वास्तविक संख्या: Difference between revisions
(edit text) |
No edit summary |
||
(18 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Number representing a continuous quantity}} | {{short description|Number representing a continuous quantity}} | ||
[[File:Latex real numbers square.svg|right|thumb|120px|वास्तविक संख्याओं के सेट के लिए एक प्रतीक]] | [[File:Latex real numbers square.svg|right|thumb|120px|वास्तविक संख्याओं के सेट के लिए एक प्रतीक]] | ||
गणित में, | गणित में, '''वास्तविक संख्या''' एक निरंतर मात्रा का मान है जो एक रेखा के साथ दूरी का प्रतिनिधित्व कर सकती है (या वैकल्पिक रूप से, एक मात्रा जिसे अनंत दशमलव विस्तार के रूप में दर्शाया जा सकता है)। इस संदर्भ में ''वास्तविक विशेषण ''17 वीं शताब्दी में रेने डेसकार्टेस द्वारा पेश किया गया था, जिन्होंने बहुपद के वास्तविक और काल्पनिक मूल तत्वों के बीच अंतर किया था।<ref>{{Cite web|url=https://www.britannica.com/science/real-number|title=real number | Definition, Examples, & Facts | Britannica|website=www.britannica.com}}</ref> वास्तविक संख्याओं में सभी अपरिमेय संख्याएं शामिल हैं, जैसे कि पूर्णांक −5 और भिन्न 4/3, और सभी अपरिमेय संख्याएं, जैसे <math>\sqrt{2}</math> (1.41421356 ..., 2 का वर्गमूल, एक अपरिमेय बीजगणितीय संख्या)। अपरिमेय के भीतर शामिल वास्तविक प्रागनुभविक संख्याएँ हैं, जैसे {{pi}} (3.14159265 ...)।<ref>{{Cite web|title=Real number {{!}} mathematics|url=https://www.britannica.com/science/real-number|access-date=2020-08-11|website=Encyclopedia Britannica|language=en}}</ref> दूरी को मापने के अलावा, वास्तविक संख्याओं का उपयोग समय, द्रव्यमान, ऊर्जा, वेग, और कई और अधिक मात्रा को मापने के लिए किया जा सकता है।वास्तविक संख्याओं के सेट को प्रतीक R या <math>\mathbb{R}</math> का उपयोग करके निरूपित किया गया है<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Real Number |url=https://mathworld.wolfram.com/RealNumber.html |access-date=2020-08-11 |website=mathworld.wolfram.com}}</ref> और इसे कभी-कभी "रियल्स" भी कहा जाता है।<ref>''[[Oxford English Dictionary]]'', 3rd edition, 2008, [https://www.oed.com/view/Entry/158926#:~:text=.%20Mathematics.%20A%20real%20number.%20Usually%20in%20plural.,Pfaffian%20functions). s.v. 'real', ''n.2'', B.4]: "''Mathematics.'' A real number. Usually in ''plural''."</ref> | ||
वास्तविक संख्याओं को एक अनंत लंबी रेखा पर बिंदुओं के रूप में माना जा सकता है जिसे संख्या रेखा या वास्तविक रेखा कहा जाता है, जहां पूर्णांकों के संगत बिंदु समान रूप से दूरी पर होते हैं।किसी भी वास्तविक संख्या को संभवतः अनंत दशमलव प्रतिनिधित्व द्वारा निर्धारित किया जा सकता है, जैसे कि 8.632, जहां प्रत्येक क्रमागत अंक को इकाइयों में पिछले के आकार में दसवें हिस्से में मापा जाता है।<ref>{{Cite web|title=Real number |url=https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100406944 |website=Oxford Reference |date=2011-08-03}}</ref> वास्तविक रेखा को सम्मिश्र तल का एक भाग माना जा सकता है, और वास्तविक संख्याओं को सम्मिश्र संख्याओं का एक भाग माना जा सकता है। | वास्तविक संख्याओं को एक अनंत लंबी रेखा पर बिंदुओं के रूप में माना जा सकता है जिसे संख्या रेखा या वास्तविक रेखा कहा जाता है, जहां पूर्णांकों के संगत बिंदु समान रूप से दूरी पर होते हैं।किसी भी वास्तविक संख्या को संभवतः अनंत दशमलव प्रतिनिधित्व द्वारा निर्धारित किया जा सकता है, जैसे कि 8.632, जहां प्रत्येक क्रमागत अंक को इकाइयों में पिछले के आकार में दसवें हिस्से में मापा जाता है।<ref>{{Cite web|title=Real number |url=https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100406944 |website=Oxford Reference |date=2011-08-03}}</ref> वास्तविक रेखा को सम्मिश्र तल का एक भाग माना जा सकता है, और वास्तविक संख्याओं को सम्मिश्र संख्याओं का एक भाग माना जा सकता है। | ||
Line 10: | Line 8: | ||
वास्तविक संख्याओं के ये विवरण शुद्ध गणित के आधुनिक मानकों द्वारा पर्याप्त रूप से सख्त नहीं हैं।वास्तविक संख्याओं की एक उपयुक्त रूप से कठोर परिभाषा की खोज-वास्तव में, यह अहसास था कि एक बेहतर परिभाषा की आवश्यकता थी-19 वीं सदी के गणित के सबसे महत्वपूर्ण विकासों में से एक था। वर्तमान मानक अभिगृहीत परिभाषा यह है कि वास्तविक संख्याएं अद्वितीय डेडेकाइंड(Dedekind)- पूर्ण आदेशित फ़ील्ड बनाते हैं {{nowrap|(<math>\mathbb{R}</math> ; + ; · ; <),}} एक समरूपता तक,{{efn|More precisely, given two complete totally ordered fields, there is a ''unique'' isomorphism between them. This implies that the identity is the unique field automorphism of the reals that is compatible with the ordering.}} जबकि वास्तविक संख्याओं की लोकप्रिय रचनात्मक परिभाषाओं में उन्हें अंकगणित संचालन और ऑर्डर रिलेशन(क्रम संबंध) के लिए सटीक व्याख्याओं के साथ -साथ कॉची अनुक्रमों (तर्कसंगत संख्याओं की), डेडेकिंड कट्स, या अनंत दशमलव निरूपण के समतुल्य वर्गों के रूप में घोषित करना शामिल है।ये सभी परिभाषाएँ स्वयंसिद्ध परिभाषा को संतुष्ट करती हैं और इस प्रकार समतुल्य हैं। | वास्तविक संख्याओं के ये विवरण शुद्ध गणित के आधुनिक मानकों द्वारा पर्याप्त रूप से सख्त नहीं हैं।वास्तविक संख्याओं की एक उपयुक्त रूप से कठोर परिभाषा की खोज-वास्तव में, यह अहसास था कि एक बेहतर परिभाषा की आवश्यकता थी-19 वीं सदी के गणित के सबसे महत्वपूर्ण विकासों में से एक था। वर्तमान मानक अभिगृहीत परिभाषा यह है कि वास्तविक संख्याएं अद्वितीय डेडेकाइंड(Dedekind)- पूर्ण आदेशित फ़ील्ड बनाते हैं {{nowrap|(<math>\mathbb{R}</math> ; + ; · ; <),}} एक समरूपता तक,{{efn|More precisely, given two complete totally ordered fields, there is a ''unique'' isomorphism between them. This implies that the identity is the unique field automorphism of the reals that is compatible with the ordering.}} जबकि वास्तविक संख्याओं की लोकप्रिय रचनात्मक परिभाषाओं में उन्हें अंकगणित संचालन और ऑर्डर रिलेशन(क्रम संबंध) के लिए सटीक व्याख्याओं के साथ -साथ कॉची अनुक्रमों (तर्कसंगत संख्याओं की), डेडेकिंड कट्स, या अनंत दशमलव निरूपण के समतुल्य वर्गों के रूप में घोषित करना शामिल है।ये सभी परिभाषाएँ स्वयंसिद्ध परिभाषा को संतुष्ट करती हैं और इस प्रकार समतुल्य हैं। | ||
सभी वास्तविक संख्याओं के समुच्चय अनगिनगत है, इस अर्थ में कि जब सभी प्राकृत संख्याओं का समुच्चय और सभी वास्तविक संख्याओं का समुच्चय अनंत समुच्चय हैं, वास्तविक संख्याओं से प्राकृतिक संख्याओं तक कोई एक-से-एक फलन नहीं हो सकता है।वास्तव में, सभी वास्तविक संख्याओं के समुच्चय की कार्डिनलिटी, जिसे <math>\mathfrak c</math> द्वारा और दर्शाया जाता है सातत्य की कार्डिनैलिटी कहा जाता है तथा यह सभी प्राकृतिक संख्याओं के सेट के कार्डिनलिटी से सख्ती से अधिक है।(<math>\aleph_0</math> द्वारा निरूपित,'एलेफ-नॉट')। | सभी वास्तविक संख्याओं के समुच्चय अनगिनगत है, इस अर्थ में कि जब सभी प्राकृत संख्याओं का समुच्चय और सभी वास्तविक संख्याओं का समुच्चय अनंत समुच्चय हैं, वास्तविक संख्याओं से प्राकृतिक संख्याओं तक कोई एक-से-एक फलन नहीं हो सकता है।वास्तव में, सभी वास्तविक संख्याओं के समुच्चय की कार्डिनलिटी, जिसे <math>\mathfrak c</math> द्वारा और दर्शाया जाता है सातत्य की कार्डिनैलिटी कहा जाता है तथा यह सभी प्राकृतिक संख्याओं के सेट के कार्डिनलिटी से सख्ती से अधिक है। (<math>\aleph_0</math> द्वारा निरूपित,'एलेफ-नॉट')। | ||
यह कथन है कि कार्डिनलिटी के साथ वास्तविक संख्या का कोई सबसेट <math>\aleph_0</math> की तुलना में सख्ती से बड़ा और <math>\mathfrak c</math> से सख़्ती से छोटा, इसे कॉन्टिनम परिकल्पना (सीएच) के रूप में जाना जाता है।यह ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के सिद्धांतों का उपयोग करके न तो सिद्ध करने योग्य है और न ही खंडन योग्य है, जिसमें वरण अभिगृहीत (ZFC) - आधुनिक गणित का मानक नींव शामिल है। वास्तव में, ZFC के कुछ मॉडल CH को संतुष्ट करते हैं, जबकि अन्य इसका उल्लंघन करते हैं।<ref>{{Cite book|url=https://plato.stanford.edu/archives/spr2019/entries/continuum-hypothesis/|title=The Stanford Encyclopedia of Philosophy|first=Peter|last=Koellner|editor-first=Edward N.|editor-last=Zalta|date=June 16, 2019|publisher=Metaphysics Research Lab, Stanford University|via=Stanford Encyclopedia of Philosophy}}</ref> | यह कथन है कि कार्डिनलिटी के साथ वास्तविक संख्या का कोई सबसेट <math>\aleph_0</math> की तुलना में सख्ती से बड़ा और <math>\mathfrak c</math> से सख़्ती से छोटा, इसे कॉन्टिनम परिकल्पना (सीएच) के रूप में जाना जाता है।यह ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के सिद्धांतों का उपयोग करके न तो सिद्ध करने योग्य है और न ही खंडन योग्य है, जिसमें वरण अभिगृहीत (ZFC) - आधुनिक गणित का मानक नींव शामिल है। वास्तव में, ZFC के कुछ मॉडल CH को संतुष्ट करते हैं, जबकि अन्य इसका उल्लंघन करते हैं।<ref>{{Cite book|url=https://plato.stanford.edu/archives/spr2019/entries/continuum-hypothesis/|title=The Stanford Encyclopedia of Philosophy|first=Peter|last=Koellner|editor-first=Edward N.|editor-last=Zalta|date=June 16, 2019|publisher=Metaphysics Research Lab, Stanford University|via=Stanford Encyclopedia of Philosophy}}</ref> | ||
== इतिहास == | == इतिहास == | ||
[[File:Number-systems.svg|thumb|वास्तविक संख्या <math>(\mathbb{R})</math> अपरिमेय संख्याएं शामिल करें <math>(\mathbb{Q})</math>, जिसमें पूर्णांक शामिल हैं <math>(\mathbb{Z})</math>, जिसमें बदले में प्राकृतिक संख्याएं शामिल हैं <math>(\mathbb{N})</math>]] | [[File:Number-systems.svg|thumb|वास्तविक संख्या <math>(\mathbb{R})</math> अपरिमेय संख्याएं शामिल करें <math>(\mathbb{Q})</math>, जिसमें पूर्णांक शामिल हैं <math>(\mathbb{Z})</math>, जिसमें बदले में प्राकृतिक संख्याएं शामिल हैं <math>(\mathbb{N})</math>]] | ||
मिस्रवासियो द्वारा 1000 BC के आसपास सरल अंशों का उपयोग किया गया था, {{nowrap|{{abbr|c.|circa}} में वैदिक शुलबा सूत्र (द रूल्स ऑफ कॉर्ड्स) {{!}} 600 BC}} (ईसा पूर्व) ईसा पूर्व में अपरिमेय संख्याओं का पहला "उपयोग" क्या हो सकता है।अपरिमेयता की अवधारणा को प्रारंभिक भारतीय गणितज्ञों जैसे मनवा द्वारा स्वीकार किया गया था {{nowrap|({{abbr|c.|circa}} 750–690 BC)}}, जो इस बात से अवगत थे कि कुछ संख्याओं के वर्गमूल, जैसे कि 2 और 61, को ठीक से निर्धारित नहीं किया जा सकता है।<ref>T. K. Puttaswamy, "The Accomplishments of Ancient Indian Mathematicians", pp. 410–11. In: {{citation |title = Mathematics Across Cultures: The History of Non-western Mathematics |editor1-first = Helaine |editor1-last = Selin |editor1-link = Helaine Selin |editor2-first = Ubiratan |editor2-last = D'Ambrosio |editor2-link = Ubiratan D'Ambrosio |year = 2000 |publisher = [[Springer Science+Business Media|Springer]] |isbn = 978-1-4020-0260-1 }}.</ref> लगभग 500 ईसा पूर्व, पाइथागोरस के नेतृत्व वाले ग्रीक गणितज्ञों ने अपरिमेय संख्या की आवश्यकता को महसूस किया, विशेष रूप से 2 के वर्गमूल की अपरिमेयता। | |||
