चुंबकीय परिपथ: Difference between revisions

From Vigyanwiki
(Created page with "{{MagneticCircuitSegments}} एक चुंबक ीय सर्किट एक या एक से अधिक बंद लूप पथों से बना...")
 
No edit summary
Line 1: Line 1:
{{MagneticCircuitSegments}}
{{MagneticCircuitSegments}}
एक [[ चुंबक ]]ीय सर्किट एक या एक से अधिक बंद लूप पथों से बना होता है जिसमें [[ चुंबकीय प्रवाह ]] होता है। प्रवाह आमतौर पर स्थायी चुम्बकों या [[ विद्युत ]] चुम्बकों द्वारा उत्पन्न होता है और [[ चुंबकीय कोर ]] द्वारा पथ तक सीमित होता है जिसमें लोहे जैसी [[ फेरोमैग्नेटिक सामग्री ]] होती है, हालांकि रास्ते में हवा के अंतराल या अन्य सामग्री हो सकती है। [[ बिजली की मोटर ]]्स, [[ बिजली पैदा करने वाला ]], [[ ट्रांसफार्मर ]], [[ रिले ]], इलेक्ट्रोमैग्नेट उठाने, [[ SQUID ]]s, [[ बिजली की शक्ति नापने का यंत्र ]] और चुंबकीय [[ रिकॉर्डिंग सिर ]] जैसे कई उपकरणों में [[ चुंबकीय क्षेत्र ]]ों को कुशलतापूर्वक चैनल करने के लिए चुंबकीय सर्किट कार्यरत हैं।
एक [[ चुंबक ]]ीय सर्किट एक या एक से अधिक बंद लूप पथों से बना होता है जिसमें [[ चुंबकीय प्रवाह ]] होता है। प्रवाह सामान्यतः  स्थायी चुम्बकों या [[ विद्युत ]] चुम्बकों द्वारा उत्पन्न होता है और [[ चुंबकीय कोर ]] द्वारा पथ तक सीमित होता है जिसमें लोहे जैसी [[ फेरोमैग्नेटिक सामग्री ]] होती है, चूंकि  रास्ते में हवा के अंतराल या अन्य सामग्री हो सकती है। [[ बिजली की मोटर ]]्स, [[ बिजली पैदा करने वाला ]], [[ ट्रांसफार्मर ]], [[ रिले ]], इलेक्ट्रोमैग्नेट उठाने, [[ SQUID ]]s, [[ बिजली की शक्ति नापने का यंत्र ]] और चुंबकीय [[ रिकॉर्डिंग सिर ]] जैसे कई उपकरणों में [[ चुंबकीय क्षेत्र ]]ों को कुशलतापूर्वक चैनल करने के लिए चुंबकीय सर्किट कार्यरत हैं।


एक [[ चुंबकीय संतृप्ति ]] चुंबकीय सर्किट में चुंबकीय प्रवाह, चुंबकत्व बल और [[ चुंबकीय [[ अनिच्छा ]] ]] के बीच के संबंध को हॉपकिन्सन के कानून द्वारा वर्णित किया जा सकता है, जो विद्युत सर्किट में ओम के कानून के लिए एक सतही समानता रखता है, जिसके परिणामस्वरूप एक के गुणों के बीच एक-से-एक पत्राचार होता है। चुंबकीय सर्किट और एक समान विद्युत सर्किट। इस अवधारणा का उपयोग करके विद्युत परिपथों के लिए विकसित विधियों और तकनीकों का उपयोग करके ट्रांसफार्मर जैसे जटिल उपकरणों के चुंबकीय क्षेत्र को जल्दी से हल किया जा सकता है।
एक [[ चुंबकीय संतृप्ति ]] चुंबकीय सर्किट में चुंबकीय प्रवाह, चुंबकत्व बल और [[ चुंबकीय [[ अनिच्छा ]] ]] के बीच के संबंध को हॉपकिन्सन के कानून द्वारा वर्णित किया जा सकता है, जो विद्युत सर्किट में ओम के कानून के लिए एक सतही समानता रखता है, जिसके परिणामस्वरूप एक के गुणों के बीच एक-से-एक पत्राचार होता है। चुंबकीय सर्किट और एक समान विद्युत सर्किट। इस अवधारणा का उपयोग करके विद्युत परिपथों के लिए विकसित विधियों और तकनीकों का उपयोग करके ट्रांसफार्मर जैसे जटिल उपकरणों के चुंबकीय क्षेत्र को जल्दी से हल किया जा सकता है।
Line 12: Line 12:
== मैग्नेटोमोटिव बल (एमएमएफ) ==
== मैग्नेटोमोटिव बल (एमएमएफ) ==
{{main|magnetomotive force}}
{{main|magnetomotive force}}
जिस तरह से [[ वैद्युतवाहक बल ]] (इलेक्ट्रोमोटिव बल) विद्युत परिपथों में विद्युत आवेश की धारा को चलाता है, चुंबकीय परिपथों के माध्यम से चुंबकत्व बल (एमएमएफ) चुंबकीय प्रवाह को 'संचालित' करता है। हालांकि, 'मैग्नेटोमोटिव बल' शब्द एक मिथ्या नाम है क्योंकि यह कोई बल नहीं है और न ही कोई गतिमान है। इसे केवल MMF कहना शायद बेहतर होगा। इलेक्ट्रोमोटिव बल की परिभाषा के अनुरूप, मैग्नेटोमोटिव बल <math>\mathcal{F}</math> एक बंद लूप के आसपास परिभाषित किया गया है:
जिस प्रकार से [[ वैद्युतवाहक बल ]] (इलेक्ट्रोमोटिव बल) विद्युत परिपथों में विद्युत आवेश की धारा को चलाता है, चुंबकीय परिपथों के माध्यम से चुंबकत्व बल (एमएमएफ) चुंबकीय प्रवाह को 'संचालित' करता है। चूंकि  , 'मैग्नेटोमोटिव बल' शब्द एक मिथ्या नाम है क्योंकि यह कोई बल नहीं है और न ही कोई गतिमान है। इसे केवल MMF कहना शायद बेहतर होगा। इलेक्ट्रोमोटिव बल की परिभाषा के अनुरूप, मैग्नेटोमोटिव बल <math>\mathcal{F}</math> एक बंद लूप के आसपास परिभाषित किया गया है:


:<math>\mathcal{F} = \oint \mathbf{H} \cdot \mathrm{d}\mathbf{l}.</math>
:<math>\mathcal{F} = \oint \mathbf{H} \cdot \mathrm{d}\mathbf{l}.</math>
Line 23: Line 23:
               &\approx 0.795775\;\text{At}
               &\approx 0.795775\;\text{At}
\end{align}</math><ref>Matthew M. Radmanesh, ''The Gateway to Understanding: Electrons to Waves and Beyond'', [https://books.google.co.uk/books?id=NANN_b5hc_EC&pg=PA539&dq=gilbert p. 539], AuthorHouse, 2005 {{ISBN|1418487406}}.</ref>
\end{align}</math><ref>Matthew M. Radmanesh, ''The Gateway to Understanding: Electrons to Waves and Beyond'', [https://books.google.co.uk/books?id=NANN_b5hc_EC&pg=PA539&dq=gilbert p. 539], AuthorHouse, 2005 {{ISBN|1418487406}}.</ref>
मैग्नेटोमोटिव बल की गणना एम्पीयर के परिपथीय नियम | एम्पीयर के नियम का उपयोग करके अक्सर जल्दी से की जा सकती है। उदाहरण के लिए, मैग्नेटोमोटिव बल <math>\mathcal{F}</math> एक लंबी कुंडल की है:
मैग्नेटोमोटिव बल की गणना एम्पीयर के परिपथीय नियम | एम्पीयर के नियम का उपयोग करके अधिकांशतः  जल्दी से की जा सकती है। उदाहरण के लिए, मैग्नेटोमोटिव बल <math>\mathcal{F}</math> एक लंबी कुंडल की है:


:<math>\mathcal{F} = N I</math>
:<math>\mathcal{F} = N I</math>
Line 30: Line 30:
== चुंबकीय प्रवाह ==
== चुंबकीय प्रवाह ==
{{Main| Magnetic flux}}
{{Main| Magnetic flux}}
एक लागू MMF सिस्टम के चुंबकीय घटकों के माध्यम से चुंबकीय प्रवाह को 'संचालित' करता है। एक चुंबकीय घटक के माध्यम से चुंबकीय प्रवाह चुंबकीय [[ क्षेत्र ]] # चुंबकीय क्षेत्र रेखाओं की संख्या के समानुपाती होता है जो उस घटक के क्रॉस सेक्शनल क्षेत्र से गुजरती हैं। यह शुद्ध संख्या है, यानी एक दिशा में गुजरने वाली संख्या, दूसरी दिशा में गुजरने वाली संख्या घटाएं। चुंबकीय क्षेत्र सदिश 'B' की दिशा परिभाषा के अनुसार चुम्बक के भीतर चुम्बक के दक्षिण से उत्तरी ध्रुव की ओर होती है; मैदान के बाहर रेखाएँ उत्तर से दक्षिण की ओर जाती हैं।
एक लागू MMF सिस्टम के चुंबकीय घटकों के माध्यम से चुंबकीय प्रवाह को 'संचालित' करता है। एक चुंबकीय घटक के माध्यम से चुंबकीय प्रवाह चुंबकीय [[ क्षेत्र ]] # चुंबकीय क्षेत्र रेखाओं की संख्या के समानुपाती होता है जो उस घटक के क्रॉस सेक्शनल क्षेत्र से गुजरती हैं। यह शुद्ध संख्या है, अर्थात  एक दिशा में गुजरने वाली संख्या, दूसरी दिशा में गुजरने वाली संख्या घटाएं। चुंबकीय क्षेत्र सदिश 'B' की दिशा परिभाषा के अनुसार चुम्बक के भीतर चुम्बक के दक्षिण से उत्तरी ध्रुव की ओर होती है; मैदान के बाहर रेखाएँ उत्तर से दक्षिण की ओर जाती हैं।


