सीमा (गणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Value approached by a mathematical object}}
{{Short description|Value approached by a mathematical object}}
{{about|सीमा की सामान्य अवधारणा|अधिक विशिष्ट स्थितियों|अनुक्रम की सीमा|और|एक फलन की सीमा|अन्य उपयोग|सीमा (बहुविकल्पी)#गणित{{!}}सीमा § गणित}}
{{about|सीमा की सामान्य अवधारणा|अधिक विशिष्ट स्थितियों|अनुक्रम की सीमा|और|एक फलन की सीमा|अन्य उपयोग|सीमा (बहुविकल्पी)#गणित{{!}}सीमा § गणित}}
गणित में, एक सीमा वह मान है जो एक फलन (गणित) (या अनु[[क्रम]]) तक पहुंचता है क्योंकि इनपुट (या क्रम-सूची) कुछ [[मूल्य (गणित)|मान (गणित)]] तक पहुंचता है।<ref>{{cite book |last=Stewart |first=James |author-link=James Stewart (mathematician) |year=2008 |title=कैलकुलस: अर्ली ट्रान्सेंडैंटल्स|edition=6th |publisher=[[Brooks/Cole]] |isbn=978-0-495-01166-8 |url-access=registration |url=https://archive.org/details/calculusearlytra00stew_1 }}</ref> [[गणना]] और [[गणितीय विश्लेषण]] के लिए सीमाएं आवश्यक हैं, और [[निरंतर कार्य|निरंतर फलन]], [[यौगिक]] और [[अभिन्न]] को परिभाषित करने के लिए उपयोग की जाती हैं।
गणित में, एक सीमा वह मान है जो एक फलन (गणित) (या अनु[[क्रम]]) तक पहुंचता है क्योंकि इनपुट (या क्रम-सूची) कुछ [[मूल्य (गणित)|मान (गणित)]] तक पहुंचता है।<ref>{{cite book |last=Stewart |first=James |author-link=James Stewart (mathematician) |year=2008 |title=कैलकुलस: अर्ली ट्रान्सेंडैंटल्स|edition=6th |publisher=[[Brooks/Cole]] |isbn=978-0-495-01166-8 |url-access=registration |url=https://archive.org/details/calculusearlytra00stew_1 }}</ref> [[गणना]] और [[गणितीय विश्लेषण]] के लिए सीमाएं आवश्यक हैं, और [[निरंतर कार्य|निरंतर फलन]], [[यौगिक|व्युत्पन्न]] और [[अभिन्न]] को परिभाषित करने के लिए उपयोग की जाती हैं।


एक अनुक्रम की एक सीमा की अवधारणा को एक [[नेट (टोपोलॉजी)]] की एक सीमा की अवधारणा के लिए सामान्यीकृत किया जाता है, और [[श्रेणी सिद्धांत]] में [[सीमा (श्रेणी सिद्धांत)]] और [[प्रत्यक्ष सीमा]] से निकटता से संबंधित है।
एक अनुक्रम की एक सीमा की अवधारणा को एक [[नेट (टोपोलॉजी)]] की एक सीमा की अवधारणा के लिए सामान्यीकृत किया जाता है, और [[श्रेणी सिद्धांत]] में [[सीमा (श्रेणी सिद्धांत)]] और [[प्रत्यक्ष सीमा]] से निकटता से संबंधित है।
Line 98: Line 98:
औपचारिक रूप से,  <math>f(x)</math> की सीमा जब <math>x</math> <math>c</math> की ओर अग्रसर होता है" की परिभाषा इस प्रकार दी गई है। सीमा एक वास्तविक संख्या  <math>L</math> है ताकि, एक मनमाना वास्तविक संख्या <math>\epsilon > 0</math> दी जाए (त्रुटि के रूप में माना जाता है), एक <math>\delta > 0</math> ऐसा है कि <math>x</math> संतुष्टि देने वाला,<math>0 < |x - c| < \delta</math>, यह मानता है की <math>| f(x) - L | < \epsilon</math>. इसे (ε, δ)-सीमा की परिभाषा के रूप में जाना जाता है।
औपचारिक रूप से,  <math>f(x)</math> की सीमा जब <math>x</math> <math>c</math> की ओर अग्रसर होता है" की परिभाषा इस प्रकार दी गई है। सीमा एक वास्तविक संख्या  <math>L</math> है ताकि, एक मनमाना वास्तविक संख्या <math>\epsilon > 0</math> दी जाए (त्रुटि के रूप में माना जाता है), एक <math>\delta > 0</math> ऐसा है कि <math>x</math> संतुष्टि देने वाला,<math>0 < |x - c| < \delta</math>, यह मानता है की <math>| f(x) - L | < \epsilon</math>. इसे (ε, δ)-सीमा की परिभाषा के रूप में जाना जाता है।


असमानता <math>0 < |x - c|</math> का उपयोग विचाराधीन बिंदुओं के समूचयसे <math>c</math> को बाहर करने के लिए किया जाता है, लेकिन कुछ लेखक इसे सीमाओं की अपनी परिभाषा में शामिल नहीं करते हैं।  <math>0 < |x - c| < \delta</math> को केवल <math>|x - c| < \delta</math>.से बदलकर। यह प्रतिस्थापन अतिरिक्त रूप से आवश्यक है कि  <math>f</math> <math>c</math> पर निरंतर रहें.
असमानता <math>0 < |x - c|</math> का उपयोग विचाराधीन बिंदुओं के समूच्चय से <math>c</math> को बाहर करने के लिए किया जाता है, लेकिन कुछ लेखक इसे सीमाओं की अपनी परिभाषा में शामिल नहीं करते हैं।  <math>0 < |x - c| < \delta</math> को केवल <math>|x - c| < \delta</math>.से बदलकर। यह प्रतिस्थापन अतिरिक्त रूप से आवश्यक है कि  <math>f</math> <math>c</math> पर निरंतर रहें.


यह सिद्ध किया जा सकता है कि एक समतुल्य परिभाषा है जो अनुक्रमों की सीमाओं और फलनो की सीमाओं के बीच संबंध को प्रकट करती है।<ref name=dexter>{{cite web
यह सिद्ध किया जा सकता है कि एक समतुल्य परिभाषा है जो अनुक्रमों की सीमाओं और फलनो की सीमाओं के बीच संबंध को प्रकट करती है।<ref name=dexter>{{cite web
Line 131: Line 131:


==== अनुक्रम का सीमा सेट ====
==== अनुक्रम का सीमा सेट ====
मान ले <math>\{a_n\}_{n > 0}</math> टोपोलॉजिकल स्पेस में एक अनुक्रम <math>X</math> हो. संक्षिप्तता के लिए, <math>X</math> के रूप में <math>\mathbb{R}</math> को सोचा जा सकता है, लेकिन परिभाषाएँ सामान्यतः अधिक होती हैं। सीमा समूचयबिंदुओं का समूचयहै जैसे कि यदि कोई  <math>\{a_{n_k}\}_{k >0}</math> साथ <math>a_{n_k}\rightarrow a</math> अभिसारी क्रम है, फिर <math>a</math> निर्धारित सीमा के अंतर्गत आता है। इस संदर्भ में ए <math>a</math> कभी-कभी सीमा बिंदु कहा जाता है।
मान ले <math>\{a_n\}_{n > 0}</math> टोपोलॉजिकल स्पेस में एक अनुक्रम <math>X</math> हो. संक्षिप्तता के लिए, <math>X</math> के रूप में <math>\mathbb{R}</math> को सोचा जा सकता है, लेकिन परिभाषाएँ सामान्यतः अधिक होती हैं। सीमा समूच्चय बिंदुओं का समूच्चय है जैसे कि यदि कोई  <math>\{a_{n_k}\}_{k >0}</math> साथ <math>a_{n_k}\rightarrow a</math> अभिसारी क्रम है, फिर <math>a</math> निर्धारित सीमा के अंतर्गत आता है। इस संदर्भ में ए <math>a</math> कभी-कभी सीमा बिंदु कहा जाता है।


इस धारणा का उपयोग ऑसिलेटरी अनुक्रमों के दीर्घकालिक व्यवहार को चिह्नित करना है। उदाहरण के लिए, अनुक्रम पर विचार करें <math>a_n = (-1)^n</math>. n=1 से शुरू करते हुए, इस क्रम के पहले कुछ पद हैं <math>-1, +1, -1, +1, \cdots</math>. यह जाँचा जा सकता है कि यह दोलनशील है, इसलिए इसकी कोई सीमा नहीं है, लेकिन इसके सीमा बिंदु <math>\{-1, +1\}</math> हैं.
इस धारणा का उपयोग ऑसिलेटरी अनुक्रमों के दीर्घकालिक व्यवहार को चिह्नित करना है। उदाहरण के लिए, अनुक्रम पर विचार करें <math>a_n = (-1)^n</math>. n=1 से शुरू करते हुए, इस क्रम के पहले कुछ पद हैं <math>-1, +1, -1, +1, \cdots</math>. यह जाँचा जा सकता है कि यह दोलनशील है, इसलिए इसकी कोई सीमा नहीं है, लेकिन इसके सीमा बिंदु <math>\{-1, +1\}</math> हैं.


