{abs|{{var|a}}<sub>2</sub>}} < {{val|2.3|e=22|u=GeV<sup>−2</sup>}}.}}<ref name="Berry">{{cite journal| title = Linearized ''f''(''R'') gravity: Gravitational radiation and Solar System tests| last1= Berry |first1=C. P. L. |last2= Gair |first2=J. R.| journal = [[Physical Review D]] | volume = 83| pages = 104022| year = 2011| doi = 10.1103/PhysRevD.83.104022| bibcode = 2011PhRvD..83j4022B |arxiv = 1104.0819| issue = 10 | s2cid= 119202399 }}</ref><ref>{{cite journal| title = Dark Matter from R<sup>2</sup> Gravity| last1=Cembranos |first1=J. A. R.| journal = [[Physical Review Letters]] | volume = 102| pages = 141301| year = 2009| doi = 10.1103/PhysRevLett.102.141301| bibcode = 2009PhRvL.102n1301C |arxiv = 0809.1653| issue = 14| pmid = 19392422 | s2cid=33042847 }}</ref> | ||
पैरामीटरयुक्त पोस्ट-न्यूटोनियन औपचारिकता को गुरुत्वाकर्षण के सामान्य संशोधित सिद्धांतों को बाधित करने में सक्षम बनाने के लिए डिज़ाइन किया गया है। तथापि, {{var|f}}({{var|R}}) गुरुत्वाकर्षण सामान्य सापेक्षता के समान कई मूल्यों को साझा करता है, और इसलिए इन परीक्षणों का उपयोग करके अप्रभेद्य है।<ref>{{cite journal| title = गुरुत्वाकर्षण के चौथे क्रम के सिद्धांतों की पैरामीट्रिज्ड पोस्ट-न्यूटोनियन सीमा| last1= Clifton |first1=T.| journal = [[Physical Review D]] | volume = 77| pages = 024041 | year = 2008| doi = 10.1103/PhysRevD.77.024041| bibcode = 2008PhRvD..77b4041C |arxiv = 0801.0983| issue = 2 | s2cid= 54174617 }}</ref> विशेष रूप से प्रकाश विक्षेपण अपरिवर्तित है, इसलिए {{var|f}}({{var|R}}) गुरुत्वाकर्षण, सामान्य सापेक्षता की तरह, सामान्य सापेक्षता के कैसिनी-ह्यूजेंस#परीक्षणों की सीमाओं के साथ पूरी तरह से सुसंगत है।<ref name="Berry" /> | पैरामीटरयुक्त पोस्ट-न्यूटोनियन औपचारिकता को गुरुत्वाकर्षण के सामान्य संशोधित सिद्धांतों को बाधित करने में सक्षम बनाने के लिए डिज़ाइन किया गया है। तथापि, {{var|f}}({{var|R}}) गुरुत्वाकर्षण सामान्य सापेक्षता के समान कई मूल्यों को साझा करता है, और इसलिए इन परीक्षणों का उपयोग करके अप्रभेद्य है।<ref>{{cite journal| title = गुरुत्वाकर्षण के चौथे क्रम के सिद्धांतों की पैरामीट्रिज्ड पोस्ट-न्यूटोनियन सीमा| last1= Clifton |first1=T.| journal = [[Physical Review D]] | volume = 77| pages = 024041 | year = 2008| doi = 10.1103/PhysRevD.77.024041| bibcode = 2008PhRvD..77b4041C |arxiv = 0801.0983| issue = 2 | s2cid= 54174617 }}</ref> विशेष रूप से प्रकाश विक्षेपण अपरिवर्तित है, इसलिए {{var|f}}({{var|R}}) गुरुत्वाकर्षण, सामान्य सापेक्षता की तरह, सामान्य सापेक्षता के कैसिनी-ह्यूजेंस#परीक्षणों की सीमाओं के साथ पूरी तरह से सुसंगत है।<ref name="Berry" /> | ||