चुंबकीय क्षेत्र की दिशा के लंबवत क्षेत्र के एक तत्व के माध्यम से प्रवाह चुंबकीय क्षेत्र और क्षेत्र तत्व के उत्पाद द्वारा दिया जाता है। अधिक आम तौर पर, चुंबकीय प्रवाह Φ को चुंबकीय क्षेत्र और क्षेत्र तत्व वेक्टर के स्केलर उत्पाद द्वारा परिभाषित किया जाता है। मात्रात्मक रूप से, सतह S के माध्यम से चुंबकीय प्रवाह को सतह के क्षेत्र में चुंबकीय क्षेत्र के [[ अभिन्न ]] अंग के रूप में परिभाषित किया गया है
चुंबकीय क्षेत्र की दिशा के लंबवत क्षेत्र के एक तत्व के माध्यम से प्रवाह चुंबकीय क्षेत्र और क्षेत्र तत्व के उत्पाद द्वारा दिया जाता है। अधिक सामान्यतः , चुंबकीय प्रवाह Φ को चुंबकीय क्षेत्र और क्षेत्र तत्व वेक्टर के स्केलर उत्पाद द्वारा परिभाषित किया जाता है। मात्रात्मक रूप से, सतह S के माध्यम से चुंबकीय प्रवाह को सतह के क्षेत्र में चुंबकीय क्षेत्र के [[ अभिन्न ]] अंग के रूप में परिभाषित किया गया है


:<math>\Phi_m = \iint_S \mathbf{B} \cdot \mathrm{d}\mathbf S.</math>
:<math>\Phi_m = \iint_S \mathbf{B} \cdot \mathrm{d}\mathbf S.</math>
एक चुंबकीय घटक के लिए चुंबकीय प्रवाह Φ की गणना करने के लिए उपयोग किया जाने वाला क्षेत्र '' S '' आमतौर पर घटक के क्रॉस-सेक्शनल क्षेत्र के रूप में चुना जाता है।
एक चुंबकीय घटक के लिए चुंबकीय प्रवाह Φ की गणना करने के लिए उपयोग किया जाने वाला क्षेत्र '' S '' सामान्यतः  घटक के क्रॉस-सेक्शनल क्षेत्र के रूप में चुना जाता है।


चुंबकीय प्रवाह की माप की SI इकाई [[ वेबर (इकाई) ]] (व्युत्पन्न इकाइयों में: वोल्ट-सेकंड) [[ और ]] चुंबकीय प्रवाह घनत्व (या चुंबकीय प्रेरण) की इकाई है। {{mvar|B}}) वेबर प्रति वर्ग मीटर या [[ टेस्ला (यूनिट) ]] है।
चुंबकीय प्रवाह की माप की SI इकाई [[ वेबर (इकाई) ]] (व्युत्पन्न इकाइयों में: वोल्ट-सेकंड) [[ और ]] चुंबकीय प्रवाह घनत्व (या चुंबकीय प्रेरण) की इकाई है। {{mvar|B}}) वेबर प्रति वर्ग मीटर या [[ टेस्ला (यूनिट) ]] है।


== सर्किट मॉडल ==
== सर्किट मॉडल ==
प्रतिरोध-अनिच्छा मॉडल एक चुंबकीय सर्किट का प्रतिनिधित्व करने का सबसे आम तरीका है, जो विद्युत और चुंबकीय सर्किट के बीच एक समानता बनाता है। यह मॉडल उन प्रणालियों के लिए अच्छा है जिनमें केवल चुंबकीय घटक होते हैं, लेकिन एक ऐसी प्रणाली के मॉडलिंग के लिए जिसमें विद्युत और चुंबकीय दोनों भाग होते हैं, इसमें गंभीर कमियां हैं। यह विद्युत और चुंबकीय डोमेन के बीच शक्ति और ऊर्जा प्रवाह को ठीक से मॉडल नहीं करता है। ऐसा इसलिए है क्योंकि विद्युत प्रतिरोध ऊर्जा को नष्ट कर देगा जबकि चुंबकीय अनिच्छा इसे संग्रहीत करती है और बाद में इसे वापस कर देती है। एक वैकल्पिक मॉडल जो ऊर्जा प्रवाह को सही ढंग से मॉडल करता है वह जाइरेटर-कैपेसिटर मॉडल है।
प्रतिरोध-अनिच्छा मॉडल एक चुंबकीय सर्किट का प्रतिनिधित्व करने का सबसे सामान्य तरीका है, जो विद्युत और चुंबकीय सर्किट के बीच एक समानता बनाता है। यह मॉडल उन प्रणालियों के लिए अच्छा है जिनमें केवल चुंबकीय घटक होते हैं, लेकिन एक ऐसी प्रणाली के मॉडलिंग के लिए जिसमें विद्युत और चुंबकीय दोनों भाग होते हैं, इसमें गंभीर कमियां हैं। यह विद्युत और चुंबकीय डोमेन के बीच शक्ति और ऊर्जा प्रवाह को ठीक से मॉडल नहीं करता है। ऐसा इसलिए है क्योंकि विद्युत प्रतिरोध ऊर्जा को नष्ट कर देगा जबकि चुंबकीय अनिच्छा इसे संग्रहीत करती है और बाद में इसे वापस कर देती है। एक वैकल्पिक मॉडल जो ऊर्जा प्रवाह को सही ढंग से मॉडल करता है वह जाइरेटर-कैपेसिटर मॉडल है।


== प्रतिरोध-अनिच्छा मॉडल ==
== प्रतिरोध-अनिच्छा मॉडल ==
Line 49: Line 49:
विद्युत परिपथों में, ओम का नियम इलेक्ट्रोमोटिव बल के बीच एक अनुभवजन्य संबंध है <math>\mathcal{E}</math> एक तत्व और वर्तमान (बिजली) में लागू <math>I</math> यह उस तत्व के माध्यम से उत्पन्न होता है। इसे इस प्रकार लिखा गया है:
विद्युत परिपथों में, ओम का नियम इलेक्ट्रोमोटिव बल के बीच एक अनुभवजन्य संबंध है <math>\mathcal{E}</math> एक तत्व और वर्तमान (बिजली) में लागू <math>I</math> यह उस तत्व के माध्यम से उत्पन्न होता है। इसे इस प्रकार लिखा गया है:
<math display="block">\mathcal{E} = IR.</math>
<math display="block">\mathcal{E} = IR.</math>
जहाँ R उस पदार्थ का विद्युत प्रतिरोध है। चुंबकीय परिपथों में प्रयुक्त ओम के नियम का एक प्रतिरूप है। इस कानून को अक्सर [[ जॉन हॉपकिंसन ]] के बाद 'हॉपकिंसन का कानून' कहा जाता है, लेकिन वास्तव में इसे 1873 में [[ हेनरी ऑगस्टस रोलैंड ]] द्वारा तैयार किया गया था।<ref>Rowland H., Phil. Mag. (4), vol. 46, 1873, p. 140.</ref> यह प्रकट करता है की<ref>{{Cite web |url=http://www.ginerdelosrios.org/pizarra/electronica/nemesio/pizarra_neme/simuladores/parametros_magneticos.swf |title=Magnetism (flash)}}</ref><ref>{{cite book |title= EMC Analysis Methods and Computational Models |last=Tesche |first=Fredrick | author2=Michel Ianoz |author3=Torbjörn Karlsson |year= 1997| publisher= Wiley-IEEE|isbn=0-471-15573-X|pages=513 }}</ref>
जहाँ R उस पदार्थ का विद्युत प्रतिरोध है। चुंबकीय परिपथों में प्रयुक्त ओम के नियम का एक प्रतिरूप है। इस कानून को अधिकांशतः  [[ जॉन हॉपकिंसन ]] के बाद 'हॉपकिंसन का कानून' कहा जाता है, लेकिन वास्तव में इसे 1873 में [[ हेनरी ऑगस्टस रोलैंड ]] द्वारा तैयार किया गया था।<ref>Rowland H., Phil. Mag. (4), vol. 46, 1873, p. 140.</ref> यह प्रकट करता है की<ref>{{Cite web |url=http://www.ginerdelosrios.org/pizarra/electronica/nemesio/pizarra_neme/simuladores/parametros_magneticos.swf |title=Magnetism (flash)}}</ref><ref>{{cite book |title= EMC Analysis Methods and Computational Models |last=Tesche |first=Fredrick | author2=Michel Ianoz |author3=Torbjörn Karlsson |year= 1997| publisher= Wiley-IEEE|isbn=0-471-15573-X|pages=513 }}</ref>
<math display="block">\mathcal{F}=\Phi \mathcal{R}.</math>
<math display="block">\mathcal{F}=\Phi \mathcal{R}.</math>
कहाँ पे <math>\mathcal{F}</math> एक चुंबकीय तत्व में चुंबकत्व बल (एमएमएफ) है, <math>\Phi</math> चुंबकीय तत्व के माध्यम से चुंबकीय प्रवाह है, और <math>\mathcal{R}</math> उस तत्व की चुंबकीय अनिच्छा है। (यह बाद में दिखाया जाएगा कि यह संबंध ''एच''-क्षेत्र और चुंबकीय क्षेत्र ''बी'', ''बी''=''μH'' के बीच अनुभवजन्य संबंध के कारण है, जहां ''μ '' सामग्री की [[ पारगम्यता (विद्युत चुंबकत्व) ]] है)। ओम के नियम की तरह, हॉपकिंसन के नियम की व्याख्या या तो एक अनुभवजन्य समीकरण के रूप में की जा सकती है जो कुछ सामग्रियों के लिए काम करता है, या यह अनिच्छा की परिभाषा के रूप में काम कर सकता है।
कहाँ पे <math>\mathcal{F}</math> एक चुंबकीय तत्व में चुंबकत्व बल (एमएमएफ) है, <math>\Phi</math> चुंबकीय तत्व के माध्यम से चुंबकीय प्रवाह है, और <math>\mathcal{R}</math> उस तत्व की चुंबकीय अनिच्छा है। (यह बाद में दिखाया जाएगा कि यह संबंध ''एच''-क्षेत्र और चुंबकीय क्षेत्र ''बी'', ''बी''=''μH'' के बीच अनुभवजन्य संबंध के कारण है, जहां ''μ '' सामग्री की [[ पारगम्यता (विद्युत चुंबकत्व) ]] है)। ओम के नियम की भांति, हॉपकिंसन के नियम की व्याख्या या तो एक अनुभवजन्य समीकरण के रूप में की जा सकती है जो कुछ सामग्रियों के लिए काम करता है, या यह अनिच्छा की परिभाषा के रूप में काम कर सकता है।