मध्य युग में शून्य, ऋणात्मक संख्याओं, पूर्णांकों और भिन्नात्मक संख्याओं को पहले भारतीय और चीनी गणितज्ञों द्वारा, और फिर अरबी गणितज्ञों द्वारा स्वीकार किया, जो कि अपरिमेय संख्याओं को बीजीय वस्तुओं के रूप में मानने वाले पहले व्यक्ति थे (बाद वाले को संभव बनाया जा रहा था बीजगणित के विकास द्वारा)।<ref>{{MacTutor |class=HistTopics |id=Arabic_mathematics |title=Arabic mathematics: forgotten brilliance? |year=1999}}</ref> अरबी गणितज्ञों ने "संख्या" और "परिमाण" की अवधारणाओं को वास्तविक संख्याओं के अधिक सामान्य विचार में मिला दिया।<ref>{{citation |last = Matvievskaya |first = Galina |year = 1987 |title = The Theory of Quadratic Irrationals in Medieval Oriental Mathematics |journal = [[New York Academy of Sciences|Annals of the New York Academy of Sciences]] |volume = 500 |issue = 1 |pages = 253–77 [254] |doi = 10.1111/j.1749-6632.1987.tb37206.x |bibcode = 1987NYASA.500..253M |s2cid = 121416910 }}</ref> मिस्र के गणितज्ञ अबू | मध्य युग में शून्य, ऋणात्मक संख्याओं, पूर्णांकों और भिन्नात्मक संख्याओं को पहले भारतीय और चीनी गणितज्ञों द्वारा, और फिर अरबी गणितज्ञों द्वारा स्वीकार किया, जो कि अपरिमेय संख्याओं को बीजीय वस्तुओं के रूप में मानने वाले पहले व्यक्ति थे (बाद वाले को संभव बनाया जा रहा था बीजगणित के विकास द्वारा)।<ref>{{MacTutor |class=HistTopics |id=Arabic_mathematics |title=Arabic mathematics: forgotten brilliance? |year=1999}}</ref> अरबी गणितज्ञों ने "संख्या" और "परिमाण" की अवधारणाओं को वास्तविक संख्याओं के अधिक सामान्य विचार में मिला दिया।<ref>{{citation |last = Matvievskaya |first = Galina |year = 1987 |title = The Theory of Quadratic Irrationals in Medieval Oriental Mathematics |journal = [[New York Academy of Sciences|Annals of the New York Academy of Sciences]] |volume = 500 |issue = 1 |pages = 253–77 [254] |doi = 10.1111/j.1749-6632.1987.tb37206.x |bibcode = 1987NYASA.500..253M |s2cid = 121416910 }}</ref> मिस्र के गणितज्ञ अबू कामिल शुजा इब्न असलम (c. 850–930) सबसे पहले अपरिमेय संख्याओं को द्विघात समीकरणों के समाधान के रूप में, या एक समीकरण में गुणांक (अक्सर वर्गमूल, घनमूल और चौथी जड़ों के रूप में) के रूप में स्वीकार करने वाले थे। | ||
<ref>Jacques Sesiano, "Islamic mathematics", p. 148, in {{citation |title = Mathematics Across Cultures: The History of Non-western Mathematics |first1 = Helaine |last1 = Selin |first2 = Ubiratan |last2 = D'Ambrosio |year = 2000 |publisher = [[Springer Science+Business Media|Springer]] |isbn = 978-1-4020-0260-1 }}</ref> | <ref>Jacques Sesiano, "Islamic mathematics", p. 148, in {{citation |title = Mathematics Across Cultures: The History of Non-western Mathematics |first1 = Helaine |last1 = Selin |first2 = Ubiratan |last2 = D'Ambrosio |year = 2000 |publisher = [[Springer Science+Business Media|Springer]] |isbn = 978-1-4020-0260-1 }}</ref>) | ||
16 वीं शताब्दी में, साइमन स्टीविन ने आधुनिक दशमलव संकेतन के लिए आधार बनाया, और जोर देकर कहा कि इस संबंध में परिमेय और अपरिमेय संख्या के बीच कोई अंतर नहीं है। | 16 वीं शताब्दी में, साइमन स्टीविन ने आधुनिक दशमलव संकेतन के लिए आधार बनाया, और जोर देकर कहा कि इस संबंध में परिमेय और अपरिमेय संख्या के बीच कोई अंतर नहीं है। | ||
17 वीं शताब्दी में, डेसकार्टेस ने एक बहुपद के मूल का वर्णन करने के लिए वास्तविक शब्द का परिचय दिया, जो उन्हें काल्पनिक से अलग करता है। | 17 वीं शताब्दी में, डेसकार्टेस ने एक बहुपद के मूल का वर्णन करने के लिए वास्तविक शब्द का परिचय दिया, जो उन्हें काल्पनिक से अलग करता है। | ||
18 वीं और 19 वीं शताब्दी में, अपरिमेय और ट्रान्सेंडैंटल संख्याओं पर बहुत काम किया गया था।जोहान हेनरिक लैम्बर्ट (1761) ने पहला त्रुटिपूर्ण प्रमाण दिया कि {{pi}} अपरिमेय नहीं हो सकता| एड्रियन-मैरी लीजेंड्रे (1794) ने सिद्ध किया,<ref>{{citation |title = A History of Pi |series = Dorset Classic Reprints |first = Petr |last = Beckmann |publisher = Barnes & Noble Publishing |year = 1993 |isbn = 978-0-88029-418-8 |page = 170 |url = https://books.google.com/books?id=XqqUUSyz138C&pg=PA170 |access-date = 2015-11-15 |archive-url = https://web.archive.org/web/20160504215657/https://books.google.com/books?id=XqqUUSyz138C&pg=PA170 |archive-date = 2016-05-04 |url-status = live }}.</ref> और दिखाया कि {{pi}} एक अपरिमेय संख्या का वर्गमूल नहीं है।<ref>{{citation |title = Pi Unleashed |first1 = Jörg |last1 = Arndt |first2 = Christoph |last2 = Haenel |publisher = Springer |year = 2001 |isbn = 978-3-540-66572-4 |page = 192 |url = https://books.google.com/books?id=QwwcmweJCDQC&pg=PA192 |access-date = 2015-11-15 |archive-url = https://web.archive.org/web/20160521024544/https://books.google.com/books?id=QwwcmweJCDQC&pg=PA192 |archive-date = 2016-05-21 |url-status = live }}.</ref> पाओलो रफिनी (1799) और नील्स हेनरिक एबेल (1842) दोनों ने एबेल -रफिनी प्रमेय के प्रमाणों का निर्माण किया, कि सामान्य क्विंटिक या उच्चतर समीकरणों को एक सामान्य सूत्र द्वारा हल नहीं किया जा सकता है जिसमें केवल अंकगणितीय संचालन और मूलो को शामिल किया गया है। | 18 वीं और 19 वीं शताब्दी में, अपरिमेय और ट्रान्सेंडैंटल संख्याओं पर बहुत काम किया गया था।जोहान हेनरिक लैम्बर्ट (1761) ने पहला त्रुटिपूर्ण प्रमाण दिया कि {{pi}} अपरिमेय नहीं हो सकता| एड्रियन-मैरी लीजेंड्रे (1794) ने सिद्ध किया,<ref>{{citation |title = A History of Pi |series = Dorset Classic Reprints |first = Petr |last = Beckmann |publisher = Barnes & Noble Publishing |year = 1993 |isbn = 978-0-88029-418-8 |page = 170 |url = https://books.google.com/books?id=XqqUUSyz138C&pg=PA170 |access-date = 2015-11-15 |archive-url = https://web.archive.org/web/20160504215657/https://books.google.com/books?id=XqqUUSyz138C&pg=PA170 |archive-date = 2016-05-04 |url-status = live }}.</ref> और दिखाया कि {{pi}} एक अपरिमेय संख्या का वर्गमूल नहीं है।<ref>{{citation |title = Pi Unleashed |first1 = Jörg |last1 = Arndt |first2 = Christoph |last2 = Haenel |publisher = Springer |year = 2001 |isbn = 978-3-540-66572-4 |page = 192 |url = https://books.google.com/books?id=QwwcmweJCDQC&pg=PA192 |access-date = 2015-11-15 |archive-url = https://web.archive.org/web/20160521024544/https://books.google.com/books?id=QwwcmweJCDQC&pg=PA192 |archive-date = 2016-05-21 |url-status = live }}.</ref> पाओलो रफिनी (1799) और नील्स हेनरिक एबेल (1842) दोनों ने एबेल -रफिनी प्रमेय के प्रमाणों का निर्माण किया, कि सामान्य क्विंटिक या उच्चतर समीकरणों को एक सामान्य सूत्र द्वारा हल नहीं किया जा सकता है जिसमें केवल अंकगणितीय संचालन और मूलो को शामिल किया गया है। | ||
1832 में यह निर्धारित करने के लिए तकनीक विकसित की कि क्या किसी दिए गए समीकरण को रेडिकल(मूल सिद्धांत) द्वारा हल किया जा सकता है, जिसने गैलिस सिद्धांत के क्षेत्र को जन्म दिया।जोसेफ लिउविले (1840) ने दिखाया कि न तो e और न ही ''e''<sup>2</sup> एक पूर्णांक द्विघात समीकरण के मूल हो सकते है, और फिर ट्रान्सेंडैंटल संख्याओं के अस्तित्व की स्थापना की, जॉर्ज कैंटर (1873) ने इस प्रमाण को बढ़ाया और बहुत सरल बनाया।<ref>{{citation |title = The Calculus Gallery: Masterpieces from Newton to Lebesgue |first = William |last = Dunham |publisher = Princeton University Press |year = 2015 |isbn = 978-1-4008-6679-3 |page = 127 |url = https://books.google.com/books?id=aYTYBQAAQBAJ&pg=PA127 |quote = Cantor found a remarkable shortcut to reach Liouville's conclusion with a fraction of the work |access-date = 2015-02-17 |archive-url = https://web.archive.org/web/20150514071548/https://books.google.com/books?id=aYTYBQAAQBAJ&pg=PA127 |archive-date = 2015-05-14 |url-status = live }}</ref> चार्ल्स हरमाइट (1873) ने पहली बार साबित किया कि e ट्रान्सेंडैंटल है, और फर्डिनेंड वॉन लिंडमैन (1882) ने दिखाया कि {{pi}} ट्रान्सेंडैंटल है।लिंडमैन का प्रमाण वेयरस्ट्रास (1885) द्वारा बहुत सरल था, अभी भी डेविड हिल्बर्ट (1893) द्वारा आगे, और अंततः में एडोल्फ हर्विट्ज़ और पॉल गॉर्डन द्वारा प्राथमिक बनाया गया है<ref>{{cite journal |title = Beweis der Transendenz der Zahl e |first = Adolf |last = Hurwitz |journal = Mathematische Annalen |number = 43 |pages = 134–35 |year = 1893 }}</ref><ref>{{cite journal |title = Transcendenz von ''e'' und π |first = Paul |last = Gordan |journal = [[Mathematische Annalen]] |volume = 43 |number = 2–3 |pages = 222–224 |year = 1893 |doi=10.1007/bf01443647|s2cid = 123203471 |url = https://zenodo.org/record/1428218 }}</ref> | |||
18 वीं शताब्दी में कैलकुलस(कलन) के विकास ने वास्तविक संख्याओं के पूरे सेट का उपयोग बिना उन्हें सख्ती से परिभाषित किए।पहली कठोर परिभाषा 1871 में जॉर्ज कैंटर द्वारा प्रकाशित की गई थी। 1874 में, उन्होंने दिखाया कि सभी वास्तविक संख्याओं का समुच्चय अनगिनत रूप से अनंत है, लेकिन सभी बीजीय संख्याओं का समुच्चय गणनीय रूप से अनंत है। व्यापक रूप से धारित मान्यताओं के विपरीत, उनका पहला तरीका उनका प्रसिद्ध विकर्ण तर्क नहीं था, जिसे उन्होंने 1891 में प्रकाशित किया था। अधिक जानकारी के लिए, कैंटर का पहला अगणनीयता का प्रमाण देखें। | 18 वीं शताब्दी में कैलकुलस(कलन) के विकास ने वास्तविक संख्याओं के पूरे सेट का उपयोग बिना उन्हें सख्ती से परिभाषित किए।पहली कठोर परिभाषा 1871 में जॉर्ज कैंटर द्वारा प्रकाशित की गई थी। 1874 में, उन्होंने दिखाया कि सभी वास्तविक संख्याओं का समुच्चय अनगिनत रूप से अनंत है, लेकिन सभी बीजीय संख्याओं का समुच्चय गणनीय रूप से अनंत है। व्यापक रूप से धारित मान्यताओं के विपरीत, उनका पहला तरीका उनका प्रसिद्ध विकर्ण तर्क नहीं था, जिसे उन्होंने 1891 में प्रकाशित किया था। अधिक जानकारी के लिए, कैंटर का पहला अगणनीयता का प्रमाण देखें। | ||
== परिभाषा == | == परिभाषा == | ||
वास्तविक संख्या प्रणाली <math>(\mathbb{R} ; {}+{} ; {}\cdot{} ; {}<{})</math> एक समरूपता के लिए स्वयंसिद्ध रूप से परिभाषित किया जा सकता है, जिसे इसके बाद वर्णित किया गया है। वास्तविक संख्या प्रणाली का निर्माण करने के कई तरीके भी हैं, और एक लोकप्रिय दृष्टिकोण में प्राकृतिक संख्याओं से शुरू करना, फिर अपरिमेय संख्याओं को बीजगणितीय रूप से परिभाषित करना, और अंत में वास्तविक संख्याओं को उनके कॉची अनुक्रमों के समतुल्य वर्गों के रूप में या डेडेकिंड कट्स के रूप में परिभाषित करना, जो निश्चित हैं परिमेय संख्याओं के उपसमुच्चय।<ref>{{cite web |work=18.095 Lecture Series in Mathematics |title=Lecture #1 |date=2015-01-05 |url=https://math.mit.edu/classes/18.095/2015IAP/lecture1/padic.pdf}}</ref> एक अन्य दृष्टिकोण यूक्लिडियन ज्यामिति (हिल्बर्ट या टार्स्की के कहना) के कुछ कठोर स्वयंसिद्धता से शुरू करना है, और फिर वास्तविक संख्या प्रणाली को ज्यामितीय रूप से परिभाषित करता है। वास्तविक संख्याओं के इन सभी निर्माणों को समतुल्य दिखाया गया है, इस अर्थ में कि परिणामी संख्या प्रणाली समरूपी हैं। | |||
वास्तविक संख्या प्रणाली <math>(\mathbb{R} ; {}+{} ; {}\cdot{} ; {}<{})</math> एक समरूपता के लिए स्वयंसिद्ध रूप से परिभाषित किया जा सकता है, जिसे इसके बाद वर्णित किया गया | |||
=== स्वयंसिद्ध दृष्टिकोण === | === स्वयंसिद्ध दृष्टिकोण === | ||
मान लें कि <math>\mathbb{R}</math> सभी वास्तविक संख्याओं के सेट को निरूपित करें, फिर: | मान लें कि <math>\mathbb{R}</math> सभी वास्तविक संख्याओं के सेट को निरूपित करें, फिर: | ||