Line 128: | Line 127: | ||
<math display="block"> f(R) = R + \frac{R^2}{6M^2}</math> | <math display="block"> f(R) = R + \frac{R^2}{6M^2}</math> | ||
कहाँ <math>M</math> द्रव्यमान के आयाम हैं।<ref>{{cite journal |doi=10.1016/0370-2693(80)90670-X |title=विलक्षणता के बिना एक नए प्रकार के आइसोट्रोपिक ब्रह्माण्ड संबंधी मॉडल|journal=Physics Letters B |volume=91 |pages=99–102 |year=1980 |last1=Starobinsky |first1=A.A |issue=1 |bibcode=1980PhLB...91...99S }}</ref> | कहाँ <math>M</math> द्रव्यमान के आयाम हैं।<ref>{{cite journal |doi=10.1016/0370-2693(80)90670-X |title=विलक्षणता के बिना एक नए प्रकार के आइसोट्रोपिक ब्रह्माण्ड संबंधी मॉडल|journal=Physics Letters B |volume=91 |pages=99–102 |year=1980 |last1=Starobinsky |first1=A.A |issue=1 |bibcode=1980PhLB...91...99S }}</ref> | ||
स्टारोबिंस्की गुरुत्वाकर्षण, [[महा विस्फोट]] के ठीक बाद ब्रह्मांडीय मुद्रास्फीति_(ब्रह्मांड विज्ञान) के लिए | स्टारोबिंस्की गुरुत्वाकर्षण, [[महा विस्फोट]] के ठीक बाद ब्रह्मांडीय मुद्रास्फीति_(ब्रह्मांड विज्ञान) के लिए तंत्र प्रदान करता है जब <math>R</math> अभी भी बड़ा था. हालाँकि, यह वर्तमान में ब्रह्मांड के तेजी से बढ़ते विस्तार का वर्णन करने के लिए उपयुक्त नहीं है <math>R</math> बहुत छोटी है।<ref name="NASA_Shape">{{cite web |title=क्या ब्रह्मांड का हमेशा के लिए विस्तार होगा?|url=http://map.gsfc.nasa.gov/universe/uni_shape.html |publisher=[[NASA]] |date=24 January 2014 |access-date=16 March 2015}}</ref><ref name="Fermi_Flat">{{cite web |title=हमारा ब्रह्मांड चपटा है|url= http://www.symmetrymagazine.org/article/april-2015/our-flat-universe?email_issue=725 |publisher=FermiLab/SLAC |date=7 April 2015 |first = Lauren|last = Biron|work = symmetrymagazine.org}}</ref><ref>{{cite journal|title=अप्रत्याशित कनेक्शन|author=Marcus Y. Yoo|journal=Engineering & Science|volume=LXXIV1|date=2011|page=30}}</ref> इसका तात्पर्य यह है कि द्विघात पद <math>f(R) = R + \frac{R^2}{6M^2}</math> नगण्य है, अर्थात्, व्यक्ति की प्रवृत्ति होती है <math>f(R) = R </math> जो अशक्त ब्रह्माण्ड संबंधी स्थिरांक के साथ सामान्य सापेक्षता है। | ||
==गोगोई-गोस्वामी गुरुत्वाकर्षण== | ==गोगोई-गोस्वामी गुरुत्वाकर्षण== | ||
गोगोई-गोस्वामी गुरुत्वाकर्षण का निम्नलिखित रूप है | गोगोई-गोस्वामी गुरुत्वाकर्षण का निम्नलिखित रूप है | ||