मॉडलिंग शक्ति और ऊर्जा प्रवाह के संदर्भ में हॉपकिंसन का नियम ओम के नियम के साथ एक सही सादृश्य नहीं है। विशेष रूप से, चुंबकीय अनिच्छा से संबंधित कोई शक्ति अपव्यय नहीं होता है जैसे विद्युत प्रतिरोध में अपव्यय होता है। चुंबकीय प्रतिरोध जो इस संबंध में विद्युत प्रतिरोध का एक वास्तविक सादृश्य है, को चुंबकत्व बल के अनुपात और चुंबकीय प्रवाह के परिवर्तन की दर के रूप में परिभाषित किया गया है। यहाँ विद्युत प्रवाह के लिए चुंबकीय प्रवाह के परिवर्तन की दर खड़ी है और ओम का नियम सादृश्य बन जाता है,
मॉडलिंग शक्ति और ऊर्जा प्रवाह के संदर्भ में हॉपकिंसन का नियम ओम के नियम के साथ एक सही सादृश्य नहीं है। विशेष रूप से, चुंबकीय अनिच्छा से संबंधित कोई शक्ति अपव्यय नहीं होता है जैसे विद्युत प्रतिरोध में अपव्यय होता है। चुंबकीय प्रतिरोध जो इस संबंध में विद्युत प्रतिरोध का एक वास्तविक सादृश्य है, को चुंबकत्व बल के अनुपात और चुंबकीय प्रवाह के परिवर्तन की दर के रूप में परिभाषित किया गया है। यहाँ विद्युत प्रवाह के लिए चुंबकीय प्रवाह के परिवर्तन की दर खड़ी है और ओम का नियम सादृश्य बन जाता है,
<math display="block">\mathcal{F}=\frac {d \Phi}{dt} R_\mathrm{m},</math>
<math display="block">\mathcal{F}=\frac {d \Phi}{dt} R_\mathrm{m},</math>
कहाँ पे <math>R_\mathrm{m}</math> चुंबकीय प्रतिरोध है। यह संबंध एक विद्युत-चुंबकीय सादृश्य का हिस्सा है जिसे [[ गाइरेटर-संधारित्र मॉडल ]] कहा जाता है और इसका उद्देश्य अनिच्छा मॉडल की कमियों को दूर करना है। गाइरेटर-कैपेसिटर मॉडल, बदले में, मैकेनिकल-इलेक्ट्रिकल एनालॉग्स का हिस्सा है # अन्य ऊर्जा डोमेन कई ऊर्जा डोमेन में सिस्टम को मॉडल करने के लिए उपयोग किया जाता है।
कहाँ पे <math>R_\mathrm{m}</math> चुंबकीय प्रतिरोध है। यह संबंध एक विद्युत-चुंबकीय सादृश्य का भाग  है जिसे [[ गाइरेटर-संधारित्र मॉडल ]] कहा जाता है और इसका उद्देश्य अनिच्छा मॉडल की कमियों को दूर करना है। गाइरेटर-कैपेसिटर मॉडल, बदले में, मैकेनिकल-इलेक्ट्रिकल एनालॉग्स का भाग  है # अन्य ऊर्जा डोमेन कई ऊर्जा डोमेन में सिस्टम को मॉडल करने के लिए उपयोग किया जाता है।


=== अनिच्छा ===
=== अनिच्छा ===
{{Main|Reluctance}}
{{Main|Reluctance}}
चुंबकीय प्रतिरोध, या चुंबकीय प्रतिरोध, विद्युत [[ विद्युत नेटवर्क ]] में विद्युत प्रतिरोध के समान है (हालांकि यह चुंबकीय ऊर्जा को नष्ट नहीं करता है)। जिस तरह से एक विद्युत क्षेत्र एक विद्युत प्रवाह को कम से कम प्रतिरोध के पथ का अनुसरण करने का कारण बनता है, एक चुंबकीय क्षेत्र चुंबकीय प्रवाह को कम से कम चुंबकीय अनिच्छा के पथ का अनुसरण करने का कारण बनता है। यह एक [[ अदिश (भौतिकी) ]] है,
चुंबकीय प्रतिरोध, या चुंबकीय प्रतिरोध, विद्युत [[ विद्युत नेटवर्क ]] में विद्युत प्रतिरोध के समान है (चूंकि  यह चुंबकीय ऊर्जा को नष्ट नहीं करता है)। जिस प्रकार से एक विद्युत क्षेत्र एक विद्युत प्रवाह को कम से कम प्रतिरोध के पथ का अनुसरण करने का कारण बनता है, एक चुंबकीय क्षेत्र चुंबकीय प्रवाह को कम से कम चुंबकीय अनिच्छा के पथ का अनुसरण करने का कारण बनता है। यह एक [[ अदिश (भौतिकी) ]] है,
गहन और व्यापक गुण # व्यापक गुण, विद्युत प्रतिरोध के समान।
गहन और व्यापक गुण # व्यापक गुण, विद्युत प्रतिरोध के समान।


Line 72: Line 72:
अनिच्छा के व्युत्क्रम को अनुमेय कहा जाता है।
अनिच्छा के व्युत्क्रम को अनुमेय कहा जाता है।
<math display="block">\mathcal{P} = \frac{1}{\mathcal{R}}.</math>
<math display="block">\mathcal{P} = \frac{1}{\mathcal{R}}.</math>
इसकी एसआई व्युत्पन्न इकाई हेनरी (इकाई) है ([[ अधिष्ठापन ]] की इकाई के समान है, हालांकि दो अवधारणाएं अलग हैं)।
इसकी एसआई व्युत्पन्न इकाई हेनरी (इकाई) है ([[ अधिष्ठापन ]] की इकाई के समान है, चूंकि  दो अवधारणाएं भिन्न  हैं)।


=== पारगम्यता और चालकता ===
=== पारगम्यता और चालकता ===
Line 83: Line 83:
*{{mvar|A}} सर्किट का क्रॉस-सेक्शनल क्षेत्र है।
*{{mvar|A}} सर्किट का क्रॉस-सेक्शनल क्षेत्र है।