अंतिम विशेषता यह है जो अपरिमेय संख्याओं (और अन्य अधिक विदेशी आदेशित क्षेत्रों से) से वास्तविक संख्याओं को अलग करती है।उदाहरण के लिए, <math>\{x \in \mathbb{Q} : x^2 < 2\}</math> एक परिमेय ऊपरी सीमा है (जैसे, 1.42), लेकिन कोई कम से कम अपरिमेय ऊपरी सीमा नहीं है, क्योंकि<math>\sqrt{2}</math>अपरिमेय नहीं है। | * सेट एक क्षेत्र है, जिसका अर्थ है कि जोड़ और गुणन को परिभाषित किया गया है और सामान्य गुण हैं। | ||
* फील्ड आदेश दिया जाता है, जिसका अर्थ है कि कुल आदेश of है जैसे कि सभी वास्तविक संख्याओं के लिए x, y और z: | |||
** यदि x y y, तो x + z Z y + z; | |||
** यदि x and 0 और y ≥ 0 है, तो xy। 0। | |||
* आदेश Dedekind- पूर्ण है, जिसका अर्थ है कि प्रत्येक गैर-खाली सबसेट एस में एक ऊपरी सीमा के साथ में कम से कम ऊपरी बाउंड (a.k.a., supremum) है । | |||
अंतिम विशेषता यह है जो अपरिमेय संख्याओं (और अन्य अधिक विदेशी आदेशित क्षेत्रों से) से वास्तविक संख्याओं को अलग करती है।उदाहरण के लिए, <math>\{x \in \mathbb{Q} : x^2 < 2\}</math> एक परिमेय ऊपरी सीमा है (जैसे, 1.42), लेकिन कोई कम से कम अपरिमेय ऊपरी सीमा नहीं है, क्योंकि <math>\sqrt{2}</math> अपरिमेय नहीं है। | |||
ये गुण आर्किमेडियन सिद्धांत (जो कि पूर्णता की अन्य परिभाषाओं से निहित नहीं है) का अर्थ है, जिसमें कहा गया है कि पूर्णांक के सेट में वास्तविक में कोई ऊपरी सीमा नहीं है।वास्तव में, यदि यह गलत होता, तो पूर्णांकों में कम से कम ऊपरी बाउंड N होता, तब N – 1 एक ऊपरी सीमा नहीं होगी, और एक पूर्णांक n ऐसा होगा जैसे कि {{nowrap|''n'' > ''N'' – 1}}, और इस तरह {{nowrap|''n'' + 1 > ''N''}}, जो N की ऊपरी-बाध्य संपत्ति के साथ एक विरोधाभास है। | ये गुण आर्किमेडियन सिद्धांत (जो कि पूर्णता की अन्य परिभाषाओं से निहित नहीं है) का अर्थ है, जिसमें कहा गया है कि पूर्णांक के सेट में वास्तविक में कोई ऊपरी सीमा नहीं है।वास्तव में, यदि यह गलत होता, तो पूर्णांकों में कम से कम ऊपरी बाउंड N होता, तब N – 1 एक ऊपरी सीमा नहीं होगी, और एक पूर्णांक n ऐसा होगा जैसे कि {{nowrap|''n'' > ''N'' – 1}}, और इस तरह {{nowrap|''n'' + 1 > ''N''}}, जो N की ऊपरी-बाध्य संपत्ति के साथ एक विरोधाभास है। | ||
Line 73: | Line 68: | ||
=== पूर्णता === | === पूर्णता === | ||
वास्तविक संख्याओं का उपयोग करने का एक मुख्य कारण यह है कि कई अनुक्रमों में सीमाएं होती हैं।अधिक औपचारिक रूप से, रियल पूर्ण हैं (मीट्रिक रिक्त स्थान या समान स्थानों के अर्थ में, जो पिछले अनुभाग में ऑर्डर की डेडेकिंड पूर्णता की तुलना में एक अलग अर्थ है): | वास्तविक संख्याओं का उपयोग करने का एक मुख्य कारण यह है कि कई अनुक्रमों में सीमाएं होती हैं।अधिक औपचारिक रूप से, रियल पूर्ण हैं (मीट्रिक रिक्त स्थान या समान स्थानों के अर्थ में, जो पिछले अनुभाग में ऑर्डर की डेडेकिंड पूर्णता की तुलना में एक अलग अर्थ है): | ||
एक अनुक्रम (एक्स<sub>''n''</sub>) वास्तविक संख्याओं को कॉची (cauchy)अनुक्रम कहा जाता है {{nowrap|ε > 0}} एक पूर्णांक n मौजूद है (संभवतः ε पर निर्भर करता है) जैसे कि दूरी {{!}}''x<sub>n</sub>'' − ''x<sub>m</sub>''{{!}} सभी n और m के लिए ε से कम है जो दोनों N से अधिक हैं। मूल रूप से कॉची द्वारा प्रदान की गई यह परिभाषा इस तथ्य को औपचारिक रूप देती है कि xn अंततः आते हैं और एक दूसरे के साथ रहते हैं। | एक अनुक्रम (एक्स<sub>''n''</sub>) वास्तविक संख्याओं को कॉची (cauchy) अनुक्रम कहा जाता है {{nowrap|ε > 0}} एक पूर्णांक n मौजूद है (संभवतः ε पर निर्भर करता है) जैसे कि दूरी {{!}}''x<sub>n</sub>'' − ''x<sub>m</sub>''{{!}} सभी n और m के लिए ε से कम है जो दोनों N से अधिक हैं। मूल रूप से कॉची द्वारा प्रदान की गई यह परिभाषा इस तथ्य को औपचारिक रूप देती है कि xn अंततः आते हैं और एक दूसरे के साथ रहते हैं। | ||
एक अनुक्रम (एक्स<sub>''n''</sub>) सीमा X में परिवर्तित हो जाता है यदि इसके तत्व अंततः आते हैं और मनमाने ढंग से x के करीब रहते हैं, यदि किसी {{nowrap|ε > 0}} के लिए एक पूर्णांक N मौजूद है (संभवतः ε पर निर्भर करता है) जैसे कि दूरी | एक अनुक्रम (एक्स<sub>''n''</sub>) सीमा X में परिवर्तित हो जाता है यदि इसके तत्व अंततः आते हैं और मनमाने ढंग से x के करीब रहते हैं, यदि किसी {{nowrap|ε > 0}} के लिए एक पूर्णांक N मौजूद है (संभवतः ε पर निर्भर करता है) जैसे कि दूरी |''x<sub>n</sub>'' − ''x<sub>m</sub>''| से कम है क्योंकि n, N से बड़ा है। | ||
प्रत्येक अभिसरण अनुक्रम एक कॉची अनुक्रम है, और वास्तविक संख्याओं के लिए आक्षेप सच है, और इसका मतलब है कि वास्तविक संख्याओं का सामयिक स्थान पूरा हो गया है। | प्रत्येक अभिसरण अनुक्रम एक कॉची अनुक्रम है, और वास्तविक संख्याओं के लिए आक्षेप सच है, और इसका मतलब है कि वास्तविक संख्याओं का सामयिक स्थान पूरा हो गया है। | ||
परिमेय संख्याओं का समुच्चय पूर्ण नहीं है। उदाहरण के लिए, अनुक्रम (1,1.4, 1.41, 1.41, 1.414, 1.4142, 1.41421 ...), जहां प्रत्येक शब्द 2 के धनात्मक वर्गमूल के दशमलव विस्तार के एक अंक को जोड़ता है, कॉची (cauchy)अनुक्रम है, लेकिन यह एक | परिमेय संख्याओं का समुच्चय पूर्ण नहीं है। उदाहरण के लिए, अनुक्रम (1,1.4, 1.41, 1.41, 1.414, 1.4142, 1.41421 ...), जहां प्रत्येक शब्द 2 के धनात्मक वर्गमूल के दशमलव विस्तार के एक अंक को जोड़ता है, कॉची (cauchy) अनुक्रम है, लेकिन यह एक परिमेय संख्या में परिवर्तित नहीं होता है (वास्तविक संख्या में, इसके विपरीत, यह 2 के सकारात्मक वर्गमूल में परिवर्तित होती है)। | ||
REALS की पूर्णता संपत्तिका गुण है जिस पर पथरी, और, अधिक म तौर पर गणितीय विश्लेषण का निर्माण किया जाता है।विशेष रूप से, परीक्षण कि एक अनुक्रम एक कॉची अनुक्रम है, यह साबित करने की अनुमति देता है कि एक अनुक्रम की एक सीमा है, बिना कंप्यूटिंग के, और यहां तक कि इसे जाने बिना भी। | REALS की पूर्णता संपत्तिका गुण है जिस पर पथरी, और, अधिक म तौर पर गणितीय विश्लेषण का निर्माण किया जाता है।विशेष रूप से, परीक्षण कि एक अनुक्रम एक कॉची अनुक्रम है, यह साबित करने की अनुमति देता है कि एक अनुक्रम की एक सीमा है, बिना कंप्यूटिंग के, और यहां तक कि इसे जाने बिना भी। | ||
Line 90: | Line 84: | ||
प्रत्येक x के लिए एक वास्तविक संख्या में परिवर्तित होता है, क्योंकि योग | प्रत्येक x के लिए एक वास्तविक संख्या में परिवर्तित होता है, क्योंकि योग | ||
:<math>\sum_{n=N}^{M} \frac{x^n}{n!}</math> | :<math>\sum_{n=N}^{M} \frac{x^n}{n!}</math> | ||
पर्याप्त रूप से बड़े N को चुनकर मनमाने ढंग से छोटा (स्वतंत्र रूप से एम) बनाया जा सकता | पर्याप्त रूप से बड़े N को चुनकर मनमाने ढंग से छोटा (स्वतंत्र रूप से एम) बनाया जा सकता है। यह साबित करता है कि कॉची (cauchy) अनुक्रम है, और इस प्रकार अभिसरण करता है, यह दिखाते हुए <math>e^x</math> हर एक्स के लिए अच्छी तरह से परिभाषित है। | ||
=== पूरा आदेशित फ़ील्ड === | === पूरा आदेशित फ़ील्ड === | ||
Line 96: | Line 90: | ||
वास्तविक संख्याओं को अक्सर पूर्ण आदेशित क्षेत्र के रूप में वर्णित किया जाता है, एक वाक्यांश जिसे कई तरीकों से व्याख्या किया जा सकता है। | वास्तविक संख्याओं को अक्सर पूर्ण आदेशित क्षेत्र के रूप में वर्णित किया जाता है, एक वाक्यांश जिसे कई तरीकों से व्याख्या किया जा सकता है। | ||
सबसे पहले, एक आदेश | सबसे पहले, एक आदेश लेटिस-पूर्ण हो सकता है। यह देखना आसान है कि कोई भी आदेशित फ़ील्ड लेटिस-पूर्ण नहीं हो सकता है, क्योंकि इसका कोई सबसे बड़ा तत्व नहीं हो सकता है (दिया गया कोई तत्व z, तो {{nowrap|''z'' + 1}} बड़ा है)। | ||
इसके अतिरिक्त, एक आदेश | इसके अतिरिक्त, एक आदेश डेडेकाइंड-पूर्ण हो सकता है, स्वयंसिद्ध दृष्टिकोण देखें। उस खंड के अंत में विशिष्टता का परिणाम पूर्ण आदेशित फ़ील्ड वाक्यांश में "द" शब्द का उपयोग करने को सही ठहराता है, जब यह पूर्ण का अर्थ है। पूर्णता की यह भावना डेडेकाइंड कटौती से वास्तविक के निर्माण से सबसे अधिक निकटता से संबंधित है, क्योंकि यह निर्माण एक आदेशित क्षेत्र (परिमेय) से शुरू होता है और फिर इसे मानक तरीके से डेडेकिंड-पूर्णता बनाता है। | ||
पूर्णता की ये दो | पूर्णता की ये दो धारणाएँ क्षेत्र संरचना की उपेक्षा करती हैं। हालांकि, एक आदेशित समूह (इस मामले में, क्षेत्र का एडिटिव समूह) एक समान संरचना को परिभाषित करता है, और एक समान संरचनाओं में पूर्णता की धारणा है;। पूर्णता में विवरण एक विशेष मामला है।(हम मीट्रिक रिक्त स्थान के लिए संबंधित और बेहतर ज्ञात धारणा के बजाय समान स्थानों में पूर्णता की धारणा का उल्लेख करते हैं, क्योंकि मीट्रिक अंतरिक्ष की परिभाषा पहले से ही वास्तविक संख्याओं के लक्षण वर्णन पर निर्भर करती है।) यह सच नहीं है <math>\mathbb{R}</math> केवल समान रूप से पूर्ण आदेशित क्षेत्र है, लेकिन यह केवल समान रूप से पूर्ण आर्किमेडियन क्षेत्र है, और वास्तव में एक अक्सर पूर्ण आदेशित क्षेत्र के बजाय वाक्यांश पूर्ण आर्किमेडियन क्षेत्र को सुनता है।हर समान रूप से पूर्ण आर्किमेडियन क्षेत्र को भी डेडेकेन्ड-पूर्ण (और इसके विपरीत) होना चाहिए, जो कि पूर्ण आर्किमेडियन क्षेत्र वाक्यांश का उपयोग करके उचित है। पूर्णता की यह भावना सबसे अधिक निकटता से कॉची अनुक्रम (इस लेख में पूर्ण रूप से किया गया निर्माण) से वास्तविक के निर्माण से संबंधित है, क्योंकि यह एक आर्किमेडियन क्षेत्र (तर्कसंगत) के साथ शुरू होता है और एक मानक में इसकी वर्दी पूर्णता बनाता हैमार्ग। | ||
लेकिन वाक्यांश पूर्ण आर्किमेडियन क्षेत्र का मूल उपयोग डेविड हिल्बर्ट द्वारा किया गया था, जिसका | लेकिन वाक्यांश पूर्ण आर्किमेडियन क्षेत्र का मूल उपयोग डेविड हिल्बर्ट द्वारा किया गया था,जिसका अर्थ अभी भी कुछ और था। उनका मतलब था कि वास्तविक संख्या इस अर्थ में सबसे बड़ा आर्किमेडियन क्षेत्र बनाती है कि हर दूसरे आर्किमेडियन क्षेत्र का एक उप -क्षेत्र है <math>\mathbb{R}</math>।इस प्रकार <math>\mathbb{R}</math>इस अर्थ में पूरा है कि आगे कुछ भी नहीं जोड़ा जा सकता है, इसे अब एक आर्किमेडियन क्षेत्र नहीं बनाया जा सकता है।पूर्णता की यह भावना सबसे अधिक निकटता से वास्तविक संख्याओं से वास्तविक के निर्माण से संबंधित है, क्योंकि यह निर्माण एक उचित वर्ग के साथ शुरू होता है जिसमें प्रत्येक आदेशित क्षेत्र (सिरल) होते हैं और फिर इससे सबसे बड़ा आर्किमेडियन सबफील्ड(उपक्षेत्र) का चयन होता है। | ||
=== उन्नत गुण === | === उन्नत गुण === | ||
वास्तविक संख्याएं अनगिनत हैं, अर्थात प्राकृतिक संख्याओं की तुलना में अधिक वास्तविक संख्याएं हैं, भले ही दोनों समुच्चय अनंत हैं। वास्तव में, वास्तविक संख्याओ की कार्डिनलिटी प्राकृतिक संख्याओं के सबसेट (यानी पावर सेट) के सेट के बराबर होती है, और कैंटर के विकर्ण तर्क में कहा गया है कि बाद का सेट का कार्डिनलिटी <math>\mathbb{N}</math> कि कार्डिनलिटी से सख्ती से अधिक है।चूंकि बीजगणितीय संख्याओं का समुच्चय गणनीय है, इसलिए लगभग सभी वास्तविक संख्याएँ प्रागनुभविक संख्या हैं। पूर्णांकों और वास्तविकों के बीच सख्ती से कार्डिनैलिटी के साथ वास्तविकताओं के एक सबसेट की गैर-अस्तित्व को सातत्य परिकल्पना के रूप में जाना जाता है। सातत्य परिकल्पना को न तो सिद्ध किया जा सकता है और न ही अस्वीकृत; यह सेट सिद्धांत के स्वयंसिद्धों से स्वतंत्र है। | |||
वास्तविक | |||
एक टोपोलॉजिकल स्पेस के रूप में, वास्तविक संख्याएं अलग -अलग हैं।ऐसा इसलिए है क्योंकि | एक टोपोलॉजिकल स्पेस के रूप में, वास्तविक संख्याएं अलग -अलग हैं।ऐसा इसलिए है क्योंकि परिमेय का सेट, जो कि गिनती योग्य है, वास्तविक संख्या में सघन है।वास्तविक संख्या में अपरिमेय संख्या भी सघन होती है, हालांकि वे अनगिनत हैं और वास्तविक के समान कार्डिनलिटी हैं। | ||
