मीट्रिक टेंसर: Difference between revisions
Line 368: | Line 368: | ||
== एक मीट्रिक की आंतरिक परिभाषाएँ == | == एक मीट्रिक की आंतरिक परिभाषाएँ == | ||
[[ फाइबर बंडल |फाइबर बंडलों]] और [[ वेक्टर बंडल |वेक्टर बंडलों]] की भाषा का उपयोग करके एक मीट्रिक की धारणा को आंतरिक रूप से परिभाषित किया जा सकता है। इन शब्दों में, मीट्रिक टेंसर एक फ़ंक्शन है | |||
{{NumBlk|:|<math>g : \mathrm{T}M\times_M \mathrm{T}M\to \mathbf{R}</math>|{{EquationRef|10}}}} | {{NumBlk|:|<math>g : \mathrm{T}M\times_M \mathrm{T}M\to \mathbf{R}</math>|{{EquationRef|10}}}} | ||
के [[ स्पर्शरेखा ]] बंडल के [[ फाइबर उत्पाद ]] से | {{mvar|M}} के [[ स्पर्शरेखा |स्पर्शरेखा]] बंडल के [[ फाइबर उत्पाद |फाइबर उत्पाद]] से स्वयं {{math|'''R'''}} के साथ जैसे कि प्रत्येक फाइबर के लिए {{mvar|g}} का प्रतिबंध एक गैर-विकृत द्विरेखीय मानचित्रण है | ||
:<math>g_p : \mathrm{T}_pM\times \mathrm{T}_pM \to \mathbf{R}.</math> | :<math>g_p : \mathrm{T}_pM\times \mathrm{T}_pM \to \mathbf{R}.</math> | ||
ब्याज के मामले के आधार पर मैपिंग ({{EquationNote|10}}) निरंतर, और अक्सर लगातार अलग-अलग, चिकनी, या [[ वास्तविक विश्लेषणात्मक |वास्तविक विश्लेषणात्मक]] होना आवश्यक है, और {{mvar|M}} ऐसी संरचना का समर्थन कर सकता है या नहीं। | |||
=== मीट्रिक एक बंडल के एक खंड के रूप में === | === मीट्रिक एक बंडल के एक खंड के रूप में === | ||
टेंसर उत्पाद | टेंसर उत्पाद की सार्वभौमिक संपत्ति के द्वारा, कोई भी बिलिनियर मैपिंग ({{EquationNote|10}}) [[ प्राकृतिक परिवर्तन |स्वाभाविक]] रूप से {{math|T''M''}} के [[ टेंसर उत्पाद बंडल |टेंसर उत्पाद बंडल]] के दोहरे के एक सेक्शन {{math|''g''<sub>⊗</sub>}} को जन्म देती है | ||
:<math>g_\otimes \in \Gamma\left((\mathrm{T}M \otimes \mathrm{T}M)^*\right).</math> | :<math>g_\otimes \in \Gamma\left((\mathrm{T}M \otimes \mathrm{T}M)^*\right).</math> | ||
खंड {{math|''g''<sub>⊗</sub>}} को {{math|T''M'' ⊗ T''M''}} के सरल तत्वों पर परिभाषित किया गया है | |||
:<math>g_\otimes(v \otimes w) = g(v, w)</math> | :<math>g_\otimes(v \otimes w) = g(v, w)</math> | ||
और के | और सरल तत्वों के रैखिक संयोजनों के रैखिक रूप से विस्तार करके {{math|T''M'' ⊗ T''M''}} के मनमाने तत्वों पर परिभाषित किया गया है। मूल द्विरेखीय रूप {{mvar|g}} सममित है यदि और केवल यदि | ||
:<math>g_\otimes \circ \tau = g_\otimes</math> | :<math>g_\otimes \circ \tau = g_\otimes</math> | ||
जहाँ | |||
:<math>\tau : \mathrm{T}M \otimes \mathrm{T}M \stackrel{\cong}{\to} TM \otimes TM</math> | :<math>\tau : \mathrm{T}M \otimes \mathrm{T}M \stackrel{\cong}{\to} TM \otimes TM</math> | ||
ब्रेडिंग नक्शा है। | |||
चूँकि {{mvar|M}} परिमित-आयामी है, एक प्राकृतिक आइसोमोर्फिज्म है | |||
:<math>(\mathrm{T}M \otimes \mathrm{T}M)^* \cong \mathrm{T}^*M \otimes \mathrm{T}^*M,</math> | :<math>(\mathrm{T}M \otimes \mathrm{T}M)^* \cong \mathrm{T}^*M \otimes \mathrm{T}^*M,</math> | ||
ताकि {{math|''g''<sub>⊗</sub>}} बंडल | ताकि {{math|''g''<sub>⊗</sub>}} को बंडल {{math|T*''M'' ⊗ T*''M''}} के स्वयं के साथ [[ कोटगेंट बंडल |कोटगेंट बंडल]] {{math|T*''M''}} के एक भाग के रूप में भी माना जाए। चूँकि {{mvar|g}} बिलिनियर मैपिंग के रूप में सममित है, इसलिए यह अनुसरण करता है कि {{math|''g''<sub>⊗</sub>}} एक सममित टेन्सर है। | ||
=== एक वेक्टर बंडल में मीट्रिक === | === एक वेक्टर बंडल में मीट्रिक === | ||
अधिक सामान्यतः, एक सदिश बंडल में एक मीट्रिक के बारे में बात कर सकते हैं। यदि {{mvar|E}} कई गुना {{mvar|M}} पर एक सदिश बंडल है, तो एक मीट्रिक एक मानचित्रण है | |||
:<math>g : E\times_M E\to \mathbf{R}</math> | :<math>g : E\times_M E\to \mathbf{R}</math> | ||
{{mvar|E}} से {{math|'''R'''}} के फाइबर उत्पाद से जो प्रत्येक फाइबर में बिलिनियर है: | |||
:<math>g_p : E_p \times E_p\to \mathbf{R}.</math> | :<math>g_p : E_p \times E_p\to \mathbf{R}.</math> | ||
उपरोक्त के रूप में द्वैत का उपयोग करते हुए, एक मीट्रिक को अक्सर [[ टेंसर उत्पाद |टेंसर उत्पाद]] बंडल {{math|''E''* ⊗ ''E''*}} के एक भाग के साथ पहचाना जाता है। (मीट्रिक (वेक्टर बंडल) देखें।) | |||
=== स्पर्शरेखा -कोटैंगेंट आइसोमोर्फिज्म === | === स्पर्शरेखा -कोटैंगेंट आइसोमोर्फिज्म === | ||
{{see also|Musical isomorphism}} | {{see also|Musical isomorphism}} | ||
मीट्रिक | मीट्रिक टेन्सर, स्पर्शरेखा बंडल से कोटैंजेंट बंडल तक एक [[ संगीतमय आइसोमोर्फिज्म |प्राकृतिक समरूपता]] प्रदान करता है, जिसे कभी-कभी संगीतमय समरूपता कहा जाता है।<ref>For the terminology "musical isomorphism", see {{harvtxt|Gallot|Hulin|Lafontaine|2004|p=75}}. See also {{harvtxt|Lee|1997|pp=27–29}}</ref> यह तुल्याकारिता प्रत्येक स्पर्शरेखा सदिश {{math|''X''<sub>''p''</sub> ∈ T<sub>''p''</sub>''M''}} के लिए सेटिंग द्वारा प्राप्त की जाती है, | ||
:<math>S_gX_p\, \stackrel\text{def}{=}\, g(X_p, -),</math> | :<math>S_gX_p\, \stackrel\text{def}{=}\, g(X_p, -),</math> | ||
{{math|T<sub>''p''</sub>''M''}} पर रैखिक कार्यात्मक जो {{mvar|p}} से {{math|''g''<sub>''p''</sub>(''X''<sub>''p''</sub>,''Y''<sub>''p''</sub>)}} पर एक स्पर्शरेखा वेक्टर {{math|''Y''<sub>''p''</sub>}} भेजता है। अर्थात्, {{math|T<sub>''p''</sub>''M''}} और इसके दोहरे स्थान {{math|T{{su|b=''p''|p=∗}}''M''}} के बीच {{math|[−, −]}} की जोड़ी के संदर्भ में | |||
:<math>[S_gX_p, Y_p] = g_p(X_p, Y_p)</math> | :<math>[S_gX_p, Y_p] = g_p(X_p, Y_p)</math> | ||