यह सामग्री में विद्युत प्रतिरोध के समीकरण के समान है, जिसमें पारगम्यता चालकता के अनुरूप होती है; पारगम्यता के व्युत्क्रम को चुंबकीय सापेक्षता के रूप में जाना जाता है और प्रतिरोधकता के अनुरूप है। कम पारगम्यता वाले लंबे, पतले ज्यामिति उच्च अनिच्छा की ओर ले जाते हैं। विद्युत परिपथों में कम प्रतिरोध जैसे कम प्रतिरोध को आम तौर पर पसंद किया जाता है।{{Citation needed|date=August 2009}}
यह सामग्री में विद्युत प्रतिरोध के समीकरण के समान है, जिसमें पारगम्यता चालकता के अनुरूप होती है; पारगम्यता के व्युत्क्रम को चुंबकीय सापेक्षता के रूप में जाना जाता है और प्रतिरोधकता के अनुरूप है। कम पारगम्यता वाले लंबे, पतले ज्यामिति उच्च अनिच्छा की ओर ले जाते हैं। विद्युत परिपथों में कम प्रतिरोध जैसे कम प्रतिरोध को सामान्यतः  पसंद किया जाता है।{{Citation needed|date=August 2009}}




=== सादृश्य का सारांश ===
=== सादृश्य का सारांश ===
निम्न तालिका विद्युत परिपथ सिद्धांत और चुंबकीय परिपथ सिद्धांत के बीच गणितीय समानता को सारांशित करती है। यह गणितीय सादृश्य है और भौतिक नहीं है। एक ही पंक्ति में वस्तुओं की समान गणितीय भूमिका होती है; दो सिद्धांतों के भौतिकी बहुत अलग हैं। उदाहरण के लिए, धारा विद्युत आवेश का प्रवाह है, जबकि चुंबकीय प्रवाह किसी मात्रा का प्रवाह नहीं है।
निम्न तालिका विद्युत परिपथ सिद्धांत और चुंबकीय परिपथ सिद्धांत के बीच गणितीय समानता को सारांशित करती है। यह गणितीय सादृश्य है और भौतिक नहीं है। एक ही पंक्ति में वस्तुओं की समान गणितीय भूमिका होती है; दो सिद्धांतों के भौतिकी बहुत भिन्न  हैं। उदाहरण के लिए, धारा विद्युत आवेश का प्रवाह है, जबकि चुंबकीय प्रवाह किसी मात्रा का प्रवाह नहीं है।


{| class="wikitable"
{| class="wikitable"
Line 122: Line 122:
प्रतिरोध-अनिच्छा मॉडल की सीमाएँ हैं। हॉपकिंसन के नियम और ओम के नियम के बीच समानता के कारण इलेक्ट्रिक और चुंबकीय सर्किट केवल सतही रूप से समान हैं। चुंबकीय सर्किट में महत्वपूर्ण अंतर होते हैं जिन्हें उनके निर्माण में ध्यान में रखा जाना चाहिए:
प्रतिरोध-अनिच्छा मॉडल की सीमाएँ हैं। हॉपकिंसन के नियम और ओम के नियम के बीच समानता के कारण इलेक्ट्रिक और चुंबकीय सर्किट केवल सतही रूप से समान हैं। चुंबकीय सर्किट में महत्वपूर्ण अंतर होते हैं जिन्हें उनके निर्माण में ध्यान में रखा जाना चाहिए:
* विद्युत धाराएँ कणों (इलेक्ट्रॉनों) के प्रवाह का प्रतिनिधित्व करती हैं और [[ शक्ति (भौतिकी) ]] को ले जाती हैं, जिनमें से कुछ या सभी को प्रतिरोधों में गर्मी के रूप में फैलाया जाता है। चुंबकीय क्षेत्र किसी भी चीज के प्रवाह का प्रतिनिधित्व नहीं करते हैं, और अनिच्छा में कोई शक्ति नष्ट नहीं होती है।
* विद्युत धाराएँ कणों (इलेक्ट्रॉनों) के प्रवाह का प्रतिनिधित्व करती हैं और [[ शक्ति (भौतिकी) ]] को ले जाती हैं, जिनमें से कुछ या सभी को प्रतिरोधों में गर्मी के रूप में फैलाया जाता है। चुंबकीय क्षेत्र किसी भी चीज के प्रवाह का प्रतिनिधित्व नहीं करते हैं, और अनिच्छा में कोई शक्ति नष्ट नहीं होती है।
* विशिष्ट विद्युत परिपथों में धारा बहुत कम रिसाव के साथ परिपथ तक ही सीमित होती है। ठेठ चुंबकीय सर्किट में सभी चुंबकीय क्षेत्र चुंबकीय सर्किट तक ही सीमित नहीं होते हैं क्योंकि चुंबकीय पारगम्यता सामग्री के बाहर भी मौजूद होती है ([[ वैक्यूम पारगम्यता ]] देखें)। इस प्रकार, चुंबकीय कोर के बाहर अंतरिक्ष में महत्वपूर्ण [[ रिसाव प्रवाह ]] हो सकता है, जिसे ध्यान में रखा जाना चाहिए लेकिन गणना करना अक्सर मुश्किल होता है।
* विशिष्ट विद्युत परिपथों में धारा बहुत कम रिसाव के साथ परिपथ तक ही सीमित होती है। ठेठ चुंबकीय सर्किट में सभी चुंबकीय क्षेत्र चुंबकीय सर्किट तक ही सीमित नहीं होते हैं क्योंकि चुंबकीय पारगम्यता सामग्री के बाहर भी उपलब्ध होती है ([[ वैक्यूम पारगम्यता ]] देखें)। इस प्रकार, चुंबकीय कोर के बाहर अंतरिक्ष में महत्वपूर्ण [[ रिसाव प्रवाह ]] हो सकता है, जिसे ध्यान में रखा जाना चाहिए लेकिन गणना करना अधिकांशतः  मुश्किल होता है।
* सबसे महत्वपूर्ण बात, चुंबकीय सर्किट अरैखिक तत्व हैं; एक चुंबकीय सर्किट में प्रतिरोध स्थिर नहीं है, जैसा कि प्रतिरोध है, लेकिन चुंबकीय क्षेत्र के आधार पर भिन्न होता है। उच्च चुंबकीय प्रवाह पर चुंबकीय सर्किट [[ संतृप्ति (चुंबकीय) ]] के कोर के लिए उपयोग की जाने वाली [[ फेरोमैग्नेटिक सामग्री ]], चुंबकीय प्रवाह की और वृद्धि को सीमित करती है, इसलिए इस स्तर से ऊपर अनिच्छा तेजी से बढ़ जाती है। इसके अलावा, फेरोमैग्नेटिक सामग्री [[ हिस्टैरिसीस ]] से पीड़ित होती है, इसलिए उनमें प्रवाह न केवल तात्कालिक एमएमएफ पर बल्कि एमएमएफ के इतिहास पर भी निर्भर करता है। चुंबकीय प्रवाह के स्रोत को बंद करने के बाद, फेरोमैग्नेटिक सामग्रियों में अवशेष चुंबकत्व छोड़ दिया जाता है, जिससे कोई एमएमएफ वाला प्रवाह नहीं होता है।
* सबसे महत्वपूर्ण बात, चुंबकीय सर्किट अरैखिक तत्व हैं; एक चुंबकीय सर्किट में प्रतिरोध स्थिर नहीं है, जैसा कि प्रतिरोध है, लेकिन चुंबकीय क्षेत्र के आधार पर भिन्न होता है। उच्च चुंबकीय प्रवाह पर चुंबकीय सर्किट [[ संतृप्ति (चुंबकीय) ]] के कोर के लिए उपयोग की जाने वाली [[ फेरोमैग्नेटिक सामग्री ]], चुंबकीय प्रवाह की और वृद्धि को सीमित करती है, इसलिए इस स्तर से ऊपर अनिच्छा तेजी से बढ़ जाती है। इसके अतिरिक्त  , फेरोमैग्नेटिक सामग्री [[ हिस्टैरिसीस ]] से पीड़ित होती है, इसलिए उनमें प्रवाह न केवल तात्कालिक एमएमएफ पर अपितु  एमएमएफ के इतिहास पर भी निर्भर करता है। चुंबकीय प्रवाह के स्रोत को बंद करने के बाद, फेरोमैग्नेटिक सामग्रियों में अवशेष चुंबकत्व छोड़ दिया जाता है, जिससे कोई एमएमएफ वाला प्रवाह नहीं होता है।