वास्तविक | वास्तविक संख्याएं एक मीट्रिक स्थान बनाती हैं: x और y के बीच की दूरी को निरपेक्ष मान |x - y| के रूप में परिभाषित किया जाता है। पूरी तरह से व्यवस्थित सेट होने के कारण, वे एक ऑर्डर टोपोलॉजी का गुण भी रखते हैं, मीट्रिक से उत्पन्न होने वाली टोपोलॉजी और ऑर्डर से उत्पन्न होने वाली एक समान है, लेकिन टोपोलॉजी के लिए अलग-अलग प्रस्तुतियाँ-ऑर्डर टोपोलॉजी में ऑर्डर किए गए अंतराल के रूप में, मीट्रिक टोपोलॉजी में एप्सिलॉन-बॉल्स के रूप में। डेडेकाइंड कट निर्माण आदेश टोपोलॉजी प्रस्तुति का उपयोग करता है, जबकि कॉची अनुक्रम निर्माण मीट्रिक टोपोलॉजी प्रस्तुति का उपयोग करता है। वास्तविक एक अनुबंध योग्य (इसलिए जुड़ा हुआ है और बस जुड़ा हुआ है), हॉसडॉर्फ आयाम 1 के अलग -अलग और पूर्ण मीट्रिक स्थान बनाते हैं।वास्तविक संख्या स्थानीय रूप से कॉम्पैक्ट हैं लेकिन कॉम्पैक्ट नहीं हैं। विभिन्न गुण हैं जो विशिष्ट रूप से उन्हें निर्दिष्ट करते हैं;उदाहरण के लिए, सभी अनबाउंडेड, कनेक्टेड, और वियोज्य ऑर्डर टॉपोलॉजीज़ आवश्यक रूप से रियल के लिए होमोमोर्फिक हैं। | ||
प्रत्येक गैर - | प्रत्येक गैर -ऋणात्मक वास्तविक संख्या में एक वर्गमूल <math>\mathbb{R}</math> में होता है, हालांकि कोई ऋणात्मक संख्या नहीं होती है। इससे पता चलता है कि <math>\mathbb{R}</math> पर ऑर्डर इसकी बीजीय संरचना द्वारा निर्धारित किया जाता है। साथ ही, विषम अंश का प्रत्येक बहुपद कम से कम एक वास्तविक मूल को स्वीकार करता है। ये दो गुण <math>\mathbb{R}</math> को वास्तविक बंद क्षेत्र का प्रमुख उदाहरण बनाते हैं। यह साबित करना बीजगणित के मौलिक प्रमेय के एक प्रमाण का पहला भाग है। | ||
रियल एक विहित उपाय, लेबसग्यू माप ले जाता है, जो कि एक टोपोलॉजिकल समूह के रूप में उनकी संरचना पर HAAR उपाय है, जैसे कि यूनिट अंतराल [0; 1] में माप 1 है। वास्तविक संख्याओं के सेट मौजूद हैं जो कि लेबेसग्यू नहीं हैं, | रियल एक विहित उपाय, लेबसग्यू माप ले जाता है, जो कि एक टोपोलॉजिकल समूह के रूप में उनकी संरचना पर HAAR (हार) उपाय है, जैसे कि यूनिट अंतराल [0; 1] में माप 1 है। वास्तविक संख्याओं के सेट मौजूद हैं जो कि लेबेसग्यू नहीं हैं, जैसे विटाली सेट। | ||
वास्तविकताओं का सर्वोच्च स्वयंसिद्ध वास्तविक के सबसेट को संदर्भित करता है और इसलिए यह एक दूसरे क्रम का तार्किक कथन है। अकेले पहले-क्रम के तर्क के साथ वास्तविकों को चिह्नित करना संभव नहीं है: लोवेनहेम-स्कोलम प्रमेय का अर्थ है कि वास्तविक संख्याओं के एक गिनती योग्य घने उपसमूह मौजूद हैं जो पहले-क्रम के तर्क में उसी वाक्य को संतुष्ट करते हैं जैसे कि वास्तविक संख्या में स्वयं।हाइपरल नंबरों का सेट उसी पहले क्रम के वाक्यों को संतुष्ट करता है <math>\mathbb{R}</math>। आदेशित फ़ील्ड जो <math>\mathbb{R}</math> के समान प्रथम-क्रम के वाक्यों को संतुष्ट करते हैं, उन्हें <math>\mathbb{R}</math> के गैर-मानक मॉडल कहा जाता है। यही कारण है कि गैर -मानक विश्लेषण काम करता है, कुछ गैर-मानक मॉडल में प्रथम-क्रम के बयान को साबित करके (जो इसे साबित करने से आसान हो सकता है <math>\mathbb{R}</math>), हम जानते हैं कि वही कथन <math>\mathbb{R}</math> के लिए भी सत्य होना चाहिए। | |||
वास्तविक संख्याओं का क्षेत्र <math>\mathbb{R}</math>, परिमेय संख्याओं के क्षेत्र <math>\mathbb{Q}</math> का एक विस्तार क्षेत्र है और <math>\mathbb{R}</math> इसलिए एक <math>\mathbb{Q}</math> पर एक वेक्टर स्पेस के रूप में देखा जा सकता है। Zermelo -Fraenkel (ज़र्मेलो-फ्रैंकेल) सेट सिद्धांत पसंद के स्वयंसिद्ध के साथ यह सिद्धांत इस वेक्टर स्थान के आधार के अस्तित्व की गारंटी देता है: वास्तविक संख्याओं का एक सेट B मौजूद है जैसे कि प्रत्येक वास्तविक संख्या को विशिष्ट रूप से इस सेट के तत्वों के एक परिमित रैखिक संयोजन के रूप में लिखा जा सकता है, का उपयोग करके केवल परिमेय गुणांक, और ऐसा कि B का कोई भी तत्व दूसरों का परिमेय रैखिक संयोजन नहीं है। हालांकि, यह अस्तित्व प्रमेय विशुद्ध रूप से सैद्धांतिक है, क्योंकि इस तरह के आधार को कभी भी स्पष्ट रूप से वर्णित नहीं किया गया है। | |||
अच्छी तरह से आदेश देने वाले प्रमेय का अर्थ है कि वास्तविक संख्या को अच्छी तरह से आदेश दिया जा सकता है यदि पसंद के स्वयंसिद्ध को माना जाता है: वहाँ कुल आदेश मौजूद है <math>\mathbb{R}</math> उस | अच्छी तरह से आदेश देने वाले प्रमेय का अर्थ है कि वास्तविक संख्या को अच्छी तरह से आदेश दिया जा सकता है यदि पसंद के स्वयंसिद्ध को माना जाता है: वहाँ कुल आदेश मौजूद है <math>\mathbb{R}</math> पर, उस गुण के साथ जो हर गैर-खाली सबसेट के साथ <math>\mathbb{R}</math> क्रम में सबसे कम तत्व है।(वास्तविक संख्याओं का मानक क्रम एक सुव्यवस्थित क्रम नहीं है, उदाहरण के लिए एक खुले अंतराल में इस क्रम में कम से कम तत्व नहीं होता है।) फिर से, इस तरह के एक सुव्यवस्थित का अस्तित्व विशुद्ध रूप से सैद्धांतिक है, क्योंकि यह स्पष्ट रूप से वर्णित नहीं किया गया है। यदि ZF के अभिगृहीतों के अतिरिक्त V=L को मान लिया जाए, तो वास्तविक संख्याओं के एक सुव्यवस्थित क्रम को एक सूत्र द्वारा स्पष्ट रूप से परिभाषित किया जा सकता है।<ref>{{citation |last=Moschovakis |first=Yiannis N. |title=Descriptive set theory |work=Studies in Logic and the Foundations of Mathematics |volume=100 |publisher=North-Holland Publishing Co. |location=Amsterdam; New York |year=1980 |pages=[https://archive.org/details/descriptivesetth0000mosc/page/ xii, 637] |isbn=978-0-444-85305-9 |url=https://archive.org/details/descriptivesetth0000mosc/page/ }}, chapter V.</ref> | ||
एक वास्तविक संख्या या तो | |||
एक वास्तविक संख्या या तो गणना योग्य या अगणनीय हो सकती है; या तो एल्गोरिदमिक रूप से यादृच्छिक या नहीं, और या तो अंकगणितीय रूप से यादृच्छिक या नहीं। | |||
== अन्य क्षेत्रों के लिए आवेदन और कनेक्शन == | == अन्य क्षेत्रों के लिए आवेदन और कनेक्शन == | ||
Line 127: | Line 121: | ||
=== वास्तविक संख्या और तर्क === | === वास्तविक संख्या और तर्क === | ||
वास्तविक संख्याओं को अक्सर सेट सिद्धांत के | वास्तविक संख्याओं को अक्सर सेट सिद्धांत के ज़र्मेलो-फ्रेंकेल स्वयंसिद्धता का उपयोग करके औपचारिक रूप दिया जाता है, लेकिन कुछ गणितज्ञ गणित की अन्य तार्किक नींव के साथ वास्तविक संख्याओं का अध्ययन करते हैं। विशेष रूप से, वास्तविक संख्याओं का अध्ययन रिवर्स गणित और रचनात्मक गणित में भी किया जाता है।<ref>{{Citation |last1=Bishop |first1=Errett |last2=Bridges |first2=Douglas |title=Constructive analysis |publisher=[[Springer-Verlag]] |location=Berlin, New York |series=Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] |isbn=978-3-540-15066-4 |year=1985 |volume=279}}, chapter 2.</ref> | ||
एडविन हेविट, अब्राहम रॉबिन्सन और अन्य द्वारा विकसित किए गए हाइपरल नंबरों ने (असीम रूप से छोटा लेकिन गैर-शून्य) और अनंत संख्याओं को पेश करके वास्तविक संख्याओं के सेट का विस्तार किया, जिससे लीबनिज़, यूलर, कॉची और अन्य के मूल अंतर्ज्ञान के करीब एक तरह से अतिसूक्ष्म कलन के निर्माण की अनुमति मिलती है। | |||
सातत्य परिकल्पना का मानना है कि वास्तविक संख्याओं के सेट की कार्डिनलिटी है <math>\aleph_1</math>;यानी सबसे छोटे अनंत कार्डिनल नंबर के बाद <math>\aleph_0</math>, पूर्णांक की | एडवर्ड नेल्सन के आंतरिक सेट सिद्धांत ने ज़रमेलो -फ्रेनकेल सेट सिद्धांत को समृद्ध किया, जो एक अनियंत्रित मानक का परिचय देकर वाक्यात्मक रूप से है। इस दृष्टिकोण में, इन्फिनिटिमल वास्तविक संख्याओं के सेट के (गैर-मानक) तत्व हैं (इसके बजाय एक विस्तार के तत्व होने के कारण, जैसा कि रॉबिन्सन के सिद्धांत में)। | ||
सातत्य परिकल्पना का मानना है कि वास्तविक संख्याओं के सेट की कार्डिनलिटी है <math>\aleph_1</math>;यानी सबसे छोटे अनंत कार्डिनल नंबर के बाद <math>\aleph_0</math>, पूर्णांक की कार्डिनलिटी। पॉल कोहेन ने 1963 में साबित किया कि यह सेट सिद्धांत के अन्य स्वयंसिद्धों से स्वतंत्र एक स्वयंसिद्ध है, यह है: कोई या तो निरंतरता परिकल्पना या इसके नकारात्मकता को सेट सिद्धांत के स्वयंसिद्ध के रूप में, विरोधाभास के बिना चुन सकता है। | |||
=== भौतिकी में === | === भौतिकी में === | ||
भौतिक विज्ञानों में, अधिकांश भौतिक स्थिरांक जैसे कि सार्वभौमिक गुरुत्वाकर्षण स्थिरांक, और भौतिक चर | भौतिक विज्ञानों में, अधिकांश भौतिक स्थिरांक जैसे कि सार्वभौमिक गुरुत्वाकर्षण स्थिरांक, और भौतिक चर जैसे स्थिति, द्रव्यमान, गति और विद्युत आवेश, वास्तविक संख्याओं का उपयोग करके बनाए जाते हैं। वास्तव में, शास्त्रीय यांत्रिकी, विद्युत चुंबकत्व, क्वांटम यांत्रिकी, सामान्य सापेक्षता और मानक मॉडल जैसे मौलिक भौतिक सिद्धांत गणितीय संरचनाओं का उपयोग करके वर्णित हैं, आमतौर पर स्मूथ मानिफोर्ल्डस या हिल्बर्ट रिक्त स्थान, जो वास्तविक संख्याओं पर आधारित होते हैं, हालांकि भौतिक मात्रा के वास्तविक परिमित सटीकता और सटीकता के हैं। | ||
भौतिकविदों ने कभी-कभी सुझाव दिया है कि एक अधिक मौलिक सिद्धांत वास्तविक संख्याओं को उन मात्राओं से बदल देगा जो एक सातत्य नहीं बनाते हैं, लेकिन ऐसे प्रस्ताव अटकल ही रहते हैं।<ref>{{Cite journal|last=Wheeler|first=John Archibald|author-link=John Archibald Wheeler|date=1986|title=Hermann Weyl and the Unity of Knowledge: In the linkage of four mysteries—the "how come" of existence, time, the mathematical continuum, and the discontinuous yes-or-no of quantum physics—may lie the key to deep new insight|jstor=27854250|journal=[[American Scientist]]|volume=74|issue=4|pages=366–75|bibcode=1986AmSci..74..366W}}<br />{{cite journal|first=Ingemar|last=Bengtsson|title=The Number Behind the Simplest SIC-POVM|journal=[[Foundations of Physics]]|year=2017|volume=47|issue=8|pages=1031–41|doi=10.1007/s10701-017-0078-3|arxiv=1611.09087|bibcode=2017FoPh...47.1031B|s2cid=118954904}}</ref> | |||
=== गणना में === | === गणना में === | ||
कुछ अपवादों के साथ, अधिकांश कैलकुलेटर वास्तविक संख्या पर काम नहीं करते | कुछ अपवादों के साथ, अधिकांश कैलकुलेटर वास्तविक संख्या पर काम नहीं करते हैं। इसके बजाय, वे परिमित-सटीक अनुमानों के साथ काम करते हैं जिन्हें फ़्लोटिंग-पॉइंट नंबर कहा जाता है। वास्तव में, अधिकांश वैज्ञानिक गणना फ़्लोटिंग-पॉइंट अंकगणित का उपयोग करती है। वास्तविक संख्याएँ अंकगणित के सामान्य नियमों को पूरा करती हैं, लेकिन फ्लोटिंग-पॉइंट नंबर के नियमो का नहीं। | ||
कंप्यूटर | कंप्यूटर असीमित वास्तविक संख्याओं को असीमित रूप से कई अंकों के साथ सीधे स्टोर नहीं कर सकता है। प्राप्त करने योग्य परिशुद्धता किसी संख्या को संग्रहीत करने के लिए आवंटित बिट्स की संख्या से सीमित होती है, चाहे फ्लोटिंग-पॉइंट नंबर या अरबिंतेरे-प्रेसिशन अंकगणित के रूप में। हालांकि, कंप्यूटर बीजगणित प्रणाली उनके लिए सूत्रों में हेरफेर करके बिल्कुल अपरिमेय संख्याओ पर काम कर सकती है (जैसे <math>\sqrt{2},</math> <math>\arcsin (2/23),</math> या <math>\textstyle\int_0^1 x^x \,dx</math>) उनके परिमेय या दशमलव सन्निकटन के बजाय।<ref>{{Citation |publisher=A K Peters |isbn=978-1-56881-158-1 |volume=1 |last=Cohen |first=Joel S. |title=Computer algebra and symbolic computation: elementary algorithms |year=2002 |page=32}}</ref> यह निर्धारित करना सामान्य रूप से संभव नहीं है कि क्या दो ऐसे व्यंजक समान हैं (निरंतर समस्या)। | ||
