चुंबकीय परिपथ: Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
* कुछ प्रकार के [[ चुंबकीय कारतूस | चुंबकीय कार्ट्रिज]] चर अनिच्छा परिपथ के रूप में होती है। | * कुछ प्रकार के [[ चुंबकीय कारतूस | चुंबकीय कार्ट्रिज]] चर अनिच्छा परिपथ के रूप में होती है। | ||
== | == चुंबकवाहक बल (एमएमएफ) == | ||
{{main| | {{main| चुंबकवाहक बल}} | ||
जिस | |||
जिस तरह से [[ वैद्युतवाहक बल | वैद्युतवाहक बल]] (ईएमएफ) विद्युत परिपथों में विद्युत आवेश की धारा को चलाता है, उसी प्रकार चुंबकत्व बल (एमएमएफ)) चुंबकीय परिपथों के माध्यम से चुंबकीय प्रवाह को 'संचालित' करता है। चूंकि चुंबकवाहक बल एक नाम है क्योंकि यह कोई बल नहीं है और न ही कोई गतिमान है। इसे केवल एमएमएफ कहना उचित होगा। विद्युत वाहक बल की परिभाषा के अनुरूप, चुंबकवाहक बल <math>\mathcal{F}</math> एक बंद लूप के आसपास परिभाषित किया गया जाता है | |||
:<math>\mathcal{F} = \oint \mathbf{H} \cdot \mathrm{d}\mathbf{l}.</math> | :<math>\mathcal{F} = \oint \mathbf{H} \cdot \mathrm{d}\mathbf{l}.</math> | ||
एमएमएफ उस क्षमता का प्रतिनिधित्व करता है जो लूप को पूरा करके | एमएमएफ उस क्षमता का प्रतिनिधित्व करता है जो लूप को पूरा करके काल्पनिक [[ चुंबकीय मोनोपोल ]] प्राप्त करता है। चुंबकीय प्रवाह जो संचालित होता है चुंबकीय आवेश की धारा नहीं है यह केवल एमएमएफ के साथ वही संबंध होता है जो विद्युत धारा का ईएमएफ से है। आगे के वर्णन के लिए नीचे अनिच्छा की सूक्ष्म उत्पत्ति देखें। | ||
चुंबकवाहक बल की इकाई [[ एम्पेयर ]]-टर्न प्रतिवेबर होती है, जो [[ खालीपन |निर्वात]] में [[ विद्युत प्रवाह | विद्युत]] [[प्रवाहकीय]] सामग्री के सिंगल टर्न लूप में बहने वाले एम्पीयर के स्थिर प्रत्यक्ष विद्युत प्रवाह द्वारा दर्शाया जाता है। 1930 में आईईसी द्वारा स्थापित गिल्बर्ट (जीबी),<ref>{{Cite web|url=http://www.iec.ch/about/history/overview/|title=International Electrotechnical Commission}}</ref> चुंबकवाहक बल की [[ सीजीएस ]] इकाई है और एम्पीयर-टर्न की तुलना में थोड़ी छोटी इकाई है।[[ विलियम गिल्बर्ट (खगोलविद) ]] (1544-1603) अंग्रेजी चिकित्सक और प्राकृतिक दार्शनिक के नाम पर पर इस यूनिट का नाम रखा गया है। | |||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 23: | Line 24: | ||
&\approx 0.795775\;\text{At} | &\approx 0.795775\;\text{At} | ||
\end{align}</math><ref>Matthew M. Radmanesh, ''The Gateway to Understanding: Electrons to Waves and Beyond'', [https://books.google.co.uk/books?id=NANN_b5hc_EC&pg=PA539&dq=gilbert p. 539], AuthorHouse, 2005 {{ISBN|1418487406}}.</ref> | \end{align}</math><ref>Matthew M. Radmanesh, ''The Gateway to Understanding: Electrons to Waves and Beyond'', [https://books.google.co.uk/books?id=NANN_b5hc_EC&pg=PA539&dq=gilbert p. 539], AuthorHouse, 2005 {{ISBN|1418487406}}.</ref> | ||
चुंबकवाहक बल की गणना एम्पीयर के नियम का उपयोग करके जल्दी से की जा सकती है। उदाहरण के लिए, चुंबकवाहक बल <math>\mathcal{F}</math> एक लंबी कुंडल के रूप में होती है। | |||