<math display="block"> f(R) = R - \frac{\alpha}{\pi} R_c \cot^{-1} \left( \frac{R_c^2}{R^2} \right) - \beta R_c \left[ 1 - \exp\left( - \frac{R}{R_c} \right) \right] </math> | <math display="block"> f(R) = R - \frac{\alpha}{\pi} R_c \cot^{-1} \left( \frac{R_c^2}{R^2} \right) - \beta R_c \left[ 1 - \exp\left( - \frac{R}{R_c} \right) \right] </math> | ||
कहाँ <math> \alpha </math> और <math> \beta </math> दो आयामहीन सकारात्मक स्थिरांक हैं और <math> R_c </math> | कहाँ <math> \alpha </math> और <math> \beta </math> दो आयामहीन सकारात्मक स्थिरांक हैं और <math> R_c </math> विशिष्ट वक्रता स्थिरांक है। <ref>{{cite journal |doi=10.1140/epjc/s10052-020-08684-3 |title=एक नया f(R) गुरुत्वाकर्षण मॉडल और उसमें गुरुत्वाकर्षण तरंगों के गुण|journal=The European Physical Journal C |volume=80 |pages=1101 |year=2020 | last1=Gogoi | first1=Dhruba Jyoti | last2=Dev Goswami |first2= Umananda |issue=12 |arxiv= 2006.04011 |bibcode=2020EPJC...80.1101G |s2cid=219530929 }}</ref> | ||
== तन्य सामान्यीकरण == | == तन्य सामान्यीकरण == | ||
{{var|f}}({{var|R}}) जैसा कि पिछले अनुभागों में प्रस्तुत किया गया गुरुत्वाकर्षण सामान्य सापेक्षता का | {{var|f}}({{var|R}}) जैसा कि पिछले अनुभागों में प्रस्तुत किया गया गुरुत्वाकर्षण सामान्य सापेक्षता का अदिश संशोधन है। अधिक सामान्यतः, हमारे पास हो सकता है | ||
<math display="block">\int \mathrm{d}^Dx \sqrt{-g}\, f(R, R^{\mu\nu}R_{\mu\nu}, R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma})</math> | |||
[[रिक्की टेंसर]] और [[वेइल टेंसर]] के अपरिवर्तनीयों को शामिल करने वाला युग्मन। विशेष मामले हैं {{var|f}}({{var|R}}) गुरुत्वाकर्षण, [[अनुरूप गुरुत्वाकर्षण]], गॉस-बोनट गुरुत्वाकर्षण और [[लवलॉक गुरुत्वाकर्षण]]। ध्यान दें कि किसी भी गैर-तुच्छ टेंसोरिअल निर्भरता के साथ, हमारे पास आम तौर पर द्रव्यमान रहित गुरुत्वाकर्षण और | [[रिक्की टेंसर]] और [[वेइल टेंसर]] के अपरिवर्तनीयों को शामिल करने वाला युग्मन। विशेष मामले हैं {{var|f}}({{var|R}}) गुरुत्वाकर्षण, [[अनुरूप गुरुत्वाकर्षण]], गॉस-बोनट गुरुत्वाकर्षण और [[लवलॉक गुरुत्वाकर्षण]]। ध्यान दें कि किसी भी गैर-तुच्छ टेंसोरिअल निर्भरता के साथ, हमारे पास आम तौर पर द्रव्यमान रहित गुरुत्वाकर्षण और विशाल स्केलर के अलावा, स्वतंत्रता के अतिरिक्त बड़े स्पिन -2 डिग्री होते हैं। अपवाद गॉस-बोनट ग्रेविटी है जहां स्पिन-2 घटकों के लिए चौथे क्रम की शर्तें रद्द हो जाती हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 194: | Line 193: | ||