एक वास्तविक संख्या को | एक वास्तविक संख्या को गणना योग्य कहा जाता है यदि कोई एल्गोरिथम मौजूद है जो इसके अंक उत्पन्न करता है।क्योंकि बहुत सारे एल्गोरिदम हैं,<ref>{{citation |first=James L. |last=Hein |url=https://books.google.com/books?id=vmlcc2IH9dEC |title=Discrete Structures, Logic, and Computability |edition=3 |publisher=Jones and Bartlett Publishers |location=Sudbury, MA |section=14.1.1 |year=2010 |isbn=97-80763772062 |access-date=2015-11-15 |archive-url=https://web.archive.org/web/20160617212930/https://books.google.com/books?id=vmlcc2IH9dEC |archive-date=2016-06-17 |url-status=live }}</ref> लेकिन एक अनगिनत संख्या वास्तविक, लगभग सभी वास्तविक संख्याएँ गणना योग्य होने में विफल रहती हैं। इसके अलावा, दो गणना योग्य संख्याओं की समानता एक अनिर्वचनीय समस्या है। कुछ रचनावादी केवल उन्हीं वास्तविकताओं के अस्तित्व को स्वीकार करते हैं जो गणना योग्य हैं। निश्चित संख्याओं का समूह व्यापक है, लेकिन फिर भी केवल गणनीय है। | ||
=== सेट सिद्धांत में | === सेट सिद्धांत में वास्तविकता === | ||
सेट सिद्धांत में, विशेष रूप से वर्णनात्मक | सेट सिद्धांत में, विशेष रूप से वर्णनात्मक समुच्चय सिद्धांत, बेयर स्पेस का उपयोग वास्तविक संख्याओं के लिए एक सरोगेट के रूप में किया जाता है क्योंकि बाद वाले में कुछ टोपोलॉजिकल गुण (कनेक्टिविटी) होते हैं जो एक तकनीकी असुविधा होती हैं। बेयर स्पेस के तत्वों को वास्तविक कहा जाता है। | ||
== शब्दावली और संकेतन == | == शब्दावली और संकेतन == | ||
गणितज्ञ सभी वास्तविक संख्याओं के सेट का प्रतिनिधित्व करने के लिए मुख्य रूप से प्रतीक | गणितज्ञ सभी वास्तविक संख्याओं के सेट का प्रतिनिधित्व करने के लिए मुख्य रूप से प्रतीक R का उपयोग करते हैं। वैकल्पिक रूप से, इसका उपयोग <math>\mathbb{R}</math> द्वारा किया जा सकता है, ब्लैकबोर्ड बोल्ड में अक्षर R, जिसे यूनिकोड (और HTML) में एन्कोड किया जा सकता है {{unichar|211D|html=}}।चूंकि यह सेट स्वाभाविक रूप से एक क्षेत्र की संरचना के साथ संपन्न होता है, इसलिए वास्तविक संख्याओं के अभिव्यक्ति क्षेत्र का उपयोग अक्सर किया जाता है जब इसके बीजगणितीय गुण विचाराधीन होते हैं। | ||
धनात्मक वास्तविक संख्या और नकारात्मक वास्तविक संख्याओं के सेट अक्सर नोट किए जाते हैं <math>\mathbb{R}^+</math> तथा <math>\mathbb{R}^-</math>,<ref name=Schumacher96>{{harvnb|Schumacher|1996|loc=pp. 114–15}}</ref> क्रमश; <math>\mathbb{R}_+</math> तथा <math>\mathbb{R}_-</math> उपयोग भी किया जाता है।<ref name="nombres-reels-ens-paris">[[École Normale Supérieure]] of [[Paris]], [http://culturemath.ens.fr/maths/pdf/logique/reels.pdf "{{lang|fr|Nombres réels}}" ("Real numbers")] {{Webarchive|url=https://web.archive.org/web/20140508122311/http://culturemath.ens.fr/maths/pdf/logique/reels.pdf |date=2014-05-08 }}, p. 6</ref> गैर-नकारात्मक वास्तविक संख्याओं पर ध्यान दिया जा सकता है <math>\mathbb{R}_{\ge 0}</math> लेकिन एक अक्सर इस सेट को नोट किया जाता है <math>\mathbb{R}^+ \cup \{0\}.</math><ref name=Schumacher96 /> फ्रांसीसी गणित में, धनात्मक वास्तविक संख्या और नकारात्मक वास्तविक संख्या में आमतौर पर शून्य शामिल है, और ये सेट क्रमशः नोट किए गए हैं <math>\mathbb{R_+}</math> तथा <math>\mathbb{R_-}.</math><ref name="nombres-reels-ens-paris"/> इस समझ में, शून्य के बिना संबंधित सेटों को कड़ाई से धनात्मक वास्तविक संख्या और सख्ती से नकारात्मक वास्तविक संख्या कहा जाता है, और नोट किया जाता है <math>\mathbb{R}_{+}^*</math> तथा <math>\mathbb{R}_{-}^*.</math><ref name="nombres-reels-ens-paris"/> | |||
संकेतन <math>\mathbb{R}^n</math> के तत्वों के n-tuples के सेट को संदर्भित करता है (वास्तविक समन्वय स्थान), जिसे {{mvar|n}}प्रतियों के कार्टेशियन उत्पाद से पहचाना जा सकता है <math>\mathbb{R}</math> के सन्दर्भ में। वास्तविक संख्याएँ, जिन्हें अक्सर आयाम n का निर्देशांक स्थान कहा जाता है; जैसे ही कार्टेशियन समन्वय प्रणाली को बाद में चुना गया है, इस स्थान की पहचान n-आयामी यूक्लिडियन स्पेस में की जा सकती है। इस पहचान में, यूक्लिडियन स्पेस के एक बिंदु को उसके कार्टेशियन निर्देशांक के टपल के साथ पहचाना जाता है। | |||
गणित में, वास्तविक का उपयोग एक विशेषण के रूप में किया जाता है, जिसका अर्थ है कि अंतर्निहित क्षेत्र वास्तविक संख्याओं (या वास्तविक क्षेत्र) का क्षेत्र | गणित में, वास्तविक संख्याओं का उपयोग एक विशेषण के रूप में किया जाता है, जिसका अर्थ है कि अंतर्निहित क्षेत्र वास्तविक संख्याओं (या वास्तविक क्षेत्र) का क्षेत्र है ।उदाहरण के लिए, वास्तविक मैट्रिक्स, वास्तविक बहुपद और वास्तविक लाई(lie )बीजगणित।इस शब्द का उपयोग संज्ञा के रूप में भी किया जाता है, जिसका अर्थ है एक वास्तविक संख्या (जैसा कि सभी वास्तविकों के सेट में)। | ||
== सामान्यीकरण और एक्सटेंशन == | == सामान्यीकरण और एक्सटेंशन == | ||
वास्तविक संख्याओं को सामान्यीकृत और कई अलग -अलग दिशाओं में बढ़ाया जा सकता है: | वास्तविक संख्याओं को सामान्यीकृत और कई अलग -अलग दिशाओं में बढ़ाया जा सकता है: | ||
* | * सम्मिश्र संख्याओं में सभी बहुपद समीकरणों के समाधान होते हैं और इसलिए वास्तविक संख्याओं के विपरीत एक बीजगणितीय रूप से बंद क्षेत्र हैं। हालांकि, सम्मिश्र संख्या एक आदेशित क्षेत्र नहीं हैं। | ||
* | * सूक्ष्म रूप से विस्तारित वास्तविक संख्या प्रणाली दो तत्वों को जोड़ती है {{math|+∞}} तथा {{math|−∞}}। यह एक कॉम्पैक्ट स्थान है। यह अब एक क्षेत्र नहीं है, या यहां तक कि एक योजक समूह भी है, लेकिन इसमें अभी भी कुल क्रम है, इसके अलावा, यह एक पूर्ण लेटिस है। | ||
* वास्तविक | * वास्तविक प्रक्षेप्य रेखा केवल एक मान जोड़ती है {{math|∞}}। यह एक कॉम्पैक्ट स्थान भी है। फिर, यह अब एक क्षेत्र नहीं है, या यहां तक कि एक योगात्मक समूह भी है। हालांकि, यह शून्य द्वारा एक गैर-शून्य तत्व के विभाजन की अनुमति देता है।इसमें एक पृथक्करण संबंध द्वारा वर्णित चक्रीय क्रम है। | ||
* लंबी वास्तविक रेखा एक साथ पेस्ट करती है {{math|ℵ<sub>1</sub>* + ℵ<sub>1</sub>}} वास्तविक लाइन के साथ -साथ एक बिंदु (यहाँ) की प्रतियां {{math|ℵ<sub>1</sub>*}} के उलट आदेश को दर्शाता है {{math|ℵ<sub>1</sub>}}) एक आदेशित सेट बनाने के लिए जो स्थानीय रूप से वास्तविक संख्याओं के समान है, लेकिन किसी तरह लंबे समय तक | * लंबी वास्तविक रेखा एक साथ पेस्ट करती है {{math|ℵ<sub>1</sub>* + ℵ<sub>1</sub>}} वास्तविक लाइन के साथ -साथ एक बिंदु (यहाँ) की प्रतियां {{math|ℵ<sub>1</sub>*}} के उलट आदेश को दर्शाता है {{math|ℵ<sub>1</sub>}}) एक आदेशित सेट बनाने के लिए जो स्थानीय रूप से वास्तविक संख्याओं के समान है, लेकिन किसी तरह लंबे समय तक, उदाहरण के लिए, एक आदेश-संरक्षण एम्बेडिंग है {{math|ℵ<sub>1</sub>}} लंबी वास्तविक रेखा में लेकिन वास्तविक संख्या में नहीं।लंबी वास्तविक रेखा सबसे बड़ी क्रमबद्ध सेट है जो पूर्ण और स्थानीय रूप से आर्किमेडियन है। पिछले दो उदाहरणों के साथ, यह सेट अब एक फ़ील्ड या एडिटिव समूह नहीं है। | ||
* | * वास्तविक का विस्तार करने वाले आदेशित क्षेत्र हाइपरियल नंबर और वास्तविक नंबर हैं, इन दोनों में अतिसूक्ष्म और अपरिमित रूप से बड़ी संख्याएँ हैं और इसलिए ये गैर-आर्किमिडीयन क्रमित क्षेत्र हैं। | ||
* एक हिल्बर्ट स्पेस (उदाहरण के लिए, सेल्फ-एडजॉइंट स्क्वायर कॉम्प्लेक्स मैट्रिसेस) पर सेल्फ-एडजॉइंट ऑपरेटर कई मामलों में रियल को सामान्य करते हैं: उन्हें ऑर्डर किया जा सकता है (हालांकि पूरी तरह से ऑर्डर नहीं किया गया है), वे पूर्ण हैं, उनके सभी | * एक हिल्बर्ट स्पेस (उदाहरण के लिए, सेल्फ-एडजॉइंट स्क्वायर कॉम्प्लेक्स मैट्रिसेस) पर सेल्फ-एडजॉइंट ऑपरेटर कई मामलों में रियल को सामान्य करते हैं: उन्हें ऑर्डर किया जा सकता है (हालांकि पूरी तरह से ऑर्डर नहीं किया गया है), वे पूर्ण हैं, उनके सभी आइजनवैल्यू वास्तविक हैं और वे एक वास्तविक साहचर्य बीजगणित बनाते हैं। सकारात्मक-निश्चित ऑपरेटर सकारात्मक वास्तविकताओं के अनुरूप होते हैं और सामान्य ऑपरेटर जटिल संख्याओं के अनुरूप होते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 214: | Line 208: | ||
{{Authority control}} | {{Authority control}} | ||
] | |||
] | |||
[[Category:Machine Translated Page]] | |||
[[Category: | [[Category:AC with 0 elements]] | ||
[[Category:Articles containing French-language text]] | |||
[[Category:Articles containing German-language text]] | |||
[[Category:Articles with short description]] | |||
[[Category:CS1]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 maint]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Pages with template loops]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Webarchive template wayback links]] |
Latest revision as of 16:44, 7 August 2022
गणित में, वास्तविक संख्या एक निरंतर मात्रा का मान है जो एक रेखा के साथ दूरी का प्रतिनिधित्व कर सकती है (या वैकल्पिक रूप से, एक मात्रा जिसे अनंत दशमलव विस्तार के रूप में दर्शाया जा सकता है)। इस संदर्भ में वास्तविक विशेषण 17 वीं शताब्दी में रेने डेसकार्टेस द्वारा पेश किया गया था, जिन्होंने बहुपद के वास्तविक और काल्पनिक मूल तत्वों के बीच अंतर किया था।[1] वास्तविक संख्याओं में सभी अपरिमेय संख्याएं शामिल हैं, जैसे कि पूर्णांक −5 और भिन्न 4/3, और सभी अपरिमेय संख्याएं, जैसे (1.41421356 ..., 2 का वर्गमूल, एक अपरिमेय बीजगणितीय संख्या)। अपरिमेय के भीतर शामिल वास्तविक प्रागनुभविक संख्याएँ हैं, जैसे π (3.14159265 ...)।[2] दूरी को मापने के अलावा, वास्तविक संख्याओं का उपयोग समय, द्रव्यमान, ऊर्जा, वेग, और कई और अधिक मात्रा को मापने के लिए किया जा सकता है।वास्तविक संख्याओं के सेट को प्रतीक R या का उपयोग करके निरूपित किया गया है[3] और इसे कभी-कभी "रियल्स" भी कहा जाता है।[4]
वास्तविक संख्याओं को एक अनंत लंबी रेखा पर बिंदुओं के रूप में माना जा सकता है जिसे संख्या रेखा या वास्तविक रेखा कहा जाता है, जहां पूर्णांकों के संगत बिंदु समान रूप से दूरी पर होते हैं।किसी भी वास्तविक संख्या को संभवतः अनंत दशमलव प्रतिनिधित्व द्वारा निर्धारित किया जा सकता है, जैसे कि 8.632, जहां प्रत्येक क्रमागत अंक को इकाइयों में पिछले के आकार में दसवें हिस्से में मापा जाता है।[5] वास्तविक रेखा को सम्मिश्र तल का एक भाग माना जा सकता है, और वास्तविक संख्याओं को सम्मिश्र संख्याओं का एक भाग माना जा सकता है।
वास्तविक संख्याओं के ये विवरण शुद्ध गणित के आधुनिक मानकों द्वारा पर्याप्त रूप से सख्त नहीं हैं।वास्तविक संख्याओं की एक उपयुक्त रूप से कठोर परिभाषा की खोज-वास्तव में, यह अहसास था कि एक बेहतर परिभाषा की आवश्यकता थी-19 वीं सदी के गणित के सबसे महत्वपूर्ण विकासों में से एक था। वर्तमान मानक अभिगृहीत परिभाषा यह है कि वास्तविक संख्याएं अद्वितीय डेडेकाइंड(Dedekind)- पूर्ण आदेशित फ़ील्ड बनाते हैं ( ; + ; · ; <), एक समरूपता तक,[lower-alpha 1] जबकि वास्तविक संख्याओं की लोकप्रिय रचनात्मक परिभाषाओं में उन्हें अंकगणित संचालन और ऑर्डर रिलेशन(क्रम संबंध) के लिए सटीक व्याख्याओं के साथ -साथ कॉची अनुक्रमों (तर्कसंगत संख्याओं की), डेडेकिंड कट्स, या अनंत दशमलव निरूपण के समतुल्य वर्गों के रूप में घोषित करना शामिल है।ये सभी परिभाषाएँ स्वयंसिद्ध परिभाषा को संतुष्ट करती हैं और इस प्रकार समतुल्य हैं।
सभी वास्तविक संख्याओं के समुच्चय अनगिनगत है, इस अर्थ में कि जब सभी प्राकृत संख्याओं का समुच्चय और सभी वास्तविक संख्याओं का समुच्चय अनंत समुच्चय हैं, वास्तविक संख्याओं से प्राकृतिक संख्याओं तक कोई एक-से-एक फलन नहीं हो सकता है।वास्तव में, सभी वास्तविक संख्याओं के समुच्चय की कार्डिनलिटी, जिसे द्वारा और दर्शाया जाता है सातत्य की कार्डिनैलिटी कहा जाता है तथा यह सभी प्राकृतिक संख्याओं के सेट के कार्डिनलिटी से सख्ती से अधिक है। ( द्वारा निरूपित,'एलेफ-नॉट')।