सभी स्पर्शरेखा वैक्टर | सभी स्पर्शरेखा वैक्टर {{math|''X''<sub>''p''</sub>}} और {{math|''Y''<sub>''p''</sub>}} के लिए। मैपिंग {{math|''S''<sub>''g''</sub>}} {{math|T<sub>''p''</sub>''M''}} से {{math|T{{su|b=''p''|p=∗}}''M''}} तक एक रैखिक परिवर्तन है। यह गैर-अपकर्ष की परिभाषा से अनुसरण करता है कि {{math|''S''<sub>''g''</sub>}} का कर्नेल शून्य तक कम हो जाता है, और इसलिए रैंक-शून्यता प्रमेय द्वारा, {{math|''S''<sub>''g''</sub>}} एक [[ रैखिक समरूपता |रैखिक समरूपता]] है। इसके अलावा, {{math|''S''<sub>''g''</sub>}} इस अर्थ में एक सममित रैखिक परिवर्तन है | ||
:<math>[S_gX_p, Y_p] = [S_gY_p, X_p] </math> | :<math>[S_gX_p, Y_p] = [S_gY_p, X_p] </math> | ||
सभी स्पर्शरेखा वैक्टर | सभी स्पर्शरेखा वैक्टर {{math|''X''<sub>''p''</sub>}} और {{math|''Y''<sub>''p''</sub>}} के लिए। | ||
इसके विपरीत, | इसके विपरीत, कोई रैखिक आइसोमोर्फिज्म {{math|''S'' : T<sub>''p''</sub>''M'' → T{{su|b=''p''|p=∗}}''M''}} के माध्यम से {{math|T<sub>''p''</sub>''M''}} पर एक गैर-पतित द्विरेखीय रूप को परिभाषित करता है | ||
:<math>g_S(X_p, Y_p) = [SX_p, Y_p]\,.</math> | :<math>g_S(X_p, Y_p) = [SX_p, Y_p]\,.</math> | ||
यह | यह द्विरेखीय रूप सममित है यदि और केवल यदि {{mvar|S}} सममित है। इस प्रकार {{math|T<sub>''p''</sub>''M''}} पर सममित द्विरेखीय रूपों और {{math|T<sub>''p''</sub>''M''}} के सममित रेखीय समरूपता के बीच दोहरे {{math|T{{su|b=''p''|p=∗}}''M''}} के बीच एक प्राकृतिक एक-से-एक पत्राचार होता है। | ||
जैसा {{mvar|p}} | जैसा कि {{mvar|p}} {{mvar|M}} पर भिन्न होता है, {{math|''S''<sub>''g''</sub>}} टेंगेंट बंडल के टेंगेंट बंडल के [[ वेक्टर बंडल आकृति विज्ञान |वेक्टर बंडल]] आइसोमोर्फिज्म के बंडल {{math|Hom(T''M'', T*''M'')}} के एक खंड को परिभाषित करता है। इस खंड में {{mvar|g}} के समान ही चिकनाई है: यह {{mvar|g}} के अनुसार निरंतर, भिन्न, चिकनी या वास्तविक-विश्लेषणात्मक है। मैपिंग {{math|''S''<sub>''g''</sub>}}, जो {{mvar|M}} पर प्रत्येक वेक्टर फ़ील्ड को {{mvar|M}} पर एक कोवेक्टर फ़ील्ड से जोड़ता है, वेक्टर फ़ील्ड पर "इंडेक्स को कम करने" का एक सार फॉर्मूलेशन देता है। {{math|''S''<sub>''g''</sub>}} का व्युत्क्रम एक मानचित्रण {{math|T*''M'' → T''M''}} है, जो समान रूप से, एक कोवेक्टर क्षेत्र पर "सूचकांक बढ़ाने" का एक सार सूत्रीकरण देता है। | ||
व्युत्क्रम {{math|''S''{{su|b=''g''|p=−1}}}} एक रेखीय मानचित्रण को परिभाषित करता है | |||
:<math>S_g^{-1} : \mathrm{T}^*M \to \mathrm{T}M</math> | :<math>S_g^{-1} : \mathrm{T}^*M \to \mathrm{T}M</math> | ||
जो इस अर्थ में | जो इस अर्थ में व्युत्क्रमणीय और सममित है | ||
:<math>\left[S_g^{-1}\alpha, \beta\right] = \left[S_g^{-1}\beta, \alpha\right]</math> | :<math>\left[S_g^{-1}\alpha, \beta\right] = \left[S_g^{-1}\beta, \alpha\right]</math> | ||
सभी covectors | सभी covectors {{mvar|α}}, {{mvar|β}} के लिए। इस तरह के एक विलक्षण सममित मानचित्रण एक मानचित्र को ([[ टेन्सर-हेम एडजंक्शन |टेन्सर-हेम एडजंक्शन]] द्वारा) जन्म देता है | ||
:<math>\mathrm{T}^*M \otimes \mathrm{T}^*M \to \mathbf{R}</math> | :<math>\mathrm{T}^*M \otimes \mathrm{T}^*M \to \mathbf{R}</math> | ||
या टेंसर उत्पाद के एक | या डबल डुअल आइसोमोर्फिज्म द्वारा टेंसर उत्पाद के एक भाग के लिए | ||
:<math>\mathrm{T}M \otimes \mathrm{T}M.</math> | :<math>\mathrm{T}M \otimes \mathrm{T}M.</math> | ||
== चाप की लम्बाई और रेखा तत्व == | |||
मान लीजिए कि {{mvar|g}} {{mvar|M}} पर एक रिमेंनियन मीट्रिक है। एक स्थानीय समन्वय प्रणाली में {{math|''x''<sup>''i''</sup>}}, {{math|''i'' {{=}} 1, 2, …, ''n''}}, मीट्रिक टेन्सर एक [[ मैट्रिक्स (गणित) |मैट्रिक्स]] के रूप में प्रकट होता है, जिसे {{math|'''G'''}} द्वारा निरूपित किया जाता है, जिसकी प्रविष्टियाँ मीट्रिक टेन्सर के घटक {{math|''g''<sub>''ij''</sub>}} हैं समन्वय वेक्टर क्षेत्रों के सापेक्ष। | |||
मान लीजिए कि {{math|''γ''(''t'')}} {{mvar|M}} में एक {{math|''a'' ≤ ''t'' ≤ ''b''}} के लिए एक खंड-विभेदक पैरामीट्रिक वक्र है। वक्र की चाप लंबाई द्वारा परिभाषित किया गया है | |||
:<math>L = \int_a^b \sqrt{ \sum_{i,j=1}^n g_{ij}(\gamma(t)) \left(\frac{d}{dt}x^i \circ \gamma(t)\right) \left(\frac{d}{dt} x^j \circ \gamma(t)\right)}\,dt \,.</math> | :<math>L = \int_a^b \sqrt{ \sum_{i,j=1}^n g_{ij}(\gamma(t)) \left(\frac{d}{dt}x^i \circ \gamma(t)\right) \left(\frac{d}{dt} x^j \circ \gamma(t)\right)}\,dt \,.</math> | ||
इस ज्यामितीय अनुप्रयोग के संबंध में, द्विघात | इस ज्यामितीय अनुप्रयोग के संबंध में, द्विघात [[ विभेदक रूप |विभेदक रूप]] | ||
:<math>ds^2 = \sum_{i,j=1}^n g_{ij}(p) dx^i dx^j</math> | :<math>ds^2 = \sum_{i,j=1}^n g_{ij}(p) dx^i dx^j</math> | ||
मीट्रिक से जुड़ा पहला मौलिक रूप कहा जाता है, जबकि {{mvar|ds}} | मीट्रिक से जुड़ा पहला मौलिक रूप कहा जाता है, जबकि {{mvar|ds}} रेखा तत्व है। जब {{math|''ds''<sup>2</sup>}} को {{mvar|M}} में एक वक्र की छवि पर [[ पुलबैक (विभेदक ज्यामिति) |पुलबैक]] किया जाता है, तो यह चाप की लम्बाई के संबंध में अंतर के वर्ग का प्रतिनिधित्व करता है। | ||
छद्म-रीमैनियन मीट्रिक के लिए, उपरोक्त लंबाई सूत्र हमेशा परिभाषित नहीं होता है, क्योंकि वर्गमूल के अंतर्गत शब्द ऋणात्मक हो सकता है। हम आम तौर पर केवल एक वक्र की लंबाई को परिभाषित करते हैं जब वर्गमूल के तहत मात्रा हमेशा एक या दूसरे चिह्न की होती है। इस मामले में परिभाषित करें | |||
:<math>L = \int_a^b \sqrt{ \left|\sum_{i,j=1}^ng_{ij}(\gamma(t)) \left(\frac{d}{dt}x^i \circ \gamma(t)\right)\left(\frac{d}{dt}x^j \circ \gamma(t)\right)\right|}\,dt \, .</math> | :<math>L = \int_a^b \sqrt{ \left|\sum_{i,j=1}^ng_{ij}(\gamma(t)) \left(\frac{d}{dt}x^i \circ \gamma(t)\right)\left(\frac{d}{dt}x^j \circ \gamma(t)\right)\right|}\,dt \, .</math> | ||