*S. I. Kruglov (2014). "Modified arctan-gravity model mimicking a cosmological constant". Phys.Rev.D 89, 6, 064004 [arXiv:1310.6915]. | *S. I. Kruglov (2014). "Modified arctan-gravity model mimicking a cosmological constant". Phys.Rev.D 89, 6, 064004 [arXiv:1310.6915]. | ||
*S .I. Kruglov (2013). "On exponential modified gravity". Int.J.Mod.Phys.A 28, 24, 1350119 [arXiv:1204.6709]. | *S .I. Kruglov (2013). "On exponential modified gravity". Int.J.Mod.Phys.A 28, 24, 1350119 [arXiv:1204.6709]. | ||
*S. | *S. I. Kruglov (2016). "Notes on Born–Infeld-like modified gravity". Astrophys.Space Sci. 361, 2, 73 [arXiv:1403.0675]. | ||
*S. I. Kruglov (2015). "A new (F(R)-gravity model". Astrophys.Space Sci. 358, 2, 48 [arXiv:1502.00659]. | *S. I. Kruglov (2015). "A new (F(R)-gravity model". Astrophys.Space Sci. 358, 2, 48 [arXiv:1502.00659]. | ||
*S. I. Kruglov (2023), "Logarithmic gravity model". Int.J.Mod.Phys. D 32, 06, 2350037 [arXiv:2304.09106]. | *S. I. Kruglov (2023), "Logarithmic gravity model". Int.J.Mod.Phys. D 32, 06, 2350037 [arXiv:2304.09106]. | ||
Line 202: | Line 201: | ||
*[http://xstructure.inr.ac.ru/x-bin/theme3.py?level=1&index1=3649 ''f''(''R'') gravity on arxiv.org] | *[http://xstructure.inr.ac.ru/x-bin/theme3.py?level=1&index1=3649 ''f''(''R'') gravity on arxiv.org] | ||
*[http://inspirehep.net/record/925916 Extended Theories of Gravity] | *[http://inspirehep.net/record/925916 Extended Theories of Gravity] | ||
[[Category: गुरुत्वाकर्षण के सिद्धांत]] | [[Category: गुरुत्वाकर्षण के सिद्धांत]] | ||
Revision as of 16:06, 28 November 2023
f(R) सामान्य सापेक्षता सिद्धांत का प्रकार का विकल्प है जो अल्बर्ट आइंस्टीन|आइंस्टीन की सामान्य सापेक्षता का सामान्यीकरण करता है। f(R) गुरुत्वाकर्षण वास्तव में सिद्धांतों का परिवार है, प्रत्येक को अलग कार्य द्वारा परिभाषित किया गया है, f, अदिश वक्रता का, R. सबसे सरल मामला केवल फलन का अदिश राशि के बराबर होना है; यह सामान्य सापेक्षता है. मनमाना फ़ंक्शन शुरू करने के परिणामस्वरूप, काली ऊर्जा या गहरे द्रव्य के अज्ञात रूपों को जोड़े बिना त्वरित ब्रह्मांड और ब्रह्मांड की संरचना के गठन की व्याख्या करने की स्वतंत्रता हो सकती है। कुछ कार्यात्मक रूप क्वांटम गुरुत्व से उत्पन्न होने वाले सुधारों से प्रेरित हो सकते हैं। f(R) गुरुत्वाकर्षण का प्रस्ताव पहली बार 1970 में हंस एडोल्फ बुचडाहल द्वारा किया गया था[1] (हालांकि {{var|ϕ}के स्थान पर } का प्रयोग किया गया f मनमाना फ़ंक्शन के नाम के लिए)। मुद्रास्फीति (ब्रह्मांड विज्ञान) पर एलेक्सी स्टारोबिंस्की के काम के बाद यह अनुसंधान का सक्रिय क्षेत्र बन गया है।[2] विभिन्न कार्यों को अपनाकर इस सिद्धांत से घटनाओं की विस्तृत श्रृंखला उत्पन्न की जा सकती है; हालाँकि, कई कार्यात्मक रूपों को अब अवलोकन के आधार पर, या रोग संबंधी सैद्धांतिक समस्याओं के कारण खारिज किया जा सकता है।