यह कथन है कि कार्डिनलिटी के साथ वास्तविक संख्या का कोई सबसेट की तुलना में सख्ती से बड़ा और से सख़्ती से छोटा, इसे कॉन्टिनम परिकल्पना (सीएच) के रूप में जाना जाता है।यह ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के सिद्धांतों का उपयोग करके न तो सिद्ध करने योग्य है और न ही खंडन योग्य है, जिसमें वरण अभिगृहीत (ZFC) - आधुनिक गणित का मानक नींव शामिल है। वास्तव में, ZFC के कुछ मॉडल CH को संतुष्ट करते हैं, जबकि अन्य इसका उल्लंघन करते हैं।[6]
इतिहास
मिस्रवासियो द्वारा 1000 BC के आसपास सरल अंशों का उपयोग किया गया था, c. में वैदिक शुलबा सूत्र (द रूल्स ऑफ कॉर्ड्स) | 600 BC (ईसा पूर्व) ईसा पूर्व में अपरिमेय संख्याओं का पहला "उपयोग" क्या हो सकता है।अपरिमेयता की अवधारणा को प्रारंभिक भारतीय गणितज्ञों जैसे मनवा द्वारा स्वीकार किया गया था (c. 750–690 BC), जो इस बात से अवगत थे कि कुछ संख्याओं के वर्गमूल, जैसे कि 2 और 61, को ठीक से निर्धारित नहीं किया जा सकता है।[7] लगभग 500 ईसा पूर्व, पाइथागोरस के नेतृत्व वाले ग्रीक गणितज्ञों ने अपरिमेय संख्या की आवश्यकता को महसूस किया, विशेष रूप से 2 के वर्गमूल की अपरिमेयता।
मध्य युग में शून्य, ऋणात्मक संख्याओं, पूर्णांकों और भिन्नात्मक संख्याओं को पहले भारतीय और चीनी गणितज्ञों द्वारा, और फिर अरबी गणितज्ञों द्वारा स्वीकार किया, जो कि अपरिमेय संख्याओं को बीजीय वस्तुओं के रूप में मानने वाले पहले व्यक्ति थे (बाद वाले को संभव बनाया जा रहा था बीजगणित के विकास द्वारा)।[8] अरबी गणितज्ञों ने "संख्या" और "परिमाण" की अवधारणाओं को वास्तविक संख्याओं के अधिक सामान्य विचार में मिला दिया।[9] मिस्र के गणितज्ञ अबू कामिल शुजा इब्न असलम (c. 850–930) सबसे पहले अपरिमेय संख्याओं को द्विघात समीकरणों के समाधान के रूप में, या एक समीकरण में गुणांक (अक्सर वर्गमूल, घनमूल और चौथी जड़ों के रूप में) के रूप में स्वीकार करने वाले थे।
[10])
16 वीं शताब्दी में, साइमन स्टीविन ने आधुनिक दशमलव संकेतन के लिए आधार बनाया, और जोर देकर कहा कि इस संबंध में परिमेय और अपरिमेय संख्या के बीच कोई अंतर नहीं है।
17 वीं शताब्दी में, डेसकार्टेस ने एक बहुपद के मूल का वर्णन करने के लिए वास्तविक शब्द का परिचय दिया, जो उन्हें काल्पनिक से अलग करता है।
18 वीं और 19 वीं शताब्दी में, अपरिमेय और ट्रान्सेंडैंटल संख्याओं पर बहुत काम किया गया था।जोहान हेनरिक लैम्बर्ट (1761) ने पहला त्रुटिपूर्ण प्रमाण दिया कि π अपरिमेय नहीं हो सकता| एड्रियन-मैरी लीजेंड्रे (1794) ने सिद्ध किया,[11] और दिखाया कि π एक अपरिमेय संख्या का वर्गमूल नहीं है।[12] पाओलो रफिनी (1799) और नील्स हेनरिक एबेल (1842) दोनों ने एबेल -रफिनी प्रमेय के प्रमाणों का निर्माण किया, कि सामान्य क्विंटिक या उच्चतर समीकरणों को एक सामान्य सूत्र द्वारा हल नहीं किया जा सकता है जिसमें केवल अंकगणितीय संचालन और मूलो को शामिल किया गया है।
1832 में यह निर्धारित करने के लिए तकनीक विकसित की कि क्या किसी दिए गए समीकरण को रेडिकल(मूल सिद्धांत) द्वारा हल किया जा सकता है, जिसने गैलिस सिद्धांत के क्षेत्र को जन्म दिया।जोसेफ लिउविले (1840) ने दिखाया कि न तो e और न ही e2 एक पूर्णांक द्विघात समीकरण के मूल हो सकते है, और फिर ट्रान्सेंडैंटल संख्याओं के अस्तित्व की स्थापना की, जॉर्ज कैंटर (1873) ने इस प्रमाण को बढ़ाया और बहुत सरल बनाया।[13] चार्ल्स हरमाइट (1873) ने पहली बार साबित किया कि e ट्रान्सेंडैंटल है, और फर्डिनेंड वॉन लिंडमैन (1882) ने दिखाया कि π ट्रान्सेंडैंटल है।लिंडमैन का प्रमाण वेयरस्ट्रास (1885) द्वारा बहुत सरल था, अभी भी डेविड हिल्बर्ट (1893) द्वारा आगे, और अंततः में एडोल्फ हर्विट्ज़ और पॉल गॉर्डन द्वारा प्राथमिक बनाया गया है[14][15]
18 वीं शताब्दी में कैलकुलस(कलन) के विकास ने वास्तविक संख्याओं के पूरे सेट का उपयोग बिना उन्हें सख्ती से परिभाषित किए।पहली कठोर परिभाषा 1871 में जॉर्ज कैंटर द्वारा प्रकाशित की गई थी। 1874 में, उन्होंने दिखाया कि सभी वास्तविक संख्याओं का समुच्चय अनगिनत रूप से अनंत है, लेकिन सभी बीजीय संख्याओं का समुच्चय गणनीय रूप से अनंत है। व्यापक रूप से धारित मान्यताओं के विपरीत, उनका पहला तरीका उनका प्रसिद्ध विकर्ण तर्क नहीं था, जिसे उन्होंने 1891 में प्रकाशित किया था। अधिक जानकारी के लिए, कैंटर का पहला अगणनीयता का प्रमाण देखें।
परिभाषा
वास्तविक संख्या प्रणाली एक समरूपता के लिए स्वयंसिद्ध रूप से परिभाषित किया जा सकता है, जिसे इसके बाद वर्णित किया गया है। वास्तविक संख्या प्रणाली का निर्माण करने के कई तरीके भी हैं, और एक लोकप्रिय दृष्टिकोण में प्राकृतिक संख्याओं से शुरू करना, फिर अपरिमेय संख्याओं को बीजगणितीय रूप से परिभाषित करना, और अंत में वास्तविक संख्याओं को उनके कॉची अनुक्रमों के समतुल्य वर्गों के रूप में या डेडेकिंड कट्स के रूप में परिभाषित करना, जो निश्चित हैं परिमेय संख्याओं के उपसमुच्चय।[16] एक अन्य दृष्टिकोण यूक्लिडियन ज्यामिति (हिल्बर्ट या टार्स्की के कहना) के कुछ कठोर स्वयंसिद्धता से शुरू करना है, और फिर वास्तविक संख्या प्रणाली को ज्यामितीय रूप से परिभाषित करता है। वास्तविक संख्याओं के इन सभी निर्माणों को समतुल्य दिखाया गया है, इस अर्थ में कि परिणामी संख्या प्रणाली समरूपी हैं।
स्वयंसिद्ध दृष्टिकोण
मान लें कि सभी वास्तविक संख्याओं के सेट को निरूपित करें, फिर:
- सेट एक क्षेत्र है, जिसका अर्थ है कि जोड़ और गुणन को परिभाषित किया गया है और सामान्य गुण हैं।
- फील्ड आदेश दिया जाता है, जिसका अर्थ है कि कुल आदेश of है जैसे कि सभी वास्तविक संख्याओं के लिए x, y और z:
- यदि x y y, तो x + z Z y + z;
- यदि x and 0 और y ≥ 0 है, तो xy। 0।
- आदेश Dedekind- पूर्ण है, जिसका अर्थ है कि प्रत्येक गैर-खाली सबसेट एस में एक ऊपरी सीमा के साथ में कम से कम ऊपरी बाउंड (a.k.a., supremum) है ।
अंतिम विशेषता यह है जो अपरिमेय संख्याओं (और अन्य अधिक विदेशी आदेशित क्षेत्रों से) से वास्तविक संख्याओं को अलग करती है।उदाहरण के लिए, एक परिमेय ऊपरी सीमा है (जैसे, 1.42), लेकिन कोई कम से कम अपरिमेय ऊपरी सीमा नहीं है, क्योंकि अपरिमेय नहीं है।
ये गुण आर्किमेडियन सिद्धांत (जो कि पूर्णता की अन्य परिभाषाओं से निहित नहीं है) का अर्थ है, जिसमें कहा गया है कि पूर्णांक के सेट में वास्तविक में कोई ऊपरी सीमा नहीं है।वास्तव में, यदि यह गलत होता, तो पूर्णांकों में कम से कम ऊपरी बाउंड N होता, तब N – 1 एक ऊपरी सीमा नहीं होगी, और एक पूर्णांक n ऐसा होगा जैसे कि n > N – 1, और इस तरह n + 1 > N, जो N की ऊपरी-बाध्य संपत्ति के साथ एक विरोधाभास है।
वास्तविक संख्या उपरोक्त गुणों द्वारा विशिष्ट रूप से निर्दिष्ट की जाती है।अधिक यथार्थ रूप से, किसी भी दो डेडेकाइंड- पूर्ण आदेश दिए गए फ़ील्ड को देखते हुए तथा , वहाँ से एक अद्वितीय क्षेत्र समरुपता मौजूद है प्रति ।यह विशिष्टता हमें उन्हें अनिवार्य रूप से एक ही गणितीय वस्तु के रूप में सोचने की अनुमति देती है।
,के एक और स्वयंसिद्धता के लिए रियल के टार्स्की के स्वयंसिद्धता को देखें।
अपरिमेय संख्या से निर्माण
वास्तविक संख्याओं का निर्माण परिमेय संख्याओं के पूरा होने के रूप में किया जा सकता है, इस तरह से कि एक दशमलव या द्विआधारी विस्तार द्वारा परिभाषित एक अनुक्रम जैसे (3, 3.1, 3.14, 3.141, 3.141, 3.1415, ...) एक अद्वितीय वास्तविक संख्या में इस मामले में π में परिवर्तित हो जाता है। वास्तविक संख्याओं के विवरण और अन्य निर्माणों के लिए, वास्तविक संख्याओं का निर्माण देखें।
गुण
मूल गुण
- कोई भी गैर-0 (संख्या) | शून्य वास्तविक संख्या या तो ऋणात्मक या धनात्मक होती है।
- दो गैर-ऋणात्मक वास्तविक संख्याओं का योग और उत्पाद फिर से एक गैर-ऋणात्मक वास्तविक संख्या है, अर्थात, वे इन कार्यों के तहत बंद हैं, और एक धनात्मक शंकु बनाते हैं, जिससे एक संख्या के साथ वास्तविक संख्याओं का एक रैखिक क्रम संख्या रेखा के साथ उत्पन्न होता है।
- वास्तविक संख्याएं संख्याओं का एक अनंत समुच्चय बनाती हैं, जिन्हें प्राकृतिक संख्याओं के अनंत समुच्चय पर एकैकी रूप से सम्मिलित नहीं किया जा सकता है, अर्थात अनगिनत अनंत रूप से कई वास्तविक संख्याएं हैं, जबकि प्राकृतिक संख्याओं को अनंत रूप से गिनने योग्य कहा जाता है। यह सत्यापित करता है कि कुछ अर्थों में, किसी भी गणनीय सेट में मूलो की तुलना में अधिक वास्तविक संख्याएं होती हैं।
- वास्तविक संख्याओं के अनगिनत उपसमुच्चय का एक पदानुक्रम है, उदाहरण के लिए, पूर्णांक, परिमेय संख्या, बीजीय संख्या और गणना योग्य संख्या, प्रत्येक सेट अनुक्रम में अगले का एक उचित उपसमुच्चय है। इन सभी सेटों के पूरक (तर्कहीन, अनुवांशिक, और गैर-गणना योग्य वास्तविक संख्याएं) वास्तविक संख्याओं में सभी अनगिनत अनंत समुच्चय हैं।
- वास्तविक संख्याओं का उपयोग निरंतर मात्राओं के मापन को व्यक्त करने के लिए किया जा सकता है। उन्हें दशमलव निरूपण द्वारा व्यक्त किया जा सकता है, उनमें से अधिकांश में दशमलव बिंदु के दाईं ओर अंकों का अनंत क्रम होता है; इन्हें अक्सर 324.823122147... की तरह दर्शाया जाता है, जहां इलिप्सिस (तीन बिंदु) इंगित करता है कि अभी और अंक आने बाकी हैं। यह इस तथ्य की ओर संकेत करता है कि हम केवल कुछ, चयनित वास्तविक संख्याओं को सूक्ष्म रूप से कई प्रतीकों के साथ निरूपित कर सकते हैं।
अधिक औपचारिक रूप से, वास्तविक संख्याओं में एक आदेशित क्षेत्र होने के दो बुनियादी गुण होते हैं, और न्यूनतम ऊपरी परिबंध होती है। पहला कहता है कि वास्तविक संख्या में एक क्षेत्र शामिल है, जिसमें जोड़ और गुणन के साथ-साथ गैर-शून्य संख्याओं द्वारा विभाजन भी होता है, जिसे पूरी तरह से जोड़ और गुणा के साथ संगत तरीके से एक संख्या रेखा पर क्रमबद्ध किया जा सकता है। दूसरा कहता है कि, अगर वास्तविक संख्याओं का एक गैर-खाली सेट एक ऊपरी सीमा है, तो इसमें एक वास्तविक कम से कम ऊपरी सीमा है। दूसरी स्थिति अपरिमेय संख्याओं से वास्तविक संख्याओं को अलग करती है: उदाहरण के लिए, अपरिमेय संख्याओं का सेट जिसका वर्ग 2 से कम है, एक ऊपरी सीमा (जैसे 1.5) के साथ एक समुच्चय है, लेकिन कोई (अपरिमेय) कम से कम ऊपरी सीमा नहीं है: इसलिए परिमेय संख्याएँ कम से कम ऊपरी बाध्य होने के गुण को संतुष्ट न करें।
पूर्णता
वास्तविक संख्याओं का उपयोग करने का एक मुख्य कारण यह है कि कई अनुक्रमों में सीमाएं होती हैं।अधिक औपचारिक रूप से, रियल पूर्ण हैं (मीट्रिक रिक्त स्थान या समान स्थानों के अर्थ में, जो पिछले अनुभाग में ऑर्डर की डेडेकिंड पूर्णता की तुलना में एक अलग अर्थ है):
एक अनुक्रम (एक्सn) वास्तविक संख्याओं को कॉची (cauchy) अनुक्रम कहा जाता है ε > 0 एक पूर्णांक n मौजूद है (संभवतः ε पर निर्भर करता है) जैसे कि दूरी |xn − xm| सभी n और m के लिए ε से कम है जो दोनों N से अधिक हैं। मूल रूप से कॉची द्वारा प्रदान की गई यह परिभाषा इस तथ्य को औपचारिक रूप देती है कि xn अंततः आते हैं और एक दूसरे के साथ रहते हैं।
एक अनुक्रम (एक्सn) सीमा X में परिवर्तित हो जाता है यदि इसके तत्व अंततः आते हैं और मनमाने ढंग से x के करीब रहते हैं, यदि किसी ε > 0 के लिए एक पूर्णांक N मौजूद है (संभवतः ε पर निर्भर करता है) जैसे कि दूरी |xn − xm| से कम है क्योंकि n, N से बड़ा है।
प्रत्येक अभिसरण अनुक्रम एक कॉची अनुक्रम है, और वास्तविक संख्याओं के लिए आक्षेप सच है, और इसका मतलब है कि वास्तविक संख्याओं का सामयिक स्थान पूरा हो गया है।
परिमेय संख्याओं का समुच्चय पूर्ण नहीं है। उदाहरण के लिए, अनुक्रम (1,1.4, 1.41, 1.41, 1.414, 1.4142, 1.41421 ...), जहां प्रत्येक शब्द 2 के धनात्मक वर्गमूल के दशमलव विस्तार के एक अंक को जोड़ता है, कॉची (cauchy) अनुक्रम है, लेकिन यह एक परिमेय संख्या में परिवर्तित नहीं होता है (वास्तविक संख्या में, इसके विपरीत, यह 2 के सकारात्मक वर्गमूल में परिवर्तित होती है)।