ध्यान दें कि, जबकि ये सूत्र | ध्यान दें कि, जबकि ये सूत्र निर्देशांक व्यंजकों का उपयोग करते हैं, वे वास्तव में चुने गए निर्देशांकों से स्वतंत्र होते हैं; वे केवल मीट्रिक और उस वक्र पर निर्भर करते हैं जिसके साथ सूत्र एकीकृत है। | ||
=== ऊर्जा, परिवर्तनशील सिद्धांत और जियोडेसिक्स === | === ऊर्जा, परिवर्तनशील सिद्धांत और जियोडेसिक्स === | ||
वक्र के एक खंड को देखते हुए, एक अन्य अक्सर परिभाषित मात्रा वक्र की (गतिज) ऊर्जा है: | |||
:<math>E = \frac{1}{2} \int_a^b \sum_{i,j=1}^ng_{ij}(\gamma(t)) \left(\frac{d}{dt}x^i \circ \gamma(t)\right)\left(\frac{d}{dt}x^j \circ \gamma(t)\right)\,dt \,. </math> | :<math>E = \frac{1}{2} \int_a^b \sum_{i,j=1}^ng_{ij}(\gamma(t)) \left(\frac{d}{dt}x^i \circ \gamma(t)\right)\left(\frac{d}{dt}x^j \circ \gamma(t)\right)\,dt \,. </math> | ||
यह उपयोग भौतिकी, विशेष रूप से, [[ शास्त्रीय यांत्रिकी ]] से आता है, जहां अभिन्न | यह उपयोग भौतिकी, विशेष रूप से, [[ शास्त्रीय यांत्रिकी |शास्त्रीय यांत्रिकी]] से आता है, जहां अभिन्न {{mvar|E}} को कई गुना की सतह पर चलने वाले बिंदु कण की [[ गतिज ऊर्जा |गतिज ऊर्जा]] के सीधे अनुरूप देखा जा सकता है। इस प्रकार, उदाहरण के लिए, जैकोबी के मूपर्टुइस सिद्धांत के सूत्रीकरण में, मीट्रिक टेन्सर को गतिमान कण के द्रव्यमान टेन्सर के अनुरूप देखा जा सकता है। | ||
कई मामलों में, जब भी गणना के लिए लंबाई का उपयोग करने की आवश्यकता होती है, तो ऊर्जा का उपयोग करके समान गणना भी की जा सकती है। यह अक्सर वर्ग-मूल की आवश्यकता से बचकर सरल सूत्रों की ओर ले जाता है। इस प्रकार, उदाहरण के लिए, [[ जियोडेसिक समीकरण |भूगणितीय समीकरणों]] को या तो लंबाई या ऊर्जा में परिवर्तनशील सिद्धांतों को लागू करके प्राप्त किया जा सकता है। बाद के मामले में, जियोडेसिक समीकरण कम से कम कार्रवाई के सिद्धांत से उत्पन्न होते हैं: वे एक "मुक्त कण" (कोई बल महसूस नहीं करने वाला कण) की गति का वर्णन करते हैं जो कई गुना बढ़ने के लिए सीमित है, लेकिन अन्यथा स्वतंत्र रूप से चलता है, निरंतर गति के साथ, कई गुना के भीतर।<ref>{{harvnb|Sternberg|1983}}</ref> | |||
== कैनोनिकल माप और वॉल्यूम फॉर्म == | == कैनोनिकल माप और वॉल्यूम फॉर्म == | ||
सतहों के मामले के साथ सादृश्य में, एक मीट्रिक टेंसर पर {{mvar|n}}-डिमेंशनल पैराकंपैक्ट मैनिफोल्ड {{mvar|M}} मापने के लिए एक प्राकृतिक तरीके को जन्म देता है {{mvar|n}}कई गुना के सबसेट की [[ मात्रा ]] की मात्रा।परिणामस्वरूप प्राकृतिक सकारात्मक बोरेल उपाय किसी को संबंधित [[ लेबेसग्यू इंटीग्रल ]] के माध्यम से कई गुना पर कार्यों को एकीकृत करने का एक सिद्धांत विकसित करने की अनुमति देता है। | सतहों के मामले के साथ सादृश्य में, एक मीट्रिक टेंसर पर {{mvar|n}}-डिमेंशनल पैराकंपैक्ट मैनिफोल्ड {{mvar|M}} मापने के लिए एक प्राकृतिक तरीके को जन्म देता है {{mvar|n}}कई गुना के सबसेट की [[ मात्रा ]] की मात्रा।परिणामस्वरूप प्राकृतिक सकारात्मक बोरेल उपाय किसी को संबंधित [[ लेबेसग्यू इंटीग्रल ]] के माध्यम से कई गुना पर कार्यों को एकीकृत करने का एक सिद्धांत विकसित करने की अनुमति देता है। |
Revision as of 16:45, 16 January 2023
विभेदक ज्यामिति के गणितीय क्षेत्र में, एक मीट्रिक टेन्सर (या बस मीट्रिक) कई गुना M (जैसे सतह) पर एक अतिरिक्त गणितीय संरचना है जो दूरी और कोणों को परिभाषित करने की अनुमति देता है, जैसे यूक्लिडियन अंतरिक्ष पर आंतरिक उत्पाद दूरी को परिभाषित करने की अनुमति देता है और वहाँ कोण। अधिक सटीक रूप से, M के बिंदु p पर एक मीट्रिक टेन्सर p पर स्पर्शरेखा स्थान पर परिभाषित एक द्विरेखीय रूप है (यानी, एक बिलिनियर फ़ंक्शन जो स्पर्शरेखा वैक्टर के जोड़े को वास्तविक संख्या में मैप करता है), और M पर एक मीट्रिक टेंसर में एक होता है M के प्रत्येक बिंदु p पर मीट्रिक टेंसर जो p के साथ आसानी से बदलता रहता है।
एक मेट्रिक टेन्सर g धनात्मक-निश्चित होता है यदि g(v, v) > 0 प्रत्येक अशून्य सदिश v के लिए। धनात्मक-निश्चित मेट्रिक टेन्सर से सुसज्जित मैनिफोल्ड को रीमैनियन मैनिफोल्ड के रूप में जाना जाता है। इस तरह के एक मीट्रिक टेन्सर को कई गुना पर असीम दूरी को निर्दिष्ट करने के बारे में सोचा जा सकता है। रिमेंनियन मैनिफोल्ड M पर, दो बिंदुओं p और q के बीच एक चिकनी वक्र की लंबाई को एकीकरण द्वारा परिभाषित किया जा सकता है, और p और q के बीच की दूरी को ऐसे सभी वक्रों की लंबाई के न्यूनतम के रूप में परिभाषित किया जा सकता है; यह M को एक मीट्रिक स्थान बनाता है। इसके विपरीत, मीट्रिक टेन्सर स्वयं दूरी फ़ंक्शन का व्युत्पन्न है (उपयुक्त तरीके से लिया गया)।[citation needed]
जबकि एक मीट्रिक टेन्सर की धारणा कुछ अर्थों में कार्ल गॉस जैसे गणितज्ञों को 19वीं शताब्दी की शुरुआत से ज्ञात थी, यह 20वीं शताब्दी की शुरुआत तक नहीं थी कि टेन्सर के रूप में इसके गुणों को, विशेष रूप से, ग्रेगोरियो रिक्की-क्लैस्ट्रो और द्वारा समझा गया था। टुल्लियो लेवी-सिविटा, जिन्होंने पहली बार एक सममितीय टेंसर की धारणा को संहिताबद्ध किया। मीट्रिक टेंसर टेंसर क्षेत्र का एक उदाहरण है।
एक मीट्रिक टेन्सर के घटक एक समन्वय समन्वय आधार पर एक सममित मैट्रिक्स के रूप में लेते हैं, जिनकी प्रविष्टियाँ समन्वय प्रणाली में परिवर्तन के तहत सहसंयोजक रूप से बदलती हैं। इस प्रकार एक मीट्रिक टेन्सर एक सहपरिवर्ती सममित टेन्सर है। समन्वय-स्वतंत्र दृष्टिकोण से, एक मीट्रिक टेन्सर फ़ील्ड को प्रत्येक स्पर्शरेखा स्थान पर एक नॉनडिजेनरेट सममित द्विरेखीय रूप के रूप में परिभाषित किया जाता है जो बिंदु से बिंदु तक सुचारू रूप से भिन्न होता है।
परिचय
कार्ल फ्रेडरिक गॉस ने अपने 1827 के डिक्विजिशन्स जेनरल सर्का सुपरफिसीज कर्वस (वक्र सतहों की सामान्य जांच) में एक सतह को पैरामीट्रिक रूप से माना, कार्टेशियन निर्देशांक x, y, और z के साथ सतह पर दो सहायक चर u और v पर निर्भर करता है। इस प्रकार एक पैरामीट्रिक सतह (आज के संदर्भ में) एक सदिश-मूल्यवान कार्य है