परिचय
में f(R) गुरुत्वाकर्षण, आइंस्टीन-हिल्बर्ट कार्रवाई के लैग्रेंजियन (क्षेत्र सिद्धांत) को सामान्य बनाना चाहता है:
मीट्रिक f(R)गुरुत्वाकर्षण
क्षेत्र समीकरणों की व्युत्पत्ति
मीट्रिक में f(R) गुरुत्वाकर्षण, कोई मीट्रिक_टेंसर_(सामान्य_सापेक्षता) के संबंध में कार्रवाई को अलग-अलग करके और गणित_ऑफ_सामान्य_सापेक्षता#एफ़िन_कनेक्शन का इलाज न करके फ़ील्ड समीकरणों पर पहुंचता है स्वतंत्र रूप से। पूर्णता के लिए अब हम क्रिया के परिवर्तन के मूल चरणों का संक्षेप में उल्लेख करेंगे। मुख्य चरण वही हैं जो आइंस्टीन-हिल्बर्ट कार्रवाई की भिन्नता के मामले में थे (अधिक विवरण के लिए लेख देखें) लेकिन कुछ महत्वपूर्ण अंतर भी हैं।
निर्धारक की भिन्नता हमेशा की तरह है:
दर्शाने , क्रिया में भिन्नता पढ़ती है:
सामान्यीकृत फ्रीडमैन समीकरण
स्केल फैक्टर के साथ रॉबर्टसन-वॉकर मीट्रिक मानते हुए हम सामान्यीकृत फ्रीडमैन समीकरण (इकाइयों में जहां) पा सकते हैं ):
संशोधित न्यूटन स्थिरांक
इन सिद्धांतों की दिलचस्प विशेषता यह तथ्य है कि गुरुत्वाकर्षण स्थिरांक समय और पैमाने पर निर्भर है।[4] इसे देखने के लिए, मीट्रिक में छोटा अदिश गड़बड़ी जोड़ें (न्यूटोनियन गेज में):
विशाल [[गुरुत्वाकर्षण तरंग]]ें
सिद्धांतों का यह वर्ग जब रैखिककृत होता है तो गुरुत्वाकर्षण तरंगों के लिए तीन ध्रुवीकरण मोड प्रदर्शित करता है, जिनमें से दो द्रव्यमानहीन गुरुत्वाकर्षण (हेलिकॉप्टर ±2) के अनुरूप होते हैं और तीसरा (स्केलर) इस तथ्य से आता है कि यदि हम अनुरूप परिवर्तन को ध्यान में रखते हैं, तो चतुर्थ क्रम सिद्धांत f(R) सामान्य सापेक्षता प्लस अदिश क्षेत्र बन जाता है। ये देखना है तो पहचानो
समतुल्य औपचारिकता
कुछ अतिरिक्त शर्तों के तहत[8] हम इसके विश्लेषण को सरल बना सकते हैं f(R) सहायक क्षेत्र का परिचय देकर सिद्धांत Φ. यह मानते हुए सभी के लिए R, होने देना V(Φ) का लीजेंड्रे रूपांतरण हो f(R) ताकि और . फिर, व्यक्ति को O'Hanlon (1972) क्रिया प्राप्त होती है:
हम वर्तमान में जॉर्डन और आइंस्टीन फ्रेम के साथ काम कर रहे हैं। अनुरूप पुनर्स्केलिंग करके
परिभाषित , और प्रतिस्थापित करना
प्लैटिनम f(R)गुरुत्वाकर्षण