REALS की पूर्णता संपत्तिका गुण है जिस पर पथरी, और, अधिक म तौर पर गणितीय विश्लेषण का निर्माण किया जाता है।विशेष रूप से, परीक्षण कि एक अनुक्रम एक कॉची अनुक्रम है, यह साबित करने की अनुमति देता है कि एक अनुक्रम की एक सीमा है, बिना कंप्यूटिंग के, और यहां तक कि इसे जाने बिना भी।
उदाहरण के लिए, घातीय फ़ंक्शन की मानक श्रृंखला
प्रत्येक x के लिए एक वास्तविक संख्या में परिवर्तित होता है, क्योंकि योग
पर्याप्त रूप से बड़े N को चुनकर मनमाने ढंग से छोटा (स्वतंत्र रूप से एम) बनाया जा सकता है। यह साबित करता है कि कॉची (cauchy) अनुक्रम है, और इस प्रकार अभिसरण करता है, यह दिखाते हुए हर एक्स के लिए अच्छी तरह से परिभाषित है।
पूरा आदेशित फ़ील्ड
वास्तविक संख्याओं को अक्सर पूर्ण आदेशित क्षेत्र के रूप में वर्णित किया जाता है, एक वाक्यांश जिसे कई तरीकों से व्याख्या किया जा सकता है।
सबसे पहले, एक आदेश लेटिस-पूर्ण हो सकता है। यह देखना आसान है कि कोई भी आदेशित फ़ील्ड लेटिस-पूर्ण नहीं हो सकता है, क्योंकि इसका कोई सबसे बड़ा तत्व नहीं हो सकता है (दिया गया कोई तत्व z, तो z + 1 बड़ा है)।
इसके अतिरिक्त, एक आदेश डेडेकाइंड-पूर्ण हो सकता है, स्वयंसिद्ध दृष्टिकोण देखें। उस खंड के अंत में विशिष्टता का परिणाम पूर्ण आदेशित फ़ील्ड वाक्यांश में "द" शब्द का उपयोग करने को सही ठहराता है, जब यह पूर्ण का अर्थ है। पूर्णता की यह भावना डेडेकाइंड कटौती से वास्तविक के निर्माण से सबसे अधिक निकटता से संबंधित है, क्योंकि यह निर्माण एक आदेशित क्षेत्र (परिमेय) से शुरू होता है और फिर इसे मानक तरीके से डेडेकिंड-पूर्णता बनाता है।
पूर्णता की ये दो धारणाएँ क्षेत्र संरचना की उपेक्षा करती हैं। हालांकि, एक आदेशित समूह (इस मामले में, क्षेत्र का एडिटिव समूह) एक समान संरचना को परिभाषित करता है, और एक समान संरचनाओं में पूर्णता की धारणा है;। पूर्णता में विवरण एक विशेष मामला है।(हम मीट्रिक रिक्त स्थान के लिए संबंधित और बेहतर ज्ञात धारणा के बजाय समान स्थानों में पूर्णता की धारणा का उल्लेख करते हैं, क्योंकि मीट्रिक अंतरिक्ष की परिभाषा पहले से ही वास्तविक संख्याओं के लक्षण वर्णन पर निर्भर करती है।) यह सच नहीं है केवल समान रूप से पूर्ण आदेशित क्षेत्र है, लेकिन यह केवल समान रूप से पूर्ण आर्किमेडियन क्षेत्र है, और वास्तव में एक अक्सर पूर्ण आदेशित क्षेत्र के बजाय वाक्यांश पूर्ण आर्किमेडियन क्षेत्र को सुनता है।हर समान रूप से पूर्ण आर्किमेडियन क्षेत्र को भी डेडेकेन्ड-पूर्ण (और इसके विपरीत) होना चाहिए, जो कि पूर्ण आर्किमेडियन क्षेत्र वाक्यांश का उपयोग करके उचित है। पूर्णता की यह भावना सबसे अधिक निकटता से कॉची अनुक्रम (इस लेख में पूर्ण रूप से किया गया निर्माण) से वास्तविक के निर्माण से संबंधित है, क्योंकि यह एक आर्किमेडियन क्षेत्र (तर्कसंगत) के साथ शुरू होता है और एक मानक में इसकी वर्दी पूर्णता बनाता हैमार्ग।
लेकिन वाक्यांश पूर्ण आर्किमेडियन क्षेत्र का मूल उपयोग डेविड हिल्बर्ट द्वारा किया गया था,जिसका अर्थ अभी भी कुछ और था। उनका मतलब था कि वास्तविक संख्या इस अर्थ में सबसे बड़ा आर्किमेडियन क्षेत्र बनाती है कि हर दूसरे आर्किमेडियन क्षेत्र का एक उप -क्षेत्र है ।इस प्रकार इस अर्थ में पूरा है कि आगे कुछ भी नहीं जोड़ा जा सकता है, इसे अब एक आर्किमेडियन क्षेत्र नहीं बनाया जा सकता है।पूर्णता की यह भावना सबसे अधिक निकटता से वास्तविक संख्याओं से वास्तविक के निर्माण से संबंधित है, क्योंकि यह निर्माण एक उचित वर्ग के साथ शुरू होता है जिसमें प्रत्येक आदेशित क्षेत्र (सिरल) होते हैं और फिर इससे सबसे बड़ा आर्किमेडियन सबफील्ड(उपक्षेत्र) का चयन होता है।
उन्नत गुण
वास्तविक संख्याएं अनगिनत हैं, अर्थात प्राकृतिक संख्याओं की तुलना में अधिक वास्तविक संख्याएं हैं, भले ही दोनों समुच्चय अनंत हैं। वास्तव में, वास्तविक संख्याओ की कार्डिनलिटी प्राकृतिक संख्याओं के सबसेट (यानी पावर सेट) के सेट के बराबर होती है, और कैंटर के विकर्ण तर्क में कहा गया है कि बाद का सेट का कार्डिनलिटी कि कार्डिनलिटी से सख्ती से अधिक है।चूंकि बीजगणितीय संख्याओं का समुच्चय गणनीय है, इसलिए लगभग सभी वास्तविक संख्याएँ प्रागनुभविक संख्या हैं। पूर्णांकों और वास्तविकों के बीच सख्ती से कार्डिनैलिटी के साथ वास्तविकताओं के एक सबसेट की गैर-अस्तित्व को सातत्य परिकल्पना के रूप में जाना जाता है। सातत्य परिकल्पना को न तो सिद्ध किया जा सकता है और न ही अस्वीकृत; यह सेट सिद्धांत के स्वयंसिद्धों से स्वतंत्र है।
एक टोपोलॉजिकल स्पेस के रूप में, वास्तविक संख्याएं अलग -अलग हैं।ऐसा इसलिए है क्योंकि परिमेय का सेट, जो कि गिनती योग्य है, वास्तविक संख्या में सघन है।वास्तविक संख्या में अपरिमेय संख्या भी सघन होती है, हालांकि वे अनगिनत हैं और वास्तविक के समान कार्डिनलिटी हैं।
वास्तविक संख्याएं एक मीट्रिक स्थान बनाती हैं: x और y के बीच की दूरी को निरपेक्ष मान |x - y| के रूप में परिभाषित किया जाता है। पूरी तरह से व्यवस्थित सेट होने के कारण, वे एक ऑर्डर टोपोलॉजी का गुण भी रखते हैं, मीट्रिक से उत्पन्न होने वाली टोपोलॉजी और ऑर्डर से उत्पन्न होने वाली एक समान है, लेकिन टोपोलॉजी के लिए अलग-अलग प्रस्तुतियाँ-ऑर्डर टोपोलॉजी में ऑर्डर किए गए अंतराल के रूप में, मीट्रिक टोपोलॉजी में एप्सिलॉन-बॉल्स के रूप में। डेडेकाइंड कट निर्माण आदेश टोपोलॉजी प्रस्तुति का उपयोग करता है, जबकि कॉची अनुक्रम निर्माण मीट्रिक टोपोलॉजी प्रस्तुति का उपयोग करता है। वास्तविक एक अनुबंध योग्य (इसलिए जुड़ा हुआ है और बस जुड़ा हुआ है), हॉसडॉर्फ आयाम 1 के अलग -अलग और पूर्ण मीट्रिक स्थान बनाते हैं।वास्तविक संख्या स्थानीय रूप से कॉम्पैक्ट हैं लेकिन कॉम्पैक्ट नहीं हैं। विभिन्न गुण हैं जो विशिष्ट रूप से उन्हें निर्दिष्ट करते हैं;उदाहरण के लिए, सभी अनबाउंडेड, कनेक्टेड, और वियोज्य ऑर्डर टॉपोलॉजीज़ आवश्यक रूप से रियल के लिए होमोमोर्फिक हैं।
प्रत्येक गैर -ऋणात्मक वास्तविक संख्या में एक वर्गमूल में होता है, हालांकि कोई ऋणात्मक संख्या नहीं होती है। इससे पता चलता है कि पर ऑर्डर इसकी बीजीय संरचना द्वारा निर्धारित किया जाता है। साथ ही, विषम अंश का प्रत्येक बहुपद कम से कम एक वास्तविक मूल को स्वीकार करता है। ये दो गुण को वास्तविक बंद क्षेत्र का प्रमुख उदाहरण बनाते हैं। यह साबित करना बीजगणित के मौलिक प्रमेय के एक प्रमाण का पहला भाग है।
रियल एक विहित उपाय, लेबसग्यू माप ले जाता है, जो कि एक टोपोलॉजिकल समूह के रूप में उनकी संरचना पर HAAR (हार) उपाय है, जैसे कि यूनिट अंतराल [0; 1] में माप 1 है। वास्तविक संख्याओं के सेट मौजूद हैं जो कि लेबेसग्यू नहीं हैं, जैसे विटाली सेट।
वास्तविकताओं का सर्वोच्च स्वयंसिद्ध वास्तविक के सबसेट को संदर्भित करता है और इसलिए यह एक दूसरे क्रम का तार्किक कथन है। अकेले पहले-क्रम के तर्क के साथ वास्तविकों को चिह्नित करना संभव नहीं है: लोवेनहेम-स्कोलम प्रमेय का अर्थ है कि वास्तविक संख्याओं के एक गिनती योग्य घने उपसमूह मौजूद हैं जो पहले-क्रम के तर्क में उसी वाक्य को संतुष्ट करते हैं जैसे कि वास्तविक संख्या में स्वयं।हाइपरल नंबरों का सेट उसी पहले क्रम के वाक्यों को संतुष्ट करता है । आदेशित फ़ील्ड जो के समान प्रथम-क्रम के वाक्यों को संतुष्ट करते हैं, उन्हें के गैर-मानक मॉडल कहा जाता है। यही कारण है कि गैर -मानक विश्लेषण काम करता है, कुछ गैर-मानक मॉडल में प्रथम-क्रम के बयान को साबित करके (जो इसे साबित करने से आसान हो सकता है ), हम जानते हैं कि वही कथन के लिए भी सत्य होना चाहिए।
वास्तविक संख्याओं का क्षेत्र , परिमेय संख्याओं के क्षेत्र का एक विस्तार क्षेत्र है और इसलिए एक पर एक वेक्टर स्पेस के रूप में देखा जा सकता है। Zermelo -Fraenkel (ज़र्मेलो-फ्रैंकेल) सेट सिद्धांत पसंद के स्वयंसिद्ध के साथ यह सिद्धांत इस वेक्टर स्थान के आधार के अस्तित्व की गारंटी देता है: वास्तविक संख्याओं का एक सेट B मौजूद है जैसे कि प्रत्येक वास्तविक संख्या को विशिष्ट रूप से इस सेट के तत्वों के एक परिमित रैखिक संयोजन के रूप में लिखा जा सकता है, का उपयोग करके केवल परिमेय गुणांक, और ऐसा कि B का कोई भी तत्व दूसरों का परिमेय रैखिक संयोजन नहीं है। हालांकि, यह अस्तित्व प्रमेय विशुद्ध रूप से सैद्धांतिक है, क्योंकि इस तरह के आधार को कभी भी स्पष्ट रूप से वर्णित नहीं किया गया है।
अच्छी तरह से आदेश देने वाले प्रमेय का अर्थ है कि वास्तविक संख्या को अच्छी तरह से आदेश दिया जा सकता है यदि पसंद के स्वयंसिद्ध को माना जाता है: वहाँ कुल आदेश मौजूद है पर, उस गुण के साथ जो हर गैर-खाली सबसेट के साथ क्रम में सबसे कम तत्व है।(वास्तविक संख्याओं का मानक क्रम एक सुव्यवस्थित क्रम नहीं है, उदाहरण के लिए एक खुले अंतराल में इस क्रम में कम से कम तत्व नहीं होता है।) फिर से, इस तरह के एक सुव्यवस्थित का अस्तित्व विशुद्ध रूप से सैद्धांतिक है, क्योंकि यह स्पष्ट रूप से वर्णित नहीं किया गया है। यदि ZF के अभिगृहीतों के अतिरिक्त V=L को मान लिया जाए, तो वास्तविक संख्याओं के एक सुव्यवस्थित क्रम को एक सूत्र द्वारा स्पष्ट रूप से परिभाषित किया जा सकता है।[17]
एक वास्तविक संख्या या तो गणना योग्य या अगणनीय हो सकती है; या तो एल्गोरिदमिक रूप से यादृच्छिक या नहीं, और या तो अंकगणितीय रूप से यादृच्छिक या नहीं।
अन्य क्षेत्रों के लिए आवेदन और कनेक्शन
वास्तविक संख्या और तर्क
वास्तविक संख्याओं को अक्सर सेट सिद्धांत के ज़र्मेलो-फ्रेंकेल स्वयंसिद्धता का उपयोग करके औपचारिक रूप दिया जाता है, लेकिन कुछ गणितज्ञ गणित की अन्य तार्किक नींव के साथ वास्तविक संख्याओं का अध्ययन करते हैं। विशेष रूप से, वास्तविक संख्याओं का अध्ययन रिवर्स गणित और रचनात्मक गणित में भी किया जाता है।[18]
एडविन हेविट, अब्राहम रॉबिन्सन और अन्य द्वारा विकसित किए गए हाइपरल नंबरों ने (असीम रूप से छोटा लेकिन गैर-शून्य) और अनंत संख्याओं को पेश करके वास्तविक संख्याओं के सेट का विस्तार किया, जिससे लीबनिज़, यूलर, कॉची और अन्य के मूल अंतर्ज्ञान के करीब एक तरह से अतिसूक्ष्म कलन के निर्माण की अनुमति मिलती है।
एडवर्ड नेल्सन के आंतरिक सेट सिद्धांत ने ज़रमेलो -फ्रेनकेल सेट सिद्धांत को समृद्ध किया, जो एक अनियंत्रित मानक का परिचय देकर वाक्यात्मक रूप से है। इस दृष्टिकोण में, इन्फिनिटिमल वास्तविक संख्याओं के सेट के (गैर-मानक) तत्व हैं (इसके बजाय एक विस्तार के तत्व होने के कारण, जैसा कि रॉबिन्सन के सिद्धांत में)।
सातत्य परिकल्पना का मानना है कि वास्तविक संख्याओं के सेट की कार्डिनलिटी है ;यानी सबसे छोटे अनंत कार्डिनल नंबर के बाद , पूर्णांक की कार्डिनलिटी। पॉल कोहेन ने 1963 में साबित किया कि यह सेट सिद्धांत के अन्य स्वयंसिद्धों से स्वतंत्र एक स्वयंसिद्ध है, यह है: कोई या तो निरंतरता परिकल्पना या इसके नकारात्मकता को सेट सिद्धांत के स्वयंसिद्ध के रूप में, विरोधाभास के बिना चुन सकता है।
भौतिकी में
भौतिक विज्ञानों में, अधिकांश भौतिक स्थिरांक जैसे कि सार्वभौमिक गुरुत्वाकर्षण स्थिरांक, और भौतिक चर जैसे स्थिति, द्रव्यमान, गति और विद्युत आवेश, वास्तविक संख्याओं का उपयोग करके बनाए जाते हैं। वास्तव में, शास्त्रीय यांत्रिकी, विद्युत चुंबकत्व, क्वांटम यांत्रिकी, सामान्य सापेक्षता और मानक मॉडल जैसे मौलिक भौतिक सिद्धांत गणितीय संरचनाओं का उपयोग करके वर्णित हैं, आमतौर पर स्मूथ मानिफोर्ल्डस या हिल्बर्ट रिक्त स्थान, जो वास्तविक संख्याओं पर आधारित होते हैं, हालांकि भौतिक मात्रा के वास्तविक परिमित सटीकता और सटीकता के हैं।
भौतिकविदों ने कभी-कभी सुझाव दिया है कि एक अधिक मौलिक सिद्धांत वास्तविक संख्याओं को उन मात्राओं से बदल देगा जो एक सातत्य नहीं बनाते हैं, लेकिन ऐसे प्रस्ताव अटकल ही रहते हैं।[19]
गणना में
कुछ अपवादों के साथ, अधिकांश कैलकुलेटर वास्तविक संख्या पर काम नहीं करते हैं। इसके बजाय, वे परिमित-सटीक अनुमानों के साथ काम करते हैं जिन्हें फ़्लोटिंग-पॉइंट नंबर कहा जाता है। वास्तव में, अधिकांश वैज्ञानिक गणना फ़्लोटिंग-पॉइंट अंकगणित का उपयोग करती है। वास्तविक संख्याएँ अंकगणित के सामान्य नियमों को पूरा करती हैं, लेकिन फ्लोटिंग-पॉइंट नंबर के नियमो का नहीं।