:<math>\mathcal{F} = N I</math> | :<math>\mathcal{F} = N I</math> | ||
जहाँ N | जहाँ N फेरों की संख्या है और कुण्डली में धारा है। प्रयोग में इस समीकरण का उपयोग [[प्रेरक]] के एमएमएफ के लिए किया जाता है जिसमें N प्रेरक कॉइल की वाइंडिंग संख्या के रूप में होती है। | ||
== चुंबकीय प्रवाह == | == चुंबकीय प्रवाह == | ||
{{Main| Magnetic flux}} | {{Main| Magnetic flux}} | ||
एक लागू | एक लागू एमएमएफ सिस्टम के चुंबकीय घटकों के माध्यम से चुंबकीय प्रवाह को 'संचालित' करता है। एक चुंबकीय घटक के माध्यम से चुंबकीय प्रवाह चुंबकीय [[ क्षेत्र ]] # चुंबकीय क्षेत्र रेखाओं की संख्या के समानुपाती होता है जो उस घटक के क्रॉस सेक्शनल क्षेत्र से गुजरती हैं। यह शुद्ध संख्या है, अर्थात एक दिशा में गुजरने वाली संख्या, दूसरी दिशा में गुजरने वाली संख्या घटाएं। चुंबकीय क्षेत्र सदिश 'B' की दिशा परिभाषा के अनुसार चुम्बक के भीतर चुम्बक के दक्षिण से उत्तरी ध्रुव की ओर होती है; मैदान के बाहर रेखाएँ उत्तर से दक्षिण की ओर जाती हैं। | ||
चुंबकीय क्षेत्र की दिशा के लंबवत क्षेत्र के एक तत्व के माध्यम से प्रवाह चुंबकीय क्षेत्र और क्षेत्र तत्व के उत्पाद द्वारा दिया जाता है। अधिक सामान्यतः , चुंबकीय प्रवाह Φ को चुंबकीय क्षेत्र और क्षेत्र तत्व वेक्टर के स्केलर उत्पाद द्वारा परिभाषित किया जाता है। मात्रात्मक रूप से, सतह S के माध्यम से चुंबकीय प्रवाह को सतह के क्षेत्र में चुंबकीय क्षेत्र के [[ अभिन्न ]] अंग के रूप में परिभाषित किया गया है | चुंबकीय क्षेत्र की दिशा के लंबवत क्षेत्र के एक तत्व के माध्यम से प्रवाह चुंबकीय क्षेत्र और क्षेत्र तत्व के उत्पाद द्वारा दिया जाता है। अधिक सामान्यतः , चुंबकीय प्रवाह Φ को चुंबकीय क्षेत्र और क्षेत्र तत्व वेक्टर के स्केलर उत्पाद द्वारा परिभाषित किया जाता है। मात्रात्मक रूप से, सतह S के माध्यम से चुंबकीय प्रवाह को सतह के क्षेत्र में चुंबकीय क्षेत्र के [[ अभिन्न ]] अंग के रूप में परिभाषित किया गया है | ||
Line 62: | Line 63: | ||
गहन और व्यापक गुण # व्यापक गुण, विद्युत प्रतिरोध के समान। | गहन और व्यापक गुण # व्यापक गुण, विद्युत प्रतिरोध के समान। | ||
कुल प्रतिरोध एक निष्क्रिय चुंबकीय परिपथ में | कुल प्रतिरोध एक निष्क्रिय चुंबकीय परिपथ में एमएमएफ के अनुपात और इस परिपथ में चुंबकीय प्रवाह के बराबर है। एक एसी क्षेत्र में, रिलक्टेंस साइन वेव एमएमएफ और चुंबकीय प्रवाह के लिए आयाम मानों का अनुपात है। (फासर ([[ साइन तरंग ]]ें) देखें) | ||
परिभाषा को इस प्रकार व्यक्त किया जा सकता है: | परिभाषा को इस प्रकार व्यक्त किया जा सकता है: | ||
Line 99: | Line 100: | ||
! Name !! Symbol !! Units | ! Name !! Symbol !! Units | ||
|- | |- | ||
|[[Magnetomotive force]] ( | |[[Magnetomotive force]] (एमएमएफ ) || <math>\mathcal{F}= \int \mathbf{H}\cdot\mathrm{d}\mathbf{l}</math> || [[ampere-turn]] || || [[Electromotive force]] (ईएमएफ ) || <math>\mathcal{E}= \int \mathbf{E}\cdot\mathrm{d}\mathbf{l}</math> || [[volt]] | ||
|- | |- | ||