पलाटिनी भिन्नता में f(R) गुरुत्वाकर्षण, कोई मीट्रिक और कनेक्शन (गणित) को स्वतंत्र रूप से मानता है और उनमें से प्रत्येक के संबंध में कार्रवाई को अलग-अलग बदलता है। लैग्रेंजियन मामले को कनेक्शन से स्वतंत्र माना जाता है। इन सिद्धांतों को ब्रैन्स-डिके सिद्धांत के समकक्ष दिखाया गया है ω = −3⁄2.[9][10] हालाँकि, सिद्धांत की संरचना के कारण, पलाटिनी f(R) सिद्धांत मानक मॉडल के विरोध में प्रतीत होते हैं,[9][11] सौर मंडल प्रयोगों का उल्लंघन हो सकता है,[10]और अवांछित विलक्षणताएँ निर्मित करते प्रतीत होते हैं।[12]
मीट्रिक-एफ़िन f(R)गुरुत्वाकर्षण
मेट्रिक-एफ़िन गुरुत्वाकर्षण सिद्धांत में|मेट्रिक-एफ़िन f(R) गुरुत्वाकर्षण, व्यक्ति चीजों को और भी अधिक सामान्यीकृत करता है, मीट्रिक और कनेक्शन दोनों को स्वतंत्र रूप से मानता है, और यह मानता है कि मामला लैग्रेंजियन कनेक्शन पर भी निर्भर करता है।
अवलोकनात्मक परीक्षण
चूंकि इसके कई संभावित रूप हैं f(R) गुरुत्वाकर्षण, सामान्य परीक्षण खोजना कठिन है। इसके अतिरिक्त, चूंकि कुछ मामलों में सामान्य सापेक्षता से विचलन को मनमाने ढंग से छोटा किया जा सकता है, इसलिए कुछ संशोधनों को निर्णायक रूप से बाहर करना असंभव है। कार्य को कोई ठोस रूप दिए बिना भी कुछ प्रगति की जा सकती है f(R) टेलर श्रृंखला द्वारा
स्टारोबिंस्की गुरुत्वाकर्षण
स्टारोबिंस्की गुरुत्वाकर्षण का निम्नलिखित रूप है
गोगोई-गोस्वामी गुरुत्वाकर्षण
गोगोई-गोस्वामी गुरुत्वाकर्षण का निम्नलिखित रूप है
तन्य सामान्यीकरण
f(R) जैसा कि पिछले अनुभागों में प्रस्तुत किया गया गुरुत्वाकर्षण सामान्य सापेक्षता का अदिश संशोधन है। अधिक सामान्यतः, हमारे पास हो सकता है
यह भी देखें
- गुरुत्वाकर्षण के विस्तारित सिद्धांत
- गॉस-बोनट गुरुत्वाकर्षण
- लवलॉक गुरुत्वाकर्षण
संदर्भ
- ↑ Buchdahl, H. A. (1970). "गैर-रैखिक लैग्रेंजियन और ब्रह्माण्ड संबंधी सिद्धांत". Monthly Notices of the Royal Astronomical Society. 150: 1–8. Bibcode:1970MNRAS.150....1B. doi:10.1093/mnras/150.1.1.
- ↑ Starobinsky, A. A. (1980). "विलक्षणता के बिना एक नए प्रकार के आइसोट्रोपिक ब्रह्माण्ड संबंधी मॉडल". Physics Letters B. 91 (1): 99–102. Bibcode:1980PhLB...91...99S. doi:10.1016/0370-2693(80)90670-X.
- ↑ 3.0 3.1 L. Amendola and S. Tsujikawa (2013) “Dark Energy, Theory and Observations” Cambridge University Press
- ↑ Tsujikawa, Shinji (2007). "डार्क एनर्जी के संशोधित गुरुत्वाकर्षण मॉडल में पदार्थ घनत्व गड़बड़ी और प्रभावी गुरुत्वाकर्षण स्थिरांक". Physical Review D. 76 (2): 023514. arXiv:0705.1032. Bibcode:2007PhRvD..76b3514T. doi:10.1103/PhysRevD.76.023514. S2CID 119324187.
- ↑ Liang, Dicong; Gong, Yungui; Hou, Shaoqi; Liu, Yunqi (2017). "एफ(आर) गुरुत्वाकर्षण में गुरुत्वाकर्षण तरंगों का ध्रुवीकरण". Phys. Rev. D. 95 (10): 104034. arXiv:1701.05998. Bibcode:2017PhRvD..95j4034L. doi:10.1103/PhysRevD.95.104034. S2CID 119005163.