कंप्यूटर असीमित वास्तविक संख्याओं को असीमित रूप से कई अंकों के साथ सीधे स्टोर नहीं कर सकता है। प्राप्त करने योग्य परिशुद्धता किसी संख्या को संग्रहीत करने के लिए आवंटित बिट्स की संख्या से सीमित होती है, चाहे फ्लोटिंग-पॉइंट नंबर या अरबिंतेरे-प्रेसिशन अंकगणित के रूप में। हालांकि, कंप्यूटर बीजगणित प्रणाली उनके लिए सूत्रों में हेरफेर करके बिल्कुल अपरिमेय संख्याओ पर काम कर सकती है (जैसे या ) उनके परिमेय या दशमलव सन्निकटन के बजाय।[20] यह निर्धारित करना सामान्य रूप से संभव नहीं है कि क्या दो ऐसे व्यंजक समान हैं (निरंतर समस्या)।
एक वास्तविक संख्या को गणना योग्य कहा जाता है यदि कोई एल्गोरिथम मौजूद है जो इसके अंक उत्पन्न करता है।क्योंकि बहुत सारे एल्गोरिदम हैं,[21] लेकिन एक अनगिनत संख्या वास्तविक, लगभग सभी वास्तविक संख्याएँ गणना योग्य होने में विफल रहती हैं। इसके अलावा, दो गणना योग्य संख्याओं की समानता एक अनिर्वचनीय समस्या है। कुछ रचनावादी केवल उन्हीं वास्तविकताओं के अस्तित्व को स्वीकार करते हैं जो गणना योग्य हैं। निश्चित संख्याओं का समूह व्यापक है, लेकिन फिर भी केवल गणनीय है।
सेट सिद्धांत में वास्तविकता
सेट सिद्धांत में, विशेष रूप से वर्णनात्मक समुच्चय सिद्धांत, बेयर स्पेस का उपयोग वास्तविक संख्याओं के लिए एक सरोगेट के रूप में किया जाता है क्योंकि बाद वाले में कुछ टोपोलॉजिकल गुण (कनेक्टिविटी) होते हैं जो एक तकनीकी असुविधा होती हैं। बेयर स्पेस के तत्वों को वास्तविक कहा जाता है।
शब्दावली और संकेतन
गणितज्ञ सभी वास्तविक संख्याओं के सेट का प्रतिनिधित्व करने के लिए मुख्य रूप से प्रतीक R का उपयोग करते हैं। वैकल्पिक रूप से, इसका उपयोग द्वारा किया जा सकता है, ब्लैकबोर्ड बोल्ड में अक्षर R, जिसे यूनिकोड (और HTML) में एन्कोड किया जा सकता है U+211D ℝ (ℝ, ℝ)।चूंकि यह सेट स्वाभाविक रूप से एक क्षेत्र की संरचना के साथ संपन्न होता है, इसलिए वास्तविक संख्याओं के अभिव्यक्ति क्षेत्र का उपयोग अक्सर किया जाता है जब इसके बीजगणितीय गुण विचाराधीन होते हैं।
धनात्मक वास्तविक संख्या और नकारात्मक वास्तविक संख्याओं के सेट अक्सर नोट किए जाते हैं तथा ,[22] क्रमश; तथा उपयोग भी किया जाता है।[23] गैर-नकारात्मक वास्तविक संख्याओं पर ध्यान दिया जा सकता है लेकिन एक अक्सर इस सेट को नोट किया जाता है [22] फ्रांसीसी गणित में, धनात्मक वास्तविक संख्या और नकारात्मक वास्तविक संख्या में आमतौर पर शून्य शामिल है, और ये सेट क्रमशः नोट किए गए हैं तथा [23] इस समझ में, शून्य के बिना संबंधित सेटों को कड़ाई से धनात्मक वास्तविक संख्या और सख्ती से नकारात्मक वास्तविक संख्या कहा जाता है, और नोट किया जाता है तथा [23]
संकेतन के तत्वों के n-tuples के सेट को संदर्भित करता है (वास्तविक समन्वय स्थान), जिसे nप्रतियों के कार्टेशियन उत्पाद से पहचाना जा सकता है के सन्दर्भ में। वास्तविक संख्याएँ, जिन्हें अक्सर आयाम n का निर्देशांक स्थान कहा जाता है; जैसे ही कार्टेशियन समन्वय प्रणाली को बाद में चुना गया है, इस स्थान की पहचान n-आयामी यूक्लिडियन स्पेस में की जा सकती है। इस पहचान में, यूक्लिडियन स्पेस के एक बिंदु को उसके कार्टेशियन निर्देशांक के टपल के साथ पहचाना जाता है।
गणित में, वास्तविक संख्याओं का उपयोग एक विशेषण के रूप में किया जाता है, जिसका अर्थ है कि अंतर्निहित क्षेत्र वास्तविक संख्याओं (या वास्तविक क्षेत्र) का क्षेत्र है ।उदाहरण के लिए, वास्तविक मैट्रिक्स, वास्तविक बहुपद और वास्तविक लाई(lie )बीजगणित।इस शब्द का उपयोग संज्ञा के रूप में भी किया जाता है, जिसका अर्थ है एक वास्तविक संख्या (जैसा कि सभी वास्तविकों के सेट में)।
सामान्यीकरण और एक्सटेंशन
वास्तविक संख्याओं को सामान्यीकृत और कई अलग -अलग दिशाओं में बढ़ाया जा सकता है:
- सम्मिश्र संख्याओं में सभी बहुपद समीकरणों के समाधान होते हैं और इसलिए वास्तविक संख्याओं के विपरीत एक बीजगणितीय रूप से बंद क्षेत्र हैं। हालांकि, सम्मिश्र संख्या एक आदेशित क्षेत्र नहीं हैं।
- सूक्ष्म रूप से विस्तारित वास्तविक संख्या प्रणाली दो तत्वों को जोड़ती है +∞ तथा −∞। यह एक कॉम्पैक्ट स्थान है। यह अब एक क्षेत्र नहीं है, या यहां तक कि एक योजक समूह भी है, लेकिन इसमें अभी भी कुल क्रम है, इसके अलावा, यह एक पूर्ण लेटिस है।
- वास्तविक प्रक्षेप्य रेखा केवल एक मान जोड़ती है ∞। यह एक कॉम्पैक्ट स्थान भी है। फिर, यह अब एक क्षेत्र नहीं है, या यहां तक कि एक योगात्मक समूह भी है। हालांकि, यह शून्य द्वारा एक गैर-शून्य तत्व के विभाजन की अनुमति देता है।इसमें एक पृथक्करण संबंध द्वारा वर्णित चक्रीय क्रम है।
- लंबी वास्तविक रेखा एक साथ पेस्ट करती है ℵ1* + ℵ1 वास्तविक लाइन के साथ -साथ एक बिंदु (यहाँ) की प्रतियां ℵ1* के उलट आदेश को दर्शाता है ℵ1) एक आदेशित सेट बनाने के लिए जो स्थानीय रूप से वास्तविक संख्याओं के समान है, लेकिन किसी तरह लंबे समय तक, उदाहरण के लिए, एक आदेश-संरक्षण एम्बेडिंग है ℵ1 लंबी वास्तविक रेखा में लेकिन वास्तविक संख्या में नहीं।लंबी वास्तविक रेखा सबसे बड़ी क्रमबद्ध सेट है जो पूर्ण और स्थानीय रूप से आर्किमेडियन है। पिछले दो उदाहरणों के साथ, यह सेट अब एक फ़ील्ड या एडिटिव समूह नहीं है।
- वास्तविक का विस्तार करने वाले आदेशित क्षेत्र हाइपरियल नंबर और वास्तविक नंबर हैं, इन दोनों में अतिसूक्ष्म और अपरिमित रूप से बड़ी संख्याएँ हैं और इसलिए ये गैर-आर्किमिडीयन क्रमित क्षेत्र हैं।
- एक हिल्बर्ट स्पेस (उदाहरण के लिए, सेल्फ-एडजॉइंट स्क्वायर कॉम्प्लेक्स मैट्रिसेस) पर सेल्फ-एडजॉइंट ऑपरेटर कई मामलों में रियल को सामान्य करते हैं: उन्हें ऑर्डर किया जा सकता है (हालांकि पूरी तरह से ऑर्डर नहीं किया गया है), वे पूर्ण हैं, उनके सभी आइजनवैल्यू वास्तविक हैं और वे एक वास्तविक साहचर्य बीजगणित बनाते हैं। सकारात्मक-निश्चित ऑपरेटर सकारात्मक वास्तविकताओं के अनुरूप होते हैं और सामान्य ऑपरेटर जटिल संख्याओं के अनुरूप होते हैं।
यह भी देखें
- वास्तविक संख्याओं की पूर्णता
- निरंतर अंश
- निश्चित वास्तविक संख्याएँ
- सकारात्मक वास्तविक संख्या
- वास्तविक विश्लेषण
टिप्पणियाँ
- ↑ More precisely, given two complete totally ordered fields, there is a unique isomorphism between them. This implies that the identity is the unique field automorphism of the reals that is compatible with the ordering.
संदर्भ
उद्धरण
- ↑ "real number | Definition, Examples, & Facts | Britannica". www.britannica.com.
- ↑ "Real number | mathematics". Encyclopedia Britannica (in English). Retrieved 2020-08-11.
- ↑ Weisstein, Eric W. "Real Number". mathworld.wolfram.com. Retrieved 2020-08-11.
- ↑ Oxford English Dictionary, 3rd edition, 2008, s.v. 'real', n.2, B.4: "Mathematics. A real number. Usually in plural."
- ↑ "Real number". Oxford Reference. 2011-08-03.
- ↑ Koellner, Peter (June 16, 2019). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University – via Stanford Encyclopedia of Philosophy.
- ↑ T. K. Puttaswamy, "The Accomplishments of Ancient Indian Mathematicians", pp. 410–11. In: Selin, Helaine; D'Ambrosio, Ubiratan, eds. (2000), Mathematics Across Cultures: The History of Non-western Mathematics, Springer, ISBN 978-1-4020-0260-1.
- ↑ O'Connor, John J.; Robertson, Edmund F. (1999), "Arabic mathematics: forgotten brilliance?", MacTutor History of Mathematics archive, University of St Andrews
- ↑ Matvievskaya, Galina (1987), "The Theory of Quadratic Irrationals in Medieval Oriental Mathematics", Annals of the New York Academy of Sciences, 500 (1): 253–77 [254], Bibcode:1987NYASA.500..253M, doi:10.1111/j.1749-6632.1987.tb37206.x, S2CID 121416910
- ↑ Jacques Sesiano, "Islamic mathematics", p. 148, in Selin, Helaine; D'Ambrosio, Ubiratan (2000), Mathematics Across Cultures: The History of Non-western Mathematics, Springer, ISBN 978-1-4020-0260-1
- ↑ Beckmann, Petr (1993), A History of Pi, Dorset Classic Reprints, Barnes & Noble Publishing, p. 170, ISBN 978-0-88029-418-8, archived from the original on 2016-05-04, retrieved 2015-11-15.
- ↑ Arndt, Jörg; Haenel, Christoph (2001), Pi Unleashed, Springer, p. 192, ISBN 978-3-540-66572-4, archived from the original on 2016-05-21, retrieved 2015-11-15.
- ↑ Dunham, William (2015), The Calculus Gallery: Masterpieces from Newton to Lebesgue, Princeton University Press, p. 127, ISBN 978-1-4008-6679-3, archived from the original on 2015-05-14, retrieved 2015-02-17,
Cantor found a remarkable shortcut to reach Liouville's conclusion with a fraction of the work
- ↑ Hurwitz, Adolf (1893). "Beweis der Transendenz der Zahl e". Mathematische Annalen (43): 134–35.
- ↑ Gordan, Paul (1893). "Transcendenz von e und π". Mathematische Annalen. 43 (2–3): 222–224. doi:10.1007/bf01443647. S2CID 123203471.
- ↑ "Lecture #1" (PDF). 18.095 Lecture Series in Mathematics. 2015-01-05.
- ↑ Moschovakis, Yiannis N. (1980), "Descriptive set theory", Studies in Logic and the Foundations of Mathematics, Amsterdam; New York: North-Holland Publishing Co., vol. 100, pp. xii, 637, ISBN 978-0-444-85305-9, chapter V.
- ↑ Bishop, Errett; Bridges, Douglas (1985), Constructive analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 279, Berlin, New York: Springer-Verlag, ISBN 978-3-540-15066-4, chapter 2.
- ↑ Wheeler, John Archibald (1986). "Hermann Weyl and the Unity of Knowledge: In the linkage of four mysteries—the "how come" of existence, time, the mathematical continuum, and the discontinuous yes-or-no of quantum physics—may lie the key to deep new insight". American Scientist. 74 (4): 366–75. Bibcode:1986AmSci..74..366W. JSTOR 27854250.
Bengtsson, Ingemar (2017). "The Number Behind the Simplest SIC-POVM". Foundations of Physics. 47 (8): 1031–41. arXiv:1611.09087. Bibcode:2017FoPh...47.1031B. doi:10.1007/s10701-017-0078-3. S2CID 118954904. - ↑ Cohen, Joel S. (2002), Computer algebra and symbolic computation: elementary algorithms, vol. 1, A K Peters, p. 32, ISBN 978-1-56881-158-1
- ↑ Hein, James L. (2010), "14.1.1", Discrete Structures, Logic, and Computability (3 ed.), Sudbury, MA: Jones and Bartlett Publishers, ISBN 97-80763772062, archived from the original on 2016-06-17, retrieved 2015-11-15
- ↑ 22.0 22.1 Schumacher 1996, pp. 114–15
- ↑ 23.0 23.1 23.2 École Normale Supérieure of Paris, "Nombres réels" ("Real numbers") Archived 2014-05-08 at the Wayback Machine, p. 6
सूत्रों का कहना है
- Cantor, Georg (1874). "Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen". Journal für die Reine und Angewandte Mathematik, volume 77, pp. 258–62.
- Feferman, Solomon (1989). The Number Systems: Foundations of Algebra and Analysis, AMS Chelsea, ISBN 0-8218-2915-7.
- Katz, Robert (1964). Axiomatic Analysis, D.C. Heath and Company.
- Landau, Edmund (2001). Foundations of Analysis. American Mathematical Society,ISBN 0-8218-2693-X.
- Howie, John M. Real Analysis. Springer, 2005, ISBN 1-85233-314-6.
- Schumacher, Carol (1996), ChapterZero / Fundamental Notions of Abstract Mathematics BV, Addison-Wesley, ISBN 978-0-201-82653-1.
बाहरी संबंध
- "Real number", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
] ]