वास्तविक चर (u, v) की एक आदेशित जोड़ी के आधार पर, और uv-प्लेन में एक खुले सेट D में परिभाषित किया गया है। गॉस की जांच के मुख्य उद्देश्यों में से एक सतह की उन विशेषताओं को निकालना था, जिन्हें एक फ़ंक्शन द्वारा वर्णित किया जा सकता है, जो अपरिवर्तित रहेगा यदि सतह अंतरिक्ष में एक परिवर्तन से गुजरती है (जैसे कि सतह को बिना खींचे झुकना), या एक परिवर्तन। एक ही ज्यामितीय सतह का विशेष पैरामीट्रिक रूप।
एक प्राकृतिक ऐसी अपरिवर्तनीय मात्रा सतह के साथ खींची गई वक्र की लंबाई है। एक और कोण सतह के साथ खींचे गए वक्रों की एक जोड़ी और एक सामान्य बिंदु पर मिलने के बीच का कोण है। ऐसी तीसरी मात्रा सतह के एक टुकड़े का क्षेत्रफल है। सतह के इन अपरिवर्तनीयों के अध्ययन ने गॉस को मीट्रिक टेन्सर की आधुनिक धारणा के पूर्ववर्ती को पेश करने के लिए प्रेरित किया।
मीट्रिक टेंसर है नीचे दिए गए विवरण में;मैट्रिक्स में ई, एफ, और जी में कोई भी संख्या हो सकती है जब तक कि मैट्रिक्स सकारात्मक निश्चित हो।
मीट्रिक टेन्सर नीचे दिए गए विवरण में है; मैट्रिक्स में E, F, और G में कोई भी संख्या हो सकती है जब तक मैट्रिक्स सकारात्मक निश्चित है।
चाप लंबाई
यदि चर u और v को एक तीसरे चर पर निर्भर करने के लिए लिया जाता है, t, एक अंतराल [a, b] में मान लेते हुए, फिर r→(u(t), v(t)) पैरामीट्रिक में एक पैरामीट्रिक वक्र का पता लगाएगा सतह M। उस वक्र की चाप लंबाई अभिन्न द्वारा दी गई है
जहां यूक्लिडियन मानदंड का प्रतिनिधित्व करता है। यहाँ श्रृंखला नियम लागू किया गया है, और सबस्क्रिप्ट आंशिक डेरिवेटिव को दर्शाते हैं:
इंटीग्रैंड (द्विघात) अंतर के वर्गमूल के वक्र के लिए प्रतिबंध[1] है
-
(1)
जहाँ
-
(2)
मात्रा ds in (1) को रेखा तत्व कहा जाता है, जबकि ds2 को M का पहला मौलिक रूप कहा जाता है। सहज रूप से, यह r→(u, v)द्वारा किए गए विस्थापन के वर्ग के प्रमुख भाग का प्रतिनिधित्व करता है जब u में वृद्धि होती है du इकाइयों द्वारा, और v dv इकाइयों द्वारा बढ़ाया जाता है।
मैट्रिक्स संकेतन का उपयोग करते हुए, पहला मौलिक रूप बन जाता है
समन्वय परिवर्तन
अब मान लीजिए कि u और v को चर u′ और v′ की एक और जोड़ी पर निर्भर करने की अनुमति देकर एक अलग पैरामीटर का चयन किया जाता है। तब नए चरों के लिए (2) का अनुरूप है
-
(2')
श्रृंखला नियम मैट्रिक्स समीकरण के माध्यम से E′, F′, और G′ को E, F, और G से संबंधित है
-
(3)
जहां सुपरस्क्रिप्ट टी मैट्रिक्स ट्रांसपोज़ को दर्शाता है। गुणांक E, F, और G के साथ मैट्रिक्स इस तरह व्यवस्थित होता है इसलिए समन्वय परिवर्तन के जैकोबियन मैट्रिक्स द्वारा बदल दिया जाता है
एक मैट्रिक्स जो इस तरह से रूपांतरित होता है वह एक प्रकार का होता है जिसे टेन्सर कहा जाता है। साँचा
परिवर्तन कानून (3) के साथ सतह के मीट्रिक टेन्सर के रूप में जाना जाता है।
निर्देशांक रूपांतरणों के अंतर्गत चापलम्बाई का व्युत्क्रम
रिक्की-कर्बस्त्रो & लेवी-सिविटा (1900) ने सबसे पहले गुणांक E, F, और G की एक प्रणाली के महत्व का अवलोकन किया, जो निर्देशांक की एक प्रणाली से दूसरी में जाने पर इस तरह से बदल गई। नतीजा यह है कि पहला मौलिक रूप (1) समन्वय प्रणाली में परिवर्तन के तहत अपरिवर्तनीय है, और यह विशेष रूप से E, F, और G के परिवर्तन गुणों से अनुसरण करता है। वास्तव में, श्रृंखला नियम द्वारा,
जिससे
लंबाई और कोण
मीट्रिक टेंसर की एक अन्य व्याख्या, जिसे गॉस द्वारा भी माना जाता है, यह है कि यह सतह पर स्पर्शरेखा सदिशों की लंबाई, साथ ही दो स्पर्शरेखा सदिशों के बीच के कोण की गणना करने का एक तरीका प्रदान करता है। समकालीन शब्दों में, मीट्रिक टेन्सर सतह के पैरामीट्रिक विवरण से स्वतंत्र तरीके से स्पर्शरेखा सदिशों के डॉट गुणनफल (गैर-यूक्लिडियन ज्यामिति) की गणना करने की अनुमति देता है। पैरामीट्रिक सतह M के किसी बिंदु पर किसी भी स्पर्शरेखा सदिश को रूप में लिखा जा सकता है
उपयुक्त वास्तविक संख्या p1 और p2 के लिए। यदि दो स्पर्शरेखा सदिश दिए गए हों:
फिर डॉट उत्पाद की द्विरैखिकता का उपयोग करके,
यह स्पष्ट रूप से चार चर a1, b1, a2, और b2 का एक कार्य है। हालाँकि, इसे अधिक लाभप्रद रूप से देखा जाता है, हालांकि, एक ऐसे फ़ंक्शन के रूप में जो तर्कों की एक जोड़ी a = [a1 a2] और b = [b1 b2] लेता है, जो uv-प्लेन में वैक्टर हैं। यानी डाल दिया
यह a और b में एक सममित फलन है, जिसका अर्थ है
यह द्विरेखीय भी है, जिसका अर्थ है कि यह प्रत्येक चर a और b में अलग-अलग रैखिक है। वह है,
uv विमान में किसी भी वैक्टर a, a′, b, और b′ के लिए, और कोई वास्तविक संख्या μ और λ।
विशेष रूप से, एक स्पर्शरेखा सदिश a की लंबाई द्वारा दिया जाता है
और दो सदिशों a और b के बीच के कोण θ की गणना किसके द्वारा की जाती है
क्षेत्रफल
सतह क्षेत्र एक अन्य संख्यात्मक मात्रा है जो केवल सतह पर ही निर्भर होना चाहिए, न कि यह कैसे पैरामीटरकृत है। यदि सतह M uv-प्लेन में डोमेन D पर फ़ंक्शन r→(u, v) द्वारा पैरामीटरकृत है, तो M का सतह क्षेत्र अभिन्न द्वारा दिया जाता है
जहाँ × क्रॉस उत्पाद को दर्शाता है, और निरपेक्ष मान यूक्लिडियन अंतरिक्ष में एक वेक्टर की लंबाई को दर्शाता है। क्रॉस उत्पाद के लिए लैग्रेंज की पहचान से, अभिन्न लिखा जा सकता है
जहां det सारणिक है।
परिभाषा
M को आयाम n का एक चिकनी कई गुना होने दें; उदाहरण के लिए कार्टेसियन स्पेस में एक सतह (मामले में n = 2) या हाइपरसफेस। प्रत्येक बिंदु p ∈ M पर एक सदिश स्थल TpM होती है, जिसे स्पर्शरेखा समष्टि कहा जाता है, जिसमें बिंदु p पर कई गुना स्पर्शरेखा सदिश होते हैं। p पर एक मीट्रिक टेंसर एक फ़ंक्शन gp(Xp, Yp) है जो इनपुट के रूप में p पर स्पर्शरेखा वैक्टर Xp और Yp की एक जोड़ी लेता है, और आउटपुट के रूप में एक वास्तविक संख्या (स्केलर) उत्पन्न करता है, ताकि निम्नलिखित शर्तों को पूरा किया जा सके:
- gp बिलिनियर है। दो सदिश तर्कों का एक फलन द्विरेखीय होता है यदि यह प्रत्येक तर्क में पृथक रूप से रैखिक हो। इस प्रकार यदि Up, Vp, Yp p पर तीन स्पर्शरेखा सदिश हैं और a और b वास्तविक संख्याएँ हैं, तो
- gp सममित है।[2] दो सदिश तर्कों का एक फलन सममित होता है बशर्ते कि सभी सदिशों Xp और Yp के लिए,