==== एक प्रक्षेपवक्र की सीमा सेट ====
==== एक प्रक्षेपवक्र की सीमा सेट ====
प्रक्षेपवक्र की सीमाओं का अध्ययन करने के लिए, इस धारणा का उपयोग गतिशील प्रणालियों में किया जाता है। एक फलन <math>\gamma: \mathbb{R} \rightarrow X</math> होने के लिए एक प्रक्षेपवक्र को परिभाषित करना, बिंदु <math>\gamma(t)</math> समय पर प्रक्षेपवक्र की स्थिति के <math>t</math> रूप में माना जाता है. एक प्रक्षेपवक्र की सीमा निर्धारित निम्नानुसार परिभाषित की गई है। बढ़ते समय के किसी भी क्रम <math>\{t_n\}</math> के लिए, पदों का एक संबद्ध <math>\{x_n\} = \{\gamma(t_n)\}</math> क्रम है. यदि <math>x</math> अनुक्रम की सीमा निर्धारित है <math>\{x_n\}</math> बढ़ते समय के किसी भी क्रम के लिए, तब <math>x</math> प्रक्षेपवक्र का एक सीमा समूचयहै।
प्रक्षेपवक्र की सीमाओं का अध्ययन करने के लिए, इस धारणा का उपयोग गतिशील प्रणालियों में किया जाता है। एक फलन <math>\gamma: \mathbb{R} \rightarrow X</math> होने के लिए एक प्रक्षेपवक्र को परिभाषित करना, बिंदु <math>\gamma(t)</math> समय पर प्रक्षेपवक्र की स्थिति के <math>t</math> रूप में माना जाता है. एक प्रक्षेपवक्र की सीमा निर्धारित निम्नानुसार परिभाषित की गई है। बढ़ते समय के किसी भी क्रम <math>\{t_n\}</math> के लिए, पदों का एक संबद्ध <math>\{x_n\} = \{\gamma(t_n)\}</math> क्रम है. यदि <math>x</math> अनुक्रम की सीमा निर्धारित है <math>\{x_n\}</math> बढ़ते समय के किसी भी क्रम के लिए, तब <math>x</math> प्रक्षेपवक्र का एक सीमा समूच्चय है।


तकनीकी रूप से, यह  <math>\omega</math>-सीमा समूचयहै। घटते समय के अनुक्रमों के लिए निर्धारित <math>\alpha</math>-सीमा समूचयसंगत सीमा कहलाती है ।
तकनीकी रूप से, यह  <math>\omega</math>-सीमा समूच्चय है। घटते समय के अनुक्रमों के लिए निर्धारित <math>\alpha</math>-सीमा समूच्चय संगत सीमा कहलाती है ।


एक उदाहरण उदाहरण: <math>\gamma(t) = (\cos(t), \sin(t))</math>सर्कल प्रक्षेपवक्र है. इसकी कोई अनूठी सीमा नहीं है, लेकिन प्रत्येक के लिए <math>\theta \in \mathbb{R}</math>, बिंदु <math>(\cos(\theta), \sin(\theta))</math> समय के अनुक्रम द्वारा दिया गया एक सीमा बिंदु <math>t_n = \theta + 2\pi n</math> है . लेकिन सीमा बिंदुओं को प्रक्षेपवक्र पर प्राप्त करने की आवश्यकता नहीं है। प्रक्षेपवक्र <math>\gamma(t) = t/(1 + t)(\cos(t), \sin(t))</math> इसकी सीमा समूचयके रूप में इकाई वृत भी है।
एक उदाहरण उदाहरण: <math>\gamma(t) = (\cos(t), \sin(t))</math>सर्कल प्रक्षेपवक्र है. इसकी कोई अनूठी सीमा नहीं है, लेकिन प्रत्येक के लिए <math>\theta \in \mathbb{R}</math>, बिंदु <math>(\cos(\theta), \sin(\theta))</math> समय के अनुक्रम द्वारा दिया गया एक सीमा बिंदु <math>t_n = \theta + 2\pi n</math> है . लेकिन सीमा बिंदुओं को प्रक्षेपवक्र पर प्राप्त करने की आवश्यकता नहीं है। प्रक्षेपवक्र <math>\gamma(t) = t/(1 + t)(\cos(t), \sin(t))</math> इसकी सीमा समूच्चय के रूप में इकाई वृत भी है।


== उपयोग ==
== उपयोग ==
Line 171: Line 171:
श्रृंखला के योग के सिद्धांत का एक उपयोगी अनुप्रयोग शक्ति श्रृंखला के लिए है। ये प्रपत्र की श्रृंखला के योग हैं
श्रृंखला के योग के सिद्धांत का एक उपयोगी अनुप्रयोग शक्ति श्रृंखला के लिए है। ये प्रपत्र की श्रृंखला के योग हैं
<math display = block>f(z) = \sum_{n = 0}^\infty c_n z^n.</math>
<math display = block>f(z) = \sum_{n = 0}^\infty c_n z^n.</math>
अक्सर <math>z</math> एक जटिल संख्या के रूप में माना जाता है, और जटिल अनुक्रमों के अभिसरण की उपयुक्त धारणा की आवश्यकता होती है। <math>z\in \mathbb{C}</math> के मानो का समूचयजिसके लिए श्रृंखला योग अभिसरण एक वृत्त है, जिसकी त्रिज्या को [[अभिसरण की त्रिज्या]] के रूप में जाना जाता है।
अक्सर <math>z</math> एक जटिल संख्या के रूप में माना जाता है, और जटिल अनुक्रमों के अभिसरण की उपयुक्त धारणा की आवश्यकता होती है। <math>z\in \mathbb{C}</math> के मानो का समूच्चय जिसके लिए श्रृंखला योग अभिसरण एक वृत्त है, जिसकी त्रिज्या को [[अभिसरण की त्रिज्या]] के रूप में जाना जाता है।


=== एक बिंदु पर एक फलन की निरंतरता ===
=== एक बिंदु पर एक फलन की निरंतरता ===
Line 190: Line 190:
|{{math|''f''(0.9)}}||{{math|''f''(0.99)}}||{{math|''f''(0.999)}}|| {{math|''f''(1.0)}}||{{math|''f''(1.001)}}||{{math|''f''(1.01)}}||{{math|''f''(1.1)}}
|{{math|''f''(0.9)}}||{{math|''f''(0.99)}}||{{math|''f''(0.999)}}|| {{math|''f''(1.0)}}||{{math|''f''(1.001)}}||{{math|''f''(1.01)}}||{{math|''f''(1.1)}}
|-
|-
|    {{math|1.900}}||    {{math|1.990}}||      {{math|1.999}}||  {{math|undefined}}||      {{math|2.001}}||    {{math|2.010}}||    {{math|2.100}}
|    {{math|1.900}}||    {{math|1.990}}||      {{math|1.999}}||  अपरिभाषित||      {{math|2.001}}||    {{math|2.010}}||    {{math|2.100}}
|}
|}
इस प्रकार, {{math|''f''(''x'')}} को अव्यवस्थिततः से 2 की सीमा के करीब बनाया जा सकता है— केवल x को पर्याप्त रूप से 1 के निकट बनाकर।
इस प्रकार, {{math|''f''(''x'')}} को अव्यवस्थिततः से 2 की सीमा के करीब बनाया जा सकता है— केवल x को पर्याप्त रूप से 1 के निकट बनाकर।
Line 215: Line 215:
टोपोलॉजिकल स्पेस की सबसे सामान्य सेटिंग में, एक छोटा सा प्रमाण नीचे दिया गया है:
टोपोलॉजिकल स्पेस की सबसे सामान्य सेटिंग में, एक छोटा सा प्रमाण नीचे दिया गया है:


मान ले <math>f: X\rightarrow Y</math> टोपोलॉजिकल स्पेस <math>X</math> और <math>Y</math> के बीच एक सतत फलन करें. परिभाषा के अनुसार, <math>Y</math> में प्रत्येक खुले समूचय <math>V</math> के लिए, पूर्व चित्र <math>f^{-1}(V)</math> में <math>X</math> खुला है.
मान ले <math>f: X\rightarrow Y</math> टोपोलॉजिकल स्पेस <math>X</math> और <math>Y</math> के बीच एक सतत फलन करें. परिभाषा के अनुसार, <math>Y</math> में प्रत्येक खुले समूच्चय  <math>V</math> के लिए, पूर्व चित्र <math>f^{-1}(V)</math> में <math>X</math> खुला है.


अब मान लीजिए  <math>a_n \rightarrow a</math>  <math>X</math> में सीमा <math>a</math> वाला क्रम है. फिर <math>f(a_n)</math> <math>Y</math> में क्रम है, और <math>f(a)</math> कोई बिंदु है।
अब मान लीजिए  <math>a_n \rightarrow a</math>  <math>X</math> में सीमा <math>a</math> वाला क्रम है. फिर <math>f(a_n)</math> <math>Y</math> में क्रम है, और <math>f(a)</math> कोई बिंदु है।


<math>f(a)</math> में कोई निकटतम <math>V</math> चुनें।  फिर <math>f^{-1}(V)</math> एक खुला समूचयहै (की निरंतरता से <math>f</math>) जिसमें विशेष रूप से <math>a</math> शामिल है, और इसीलिए <math>f^{-1}(V)</math>  <math>a</math> का निकटतम है. <math>a_n</math> के अभिसरण से <math>a</math>, वहाँ एक <math>N</math> उपस्थित है  जैसे कि <math>n > N</math> के लिए, अपने पास <math>a_n \in f^{-1}(V)</math> है.
<math>f(a)</math> में कोई निकटतम <math>V</math> चुनें।  फिर <math>f^{-1}(V)</math> एक खुला समूच्चय है (की निरंतरता से <math>f</math>) जिसमें विशेष रूप से <math>a</math> शामिल है, और इसीलिए <math>f^{-1}(V)</math>  <math>a</math> का निकटतम है. <math>a_n</math> के अभिसरण से <math>a</math>, वहाँ एक <math>N</math> उपस्थित है  जैसे कि <math>n > N</math> के लिए, अपने पास <math>a_n \in f^{-1}(V)</math> है.


फिर <math>f</math> को दोनों पक्षों पर लागू करने से यह मिलता है कि, समान  <math>N</math>, के लिए प्रत्येक <math>n > N</math> के लिए हमारे पास <math>f(a_n) \in V</math>. मौलिक रूप से <math>V</math> <math>f(a)</math> का स्वेछा निकट था, इसलिए <math>f(a_n) \rightarrow f(a)</math>. यह सबूत समाप्त करता है।
फिर <math>f</math> को दोनों पक्षों पर लागू करने से यह मिलता है कि, समान  <math>N</math>, के लिए प्रत्येक <math>n > N</math> के लिए हमारे पास <math>f(a_n) \in V</math>. मौलिक रूप से <math>V</math> <math>f(a)</math> का स्वेछा निकट था, इसलिए <math>f(a_n) \rightarrow f(a)</math>. यह सबूत समाप्त करता है।


वास्तविक विश्लेषण में, एक उप-समूचय <math>E \subset \mathbb{R}</math> पर परिभाषित वास्तविक-मूल्यवान फलनो के अधिक ठोस स्थिति के लिए, अर्थात्, <math>f: E \rightarrow \mathbb{R}</math>, एक सतत फलन को एक ऐसे फलन के रूप में भी परिभाषित किया जा सकता है जो अपने डोमेन के प्रत्येक बिंदु पर निरंतर है।
वास्तविक विश्लेषण में, एक उप-समूच्चय  <math>E \subset \mathbb{R}</math> पर परिभाषित वास्तविक-मूल्यवान फलनो के अधिक ठोस स्थिति के लिए, अर्थात्, <math>f: E \rightarrow \mathbb{R}</math>, एक सतत फलन को एक ऐसे फलन के रूप में भी परिभाषित किया जा सकता है जो अपने डोमेन के प्रत्येक बिंदु पर निरंतर है।


=== सीमा अंक ===
=== सीमा अंक ===
[[टोपोलॉजी]] में, एक टोपोलॉजिकल स्पेस के उप-समूचय के [[सीमा बिंदु]]ओं को परिभाषित करने के लिए सीमाओं का उपयोग किया जाता है, जो बदले में [[बंद सेट|बंद समूचय]]ों का एक उपयोगी लक्षण वर्णन देता है।
[[टोपोलॉजी]] में, एक टोपोलॉजिकल स्पेस के उप-समूच्चय के [[सीमा बिंदु]]ओं को परिभाषित करने के लिए सीमाओं का उपयोग किया जाता है, जो बदले में [[बंद सेट|बंद समूच्चय]] का एक उपयोगी लक्षण वर्णन देता है।


एक टोपोलॉजिकल स्पेस में <math>X</math>, एक उपसमुच्चय पर विचार करें <math>S</math>. एक बिंदु <math>a</math> एक अनुक्रम होने पर सीमा बिंदु कहा जाता है <math>\{a_n\}</math> में <math>S\backslash\{a\}</math> ऐसा है कि <math>a_n \rightarrow a</math>.
एक टोपोलॉजिकल स्पेस <math>X</math> में, एक उपसमुच्चय <math>S</math> पर विचार करें. एक बिंदु <math>a</math> एक अनुक्रम होने पर सीमा बिंदु कहा जाता है यदि <math>\{a_n\}</math> <math>S\backslash\{a\}</math> में अनुक्रम जैसे कि <math>a_n \rightarrow a</math> होता है।.


कारण क्यों <math>\{a_n\}</math> में परिभाषित किया गया है <math>S\backslash\{a\}</math> बल्कि सिर्फ <math>S</math> निम्नलिखित उदाहरण द्वारा स्पष्ट किया गया है। लेना <math>X = \mathbb{R}</math> तथा <math>S = [0,1] \cup \{2\}</math>. फिर <math>2 \in S</math>, और इसलिए निरंतर अनुक्रम की सीमा है <math>2, 2, \cdots</math>. परंतु <math>2</math> का कोई सीमा बिंदु नहीं है <math>S</math>.
केवल <math>S</math> के अतिरिक्त  <math>\{a_n\}</math> को <math>S\backslash\{a\}</math> के रूप में परिभाषित करने का कारण निम्न उदाहरण द्वारा स्पष्ट किया गया है। <math>X = \mathbb{R}</math> तथा <math>S = [0,1] \cup \{2\}</math> ले. फिर <math>2 \in S</math>, और इसलिए स्थिरांक की सीमा है अनुक्रम  <math>2, 2, \cdots</math>. परंतु <math>2</math> <math>S</math> का कोई सीमा बिंदु नहीं है.