- ↑ Gogoi, Dhruba Jyoti; Dev Goswami, Umananda (2020). "एक नया f(R) गुरुत्वाकर्षण मॉडल और उसमें गुरुत्वाकर्षण तरंगों के गुण". The European Physical Journal C. 80 (12): 1101. arXiv:2006.04011. Bibcode:2020EPJC...80.1101G. doi:10.1140/epjc/s10052-020-08684-3. S2CID 219530929.
- ↑ Gogoi, Dhruba Jyoti; Dev Goswami, Umananda (2022). "एफ(आर) गुरुत्वाकर्षण शक्ति कानून मॉडल में गुरुत्वाकर्षण तरंगें". Indian Journal of Physics. 96 (2): 637. arXiv:1901.11277. Bibcode:2022InJPh..96..637G. doi:10.1007/s12648-020-01998-8. S2CID 231655238.
- ↑ De Felice, Antonio; Tsujikawa, Shinji (2010). "एफ(आर) सिद्धांत". Living Reviews in Relativity. 13 (1): 3. arXiv:1002.4928. Bibcode:2010LRR....13....3D. doi:10.12942/lrr-2010-3. PMC 5255939. PMID 28179828.
- ↑ 9.0 9.1 Flanagan, E. E. (2004). "गुरुत्वाकर्षण के सिद्धांतों में अनुरूप ढाँचा स्वतंत्रता". Classical and Quantum Gravity. 21 (15): 3817–3829. arXiv:gr-qc/0403063. Bibcode:2004CQGra..21.3817F. doi:10.1088/0264-9381/21/15/N02. S2CID 117619981.
- ↑ 10.0 10.1 Olmo, G. J. (2005). "सौर मंडल प्रयोगों के अनुसार ग्रेविटी लैग्रेंजियन". Physical Review Letters. 95 (26): 261102. arXiv:gr-qc/0505101. Bibcode:2005PhRvL..95z1102O. doi:10.1103/PhysRevLett.95.261102. PMID 16486333. S2CID 27440524.
- ↑ Iglesias, A.; Kaloper, N.; Padilla, A.; Park, M. (2007). "स्केलर-टेंसर गुरुत्वाकर्षण के पैलेटिनी फॉर्मूलेशन का उपयोग कैसे करें (नहीं)।". Physical Review D. 76 (10): 104001. arXiv:0708.1163. Bibcode:2007PhRvD..76j4001I. doi:10.1103/PhysRevD.76.104001.
- ↑ Barausse, E.; Sotiriou, T. P.; Miller, J. C. (2008). "पलाटिनी एफ(आर) गुरुत्वाकर्षण में बहुउष्णकटिबंधीय क्षेत्रों के लिए एक नो-गो प्रमेय". Classical and Quantum Gravity. 25 (6): 062001. arXiv:gr-qc/0703132. Bibcode:2008CQGra..25f2001B. doi:10.1088/0264-9381/25/6/062001. S2CID 119370540.
- ↑ 13.0 13.1 Berry, C. P. L.; Gair, J. R. (2011). "Linearized f(R) gravity: Gravitational radiation and Solar System tests". Physical Review D. 83 (10): 104022. arXiv:1104.0819. Bibcode:2011PhRvD..83j4022B. doi:10.1103/PhysRevD.83.104022. S2CID 119202399.
- ↑ Cembranos, J. A. R. (2009). "Dark Matter from R2 Gravity". Physical Review Letters. 102 (14): 141301. arXiv:0809.1653. Bibcode:2009PhRvL.102n1301C. doi:10.1103/PhysRevLett.102.141301. PMID 19392422. S2CID 33042847.