- gp गैर-डीजेनरेट है। एक द्विरेखीय फलन अविकृत होता है, बशर्ते कि प्रत्येक स्पर्शरेखा सदिश Xp ≠ 0 के लिए, फलनXp को स्थिर रखते हुए और Yp को अलग-अलग करने की अनुमति देकर प्राप्त किया गया समान रूप से शून्य नहीं है। अर्थात्, प्रत्येक Xp ≠ 0 के लिए एक Yp का अस्तित्व होता है जैसे कि gp(Xp, Yp) ≠ 0
M पर एक मीट्रिक टेन्सर फील्ड g, M के प्रत्येक बिंदु p को p पर स्पर्शरेखा स्थान में एक मीट्रिक टेंसर gp को इस तरह से असाइन करता है जो आसानी से p के साथ बदलता रहता है। अधिक सटीक रूप से, U पर कई गुना M और किसी भी (चिकनी) वेक्टर क्षेत्र X और Y के किसी भी खुले उपसमुच्चय को देखते हुए, वास्तविक कार्य
मीट्रिक के घटक
सदिश क्षेत्रों, या फ्रेम, f = (X1, ..., Xn) के किसी भी आधार में मीट्रिक के घटक[3] द्वारा दिए गए हैं
-
(4)
n2 }} फ़ंक्शन gij[f] की प्रविष्टियों को बनाएं n × n सममित मैट्रिक्स, G[f]।यदि
p ∈ U पर दो सदिश हैं, तो v और w पर लागू मीट्रिक का मान गुणांक (4) द्वारा बिलिनियरिटी द्वारा निर्धारित किया जाता है:
G[f] द्वारा मैट्रिक्स (gij[f]) को नकारना और वैक्टर v और w के घटकों को कॉलम वैक्टर v[f] और w[f] में व्यवस्थित करना,
जहाँ v[f]T और w[f]T क्रमशः सदिशों v[f] और w[f] के स्थानांतरण को दर्शाता है। रूप के आधार में परिवर्तन के तहत
कुछ व्युत्क्रमणीय n × n मैट्रिक्स A = (aij) के लिए, मीट्रिक के घटकों का मैट्रिक्स A द्वारा भी बदलता है। वह है,
या, इस मैट्रिक्स की प्रविष्टियों के संदर्भ में,
इस कारण से, मात्राओं की प्रणाली gij[f] को फ्रेम f में परिवर्तनों के संबंध में सहपरिवर्ती रूप से रूपांतरित करने के लिए कहा जाता है।
निर्देशांक में मीट्रिक
n वास्तविक-मूल्यवान कार्यों (x1, ..., xn) की एक प्रणाली, M में एक खुले सेट U पर स्थानीय निर्देशांक दे रही है, U पर वेक्टर फ़ील्ड का आधार निर्धारित करती है
मीट्रिक g में इस फ़्रेम के सापेक्ष घटक होते हैं जो इसके द्वारा दिए गए हैं
स्थानीय निर्देशांक की एक नई प्रणाली के सापेक्ष, कहते हैं
मीट्रिक टेन्सर गुणांकों का एक अलग मैट्रिक्स निर्धारित करेगा,
कार्यों की यह नई प्रणाली श्रृंखला नियम के माध्यम से मूल gij(f) से संबंधित है
जिससे
या, आव्यूह G[f] = (gij[f]) और G[f′] = (gij[f′]) के संदर्भ में,
जहाँ Dy समन्वय परिवर्तन के जैकोबियन मैट्रिक्स को दर्शाता है।
एक मीट्रिक का हस्ताक्षर
किसी भी मीट्रिक टेन्सर से संबंधित द्विघात रूप है जिसे प्रत्येक स्पर्शरेखा स्थान में परिभाषित किया गया है
यदि qm सभी गैर-शून्य Xm के लिए धनात्मक है, तो मीट्रिक m पर धनात्मक-निश्चित है। यदि मीट्रिक प्रत्येक m ∈ M पर धनात्मक-निश्चित है, तो g को रीमैनियन मीट्रिक कहा जाता है। अधिक आम तौर पर, यदि द्विघात रूपों qm में m से स्वतंत्र निरंतर हस्ताक्षर होते हैं, तो g का हस्ताक्षर यह हस्ताक्षर होता है, और g को छद्म-रीमैनियन मीट्रिक कहा जाता है।[4] यदि M जुड़ा हुआ है, तो qm का हस्ताक्षर m पर निर्भर नहीं करता है।[5]
सिल्वेस्टर के जड़त्व के नियम से, स्पर्शरेखा सदिशों Xi के आधार को स्थानीय रूप से चुना जा सकता है ताकि द्विघात रूप निम्नलिखित तरीके से विकर्ण हो
कुछ p के लिए 1 और n के बीच। q के ऐसे किन्हीं दो व्यंजकों (M के एक ही बिंदु m पर) के सकारात्मक चिह्नों की समान संख्या p होगी। g का हस्ताक्षर पूर्णांक (p, n − p) की जोड़ी है, यह दर्शाता है कि ऐसी किसी भी अभिव्यक्ति में p सकारात्मक संकेत और n − p नकारात्मक संकेत हैं। समतुल्य रूप से, मीट्रिक में हस्ताक्षर (p, n − p) होता है यदि मीट्रिक के मैट्रिक्स gij में p धनात्मक और n − p ऋणात्मक eigenvalues होते हैं।
कुछ मीट्रिक हस्ताक्षर जो अक्सर अनुप्रयोगों में उत्पन्न होते हैं:
- यदि g के हस्ताक्षर (n, 0) हैं, तो g एक रिमेंनियन मीट्रिक है, और M को रीमैनियन मैनिफोल्ड कहा जाता है। अन्यथा, g एक छद्म-रिमेंनियन मीट्रिक है, और M को एक छद्म-रीमैनियन मैनिफोल्ड कहा जाता है (अर्द्ध-रिमैनियन शब्द का भी उपयोग किया जाता है)।
- यदि M हस्ताक्षर (1, 3) या (3, 1) के साथ चार आयामी है, तो मीट्रिक को लोरेंट्ज़ियन मीट्रिक कहा जाता है। अधिक आम तौर पर, हस्ताक्षर (1, n − 1) या (n − 1, 1) के 4 के अलावा आयाम n में एक मीट्रिक टेन्सर को कभी-कभी लोरेंत्ज़ियन भी कहा जाता है।
- यदि M 2n-आयामी है और g का हस्ताक्षर (n, n) है, तो मीट्रिक को अल्ट्राहाइपरबोलिक मीट्रिक कहा जाता है।
व्युत्क्रम मीट्रिक
मान लीजिए कि f = (X1, ..., Xn) सदिश क्षेत्रों का एक आधार है, और जैसा कि ऊपर बताया गया है कि G[f] गुणांकों का आव्यूह है
व्युत्क्रम मैट्रिक्स G[f]−1 पर विचार किया जा सकता है, जिसे व्युत्क्रम मीट्रिक (या संयुग्म या दोहरी मीट्रिक) से पहचाना जाता है। व्युत्क्रम मीट्रिक एक परिवर्तन कानून को संतुष्ट करता है जब फ्रेम f को मैट्रिक्स A द्वारा बदल दिया जाता है
-
(5)
व्युत्क्रम मीट्रिक विपरीत रूप से रूपांतरित होता है, या आधार मैट्रिक्स A के परिवर्तन के व्युत्क्रम के संबंध में। जबकि मीट्रिक स्वयं वेक्टर क्षेत्रों की लंबाई (या कोण के बीच) को मापने का एक तरीका प्रदान करता है, व्युत्क्रम मीट्रिक लंबाई को मापने का एक साधन प्रदान करता है। (या बीच का कोण) कोवेक्टर फ़ील्ड्स; वह है, रैखिक क्रियाओं के क्षेत्र।
इसे देखने के लिए, मान लीजिए α एक कोवेक्टर क्षेत्र है। बुद्धि के लिए, प्रत्येक बिंदु p के लिए, α p पर स्पर्शरेखा वैक्टर पर परिभाषित एक फ़ंक्शन αp निर्धारित करता है ताकि निम्नलिखित रैखिकता की स्थिति सभी स्पर्शरेखा वैक्टर Xp और Yp, और सभी वास्तविक संख्याओं a और b के लिए हो:
जैसा कि p भिन्न होता है, α को इस अर्थ में एक सहज कार्य माना जाता है
किसी भी चिकने सदिश क्षेत्र X के लिए p का एक सहज कार्य है।
किसी भी कोवेक्टर फ़ील्ड α में वेक्टर फ़ील्ड f के आधार पर घटक होते हैं। इनके द्वारा निर्धारित किया जाता है
द्वारा इन घटकों के पंक्ति वेक्टर को निरूपित करें
एक मैट्रिक्स A द्वारा f के परिवर्तन के तहत, α[f] नियम द्वारा बदलता है
अर्थात्, घटकों का पंक्ति वेक्टर α[f] सहसंयोजक वेक्टर के रूप में बदल जाता है।
कोवेक्टर क्षेत्रों की एक जोड़ी α और β के लिए, इन दो कोवेक्टरों पर लागू व्युत्क्रम मीट्रिक को परिभाषित करें
-
(6)