एक बंद समूचय, जिसे एक खुले समूचयके पूरक के रूप में परिभाषित किया गया है, समतुल्य कोई भी समूचयहै <math>C</math> जिसमें इसके सभी सीमा बिंदु शामिल हैं।
एक बंद समूच्चय, जिसे एक खुले समूच्चयके पूरक के रूप में परिभाषित किया गया है, समतुल्य कोई भी समूच्चय <math>C</math> है जिसमें इसके सभी सीमा बिंदु शामिल हैं।


=== व्युत्पन्न ===
=== व्युत्पन्न ===
{{Main article|derivative}}
{{Main article|व्युत्पन्न}}
व्युत्पन्न औपचारिक रूप से एक सीमा के रूप में परिभाषित किया गया है। [[वास्तविक विश्लेषण]] के दायरे में, व्युत्पन्न को पहले वास्तविक फलनो के लिए परिभाषित किया जाता है <math>f</math> एक उपसमुच्चय पर परिभाषित <math>E \subset \mathbb{R}</math>. पर व्युत्पन्न <math>x \in E</math> निम्नानुसार परिभाषित किया गया है। यदि सीमा
व्युत्पन्न औपचारिक रूप से एक सीमा के रूप में परिभाषित किया गया है। [[वास्तविक विश्लेषण]] के दायरे में, व्युत्पन्न को पहले वास्तविक फलनो के लिए परिभाषित किया जाता है <math>f</math> एक उपसमुच्चय <math>E \subset \mathbb{R}</math> पर परिभाषित किया गया है. व्युत्पन्न <math>x \in E</math> निम्नानुसार परिभाषित किया गया है। यदि सीमा
<math display = block>\frac{f(x+h) - f(x)}{h}</math>
<math display = block>\frac{f(x+h) - f(x)}{h}</math>
जैसा <math>h \rightarrow 0</math> उपस्थित है, तो व्युत्पन्न पर <math>x</math> क्या यह सीमा है।
चूंकि <math>h \rightarrow 0</math> उपस्थित है, तो <math>x</math> पर व्युत्पन्न  यह सीमा है।


समान रूप से, यह सीमा है <math>y \rightarrow x</math> का
समान रूप से, यह <math>y \rightarrow x</math> की सीमा है 
<math display = block>\frac{f(y) - f(x)}{y-x}.</math>
<math display = block>\frac{f(y) - f(x)}{y-x}.</math>
यदि व्युत्पन्न उपस्थित है, तो इसे आमतौर पर निरूपित किया जाता है <math>f'(x)</math>.
यदि व्युत्पन्न उपस्थित है, तो इसे सामान्यतः <math>f'(x)</math> द्वारा निरूपित किया जाता है.


== गुण ==
== गुण ==
Line 252: Line 252:
|first=Dexter
|first=Dexter
|website=Notes from the Mathematical Tripos
|website=Notes from the Mathematical Tripos
}}</ref> मान लीजिए <math>\{a_n\}</math> तथा <math>\{b_n\}</math> अभिसरण करने वाले दो क्रम हैं <math>a</math> तथा <math>b</math> क्रमश।
}}</ref> मान लीजिए <math>\{a_n\}</math> तथा <math>\{b_n\}</math> अभिसरण करने वाले <math>a</math> तथा <math>b</math> क्रमश दो क्रम हैं।
* सीमा का योग योग की सीमा के बराबर है
* सीमा का योग योग की सीमा के बराबर है
<math display = block>a_n + b_n \rightarrow a + b.</math>
<math display = block>a_n + b_n \rightarrow a + b.</math>
Line 261: Line 261:
समतुल्य, फलन <math>f(x) = 1/x</math> धनात्मक के बारे में निरंतर है <math>x</math>.
समतुल्य, फलन <math>f(x) = 1/x</math> धनात्मक के बारे में निरंतर है <math>x</math>.


==== कॉची सीक्वेंस ====
==== कॉची अनुक्रम  ASHIF ====
{{See also | Cauchy sequence}}
{{See also |कॉची अनुक्रम}}
वास्तविक संख्याओं के अभिसरण अनुक्रमों का एक गुण यह है कि वे कॉशी अनुक्रम हैं।<ref name=dexter>{{cite web
वास्तविक संख्याओं के अभिसरण अनुक्रमों का एक गुण यह है कि वे कॉशी अनुक्रम हैं।<ref name=dexter>{{cite web
|url=https://dec41.user.srcf.net/h/IA_L/analysis_i
|url=https://dec41.user.srcf.net/h/IA_L/analysis_i

Revision as of 08:04, 11 December 2022

गणित में, एक सीमा वह मान है जो एक फलन (गणित) (या अनुक्रम) तक पहुंचता है क्योंकि इनपुट (या क्रम-सूची) कुछ मान (गणित) तक पहुंचता है।[1] गणना और गणितीय विश्लेषण के लिए सीमाएं आवश्यक हैं, और निरंतर फलन, व्युत्पन्न और अभिन्न को परिभाषित करने के लिए उपयोग की जाती हैं।

एक अनुक्रम की एक सीमा की अवधारणा को एक नेट (टोपोलॉजी) की एक सीमा की अवधारणा के लिए सामान्यीकृत किया जाता है, और श्रेणी सिद्धांत में सीमा (श्रेणी सिद्धांत) और प्रत्यक्ष सीमा से निकटता से संबंधित है।

सूत्रों में, किसी फलन की सीमा को सामान्यतः इस रूप में लिखा जाता है

(चूंकि कुछ लेखक लिम "lim" के अतिरिक्त एलटी "Lt" का उपयोग कर सकते हैं[2])

और इसे x में f की सीमा के रूप में x के रूप में c के बराबर L के रूप में पढ़ा जाता है. तथ्य यह है कि एक फलन f सीमा L तक पहुँचता है जैसा x c तक पहुँचता है, कभी-कभी दायां तीर (→ या → ) द्वारा दर्शाया जाता है, जैसा कि

जो पढ़ता है का की ओर जाता है क्योंकि जैसा की ओर जाता है.

इतिहास

ग्रेगोइरे डी सेंट-विंसेंट ने अपने काम ओपस जियोमीट्रिक श्रंखला (1647) में एक ज्यामितीय श्रृंखला की सीमा (टर्मिनस) की पहली परिभाषा दी: "एक प्रगति का टर्मिनस श्रृंखला का अंत है, जो कोई भी प्रगति तक नहीं पहुंच सकता है, भले ही वह अनंत में जारी है, लेकिन जिस तक वह किसी दिए गए खंड की तुलना में अधिक निकट पहुंच सकती है |[3]

एक सीमा की आधुनिक परिभाषा बर्नार्ड बोलजानो के पास वापस जाती है, जिन्होंने 1817 में निरंतर फलनो को परिभाषित करने के लिए एप्सिलॉन-डेल्टा तकनीक की मूल बातें प्रस्तुत कीं। चूंकि, उनके काम को उनके जीवनकाल में नहीं जाना गया था।[4]

1821 में ऑगस्टिन-लुई कॉची,[5] इसके बाद कार्ल वीयरस्ट्रास ने एक फलन की सीमा की परिभाषा को औपचारिक रूप दिया जिसे (ε, δ)-सीमा की परिभाषा के रूप में जाना जाने लगा।

सीमा चिह्न के नीचे तीर रखने की आधुनिक धारणा जी. एच. हार्डी के कारण है, जिन्होंने 1908 में अपनी पुस्तक शुद्ध गणित का एक कोर्स में इसका परिचय दिया था।[6]


सीमा के प्रकार

क्रम में

वास्तविक संख्या

व्यंजक 0.999... की व्याख्या अनुक्रम 0.9, 0.99, 0.999, ... और इसी तरह की सीमा के रूप में की जानी चाहिए। इस क्रम को सख्ती से 1 की सीमा के रूप में दिखाया जा सकता है, और इसलिए इस अभिव्यक्ति की सार्थक व्याख्या 1 के मान के रूप में की जाती है।[7]

औपचारिक रूप से, मान लीजिए a1, a2, … वास्तविक संख्याओं का एक क्रम है। जब अनुक्रम की सीमा उपस्थित होती है, वास्तविक संख्या L इस क्रम की सीमा है यदि और केवल यदि प्रत्येक वास्तविक संख्या के लिए ε > 0, एक प्राकृतिक संख्या N उपस्थित है ऐसा कि सभी के लिए n > N के लिये , |anL| < ε हमारे पास.[8]

अंकन

अधिकांश उपयोग किया जाता है, और जिसे पढ़ा जाता है

an की सीमा जैसे-जैसे n अनंत की ओर बढ़ता है, L के बराबर होती जाती है

औपचारिक परिभाषा का सहज अर्थ है कि अंततः, अनुक्रम के सभी तत्व अव्यवस्थित रूप से सीमा के करीब हो जाते हैं, क्योंकि निरपेक्ष मान |anL| an तथा L के बीच की दूरी है.