- ↑ Clifton, T. (2008). "गुरुत्वाकर्षण के चौथे क्रम के सिद्धांतों की पैरामीट्रिज्ड पोस्ट-न्यूटोनियन सीमा". Physical Review D. 77 (2): 024041. arXiv:0801.0983. Bibcode:2008PhRvD..77b4041C. doi:10.1103/PhysRevD.77.024041. S2CID 54174617.
- ↑ Starobinsky, A.A (1980). "विलक्षणता के बिना एक नए प्रकार के आइसोट्रोपिक ब्रह्माण्ड संबंधी मॉडल". Physics Letters B. 91 (1): 99–102. Bibcode:1980PhLB...91...99S. doi:10.1016/0370-2693(80)90670-X.
- ↑ "क्या ब्रह्मांड का हमेशा के लिए विस्तार होगा?". NASA. 24 January 2014. Retrieved 16 March 2015.
- ↑ Biron, Lauren (7 April 2015). "हमारा ब्रह्मांड चपटा है". symmetrymagazine.org. FermiLab/SLAC.
- ↑ Marcus Y. Yoo (2011). "अप्रत्याशित कनेक्शन". Engineering & Science. LXXIV1: 30.
- ↑ Gogoi, Dhruba Jyoti; Dev Goswami, Umananda (2020). "एक नया f(R) गुरुत्वाकर्षण मॉडल और उसमें गुरुत्वाकर्षण तरंगों के गुण". The European Physical Journal C. 80 (12): 1101. arXiv:2006.04011. Bibcode:2020EPJC...80.1101G. doi:10.1140/epjc/s10052-020-08684-3. S2CID 219530929.
अग्रिम पठन
- See Chapter 29 in the textbook on "Particles and Quantum Fields" by Kleinert, H. (2016), World Scientific (Singapore, 2016) (also available online)
- Sotiriou, T. P.; Faraoni, V. (2010). "f(R) Theories of Gravity". Reviews of Modern Physics. 82 (1): 451–497. arXiv:0805.1726. Bibcode:2010RvMP...82..451S. doi:10.1103/RevModPhys.82.451. S2CID 15024691.
- Sotiriou, T. P. (2009). "6+1 lessons from f(R) gravity". Journal of Physics: Conference Series. 189 (9): 012039. arXiv:0810.5594. Bibcode:2009JPhCS.189a2039S. doi:10.1088/1742-6596/189/1/012039. S2CID 14820388.
- Capozziello, S.; De Laurentis, M. (2011). "Extended Theories of Gravity". Physics Reports. 509 (4–5): 167–321. arXiv:1108.6266. Bibcode:2011PhR...509..167C. doi:10.1016/j.physrep.2011.09.003. S2CID 119296243.
- Salvatore Capozziello and Mariafelicia De Laurentis, (2015) "F(R) theories of gravitation". Scholarpedia, doi:10.4249/scholarpedia.31422
- Kalvakota, Vaibhav R., (2021) "Investigating f(R)" gravity and cosmologies". Mathematical physics preprint archive, https://web.ma.utexas.edu/mp_arc/c/21/21-38.pdf
- S. I. Kruglov (2014). "Modified arctan-gravity model mimicking a cosmological constant". Phys.Rev.D 89, 6, 064004 [arXiv:1310.6915].
- S .I. Kruglov (2013). "On exponential modified gravity". Int.J.Mod.Phys.A 28, 24, 1350119 [arXiv:1204.6709].
- S. I. Kruglov (2016). "Notes on Born–Infeld-like modified gravity". Astrophys.Space Sci. 361, 2, 73 [arXiv:1403.0675].
- S. I. Kruglov (2015). "A new (F(R)-gravity model". Astrophys.Space Sci. 358, 2, 48 [arXiv:1502.00659].
- S. I. Kruglov (2023), "Logarithmic gravity model". Int.J.Mod.Phys. D 32, 06, 2350037 [arXiv:2304.09106].