=== सर्किट कानून ===
=== सर्किट कानून ===
[[File:Magnetischer Kreis.svg|thumb|चुंबकीय सर्किट]]चुंबकीय सर्किट अन्य कानूनों का पालन करते हैं जो विद्युत सर्किट कानूनों के समान हैं। उदाहरण के लिए, कुल अनिच्छा <math>\mathcal{R}_\mathrm{T}</math> अनिच्छा की <math>\mathcal{R}_1,\ \mathcal{R}_2,\ \ldots</math> श्रृंखला में है:
[[File:Magnetischer Kreis.svg|thumb|चुंबकीय सर्किट]]चुंबकीय सर्किट अन्य कानूनों का पालन करते हैं जो विद्युत सर्किट कानूनों के समान हैं। उदाहरण के लिए, कुल अनिच्छा <math>\mathcal{R}_\mathrm{T}</math> अनिच्छा की <math>\mathcal{R}_1,\ \mathcal{R}_2,\ \ldots</math> श्रृंखला में है:
<math display="block">\mathcal{R}_\mathrm{T} = \mathcal{R}_1 + \mathcal{R}_2 + \cdots</math>
<math display="block">\mathcal{R}_\mathrm{T} = \mathcal{R}_1 + \mathcal{R}_2 + \cdots</math>
यह भी एम्पीयर के नियम का पालन करता है और श्रृंखला में प्रतिरोध जोड़ने के लिए किरचॉफ के सर्किट कानूनों के अनुरूप है। किरचॉफ का वोल्टेज कानून। इसके अलावा, चुंबकीय प्रवाह का योग <math>\Phi_1,\ \Phi_2,\ \ldots</math> किसी भी नोड में हमेशा शून्य होता है:
यह भी एम्पीयर के नियम का पालन करता है और श्रृंखला में प्रतिरोध जोड़ने के लिए किरचॉफ के सर्किट कानूनों के अनुरूप है। किरचॉफ का वोल्टेज कानून। इसके अतिरिक्त  , चुंबकीय प्रवाह का योग <math>\Phi_1,\ \Phi_2,\ \ldots</math> किसी भी नोड में हमेशा शून्य होता है:
<math display="block">\Phi_1 + \Phi_2 + \cdots = 0.</math>
<math display="block">\Phi_1 + \Phi_2 + \cdots = 0.</math>
यह चुम्बकत्व के लिए गॉस के नियम का अनुसरण करता है। गॉस का नियम और किरचॉफ के सर्किट कानूनों के अनुरूप है। विद्युत परिपथों के विश्लेषण के लिए किरचॉफ का वर्तमान नियम।
यह चुम्बकत्व के लिए गॉस के नियम का अनुसरण करता है। गॉस का नियम और किरचॉफ के सर्किट कानूनों के अनुरूप है। विद्युत परिपथों के विश्लेषण के लिए किरचॉफ का वर्तमान नियम।
Line 137: Line 137:
* वोल्टेज वी के बराबर मैग्नेटोमोटिव फोर्स एफ है
* वोल्टेज वी के बराबर मैग्नेटोमोटिव फोर्स एफ है


शुद्ध स्रोत/प्रतिरोध सर्किट के लिए किरचॉफ के सर्किट कानूनों | किरचॉफ के वोल्टेज कानून ([[ केवीएल ]]) के चुंबकीय समकक्ष के आवेदन से प्रत्येक शाखा में प्रवाह के लिए चुंबकीय सर्किट को हल किया जा सकता है। विशेष रूप से, जबकि केवीएल बताता है कि लूप पर लागू वोल्टेज उत्तेजना [[ लूप करंट ]] चारों ओर वोल्टेज ड्रॉप्स (प्रतिरोध समय वर्तमान) के योग के बराबर है, चुंबकीय एनालॉग बताता है कि मैग्नेटोमोटिव बल (एम्पियर-टर्न उत्तेजना से प्राप्त) के बराबर है MMF का योग शेष लूप में गिरता है (प्रवाह और अनिच्छा का उत्पाद)। (यदि कई लूप हैं, तो प्रत्येक शाखा में करंट को एक मैट्रिक्स समीकरण के माध्यम से हल किया जा सकता है - लूप विश्लेषण में मेष सर्किट शाखा धाराओं के लिए एक मैट्रिक्स समाधान के रूप में प्राप्त किया जाता है - जिसके बाद अलग-अलग शाखा धाराओं को जोड़कर और / या घटाकर प्राप्त किया जाता है। घटक लूप धाराएं, जैसा कि अपनाए गए साइन कन्वेंशन और लूप ओरिएंटेशन द्वारा इंगित किया गया है।) एम्पीयर के नियम के अनुसार, उत्तेजना करंट का उत्पाद है और पूरे किए गए लूप की संख्या है और इसे एम्पीयर-टर्न में मापा जाता है। अधिक आम तौर पर कहा गया है:
शुद्ध स्रोत/प्रतिरोध सर्किट के लिए किरचॉफ के सर्किट कानूनों | किरचॉफ के वोल्टेज कानून ([[ केवीएल ]]) के चुंबकीय समकक्ष के आवेदन से प्रत्येक शाखा में प्रवाह के लिए चुंबकीय सर्किट को हल किया जा सकता है। विशेष रूप से, जबकि केवीएल बताता है कि लूप पर लागू वोल्टेज उत्तेजना [[ लूप करंट ]] चारों ओर वोल्टेज ड्रॉप्स (प्रतिरोध समय वर्तमान) के योग के बराबर है, चुंबकीय एनालॉग बताता है कि मैग्नेटोमोटिव बल (एम्पियर-टर्न उत्तेजना से प्राप्त) के बराबर है MMF का योग शेष लूप में गिरता है (प्रवाह और अनिच्छा का उत्पाद)। (यदि कई लूप हैं, तो प्रत्येक शाखा में करंट को एक मैट्रिक्स समीकरण के माध्यम से हल किया जा सकता है - लूप विश्लेषण में मेष सर्किट शाखा धाराओं के लिए एक मैट्रिक्स समाधान के रूप में प्राप्त किया जाता है - जिसके बाद भिन्न -भिन्न  शाखा धाराओं को जोड़कर और / या घटाकर प्राप्त किया जाता है। घटक लूप धाराएं, जैसा कि अपनाए गए साइन कन्वेंशन और लूप ओरिएंटेशन द्वारा इंगित किया गया है।) एम्पीयर के नियम के अनुसार, उत्तेजना करंट का उत्पाद है और पूरे किए गए लूप की संख्या है और इसे एम्पीयर-टर्न में मापा जाता है। अधिक सामान्यतः  कहा गया है:
<math display="block">F = NI = \oint \mathbf{H} \cdot d\mathbf{l}.</math>
<math display="block">F = NI = \oint \mathbf{H} \cdot d\mathbf{l}.</math>
स्टोक्स के प्रमेय द्वारा, का बंद [[ रेखा अभिन्न ]] {{math|''H''·d''l''}} एक समोच्च के चारों ओर कर्ल के खुले सतह के अभिन्न अंग के बराबर है {{math|'''H'''·''d'''''A'''}} बंद समोच्च से घिरी सतह के पार। चूंकि, मैक्सवेल के समीकरणों से, {{math|1=curl '''H''' = '''J'''}}, बंद लाइन का अभिन्न अंग {{math|'''H'''·''d'''''l'''}} सतह से गुजरने वाली कुल धारा का मूल्यांकन करता है। यह उत्तेजना के बराबर है, {{math|''NI''}}, जो सतह से गुजरने वाली धारा को भी मापता है, जिससे यह सत्यापित होता है कि एक बंद प्रणाली में सतह के माध्यम से शुद्ध वर्तमान प्रवाह शून्य एम्पीयर-टर्न है जो ऊर्जा का संरक्षण करता है।
स्टोक्स के प्रमेय द्वारा, का बंद [[ रेखा अभिन्न ]] {{math|''H''·d''l''}} एक समोच्च के चारों ओर कर्ल के खुले सतह के अभिन्न अंग के बराबर है {{math|'''H'''·''d'''''A'''}} बंद समोच्च से घिरी सतह के पार। चूंकि, मैक्सवेल के समीकरणों से, {{math|1=curl '''H''' = '''J'''}}, बंद लाइन का अभिन्न अंग {{math|'''H'''·''d'''''l'''}} सतह से गुजरने वाली कुल धारा का मूल्यांकन करता है। यह उत्तेजना के बराबर है, {{math|''NI''}}, जो सतह से गुजरने वाली धारा को भी मापता है, जिससे यह सत्यापित होता है कि एक बंद प्रणाली में सतह के माध्यम से शुद्ध वर्तमान प्रवाह शून्य एम्पीयर-टर्न है जो ऊर्जा का संरक्षण करता है।
Line 146: Line 146:
*संतृप्ति (चुंबकीय) के प्रभाव को कम करने के लिए कुछ ट्रांसफार्मर के कोर में एयर गैप बनाया जा सकता है। यह चुंबकीय सर्किट की अनिच्छा को बढ़ाता है, और इसे कोर संतृप्ति से पहले अधिक [[ ऊर्जा ]] संग्रहित करने में सक्षम बनाता है। इस प्रभाव का उपयोग कैथोड-रे ट्यूब वीडियो डिस्प्ले के [[ फ्लाईबैक ट्रांसफार्मर ]] और कुछ प्रकार की [[ स्विच्ड-मोड बिजली की आपूर्ति ]]|स्विच-मोड पावर सप्लाई में किया जाता है।
*संतृप्ति (चुंबकीय) के प्रभाव को कम करने के लिए कुछ ट्रांसफार्मर के कोर में एयर गैप बनाया जा सकता है। यह चुंबकीय सर्किट की अनिच्छा को बढ़ाता है, और इसे कोर संतृप्ति से पहले अधिक [[ ऊर्जा ]] संग्रहित करने में सक्षम बनाता है। इस प्रभाव का उपयोग कैथोड-रे ट्यूब वीडियो डिस्प्ले के [[ फ्लाईबैक ट्रांसफार्मर ]] और कुछ प्रकार की [[ स्विच्ड-मोड बिजली की आपूर्ति ]]|स्विच-मोड पावर सप्लाई में किया जाता है।
*अनिच्छा का परिवर्तन [[ अनिच्छा मोटर ]] (या चर अनिच्छा जनरेटर) और [[ एलेक्जेंडरसन अल्टरनेटर ]] के पीछे का सिद्धांत है।
*अनिच्छा का परिवर्तन [[ अनिच्छा मोटर ]] (या चर अनिच्छा जनरेटर) और [[ एलेक्जेंडरसन अल्टरनेटर ]] के पीछे का सिद्धांत है।
*[[ टेलीविजन ]] और अन्य [[ कैथोड रे ट्यूब ]] के कारण होने वाले चुंबकीय हस्तक्षेप को कम करने के लिए [[ मल्टीमीडिया ]] [[ ध्वनि-विस्तारक यंत्र ]]ों को आमतौर पर चुंबकीय रूप से ढाल दिया जाता है। आवारा चुंबकीय क्षेत्र को कम करने के लिए स्पीकर चुंबक को नरम लोहे जैसी सामग्री से ढका जाता है।
*[[ टेलीविजन ]] और अन्य [[ कैथोड रे ट्यूब ]] के कारण होने वाले चुंबकीय हस्तक्षेप को कम करने के लिए [[ मल्टीमीडिया ]] [[ ध्वनि-विस्तारक यंत्र ]]ों को सामान्यतः  चुंबकीय रूप से ढाल दिया जाता है। आवारा चुंबकीय क्षेत्र को कम करने के लिए स्पीकर चुंबक को नरम लोहे जैसी सामग्री से ढका जाता है।