सभी क्रम की एक सीमा नहीं होती। यदि होता है तो अभिसारी कहलाता है और यदि नहीं होता है तो अपसारी कहलाता है। कोई दिखा सकता है कि एक अभिसरण अनुक्रम की केवल एक सीमा होती है।

किसी अनुक्रम की सीमा और किसी फलन की सीमा का आपस में गहरा संबंध है। एक ओर, n के रूप में सीमा एक अनुक्रम {an} की अनंतता तक पहुँचती है केवल एक फलन a(n) की अनंतता की सीमा है - प्राकृतिक {n} संख्या पर परिभाषित. वहीं दूसरी ओर यदि X एक फलन f(x) का डोमेन है और यदि f(xn) की सीमा n के अनंतता तक पहुँचती है तो {X – {x0}} में बिंदुओं {xn} के प्रत्येक स्वेच्छ अनुक्रम के लिए L है | जो x0 पर अभिसरित होता है, तो फलन f(x) की सीमा जैसा x x0 की ओर अग्रसर होता है, वह L है.[9] ऐसा ही एक क्रम होगा {x0 + 1/n}होगा.

एक सीमा के रूप में अनंत

कुछ परिमित के विपरीत "अनंत पर" एक सीमा होने की भी धारणा है. एक अनुक्रम को "अनंत की ओर प्रवृत्त" कहा जाता है, यदि प्रत्येक वास्तविक संख्या के लिए जिसे बाउंड के रूप में जाना जाता है, एक पूर्णांक उपस्थित होता है जैसे कि प्रत्येक के लिए होता है ,

अर्थात्, हर संभव सीमा के लिए, अनुक्रम का परिमाण अंततः सीमा से अधिक हो जाता है। यह अधिकांश या केवल लिखा जाता है. ऐसे अनुक्रमों को असीमित भी कहा जाता है।

किसी अनुक्रम का विचलन होना संभव है, लेकिन अनंत की ओर विचलन नहीं होगा। ऐसे अनुक्रमों को दोलन कहा जाता है। दोलन अनुक्रम का एक उदाहरण है.

वास्तविक संख्याओं के लिए, उपरोक्त परिभाषा से गुणांक चिह्न को हटाकर, धनात्मक अनंत और ऋणात्मक अनंतता की प्रवृत्ति के समान विचार हैं:

धनात्मक अनंत की ओर प्रवृत्त परिभाषित करता है, जबकि
ऋणात्मक अनंतता की प्रवृत्ति को परिभाषित करता है।

वे क्रम जो अनंत की ओर नहीं जाते हैं, परिबद्ध कहलाते हैं। अनुक्रम जो धनात्मक अनन्तता की ओर प्रवृत्त नहीं होते हैं उन्हें ऊपर परिबद्ध कहा जाता है, जबकि जो ऋणात्मक अनन्तता की ओर प्रवृत्त नहीं होते हैं उन्हें नीचे परिबद्ध किया जाता है।

मीट्रिक स्थान

उपरोक्त अनुक्रमों की चर्चा वास्तविक संख्याओं के अनुक्रमों के लिए है। सीमाओं की धारणा को अधिक अमूर्त स्थानों में मूल्यवान अनुक्रमों के लिए परिभाषित किया जा सकता है। अधिक अमूर्त स्थान का एक उदाहरण मीट्रिक रिक्त स्थान है। यदि दूरी फलन के साथ एक मीट्रिक स्थान है, में क्रम है, तो अनुक्रम की सीमा (जब यह उपस्थित है) एक तत्व ऐसा दिया, दिया , वहाँ एक उपस्थित है जैसे कि प्रत्येक के लिए, समीकरण

संतुष्ट है।

समतुल्य कथन यह है कि यदि वास्तविक संख्याओं का अनुक्रम हो तो.

उदाहरण: ℝn

एक महत्वपूर्ण उदाहरण -आयामी वास्तविक वैक्टर का स्थान है, तत्वों के साथ जहां प्रत्येक वास्तविक हैं, उपयुक्त दूरी फलन का एक उदाहरण यूक्लिडियन दूरी है, जिसे परिभाषित किया गया है

बिंदुओं का क्रम में परिवर्तित होता है यदि सीमा उपस्थित है.

टोपोलॉजिकल स्पेस

कुछ अर्थों में सबसे अमूर्त स्थान जिसमें सीमाओं को परिभाषित किया जा सकता है, वे सामयिक स्थान हैं। यदि टोपोलॉजी के साथ एक टोपोलॉजिकल स्पेस है, तथा में क्रम है, तो अनुक्रम की सीमा (जब यह उपस्थित है) एक बिंदु है जैसे कि, एक (खुला) निकट (टोपोलॉजी) का दिया गया, वहाँ एक उपस्थित है जैसे कि प्रत्येक के लिए ,

संतुष्ट है।

फलन स्पेस

यह खंड फलन के अनुक्रमों की सीमाओं के विचार से संबंधित है, नीचे चर्चा की गई फलनो की सीमाओं के विचार से भ्रमित नहीं होना चाहिए।

फलनात्मक विश्लेषण का क्षेत्र आंशिक रूप से फलन स्थान पर अभिसरण की उपयोगी धारणाओं की पहचान करना चाहता है। उदाहरण के लिए, सामान्य समुच्चेय प्रति तक फलनो की स्थान पर विचार करें. फलनो के अनुक्रम को देखते हुए कि ऐसा है कि प्रत्येक एक फलन है , मान लीजिए कि एक ऐसा फलन उपस्थित है जैसे कि प्रत्येक के लिए में,

फिर क्रम को बिंदुवार अभिसरण कहा जाता है. चूँकि, ऐसे क्रम अनपेक्षित व्यवहार प्रदर्शित कर सकते हैं। उदाहरण के लिए, निरंतर फलनो के एक अनुक्रम का निर्माण करना संभव है जिसकी एक बिंदुवार सीमा होती है।

अभिसरण की एक अन्य धारणा एकसमान अभिसरण है। दो फलनो के बीच समान दूरी तर्क के रूप में दो फलनो के बीच अधिकतम अंतर है विविध है। वह है,

फिर क्रम को समान रूप से अभिसरण या एक समान सीमा होती है यदि इस दूरी के संबंध में। एकसमान सीमा में बिंदुवार सीमा की तुलना में अच्छे गुण होते हैं। उदाहरण के लिए, निरंतर फलनो के अनुक्रम की एकसमान सीमा निरंतर है।

फलन रिक्त स्थान पर अभिसरण की कई अलग-अलग धारणाओं को परिभाषित किया जा सकता है। यह कभी-कभी अंतरिक्ष की चिकनीता पर निर्भर होता है। अभिसरण की कुछ धारणा के साथ फलन रिक्त स्थान के प्रमुख उदाहरण एलपी रिक्त स्थान और सोबोलेव स्पेस हैं।

फलनों में

300x300पीएक्स

मान लीजिए f एक वास्तविक मूल्यवान फलन है और c एक वास्तविक संख्या है। सहज रूप से बोलना, एस प्रकार

अर्थ है कि f(x) को L के जितना करीब हो सके, x को c के काफी करीब बनाकर बनाया जा सकता है.[10] उस स्थिति में, उपरोक्त समीकरण को f का x की सीमा के रूप में पढ़ा जा सकता है, जैसा कि x, c, L तक पहुंचता है.

औपचारिक रूप से, की सीमा जब की ओर अग्रसर होता है" की परिभाषा इस प्रकार दी गई है। सीमा एक वास्तविक संख्या है ताकि, एक मनमाना वास्तविक संख्या दी जाए (त्रुटि के रूप में माना जाता है), एक ऐसा है कि संतुष्टि देने वाला,, यह मानता है की . इसे (ε, δ)-सीमा की परिभाषा के रूप में जाना जाता है।

असमानता का उपयोग विचाराधीन बिंदुओं के समूच्चय से को बाहर करने के लिए किया जाता है, लेकिन कुछ लेखक इसे सीमाओं की अपनी परिभाषा में शामिल नहीं करते हैं। को केवल .से बदलकर। यह प्रतिस्थापन अतिरिक्त रूप से आवश्यक है कि पर निरंतर रहें.