परिणामी परिभाषा, हालांकि इसमें आधार f का विकल्प शामिल है, वास्तव में f पर एक आवश्यक तरीके से निर्भर नहीं करता है। वास्तव में, आधार को fA में बदलने से प्राप्त होता है
ताकि समीकरण का दाहिना पक्ष (6) आधार f को किसी भी अन्य आधार fA में बदलने से अप्रभावित रहे। नतीजतन, समीकरण को आधार की पसंद से स्वतंत्र रूप से एक अर्थ सौंपा जा सकता है। मैट्रिक्स G[f] की प्रविष्टियों को gij द्वारा निरूपित किया जाता है, जहां परिवर्तन कानून (5) को इंगित करने के लिए सूचकांक i और j को उठाया गया है।
उठाना और कम करना सूचकांक
सदिश क्षेत्रों f = (X1, ..., Xn) के आधार पर, किसी भी चिकने स्पर्शरेखा सदिश क्षेत्र X को रूप में लिखा जा सकता है
-
(7)
कुछ विशिष्ट रूप से निर्धारित सुचारू कार्यों के लिए v1, ..., vn। एक गैर-एकवचन मैट्रिक्स A द्वारा आधार f को बदलने पर, गुणांक vi इस तरह से बदलते हैं कि समीकरण (7) सही रहता है। वह है,
फलस्वरूप, v[fA] = A−1v[f]। दूसरे शब्दों में, सदिश v[f] के घटक गैर-एकवचन मैट्रिक्स A द्वारा आधार के परिवर्तन के तहत विपरीत रूप से (यानी, विपरीत या विपरीत तरीके से) रूपांतरित होते हैं। vi[f] की ऊपरी स्थिति में।
एक फ्रेम भी कोवेक्टरों को उनके घटकों के संदर्भ में व्यक्त करने की अनुमति देता है। सदिश क्षेत्रों के आधार के लिए f = (X1, ..., Xn) दोहरे आधार को रैखिक कार्यात्मक (θ1[f], ..., θn[f]) इस प्रकार परिभाषित करते हैं कि
अर्थात्, θi[f](Xj) = δji, क्रोनकर डेल्टा। माना
एक गैर-एकवचन मैट्रिक्स A के लिए आधार f ↦ fA के परिवर्तन के तहत, θ[f] के माध्यम से बदल जाता है
स्पर्शरेखा सदिशों पर किसी भी रैखिक कार्यात्मक α को दोहरे आधार θ के संदर्भ में विस्तारित किया जा सकता है
-
(8)
जहाँ a[f] पंक्ति सदिश [ a1[f] ... an[f] ] को दर्शाता है। घटक ai रूपांतरित होते हैं जब आधार f को fA द्वारा इस तरह से बदल दिया जाता है कि समीकरण (8) जारी रहता है। वह है,
जहां से, क्योंकि θ[fA] = A−1θ[f], यह इस प्रकार है कि a[fA] = a[f]A। यही है, घटक a सहसंयोजक रूप से परिवर्तित होते हैं (इसके व्युत्क्रम के बजाय मैट्रिक्स A द्वारा)। a[f] के घटकों के सहप्रसरण को ai[f] के सूचकांकों को निचले स्थान पर रखकर सांकेतिक रूप से निर्दिष्ट किया जाता है।
अब, मीट्रिक टेन्सर सदिशों और कोवेक्टरों की पहचान करने के लिए निम्न प्रकार से एक साधन प्रदान करता है। होल्डिंग Xp फिक्स्ड, फंक्शन
स्पर्शरेखा वेक्टर Yp p पर स्पर्शरेखा स्थान पर एक रैखिक कार्यात्मक परिभाषित करता है। यह संक्रिया सदिश Xp को बिंदु p पर लेती है और एक सहसंयोजक gp(Xp, −) उत्पन्न करती है। सदिश क्षेत्र f के आधार पर, यदि एक सदिश क्षेत्र X में घटक v[f] हैं, तो दोहरे आधार में कोवेक्टर क्षेत्र g(X, −) के घटक पंक्ति सदिश की प्रविष्टियों द्वारा दिए गए हैं
आधार परिवर्तन f ↦ fA के तहत, इस समीकरण का दाहिना हाथ के माध्यम से रूपांतरित होता है
ताकि a[fA] = a[f]A: a सहपरिवर्ती रूप से परिवर्तित हो जाए। एक सदिश क्षेत्र v[f] = [ v1[f] v2[f] ... vn[f] ]T के (प्रतिपरिवर्ती) घटकों को सहसंयोजक क्षेत्र a[f] के घटकों से संबद्ध करने की क्रिया a[f] = [ a1[f] a2[f] … an[f] ], जहां
सूचकांक को कम करना कहा जाता है।
सूचकांक बढ़ाने के लिए, एक ही निर्माण लागू होता है लेकिन मीट्रिक के बजाय उलटा मीट्रिक के साथ। अगर a[f] = [ a1[f] a2[f] ... an[f] ] दोहरे आधार θ[f] में एक कोवेक्टर के घटक हैं, तो कॉलम वेक्टर
-
(9)
ऐसे घटक हैं जो विपरीत रूप से रूपांतरित होते हैं:
नतीजतन, मात्रा X = fv[f] एक आवश्यक तरीके से आधार f की पसंद पर निर्भर नहीं करता है, और इस प्रकार M पर एक वेक्टर क्षेत्र को परिभाषित करता है। ऑपरेशन (9) एक कोवेक्टर a[f] के (सहसंयोजक) घटकों से जुड़ा हुआ है दिए गए सदिश v[f] के (प्रतिपरिवर्ती) घटकों को सूचकांक उठाना कहा जाता है। घटकों में, (9) है
प्रेरित मीट्रिक
U को ℝn में एक खुला सेट होने दें, और φ को U से यूक्लिडियन स्पेस ℝm में एक सतत अवकलनीय फ़ंक्शन होने दें, जहाँ m > n। मैपिंग φ को एक विसर्जन कहा जाता है यदि इसका अंतर U के हर बिंदु पर एकैकी है। φ की छवि को एक डूबे हुए सबमनीफोल्ड कहा जाता है। अधिक विशेष रूप से, m = 3 के लिए, जिसका अर्थ है कि परिवेशी यूक्लिडियन स्थान ℝ3 है, प्रेरित मीट्रिक टेन्सर को पहला मौलिक रूप कहा जाता है।
मान लीजिए कि φ सबमनीफोल्ड M ⊂ Rm पर एक निमज्जन है। ℝm में सामान्य यूक्लिडियन डॉट उत्पाद एक मीट्रिक है, जो M के स्पर्शरेखा वाले वैक्टर तक सीमित होने पर, इन स्पर्शरेखा वैक्टरों के डॉट उत्पाद लेने के लिए एक साधन देता है। इसे प्रेरित मीट्रिक कहा जाता है।
मान लीजिए कि v, U के एक बिंदु पर एक स्पर्शरेखा सदिश है, मान लीजिए
जहां ei मानक समन्वय वैक्टर ℝn में हैं। जब φ को U पर लागू किया जाता है, तो सदिश v M द्वारा दिए गए सदिश स्पर्शरेखा पर चला जाता है
(इसे φ के साथ v का पुशफॉरवर्ड कहा जाता है।) ऐसे दो वैक्टर, v और w दिए गए हैं, प्रेरित मीट्रिक द्वारा परिभाषित किया गया है
यह एक सीधी गणना से अनुसरण करता है कि समन्वित वेक्टर फ़ील्ड e के आधार पर प्रेरित मीट्रिक का मैट्रिक्स द्वारा दिया गया है
जहां Dφ जैकबियन मैट्रिक्स है:
एक मीट्रिक की आंतरिक परिभाषाएँ
फाइबर बंडलों और वेक्टर बंडलों की भाषा का उपयोग करके एक मीट्रिक की धारणा को आंतरिक रूप से परिभाषित किया जा सकता है। इन शब्दों में, मीट्रिक टेंसर एक फ़ंक्शन है
-
(10)
M के स्पर्शरेखा बंडल के फाइबर उत्पाद से स्वयं R के साथ जैसे कि प्रत्येक फाइबर के लिए g का प्रतिबंध एक गैर-विकृत द्विरेखीय मानचित्रण है
ब्याज के मामले के आधार पर मैपिंग (10) निरंतर, और अक्सर लगातार अलग-अलग, चिकनी, या वास्तविक विश्लेषणात्मक होना आवश्यक है, और M ऐसी संरचना का समर्थन कर सकता है या नहीं।
मीट्रिक एक बंडल के एक खंड के रूप में
टेंसर उत्पाद की सार्वभौमिक संपत्ति के द्वारा, कोई भी बिलिनियर मैपिंग (10) स्वाभाविक रूप से TM के टेंसर उत्पाद बंडल के दोहरे के एक सेक्शन g⊗ को जन्म देती है
खंड g⊗ को TM ⊗ TM के सरल तत्वों पर परिभाषित किया गया है
और सरल तत्वों के रैखिक संयोजनों के रैखिक रूप से विस्तार करके TM ⊗ TM के मनमाने तत्वों पर परिभाषित किया गया है। मूल द्विरेखीय रूप g सममित है यदि और केवल यदि