अनिच्छा को परिवर्तनीय अनिच्छा (चुंबकीय) पिक अप (संगीत प्रौद्योगिकी) पर भी लागू किया जा सकता है।
अनिच्छा को परिवर्तनीय अनिच्छा (चुंबकीय) पिक अप (संगीत प्रौद्योगिकी) पर भी लागू किया जा सकता है।

Revision as of 21:35, 18 January 2023

एक चुंबक ीय सर्किट एक या एक से अधिक बंद लूप पथों से बना होता है जिसमें चुंबकीय प्रवाह होता है। प्रवाह सामान्यतः स्थायी चुम्बकों या विद्युत चुम्बकों द्वारा उत्पन्न होता है और चुंबकीय कोर द्वारा पथ तक सीमित होता है जिसमें लोहे जैसी फेरोमैग्नेटिक सामग्री होती है, चूंकि रास्ते में हवा के अंतराल या अन्य सामग्री हो सकती है। बिजली की मोटर ्स, बिजली पैदा करने वाला , ट्रांसफार्मर , रिले , इलेक्ट्रोमैग्नेट उठाने, SQUID s, बिजली की शक्ति नापने का यंत्र और चुंबकीय रिकॉर्डिंग सिर जैसे कई उपकरणों में चुंबकीय क्षेत्र ों को कुशलतापूर्वक चैनल करने के लिए चुंबकीय सर्किट कार्यरत हैं।

एक चुंबकीय संतृप्ति चुंबकीय सर्किट में चुंबकीय प्रवाह, चुंबकत्व बल और [[ चुंबकीय अनिच्छा ]] के बीच के संबंध को हॉपकिन्सन के कानून द्वारा वर्णित किया जा सकता है, जो विद्युत सर्किट में ओम के कानून के लिए एक सतही समानता रखता है, जिसके परिणामस्वरूप एक के गुणों के बीच एक-से-एक पत्राचार होता है। चुंबकीय सर्किट और एक समान विद्युत सर्किट। इस अवधारणा का उपयोग करके विद्युत परिपथों के लिए विकसित विधियों और तकनीकों का उपयोग करके ट्रांसफार्मर जैसे जटिल उपकरणों के चुंबकीय क्षेत्र को जल्दी से हल किया जा सकता है।

चुंबकीय सर्किट के कुछ उदाहरण हैं:

  • लोहे के चुंबक कीपर (कम अनिच्छा सर्किट) के साथ घोड़े की नाल चुंबक
  • घोड़े की नाल चुंबक बिना कीपर के (उच्च-अनिच्छा सर्किट)
  • इलेक्ट्रिक मोटर (चर-अनिच्छा सर्किट)
  • कुछ प्रकार के चुंबकीय कारतूस (चर-अनिच्छा सर्किट)

मैग्नेटोमोटिव बल (एमएमएफ)

जिस प्रकार से वैद्युतवाहक बल (इलेक्ट्रोमोटिव बल) विद्युत परिपथों में विद्युत आवेश की धारा को चलाता है, चुंबकीय परिपथों के माध्यम से चुंबकत्व बल (एमएमएफ) चुंबकीय प्रवाह को 'संचालित' करता है। चूंकि , 'मैग्नेटोमोटिव बल' शब्द एक मिथ्या नाम है क्योंकि यह कोई बल नहीं है और न ही कोई गतिमान है। इसे केवल MMF कहना शायद बेहतर होगा। इलेक्ट्रोमोटिव बल की परिभाषा के अनुरूप, मैग्नेटोमोटिव बल एक बंद लूप के आसपास परिभाषित किया गया है:

एमएमएफ उस क्षमता का प्रतिनिधित्व करता है जो लूप को पूरा करके एक काल्पनिक चुंबकीय मोनोपोल हासिल करेगा। जो चुंबकीय प्रवाह संचालित होता है वह चुंबकीय आवेश की धारा नहीं है; इसका केवल MMF से वही संबंध है जो विद्युत धारा का EMF से है। (आगे के विवरण के लिए नीचे अनिच्छा की सूक्ष्म उत्पत्ति देखें।)

मैग्नेटोमोटिव बल की इकाई [[ एम्पेयर -टर्न ]] (एटी) है, जो एक खालीपन में विद्युत प्रवाह कीय सामग्री के सिंगल-टर्न लूप में बहने वाले एक एम्पीयर के स्थिर, प्रत्यक्ष विद्युत प्रवाह द्वारा दर्शाया जाता है। 1930 में अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन द्वारा स्थापित गिल्बर्ट (Gb),[1] मैग्नेटोमोटिव बल की सीजीएस इकाई है और एम्पीयर-टर्न की तुलना में थोड़ी छोटी इकाई है। यूनिट का नाम विलियम गिल्बर्ट (खगोलविद) (1544-1603) अंग्रेजी चिकित्सक और प्राकृतिक दार्शनिक के नाम पर रखा गया है।

[2]

मैग्नेटोमोटिव बल की गणना एम्पीयर के परिपथीय नियम | एम्पीयर के नियम का उपयोग करके अधिकांशतः जल्दी से की जा सकती है। उदाहरण के लिए, मैग्नेटोमोटिव बल एक लंबी कुंडल की है:

जहाँ N टर्न (ज्यामिति) की संख्या है और I कॉइल में करंट है। अभ्यास में इस समीकरण का उपयोग वास्तविक प्रारंभ करनेवाला ्स के एमएमएफ के लिए किया जाता है जिसमें एन इंडक्टिंग कॉइल की वाइंडिंग संख्या होती है।

चुंबकीय प्रवाह

एक लागू MMF सिस्टम के चुंबकीय घटकों के माध्यम से चुंबकीय प्रवाह को 'संचालित' करता है। एक चुंबकीय घटक के माध्यम से चुंबकीय प्रवाह चुंबकीय क्षेत्र # चुंबकीय क्षेत्र रेखाओं की संख्या के समानुपाती होता है जो उस घटक के क्रॉस सेक्शनल क्षेत्र से गुजरती हैं। यह शुद्ध संख्या है, अर्थात एक दिशा में गुजरने वाली संख्या, दूसरी दिशा में गुजरने वाली संख्या घटाएं। चुंबकीय क्षेत्र सदिश 'B' की दिशा परिभाषा के अनुसार चुम्बक के भीतर चुम्बक के दक्षिण से उत्तरी ध्रुव की ओर होती है; मैदान के बाहर रेखाएँ उत्तर से दक्षिण की ओर जाती हैं।

चुंबकीय क्षेत्र की दिशा के लंबवत क्षेत्र के एक तत्व के माध्यम से प्रवाह चुंबकीय क्षेत्र और क्षेत्र तत्व के उत्पाद द्वारा दिया जाता है। अधिक सामान्यतः , चुंबकीय प्रवाह Φ को चुंबकीय क्षेत्र और क्षेत्र तत्व वेक्टर के स्केलर उत्पाद द्वारा परिभाषित किया जाता है। मात्रात्मक रूप से, सतह S के माध्यम से चुंबकीय प्रवाह को सतह के क्षेत्र में चुंबकीय क्षेत्र के अभिन्न अंग के रूप में परिभाषित किया गया है

एक चुंबकीय घटक के लिए चुंबकीय प्रवाह Φ की गणना करने के लिए उपयोग किया जाने वाला क्षेत्र S सामान्यतः घटक के क्रॉस-सेक्शनल क्षेत्र के रूप में चुना जाता है।