यह सिद्ध किया जा सकता है कि एक समतुल्य परिभाषा है जो अनुक्रमों की सीमाओं और फलनो की सीमाओं के बीच संबंध को प्रकट करती है।[11] समतुल्य परिभाषा इस प्रकार दी गई है। पहले निरीक्षण करें कि के डोमेन में प्रत्येक अनुक्रम के लिये अधिकार क्षेत्र में , एक संबद्ध क्रम है, के अंतर्गत अनुक्रम की छवि। सीमा एक वास्तविक संख्या है. ताकि सभी अनुक्रमों के लिए, सभी अनुक्रमों के लिए , संबद्ध अनुक्रम है.

एकतरफा सीमा

ऊपर या बाईं सीमा से सीमा होने की धारणा और नीचे या दाईं सीमा से सीमा की धारणा को परिभाषित करना संभव है। इन पर सहमत होने की आवश्यकता नहीं है। धनात्मक संकेतक फलन द्वारा एक उदाहरण दिया गया है, इस प्रकार परिभाषित किया गया है यदि , तथा यदि . पर की फलन की बाईं सीमा 0 है, दाईं सीमा 1 है, और इसकी सीमा उपस्थित नहीं है।

फलनो की सीमा में अनंत

के डोमेन में "अनंत की ओर रुझान" की धारणा को परिभाषित करना संभव है,,

इस अभिव्यक्ति में, अनंत को हस्ताक्षरित माना जाता है: या तो या . x के रूप में f की सीमा धनात्मक अनंत तक जाती है, इसे निम्नानुसार परिभाषित किया गया है। यह एक वास्तविक संख्या है ऐसा है कि, कोई वास्तविक दिया , वहाँ एक उपस्थित है ताकि अगर , . समान रूप से, किसी भी क्रम के लिए , अपने पास .

के मान में अनंत की ओर प्रवृत्त होने की धारणा को परिभाषित करना भी संभव है,

परिभाषा इस प्रकार दी गई है। कोई वास्तविक संख्या दी गई है, यहां है ताकि के लिए, फलन का निरपेक्ष मान है. समान रूप से, किसी भी क्रम , क्रम होगा.

अमानक विश्लेषण

गैर-मानक विश्लेषण में (जिसमें संख्या प्रणाली का एक अति वास्तविक संख्या इज़ाफ़ा शामिल है), एक अनुक्रम की सीमा मान के मानक भाग फलन के रूप में व्यक्त किया जा सकता है एक अनंत अतिप्राकृतिक सूचकांक n=H पर अनुक्रम के प्राकृतिक विस्तार का। इस प्रकार,

यहां, मानक भाग फलन सेंट प्रत्येक परिमित हाइपररियल संख्या को निकटतम वास्तविक संख्या में बंद कर देता है (उनके बीच का अंतर असीम है)। यह स्वाभाविक अंतर्ज्ञान को औपचारिक रूप देता है कि सूचकांक के बहुत बड़े मानो के लिए, अनुक्रम में शर्तें अनुक्रम के सीमा मान के बहुत करीब हैं। इसके विपरीत, एक अतियथार्थवादी का मानक भाग कौशी अनुक्रम द्वारा अल्ट्रापावर निर्माण में प्रतिनिधित्व किया गया , बस उस क्रम की सीमा है:

इस अर्थ में, सीमा लेना और मानक भाग लेना समतुल्य प्रक्रियाएँ हैं।

सीमा सेट

अनुक्रम का सीमा सेट

मान ले टोपोलॉजिकल स्पेस में एक अनुक्रम हो. संक्षिप्तता के लिए, के रूप में को सोचा जा सकता है, लेकिन परिभाषाएँ सामान्यतः अधिक होती हैं। सीमा समूच्चय बिंदुओं का समूच्चय है जैसे कि यदि कोई साथ अभिसारी क्रम है, फिर निर्धारित सीमा के अंतर्गत आता है। इस संदर्भ में ए कभी-कभी सीमा बिंदु कहा जाता है।

इस धारणा का उपयोग ऑसिलेटरी अनुक्रमों के दीर्घकालिक व्यवहार को चिह्नित करना है। उदाहरण के लिए, अनुक्रम पर विचार करें . n=1 से शुरू करते हुए, इस क्रम के पहले कुछ पद हैं . यह जाँचा जा सकता है कि यह दोलनशील है, इसलिए इसकी कोई सीमा नहीं है, लेकिन इसके सीमा बिंदु हैं.

एक प्रक्षेपवक्र की सीमा सेट

प्रक्षेपवक्र की सीमाओं का अध्ययन करने के लिए, इस धारणा का उपयोग गतिशील प्रणालियों में किया जाता है। एक फलन होने के लिए एक प्रक्षेपवक्र को परिभाषित करना, बिंदु समय पर प्रक्षेपवक्र की स्थिति के रूप में माना जाता है. एक प्रक्षेपवक्र की सीमा निर्धारित निम्नानुसार परिभाषित की गई है। बढ़ते समय के किसी भी क्रम के लिए, पदों का एक संबद्ध क्रम है. यदि अनुक्रम की सीमा निर्धारित है बढ़ते समय के किसी भी क्रम के लिए, तब प्रक्षेपवक्र का एक सीमा समूच्चय है।

तकनीकी रूप से, यह -सीमा समूच्चय है। घटते समय के अनुक्रमों के लिए निर्धारित -सीमा समूच्चय संगत सीमा कहलाती है ।

एक उदाहरण उदाहरण: सर्कल प्रक्षेपवक्र है. इसकी कोई अनूठी सीमा नहीं है, लेकिन प्रत्येक के लिए , बिंदु समय के अनुक्रम द्वारा दिया गया एक सीमा बिंदु है . लेकिन सीमा बिंदुओं को प्रक्षेपवक्र पर प्राप्त करने की आवश्यकता नहीं है। प्रक्षेपवक्र इसकी सीमा समूच्चय के रूप में इकाई वृत भी है।

उपयोग

विश्लेषण में कई महत्वपूर्ण अवधारणाओं को परिभाषित करने के लिए सीमाओं का उपयोग किया जाता है।

श्रृंखला

ब्याज की एक विशेष अभिव्यक्ति जिसे एक अनुक्रम की सीमा के रूप में औपचारिक रूप दिया जाता है, वह अनंत श्रृंखला का योग है। ये वास्तविक संख्याओं के अनंत योग हैं, जिन्हें सामान्इयतः इस रूप में लिखा जाता है

इसे इस प्रकार सीमाओं के माध्यम से परिभाषित किया गया है:[11] वास्तविक संख्याओं का एक क्रम दिया , आंशिक रकम के अनुक्रम द्वारा परिभाषित किया गया है
यदि अनुक्रम की सीमा उपस्थित है, अभिव्यक्ति का मान सीमा के रूप में परिभाषित किया गया है। अन्यथा, श्रृंखला को अपसारी कहा जाता है।

एक उत्कृष्ट उदाहरण बेसल समस्या है, जहाँ . फिर

चूँकि, जबकि अनुक्रमों के लिए अनिवार्य रूप से अभिसरण की एक अनूठी धारणा है, श्रृंखला के लिए अभिसरण की विभिन्न धारणाएँ हैं। यह इस तथ्य के कारण है कि अभिव्यक्ति अनुक्रम के विभिन्न क्रमों के बीच कोई भेदभाव नहीं करता है, जबकि आंशिक योगों के अनुक्रम के अभिसरण गुण अनुक्रम के क्रम पर निर्भर कर सकते हैं।

एक श्रृंखला जो सभी क्रमों के लिए अभिसरित होती है, 'बिना शर्त अभिसरण' कहलाती है। यह पूर्ण अभिसरण के समकक्ष सिद्ध हो सकता है। इसे इस प्रकार परिभाषित किया गया है। एक श्रृंखला पूरी तरह से अभिसारी है अगर अच्छी तरह परिभाषित है। इसके अलावा, सभी संभव आदेश समान मान देते हैं।

अन्यथा, श्रृंखला सशर्त अभिसारी है। सशर्त रूप से अभिसरण श्रृंखला के लिए एक आश्चर्यजनक परिणाम रीमैन श्रृंखला प्रमेय है: आदेश के आधार पर, आंशिक रकम को किसी भी वास्तविक संख्या के साथ ही साथ में अभिसरण करने के लिए बनाया जा सकता है,

घात श्रृंखला

श्रृंखला के योग के सिद्धांत का एक उपयोगी अनुप्रयोग शक्ति श्रृंखला के लिए है। ये प्रपत्र की श्रृंखला के योग हैं

अक्सर एक जटिल संख्या के रूप में माना जाता है, और जटिल अनुक्रमों के अभिसरण की उपयुक्त धारणा की आवश्यकता होती है। के मानो का समूच्चय जिसके लिए श्रृंखला योग अभिसरण एक वृत्त है, जिसकी त्रिज्या को अभिसरण की त्रिज्या के रूप में जाना जाता है।

एक बिंदु पर एक फलन की निरंतरता

एक बिंदु पर निरंतरता की परिभाषा सीमाओं के माध्यम से दी गई है।

एक सीमा की उपरोक्त परिभाषा सत्य है भले ही . वास्तविक में, फलन f को c पर परिभाषित करने की भी आवश्यकता नहीं है . चूंकि, यदि परिभाषित किया गया है और इसके बराबर है, तब फलन को बिंदु पर सतत कहा जाता है.