जहाँ
ब्रेडिंग नक्शा है।
चूँकि M परिमित-आयामी है, एक प्राकृतिक आइसोमोर्फिज्म है
ताकि g⊗ को बंडल T*M ⊗ T*M के स्वयं के साथ कोटगेंट बंडल T*M के एक भाग के रूप में भी माना जाए। चूँकि g बिलिनियर मैपिंग के रूप में सममित है, इसलिए यह अनुसरण करता है कि g⊗ एक सममित टेन्सर है।
एक वेक्टर बंडल में मीट्रिक
अधिक सामान्यतः, एक सदिश बंडल में एक मीट्रिक के बारे में बात कर सकते हैं। यदि E कई गुना M पर एक सदिश बंडल है, तो एक मीट्रिक एक मानचित्रण है
E से R के फाइबर उत्पाद से जो प्रत्येक फाइबर में बिलिनियर है:
उपरोक्त के रूप में द्वैत का उपयोग करते हुए, एक मीट्रिक को अक्सर टेंसर उत्पाद बंडल E* ⊗ E* के एक भाग के साथ पहचाना जाता है। (मीट्रिक (वेक्टर बंडल) देखें।)
स्पर्शरेखा -कोटैंगेंट आइसोमोर्फिज्म
मीट्रिक टेन्सर, स्पर्शरेखा बंडल से कोटैंजेंट बंडल तक एक प्राकृतिक समरूपता प्रदान करता है, जिसे कभी-कभी संगीतमय समरूपता कहा जाता है।[6] यह तुल्याकारिता प्रत्येक स्पर्शरेखा सदिश Xp ∈ TpM के लिए सेटिंग द्वारा प्राप्त की जाती है,
TpM पर रैखिक कार्यात्मक जो p से gp(Xp,Yp) पर एक स्पर्शरेखा वेक्टर Yp भेजता है। अर्थात्, TpM और इसके दोहरे स्थान T∗
pM के बीच [−, −] की जोड़ी के संदर्भ में
सभी स्पर्शरेखा वैक्टर Xp और Yp के लिए। मैपिंग Sg TpM से T∗
pM तक एक रैखिक परिवर्तन है। यह गैर-अपकर्ष की परिभाषा से अनुसरण करता है कि Sg का कर्नेल शून्य तक कम हो जाता है, और इसलिए रैंक-शून्यता प्रमेय द्वारा, Sg एक रैखिक समरूपता है। इसके अलावा, Sg इस अर्थ में एक सममित रैखिक परिवर्तन है
सभी स्पर्शरेखा वैक्टर Xp और Yp के लिए।
इसके विपरीत, कोई रैखिक आइसोमोर्फिज्म S : TpM → T∗
pM के माध्यम से TpM पर एक गैर-पतित द्विरेखीय रूप को परिभाषित करता है
यह द्विरेखीय रूप सममित है यदि और केवल यदि S सममित है। इस प्रकार TpM पर सममित द्विरेखीय रूपों और TpM के सममित रेखीय समरूपता के बीच दोहरे T∗
pM के बीच एक प्राकृतिक एक-से-एक पत्राचार होता है।
जैसा कि p M पर भिन्न होता है, Sg टेंगेंट बंडल के टेंगेंट बंडल के वेक्टर बंडल आइसोमोर्फिज्म के बंडल Hom(TM, T*M) के एक खंड को परिभाषित करता है। इस खंड में g के समान ही चिकनाई है: यह g के अनुसार निरंतर, भिन्न, चिकनी या वास्तविक-विश्लेषणात्मक है। मैपिंग Sg, जो M पर प्रत्येक वेक्टर फ़ील्ड को M पर एक कोवेक्टर फ़ील्ड से जोड़ता है, वेक्टर फ़ील्ड पर "इंडेक्स को कम करने" का एक सार फॉर्मूलेशन देता है। Sg का व्युत्क्रम एक मानचित्रण T*M → TM है, जो समान रूप से, एक कोवेक्टर क्षेत्र पर "सूचकांक बढ़ाने" का एक सार सूत्रीकरण देता है।
व्युत्क्रम S−1
g एक रेखीय मानचित्रण को परिभाषित करता है
जो इस अर्थ में व्युत्क्रमणीय और सममित है
सभी covectors α, β के लिए। इस तरह के एक विलक्षण सममित मानचित्रण एक मानचित्र को (टेन्सर-हेम एडजंक्शन द्वारा) जन्म देता है
या डबल डुअल आइसोमोर्फिज्म द्वारा टेंसर उत्पाद के एक भाग के लिए
चाप की लम्बाई और रेखा तत्व
मान लीजिए कि g M पर एक रिमेंनियन मीट्रिक है। एक स्थानीय समन्वय प्रणाली में xi, i = 1, 2, …, n, मीट्रिक टेन्सर एक मैट्रिक्स के रूप में प्रकट होता है, जिसे G द्वारा निरूपित किया जाता है, जिसकी प्रविष्टियाँ मीट्रिक टेन्सर के घटक gij हैं समन्वय वेक्टर क्षेत्रों के सापेक्ष।
मान लीजिए कि γ(t) M में एक a ≤ t ≤ b के लिए एक खंड-विभेदक पैरामीट्रिक वक्र है। वक्र की चाप लंबाई द्वारा परिभाषित किया गया है
इस ज्यामितीय अनुप्रयोग के संबंध में, द्विघात विभेदक रूप
मीट्रिक से जुड़ा पहला मौलिक रूप कहा जाता है, जबकि ds रेखा तत्व है। जब ds2 को M में एक वक्र की छवि पर पुलबैक किया जाता है, तो यह चाप की लम्बाई के संबंध में अंतर के वर्ग का प्रतिनिधित्व करता है।
छद्म-रीमैनियन मीट्रिक के लिए, उपरोक्त लंबाई सूत्र हमेशा परिभाषित नहीं होता है, क्योंकि वर्गमूल के अंतर्गत शब्द ऋणात्मक हो सकता है। हम आम तौर पर केवल एक वक्र की लंबाई को परिभाषित करते हैं जब वर्गमूल के तहत मात्रा हमेशा एक या दूसरे चिह्न की होती है। इस मामले में परिभाषित करें
ध्यान दें कि, जबकि ये सूत्र निर्देशांक व्यंजकों का उपयोग करते हैं, वे वास्तव में चुने गए निर्देशांकों से स्वतंत्र होते हैं; वे केवल मीट्रिक और उस वक्र पर निर्भर करते हैं जिसके साथ सूत्र एकीकृत है।
ऊर्जा, परिवर्तनशील सिद्धांत और जियोडेसिक्स
वक्र के एक खंड को देखते हुए, एक अन्य अक्सर परिभाषित मात्रा वक्र की (गतिज) ऊर्जा है:
यह उपयोग भौतिकी, विशेष रूप से, शास्त्रीय यांत्रिकी से आता है, जहां अभिन्न E को कई गुना की सतह पर चलने वाले बिंदु कण की गतिज ऊर्जा के सीधे अनुरूप देखा जा सकता है। इस प्रकार, उदाहरण के लिए, जैकोबी के मूपर्टुइस सिद्धांत के सूत्रीकरण में, मीट्रिक टेन्सर को गतिमान कण के द्रव्यमान टेन्सर के अनुरूप देखा जा सकता है।
कई मामलों में, जब भी गणना के लिए लंबाई का उपयोग करने की आवश्यकता होती है, तो ऊर्जा का उपयोग करके समान गणना भी की जा सकती है। यह अक्सर वर्ग-मूल की आवश्यकता से बचकर सरल सूत्रों की ओर ले जाता है। इस प्रकार, उदाहरण के लिए, भूगणितीय समीकरणों को या तो लंबाई या ऊर्जा में परिवर्तनशील सिद्धांतों को लागू करके प्राप्त किया जा सकता है। बाद के मामले में, जियोडेसिक समीकरण कम से कम कार्रवाई के सिद्धांत से उत्पन्न होते हैं: वे एक "मुक्त कण" (कोई बल महसूस नहीं करने वाला कण) की गति का वर्णन करते हैं जो कई गुना बढ़ने के लिए सीमित है, लेकिन अन्यथा स्वतंत्र रूप से चलता है, निरंतर गति के साथ, कई गुना के भीतर।[7]
कैनोनिकल माप और वॉल्यूम फॉर्म
सतहों के मामले के साथ सादृश्य में, एक मीट्रिक टेंसर पर n-डिमेंशनल पैराकंपैक्ट मैनिफोल्ड M मापने के लिए एक प्राकृतिक तरीके को जन्म देता है nकई गुना के सबसेट की मात्रा की मात्रा।परिणामस्वरूप प्राकृतिक सकारात्मक बोरेल उपाय किसी को संबंधित लेबेसग्यू इंटीग्रल के माध्यम से कई गुना पर कार्यों को एकीकृत करने का एक सिद्धांत विकसित करने की अनुमति देता है।