चुंबकीय प्रवाह की माप की SI इकाई वेबर (इकाई) (व्युत्पन्न इकाइयों में: वोल्ट-सेकंड) और चुंबकीय प्रवाह घनत्व (या चुंबकीय प्रेरण) की इकाई है। B) वेबर प्रति वर्ग मीटर या टेस्ला (यूनिट) है।

सर्किट मॉडल

प्रतिरोध-अनिच्छा मॉडल एक चुंबकीय सर्किट का प्रतिनिधित्व करने का सबसे सामान्य तरीका है, जो विद्युत और चुंबकीय सर्किट के बीच एक समानता बनाता है। यह मॉडल उन प्रणालियों के लिए अच्छा है जिनमें केवल चुंबकीय घटक होते हैं, लेकिन एक ऐसी प्रणाली के मॉडलिंग के लिए जिसमें विद्युत और चुंबकीय दोनों भाग होते हैं, इसमें गंभीर कमियां हैं। यह विद्युत और चुंबकीय डोमेन के बीच शक्ति और ऊर्जा प्रवाह को ठीक से मॉडल नहीं करता है। ऐसा इसलिए है क्योंकि विद्युत प्रतिरोध ऊर्जा को नष्ट कर देगा जबकि चुंबकीय अनिच्छा इसे संग्रहीत करती है और बाद में इसे वापस कर देती है। एक वैकल्पिक मॉडल जो ऊर्जा प्रवाह को सही ढंग से मॉडल करता है वह जाइरेटर-कैपेसिटर मॉडल है।

प्रतिरोध-अनिच्छा मॉडल

चुंबकीय सर्किट के लिए प्रतिरोध-अनिच्छा मॉडल एक गांठ-तत्व मॉडल है जो विद्युत प्रतिरोध को चुंबकीय अनिच्छा के अनुरूप बनाता है।

हॉपकिन्सन का नियम

विद्युत परिपथों में, ओम का नियम इलेक्ट्रोमोटिव बल के बीच एक अनुभवजन्य संबंध है एक तत्व और वर्तमान (बिजली) में लागू यह उस तत्व के माध्यम से उत्पन्न होता है। इसे इस प्रकार लिखा गया है:

जहाँ R उस पदार्थ का विद्युत प्रतिरोध है। चुंबकीय परिपथों में प्रयुक्त ओम के नियम का एक प्रतिरूप है। इस कानून को अधिकांशतः जॉन हॉपकिंसन के बाद 'हॉपकिंसन का कानून' कहा जाता है, लेकिन वास्तव में इसे 1873 में हेनरी ऑगस्टस रोलैंड द्वारा तैयार किया गया था।[3] यह प्रकट करता है की[4][5]
कहाँ पे एक चुंबकीय तत्व में चुंबकत्व बल (एमएमएफ) है, चुंबकीय तत्व के माध्यम से चुंबकीय प्रवाह है, और उस तत्व की चुंबकीय अनिच्छा है। (यह बाद में दिखाया जाएगा कि यह संबंध एच-क्षेत्र और चुंबकीय क्षेत्र बी, बी=μH के बीच अनुभवजन्य संबंध के कारण है, जहां μ सामग्री की पारगम्यता (विद्युत चुंबकत्व) है)। ओम के नियम की भांति, हॉपकिंसन के नियम की व्याख्या या तो एक अनुभवजन्य समीकरण के रूप में की जा सकती है जो कुछ सामग्रियों के लिए काम करता है, या यह अनिच्छा की परिभाषा के रूप में काम कर सकता है।

मॉडलिंग शक्ति और ऊर्जा प्रवाह के संदर्भ में हॉपकिंसन का नियम ओम के नियम के साथ एक सही सादृश्य नहीं है। विशेष रूप से, चुंबकीय अनिच्छा से संबंधित कोई शक्ति अपव्यय नहीं होता है जैसे विद्युत प्रतिरोध में अपव्यय होता है। चुंबकीय प्रतिरोध जो इस संबंध में विद्युत प्रतिरोध का एक वास्तविक सादृश्य है, को चुंबकत्व बल के अनुपात और चुंबकीय प्रवाह के परिवर्तन की दर के रूप में परिभाषित किया गया है। यहाँ विद्युत प्रवाह के लिए चुंबकीय प्रवाह के परिवर्तन की दर खड़ी है और ओम का नियम सादृश्य बन जाता है,

कहाँ पे चुंबकीय प्रतिरोध है। यह संबंध एक विद्युत-चुंबकीय सादृश्य का भाग है जिसे गाइरेटर-संधारित्र मॉडल कहा जाता है और इसका उद्देश्य अनिच्छा मॉडल की कमियों को दूर करना है। गाइरेटर-कैपेसिटर मॉडल, बदले में, मैकेनिकल-इलेक्ट्रिकल एनालॉग्स का भाग है # अन्य ऊर्जा डोमेन कई ऊर्जा डोमेन में सिस्टम को मॉडल करने के लिए उपयोग किया जाता है।

अनिच्छा

चुंबकीय प्रतिरोध, या चुंबकीय प्रतिरोध, विद्युत विद्युत नेटवर्क में विद्युत प्रतिरोध के समान है (चूंकि यह चुंबकीय ऊर्जा को नष्ट नहीं करता है)। जिस प्रकार से एक विद्युत क्षेत्र एक विद्युत प्रवाह को कम से कम प्रतिरोध के पथ का अनुसरण करने का कारण बनता है, एक चुंबकीय क्षेत्र चुंबकीय प्रवाह को कम से कम चुंबकीय अनिच्छा के पथ का अनुसरण करने का कारण बनता है। यह एक अदिश (भौतिकी) है, गहन और व्यापक गुण # व्यापक गुण, विद्युत प्रतिरोध के समान।

कुल प्रतिरोध एक निष्क्रिय चुंबकीय सर्किट में MMF के अनुपात और इस सर्किट में चुंबकीय प्रवाह के बराबर है। एक एसी क्षेत्र में, रिलक्टेंस साइन वेव एमएमएफ और चुंबकीय प्रवाह के लिए आयाम मानों का अनुपात है। (फासर (साइन तरंग ें) देखें)

परिभाषा को इस प्रकार व्यक्त किया जा सकता है:

कहाँ पे एम्पीयर-टर्न प्रति वेबर (यूनिट) में अनिच्छा है (एक इकाई जो टर्न प्रति हेनरी (यूनिट) के बराबर है)।

मैक्सवेल के समीकरणों द्वारा वर्णित चुंबकीय प्रवाह हमेशा एक बंद लूप बनाता है, लेकिन लूप का मार्ग आसपास की सामग्रियों की अनिच्छा पर निर्भर करता है। यह कम से कम अनिच्छा के मार्ग पर केंद्रित है। वायु और निर्वात में उच्च प्रतिबाधा होती है, जबकि आसानी से चुंबकित सामग्री जैसे नरम लोहे में कम अनिच्छा होती है। कम-प्रतिरोध सामग्री में प्रवाह की एकाग्रता मजबूत अस्थायी ध्रुव बनाती है और यांत्रिक बलों का कारण बनती है जो सामग्री को उच्च प्रवाह के क्षेत्रों की ओर ले जाती है, इसलिए यह हमेशा एक आकर्षक बल (पुल) होता है।

अनिच्छा के व्युत्क्रम को अनुमेय कहा जाता है।

इसकी एसआई व्युत्पन्न इकाई हेनरी (इकाई) है (अधिष्ठापन की इकाई के समान है, चूंकि दो अवधारणाएं भिन्न हैं)।

पारगम्यता और चालकता

चुंबकीय रूप से समान चुंबकीय सर्किट तत्व की अनिच्छा की गणना इस प्रकार की जा सकती है:

कहाँ पे

  • l तत्व की लंबाई है,
  • सामग्री की पारगम्यता (विद्युत चुंबकत्व) है ( सामग्री (आयाम रहित) की सापेक्ष पारगम्यता है, और मुक्त स्थान की पारगम्यता है), और
  • A सर्किट का क्रॉस-सेक्शनल क्षेत्र है।

यह सामग्री में विद्युत प्रतिरोध के समीकरण के समान है, जिसमें पारगम्यता चालकता के अनुरूप होती है; पारगम्यता के व्युत्क्रम को चुंबकीय सापेक्षता के रूप में जाना जाता है और प्रतिरोधकता के अनुरूप है। कम पारगम्यता वाले लंबे, पतले ज्यामिति उच्च अनिच्छा की ओर ले जाते हैं। विद्युत परिपथों में कम प्रतिरोध जैसे कम प्रतिरोध को सामान्यतः पसंद किया जाता है।[citation needed]