समान रूप से, फलन निरंतर है, यदि जैसा , या अनुक्रमों के संदर्भ में, जब भी , फिर .

एक सीमा का उदाहरण जहां पर परिभाषित नहीं है, नीचे दिया गया है।

फलन पर विचार करें

फिर f(1) परिभाषित नहीं है (अनिश्चित रूप देखें), अभी तक के रूप में x अव्यवस्थित रूप से 1 के करीब जाता है, f(x) संगत रूप से 2 तक पहुंचता है:[12]

f(0.9) f(0.99) f(0.999) f(1.0) f(1.001) f(1.01) f(1.1)
1.900 1.990 1.999 अपरिभाषित 2.001 2.010 2.100

इस प्रकार, f(x) को अव्यवस्थिततः से 2 की सीमा के करीब बनाया जा सकता है— केवल x को पर्याप्त रूप से 1 के निकट बनाकर।

दूसरे शब्दों में,

इसकी गणना बीजगणितीय रूप से भी की जा सकती है, जैसे सभी वास्तविक संख्याओं x ≠ 1 के लिए.

अब, चूंकि x + 1, x में 1 पर सतत है, अब हम, x के लिए 1 लगा सकते हैं, जिससे समीकरण बन जाएगा

परिमित मानो की सीमाओं के अतिरिक्त, फलनो की अनंतता पर भी सीमाएं हो सकती हैं। उदाहरण के लिए, फलन पर विचार करें
जहाँ:

  • f(100) = 1.9900
  • f(1000) = 1.9990
  • f(10000) = 1.9999

जैसे ही x बहुत बड़ा हो जाता है, f(x) का मान 2 के निकट पहुंच जाता है, और f(x) के मान को 2 के जितना करीब हो सके बनाया जा सकता है - x पर्याप्त रूप से बड़ा बनाकर। तो इस स्थिति में, f(x) की सीमा जब x अनंत 2 तक पहुँचता है, या गणितीय संकेतन में,


सतत फलन

सीमाओं पर विचार करते समय फलनो का एक महत्वपूर्ण वर्ग निरंतर फलन होता है। ये शुद्ध रुप से वे फलन हैं जो सीमाओं को संरक्षित करते हैं, इस अर्थ में कि यदि एक सतत फलन है, फिर जब भी के अधिकार क्षेत्र में, तब सीमा उपस्थित है और इसके अतिरिक्त ये भी उपस्थित है.

टोपोलॉजिकल स्पेस की सबसे सामान्य सेटिंग में, एक छोटा सा प्रमाण नीचे दिया गया है:

मान ले टोपोलॉजिकल स्पेस और के बीच एक सतत फलन करें. परिभाषा के अनुसार, में प्रत्येक खुले समूच्चय के लिए, पूर्व चित्र में खुला है.

अब मान लीजिए में सीमा वाला क्रम है. फिर में क्रम है, और कोई बिंदु है।

में कोई निकटतम चुनें। फिर एक खुला समूच्चय है (की निरंतरता से ) जिसमें विशेष रूप से शामिल है, और इसीलिए का निकटतम है. के अभिसरण से , वहाँ एक उपस्थित है जैसे कि के लिए, अपने पास है.

फिर को दोनों पक्षों पर लागू करने से यह मिलता है कि, समान , के लिए प्रत्येक के लिए हमारे पास . मौलिक रूप से का स्वेछा निकट था, इसलिए . यह सबूत समाप्त करता है।

वास्तविक विश्लेषण में, एक उप-समूच्चय पर परिभाषित वास्तविक-मूल्यवान फलनो के अधिक ठोस स्थिति के लिए, अर्थात्, , एक सतत फलन को एक ऐसे फलन के रूप में भी परिभाषित किया जा सकता है जो अपने डोमेन के प्रत्येक बिंदु पर निरंतर है।

सीमा अंक

टोपोलॉजी में, एक टोपोलॉजिकल स्पेस के उप-समूच्चय के सीमा बिंदुओं को परिभाषित करने के लिए सीमाओं का उपयोग किया जाता है, जो बदले में बंद समूच्चय का एक उपयोगी लक्षण वर्णन देता है।

एक टोपोलॉजिकल स्पेस में, एक उपसमुच्चय पर विचार करें. एक बिंदु एक अनुक्रम होने पर सीमा बिंदु कहा जाता है यदि में अनुक्रम जैसे कि होता है।.

केवल के अतिरिक्त को के रूप में परिभाषित करने का कारण निम्न उदाहरण द्वारा स्पष्ट किया गया है। तथा ले. फिर , और इसलिए स्थिरांक की सीमा है अनुक्रम . परंतु का कोई सीमा बिंदु नहीं है.

एक बंद समूच्चय, जिसे एक खुले समूच्चयके पूरक के रूप में परिभाषित किया गया है, समतुल्य कोई भी समूच्चय है जिसमें इसके सभी सीमा बिंदु शामिल हैं।

व्युत्पन्न

व्युत्पन्न औपचारिक रूप से एक सीमा के रूप में परिभाषित किया गया है। वास्तविक विश्लेषण के दायरे में, व्युत्पन्न को पहले वास्तविक फलनो के लिए परिभाषित किया जाता है एक उपसमुच्चय पर परिभाषित किया गया है. व्युत्पन्न निम्नानुसार परिभाषित किया गया है। यदि सीमा

चूंकि उपस्थित है, तो पर व्युत्पन्न यह सीमा है।

समान रूप से, यह की सीमा है

यदि व्युत्पन्न उपस्थित है, तो इसे सामान्यतः द्वारा निरूपित किया जाता है.

गुण

वास्तविक संख्याओं का क्रम

वास्तविक संख्याओं के अनुक्रमों के लिए, अनेक गुणों को सिद्ध किया जा सकता है।[11] मान लीजिए तथा अभिसरण करने वाले तथा क्रमश दो क्रम हैं।

  • सीमा का योग योग की सीमा के बराबर है

  • सीमा का उत्पाद उत्पाद की सीमा के बराबर है

  • सीमा का व्युत्क्रम व्युत्क्रम की सीमा के बराबर है (जब तक )

समतुल्य, फलन धनात्मक के बारे में निरंतर है .

कॉची अनुक्रम ASHIF

वास्तविक संख्याओं के अभिसरण अनुक्रमों का एक गुण यह है कि वे कॉशी अनुक्रम हैं।[11] कौशी अनुक्रम की परिभाषा क्या वह हर वास्तविक संख्या के लिए है , वहां पर एक ऐसा कि जब भी ,

अनौपचारिक रूप से, किसी भी अव्यवस्थिततः से छोटी त्रुटि के लिए , व्यास का अंतराल खोजना संभव है ऐसा है कि अंततः अनुक्रम अंतराल के भीतर समाहित है।

कौशी अनुक्रम अभिसरण अनुक्रमों से निकटता से संबंधित हैं। वास्तव में, वास्तविक संख्याओं के अनुक्रमों के लिए वे समतुल्य हैं: कोई भी कॉची अनुक्रम अभिसरण है।

सामान्य मीट्रिक रिक्त स्थान में, यह माना जाता है कि अभिसरण अनुक्रम भी कॉची हैं। लेकिन इसका विलोम सत्य नहीं है: प्रत्येक कॉची अनुक्रम एक सामान्य मीट्रिक स्थान में अभिसरण नहीं होता है। एक क्लासिक प्रति उदाहरण परिमेय संख्या है, , सामान्य दूरी के साथ। दशमलव सन्निकटन का क्रम , पर काट दिया गया वां दशमलव स्थान एक कौशी क्रम है, लेकिन इसमें अभिसरित नहीं होता है .