एक माप को एक सकारात्मक रैखिक कार्यात्मक देकर, Riesz प्रतिनिधित्व प्रमेय द्वारा परिभाषित किया जा सकता है Λ अंतरिक्ष में C0(M) कॉम्पैक्ट समर्थन निरंतर कार्यों पर M।अधिक सटीक रूप से, अगर M एक (छद्म-) riemannian मीट्रिक टेंसर के साथ एक कई गुना है g, फिर एक अद्वितीय सकारात्मक बोरेल उपाय है μg ऐसा कि किसी भी समन्वय चार्ट के लिए (U, φ),
यदि M भी अभिविन्यास (गणित) है, तो मीट्रिक टेंसर से एक प्राकृतिक मात्रा रूप को परिभाषित करना संभव है।एक दाएं हाथ के समन्वय प्रणाली में (x1, ..., xn) वॉल्यूम फॉर्म का प्रतिनिधित्व किया जाता है
उदाहरण
यूक्लिडियन मीट्रिक
सबसे परिचित उदाहरण प्राथमिक यूक्लिडियन ज्यामिति का है: द्वि-आयामी यूक्लिडियन दूरी मीट्रिक टेंसर।सामान्य रूप में (x, y) निर्देशांक, हम लिख सकते हैं
एक वक्र की लंबाई सूत्र में कम हो जाती है:
कुछ अन्य सामान्य समन्वय प्रणालियों में यूक्लिडियन मीट्रिक को निम्नानुसार लिखा जा सकता है।
धुवीय निर्देशांक (r, θ):
इसलिए
त्रिकोणमितीय पहचान द्वारा।
सामान्य तौर पर, एक कार्टेशियन समन्वय प्रणाली में xi एक यूक्लिडियन स्थान पर, आंशिक डेरिवेटिव ∂ / ∂xi यूक्लिडियन मीट्रिक के संबंध में रूढ़िवादी हैं।इस प्रकार मीट्रिक टेंसर क्रोनकर डेल्टा हैij इस समन्वय प्रणाली में।मनमाना (संभवतः वक्रता) निर्देशांक के संबंध में मीट्रिक टेंसर qi द्वारा दिया गया है
एक क्षेत्र पर गोल मीट्रिक
में इकाई क्षेत्र ℝ3 Metric_tensor#Indeded_metric में बताई गई प्रक्रिया के माध्यम से परिवेश यूक्लिडियन मीट्रिक से प्रेरित एक प्राकृतिक मीट्रिक से सुसज्जित है।मानक गोलाकार निर्देशांक में (θ, φ), साथ θ कोलाट्यूट, कोण से मापा जाता है z-एक्सिस, और φ से कोण x-एक्सिस में xy-प्लेन, मीट्रिक फॉर्म लेता है
यह आमतौर पर फॉर्म में लिखा जाता है
लोरेंट्ज़ियन मेट्रिक्स रिलेटिविटी से
समन्वय के साथ फ्लैट मिंकोव्स्की अंतरिक्ष (विशेष सापेक्षता ) में
मीट्रिक, मीट्रिक हस्ताक्षर की पसंद पर निर्भर करता है,
एक वक्र के साथ -उदाहरण के लिए - निरंतर समय समन्वय करें, इस मीट्रिक के साथ लंबाई का सूत्र सामान्य लंबाई के सूत्र को कम कर देता है।एक स्पेसटाइम अंतराल वक्र के लिए, लंबाई का सूत्र वक्र के साथ उचित समय देता है।
इस मामले में, स्पेसटाइम अंतराल के रूप में लिखा गया है
श्वार्ज़शिल्ड मीट्रिक एक गोलाकार सममित शरीर के आसपास स्पेसटाइम का वर्णन करता है, जैसे कि एक ग्रह, या एक ब्लैक होल ।समन्वय के साथ
हम मीट्रिक के रूप में लिख सकते हैं
कहां G (मैट्रिक्स के अंदर) गुरुत्वाकर्षण स्थिरांक है और M केंद्रीय वस्तु की कुल द्रव्यमान-ऊर्जा सामग्री का प्रतिनिधित्व करता है।
यह भी देखें
- घुमावदार स्पेसटाइम के गणित का मूल परिचय
- क्लिफोर्ड बीजगणित
- फिन्सलर मैनिफोल्ड
- समन्वय चार्ट की सूची
- रिक्की कैलकुलस
- टिसोट्स इंडिकेट्रिक्स, मीट्रिक टेंसर की कल्पना करने के लिए एक तकनीक
टिप्पणियाँ
- ↑ More precisely, the integrand is the pullback of this differential to the curve.
- ↑ In several formulations of classical unified field theories, the metric tensor was allowed to be non-symmetric; however, the antisymmetric part of such a tensor plays no role in the contexts described here, so it will not be further considered.
- ↑ The notation of using square brackets to denote the basis in terms of which the components are calculated is not universal. The notation employed here is modeled on that of Wells (1980). Typically, such explicit dependence on the basis is entirely suppressed.
- ↑ Dodson & Poston 1991, Chapter VII §3.04
- ↑ Vaughn 2007, §3.4.3
- ↑ For the terminology "musical isomorphism", see Gallot, Hulin & Lafontaine (2004, p. 75). See also Lee (1997, pp. 27–29)
- ↑ Sternberg 1983
संदर्भ
- Dodson, C. T. J.; Poston, T. (1991), Tensor geometry, Graduate Texts in Mathematics, vol. 130 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-10514-2, ISBN 978-3-540-52018-4, MR 1223091
- Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques (2004), Riemannian Geometry (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-20493-0.
- Gauss, Carl Friedrich (1827), General Investigations of Curved Surfaces, New York: Raven Press (published 1965) translated by A. M. Hiltebeitel and J. C. Morehead; "Disquisitiones generales circa superficies curvas", Commentationes Societatis Regiae Scientiarum Gottingesis Recentiores Vol. VI (1827), pp. 99–146.
- Hawking, S.W.; Ellis, G.F.R. (1973), The large scale structure of space-time, Cambridge University Press.
- Kay, David (1988), Schaum's Outline of Theory and Problems of Tensor Calculus, McGraw-Hill, ISBN 978-0-07-033484-7.
- Kline, Morris (1990), Mathematical thought from ancient to modern times, Volume 3, Oxford University Press.
- Lee, John (1997), Riemannian manifolds, Springer Verlag, ISBN 978-0-387-98322-6.
- Michor, Peter W. (2008), Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93, Providence: American Mathematical Society (to appear).
- Misner, Charles W.; Thorne, Kip S.; Wheeler, John A. (1973), Gravitation, W. H. Freeman, ISBN 0-7167-0344-0
- Ricci-Curbastro, Gregorio; Levi-Civita, Tullio (1900), "Méthodes de calcul différentiel absolu et leurs applications", Mathematische Annalen, 54 (1): 125–201, doi:10.1007/BF01454201, ISSN 1432-1807, S2CID 120009332
- Sternberg, S. (1983), Lectures on Differential Geometry (2nd ed.), New York: Chelsea Publishing Co., ISBN 0-8218-1385-4
- Vaughn, Michael T. (2007), Introduction to mathematical physics (PDF), Weinheim: Wiley-VCH Verlag GmbH & Co., doi:10.1002/9783527618859, ISBN 978-3-527-40627-2, MR 2324500
- Wells, Raymond (1980), Differential Analysis on Complex Manifolds, Berlin, New York: Springer-Verlag
श्रेणी: रिमैनियन ज्यामिति] श्रेणी: टेन्सर श्रेणी: भौतिकी में अवधारणाएं श्रेणी: अंतर ज्यामिति] *1