सादृश्य का सारांश

निम्न तालिका विद्युत परिपथ सिद्धांत और चुंबकीय परिपथ सिद्धांत के बीच गणितीय समानता को सारांशित करती है। यह गणितीय सादृश्य है और भौतिक नहीं है। एक ही पंक्ति में वस्तुओं की समान गणितीय भूमिका होती है; दो सिद्धांतों के भौतिकी बहुत भिन्न हैं। उदाहरण के लिए, धारा विद्युत आवेश का प्रवाह है, जबकि चुंबकीय प्रवाह किसी मात्रा का प्रवाह नहीं है।

Analogy between 'magnetic circuits' and electrical circuits
Magnetic Electric
Name Symbol Units Name Symbol Units
Magnetomotive force (MMF) ampere-turn Electromotive force (EMF) volt
Magnetic field H ampere/meter Electric field E volt/meter = newton/coulomb
Magnetic flux weber Electric current I ampere
Hopkinson's law or Rowland's law ampere-turn Ohm's law
Reluctance 1/henry Electrical resistance R ohm
Permeance henry Electric conductance G = 1/R 1/ohm = mho = siemens
Relation between B and H Microscopic Ohm's law
Magnetic flux density B B tesla Current density J ampere/square meter
Permeability μ henry/meter Electrical conductivity σ siemens/meter


समानता की सीमाएं

प्रतिरोध-अनिच्छा मॉडल की सीमाएँ हैं। हॉपकिंसन के नियम और ओम के नियम के बीच समानता के कारण इलेक्ट्रिक और चुंबकीय सर्किट केवल सतही रूप से समान हैं। चुंबकीय सर्किट में महत्वपूर्ण अंतर होते हैं जिन्हें उनके निर्माण में ध्यान में रखा जाना चाहिए:

  • विद्युत धाराएँ कणों (इलेक्ट्रॉनों) के प्रवाह का प्रतिनिधित्व करती हैं और शक्ति (भौतिकी) को ले जाती हैं, जिनमें से कुछ या सभी को प्रतिरोधों में गर्मी के रूप में फैलाया जाता है। चुंबकीय क्षेत्र किसी भी चीज के प्रवाह का प्रतिनिधित्व नहीं करते हैं, और अनिच्छा में कोई शक्ति नष्ट नहीं होती है।
  • विशिष्ट विद्युत परिपथों में धारा बहुत कम रिसाव के साथ परिपथ तक ही सीमित होती है। ठेठ चुंबकीय सर्किट में सभी चुंबकीय क्षेत्र चुंबकीय सर्किट तक ही सीमित नहीं होते हैं क्योंकि चुंबकीय पारगम्यता सामग्री के बाहर भी उपलब्ध होती है (वैक्यूम पारगम्यता देखें)। इस प्रकार, चुंबकीय कोर के बाहर अंतरिक्ष में महत्वपूर्ण रिसाव प्रवाह हो सकता है, जिसे ध्यान में रखा जाना चाहिए लेकिन गणना करना अधिकांशतः मुश्किल होता है।
  • सबसे महत्वपूर्ण बात, चुंबकीय सर्किट अरैखिक तत्व हैं; एक चुंबकीय सर्किट में प्रतिरोध स्थिर नहीं है, जैसा कि प्रतिरोध है, लेकिन चुंबकीय क्षेत्र के आधार पर भिन्न होता है। उच्च चुंबकीय प्रवाह पर चुंबकीय सर्किट संतृप्ति (चुंबकीय) के कोर के लिए उपयोग की जाने वाली फेरोमैग्नेटिक सामग्री , चुंबकीय प्रवाह की और वृद्धि को सीमित करती है, इसलिए इस स्तर से ऊपर अनिच्छा तेजी से बढ़ जाती है। इसके अतिरिक्त , फेरोमैग्नेटिक सामग्री हिस्टैरिसीस से पीड़ित होती है, इसलिए उनमें प्रवाह न केवल तात्कालिक एमएमएफ पर अपितु एमएमएफ के इतिहास पर भी निर्भर करता है। चुंबकीय प्रवाह के स्रोत को बंद करने के बाद, फेरोमैग्नेटिक सामग्रियों में अवशेष चुंबकत्व छोड़ दिया जाता है, जिससे कोई एमएमएफ वाला प्रवाह नहीं होता है।

सर्किट कानून

चुंबकीय सर्किट

चुंबकीय सर्किट अन्य कानूनों का पालन करते हैं जो विद्युत सर्किट कानूनों के समान हैं। उदाहरण के लिए, कुल अनिच्छा अनिच्छा की श्रृंखला में है:

यह भी एम्पीयर के नियम का पालन करता है और श्रृंखला में प्रतिरोध जोड़ने के लिए किरचॉफ के सर्किट कानूनों के अनुरूप है। किरचॉफ का वोल्टेज कानून। इसके अतिरिक्त , चुंबकीय प्रवाह का योग किसी भी नोड में हमेशा शून्य होता है:
यह चुम्बकत्व के लिए गॉस के नियम का अनुसरण करता है। गॉस का नियम और किरचॉफ के सर्किट कानूनों के अनुरूप है। विद्युत परिपथों के विश्लेषण के लिए किरचॉफ का वर्तमान नियम।

साथ में, उपरोक्त तीन कानून विद्युत सर्किट के समान तरीके से चुंबकीय सर्किट का विश्लेषण करने के लिए एक पूर्ण प्रणाली बनाते हैं। दो प्रकार के सर्किटों की तुलना करने से पता चलता है कि:

  • प्रतिरोध R के समतुल्य अनिच्छा है
  • वर्तमान I के समतुल्य चुंबकीय प्रवाह Φ है
  • वोल्टेज वी के बराबर मैग्नेटोमोटिव फोर्स एफ है

शुद्ध स्रोत/प्रतिरोध सर्किट के लिए किरचॉफ के सर्किट कानूनों | किरचॉफ के वोल्टेज कानून (केवीएल ) के चुंबकीय समकक्ष के आवेदन से प्रत्येक शाखा में प्रवाह के लिए चुंबकीय सर्किट को हल किया जा सकता है। विशेष रूप से, जबकि केवीएल बताता है कि लूप पर लागू वोल्टेज उत्तेजना लूप करंट चारों ओर वोल्टेज ड्रॉप्स (प्रतिरोध समय वर्तमान) के योग के बराबर है, चुंबकीय एनालॉग बताता है कि मैग्नेटोमोटिव बल (एम्पियर-टर्न उत्तेजना से प्राप्त) के बराबर है MMF का योग शेष लूप में गिरता है (प्रवाह और अनिच्छा का उत्पाद)। (यदि कई लूप हैं, तो प्रत्येक शाखा में करंट को एक मैट्रिक्स समीकरण के माध्यम से हल किया जा सकता है - लूप विश्लेषण में मेष सर्किट शाखा धाराओं के लिए एक मैट्रिक्स समाधान के रूप में प्राप्त किया जाता है - जिसके बाद भिन्न -भिन्न शाखा धाराओं को जोड़कर और / या घटाकर प्राप्त किया जाता है। घटक लूप धाराएं, जैसा कि अपनाए गए साइन कन्वेंशन और लूप ओरिएंटेशन द्वारा इंगित किया गया है।) एम्पीयर के नियम के अनुसार, उत्तेजना करंट का उत्पाद है और पूरे किए गए लूप की संख्या है और इसे एम्पीयर-टर्न में मापा जाता है। अधिक सामान्यतः कहा गया है:

स्टोक्स के प्रमेय द्वारा, का बंद रेखा अभिन्न H·dl एक समोच्च के चारों ओर कर्ल के खुले सतह के अभिन्न अंग के बराबर है H·dA बंद समोच्च से घिरी सतह के पार। चूंकि, मैक्सवेल के समीकरणों से, curl H = J, बंद लाइन का अभिन्न अंग H·dl सतह से गुजरने वाली कुल धारा का मूल्यांकन करता है। यह उत्तेजना के बराबर है, NI, जो सतह से गुजरने वाली धारा को भी मापता है, जिससे यह सत्यापित होता है कि एक बंद प्रणाली में सतह के माध्यम से शुद्ध वर्तमान प्रवाह शून्य एम्पीयर-टर्न है जो ऊर्जा का संरक्षण करता है।

अधिक जटिल चुंबकीय प्रणाली, जहां फ्लक्स एक साधारण पाश तक सीमित नहीं है, मैक्सवेल के समीकरणों का उपयोग करके पहले सिद्धांतों से विश्लेषण किया जाना चाहिए।

अनुप्रयोग

अनिच्छा को परिवर्तनीय अनिच्छा (चुंबकीय) पिक अप (संगीत प्रौद्योगिकी) पर भी लागू किया जा सकता है।

यह भी देखें

संदर्भ

  1. "International Electrotechnical Commission".
  2. Matthew M. Radmanesh, The Gateway to Understanding: Electrons to Waves and Beyond, p. 539, AuthorHouse, 2005 ISBN 1418487406.
  3. Rowland H., Phil. Mag. (4), vol. 46, 1873, p. 140.
  4. "Magnetism (flash)".
  5. Tesche, Fredrick; Michel Ianoz; Torbjörn Karlsson (1997). EMC Analysis Methods and Computational Models. Wiley-IEEE. p. 513. ISBN 0-471-15573-X.


बाहरी कड़ियाँ