एक मीट्रिक स्थान जिसमें प्रत्येक कॉची अनुक्रम भी अभिसरण होता है, अर्थात कॉची अनुक्रम अभिसरण अनुक्रम के बराबर होते हैं, एक पूर्ण मीट्रिक स्थान के रूप में जाना जाता है।

अभिसरण अनुक्रमों की तुलना में कॉची अनुक्रमों के साथ काम करना आसान हो सकता है, इसका एक कारण यह है कि वे अनुक्रम की संपत्ति हैं अकेले, जबकि अभिसरण अनुक्रमों को केवल अनुक्रम की आवश्यकता नहीं होती है लेकिन अनुक्रम की सीमा भी .

अभिसरण का क्रम

अनुक्रम से परे है या नहीं एक सीमा में समा जाता है , यह वर्णन करना संभव है कि अनुक्रम कितनी तेजी से एक सीमा तक अभिसरण करता है। इसे परिमाणित करने का एक तरीका अनुक्रम के अभिसरण के क्रम का उपयोग कर रहा है।

अभिसरण के क्रम की एक औपचारिक परिभाषा निम्नानुसार बताई जा सकती है। मान लीजिए वास्तविक संख्याओं का एक क्रम है जो सीमा के साथ अभिसारी है . आगे, सभी के लिए . यदि धनात्मक स्थिरांक तथा ऐसे उपस्थित हैं

फिर में मिलना कहा जाता है अभिसरण के क्रम के साथ . अटल स्पर्शोन्मुख त्रुटि स्थिरांक के रूप में जाना जाता है।

त्रुटि विश्लेषण में अभिसरण के क्रम का उपयोग उदाहरण के लिए संख्यात्मक विश्लेषण के क्षेत्र में किया जाता है।

संगणनीयता

सीमाओं की गणना करना कठिन हो सकता है। ऐसी सीमित अभिव्यक्तियाँ उपस्थित हैं जिनके अभिसरण का मापांक अनिर्णीत समस्या है। पुनरावर्तन सिद्धांत में, सीमा प्रमेयिका यह साबित करती है कि सीमाओं का उपयोग करके अनिर्णीत समस्याओं को सांकेतिक शब्दों में बदलना संभव है।[13] कई प्रमेय या परीक्षण हैं जो इंगित करते हैं कि सीमा उपस्थित है या नहीं। इन्हें अभिसरण परीक्षण के रूप में जाना जाता है। उदाहरणों में अनुपात परीक्षण और निचोड़ प्रमेय शामिल हैं। हालाँकि वे यह नहीं बता सकते हैं कि सीमा की गणना कैसे की जाए।

यह भी देखें

  • स्पर्शोन्मुख विश्लेषण: व्यवहार को सीमित करने का वर्णन करने का एक तरीका
    • बिग ओ नोटेशन: किसी फलन के सीमित व्यवहार का वर्णन करने के लिए उपयोग किया जाता है जब तर्क किसी विशेष मान या अनंतता की ओर जाता है
  • बनच सीमा को बनच स्थान पर परिभाषित किया गया है जो सामान्य सीमा का विस्तार करता है।
  • यादृच्छिक चर का अभिसरण
  • अभिसरण मैट्रिक्स
  • सीमा (श्रेणी सिद्धांत)
    • सीधी सीमा
    • उलटी सीमा
  • फलन की सीमा
    • एक तरफा सीमा: एक वास्तविक चर x के फलनो की दो सीमाओं में से कोई भी, जैसा कि x ऊपर या नीचे से एक बिंदु तक पहुंचता है
    • सीमाओं की सूची: सामान्य फलनो के लिए सीमाओं की सूची
    • निचोड़ प्रमेय: दो अन्य फलनो के साथ तुलना करके एक फलन की सीमा पाता है
  • श्रेष्ठ को सीमित करो और हीन को सीमित करो
  • अभिसरण के तरीके
    • अभिसरण का एक तरीका (एनोटेट इंडेक्स)

टिप्पणियाँ

  1. Stewart, James (2008). कैलकुलस: अर्ली ट्रान्सेंडैंटल्स (6th ed.). Brooks/Cole. ISBN 978-0-495-01166-8.
  2. Aggarwal, M.L. (2021). "13. Limits and Derivatives". आईएससी गणित कक्षा ग्यारहवीं को समझना. Vol. II. Industrial Area, Trilokpur Road, Kala Amb-173030, Distt. Simour (H.P.): Arya Publications (Avichal Publishing Company). p. A-719. ISBN 978-81-7855-743-4.{{cite book}}: CS1 maint: location (link)
  3. Van Looy, Herman (1984). "ग्रेगोरियस ए सैंक्टो विंसेंटियो (1584-1667) की गणितीय पांडुलिपियों का कालक्रम और ऐतिहासिक विश्लेषण". Historia Mathematica (in English). 11 (1): 57–75. doi:10.1016/0315-0860(84)90005-3.
  4. Felscher, Walter (2000), "Bolzano, Cauchy, Epsilon, Delta", American Mathematical Monthly, 107 (9): 844–862, doi:10.2307/2695743, JSTOR 2695743
  5. Larson, Ron; Edwards, Bruce H. (2010). एकल चर की गणना (Ninth ed.). Brooks/Cole, Cengage Learning. ISBN 978-0-547-20998-2.
  6. Miller, Jeff (1 December 2004), Earliest Uses of Symbols of Calculus, archived from the original on 2015-05-01, retrieved 2008-12-18
  7. Stillwell, John (1994), Elements of algebra: geometry, numbers, equations, Springer, p. 42, ISBN 978-1441928399
  8. Weisstein, Eric W. "सीमा". mathworld.wolfram.com (in English). Archived from the original on 2020-06-20. Retrieved 2020-08-18.
  9. Apostol (1974, pp. 75–76)
  10. Weisstein, Eric W. "एप्सिलॉन-डेल्टा परिभाषा". mathworld.wolfram.com (in English). Archived from the original on 2020-06-25. Retrieved 2020-08-18.
  11. 11.0 11.1 11.2 11.3 Chua, Dexter. "विश्लेषण I (टिमोथी गोवर्स द्वारा दिए गए पाठ्यक्रम पर आधारित)". Notes from the Mathematical Tripos.
  12. "सीमा | परिभाषा, उदाहरण और तथ्य". Encyclopedia Britannica (in English). Archived from the original on 2021-05-09. Retrieved 2020-08-18.
  13. Soare, Robert I. (2014). पुनरावर्ती रूप से गणना योग्य सेट और डिग्री: गणना योग्य कार्यों और गणनात्मक रूप से उत्पन्न सेट का अध्ययन. Berlin: Springer-Verlag. ISBN 978-3-540-66681-3. OCLC 1154894968.


संदर्भ


इस पेज में लापता आंतरिक लिंक की सूची

  • फलन (गणित)
  • अंक शास्त्र
  • अनुक्रम की सीमा
  • निरपेक्ष मान
  • अभिसरण श्रृंखला
  • एलपी स्पेस
  • वास्तविक मानवान फलन
  • सूचक फलन
  • गैर मानक विश्लेषण
  • बहुत छोता
  • परिणाम को
  • सीमा निर्धारित
  • गतिशील प्रणाली
  • सशर्त अभिसरण
  • कॉची सीक्वेंस
  • अभिसरण का क्रम
  • परीक्षण प्रणाली
  • बनच की सीमा
  • श्रेष्ठ को सीमित करो और निम्न को सीमित करो
  • अभिसरण के मोड (एनोटेटेड इंडेक्स)
  • उलटा सीमा

बाहरी संबंध