| [[Magnetic field]] || '''''H''''' || [[ampere]]/[[meter]] || || [[Electric field]] || '''''E''''' || [[volt]]/[[meter]] = [[Newton (unit)|newton]]/[[coulomb]] | | [[Magnetic field]] || '''''H''''' || [[ampere]]/[[meter]] || || [[Electric field]] || '''''E''''' || [[volt]]/[[meter]] = [[Newton (unit)|newton]]/[[coulomb]] | ||
Line 135: | Line 136: | ||
* प्रतिरोध R के समतुल्य अनिच्छा है <math>\mathcal{R}_\mathrm{m}</math> | * प्रतिरोध R के समतुल्य अनिच्छा है <math>\mathcal{R}_\mathrm{m}</math> | ||
* वर्तमान I के समतुल्य चुंबकीय प्रवाह Φ है | * वर्तमान I के समतुल्य चुंबकीय प्रवाह Φ है | ||
* वोल्टेज वी के बराबर | * वोल्टेज वी के बराबर चुंबकवाहक फोर्स एफ है | ||
शुद्ध स्रोत/प्रतिरोध परिपथ के लिए किरचॉफ के परिपथ कानूनों | किरचॉफ के वोल्टेज नियम ([[ केवीएल ]]) के चुंबकीय समकक्ष के आवेदन से प्रत्येक शाखा में प्रवाह के लिए चुंबकीय परिपथ को हल किया जा सकता है। विशेष रूप से, जबकि केवीएल बताता है कि लूप पर लागू वोल्टेज उत्तेजना [[ लूप करंट ]] चारों ओर वोल्टेज ड्रॉप्स (प्रतिरोध समय वर्तमान) के योग के बराबर है, चुंबकीय एनालॉग बताता है कि | शुद्ध स्रोत/प्रतिरोध परिपथ के लिए किरचॉफ के परिपथ कानूनों | किरचॉफ के वोल्टेज नियम ([[ केवीएल ]]) के चुंबकीय समकक्ष के आवेदन से प्रत्येक शाखा में प्रवाह के लिए चुंबकीय परिपथ को हल किया जा सकता है। विशेष रूप से, जबकि केवीएल बताता है कि लूप पर लागू वोल्टेज उत्तेजना [[ लूप करंट ]] चारों ओर वोल्टेज ड्रॉप्स (प्रतिरोध समय वर्तमान) के योग के बराबर है, चुंबकीय एनालॉग बताता है कि चुंबकवाहक बल (एम्पियर-टर्न उत्तेजना से प्राप्त) के बराबर है एमएमएफ का योग शेष लूप में गिरता है (प्रवाह और अनिच्छा का उत्पाद)। (यदि कई लूप हैं, तो प्रत्येक शाखा में करंट को एक मैट्रिक्स समीकरण के माध्यम से हल किया जा सकता है - लूप विश्लेषण में मेष परिपथ शाखा धाराओं के लिए एक मैट्रिक्स समाधान के रूप में प्राप्त किया जाता है - जिसके बाद भिन्न -भिन्न शाखा धाराओं को जोड़कर और / या घटाकर प्राप्त किया जाता है। घटक लूप धाराएं, जैसा कि अपनाए गए साइन कन्वेंशन और लूप ओरिएंटेशन द्वारा इंगित किया गया है।) एम्पीयर के नियम के अनुसार, उत्तेजना करंट का उत्पाद है और पूरे किए गए लूप की संख्या है और इसे एम्पीयर-टर्न में मापा जाता है। अधिक सामान्यतः कहा गया है: | ||
<math display="block">F = NI = \oint \mathbf{H} \cdot d\mathbf{l}.</math> | <math display="block">F = NI = \oint \mathbf{H} \cdot d\mathbf{l}.</math> | ||
स्टोक्स के प्रमेय द्वारा, का बंद [[ रेखा अभिन्न ]] {{math|''H''·d''l''}} एक समोच्च के चारों ओर कर्ल के खुले सतह के अभिन्न अंग के बराबर है {{math|'''H'''·''d'''''A'''}} बंद समोच्च से घिरी सतह के पार। चूंकि, मैक्सवेल के समीकरणों से, {{math|1=curl '''H''' = '''J'''}}, बंद लाइन का अभिन्न अंग {{math|'''H'''·''d'''''l'''}} सतह से गुजरने वाली कुल धारा का मूल्यांकन करता है। यह उत्तेजना के बराबर है, {{math|''NI''}}, जो सतह से गुजरने वाली धारा को भी मापता है, जिससे यह सत्यापित होता है कि एक बंद प्रणाली में सतह के माध्यम से शुद्ध वर्तमान प्रवाह शून्य एम्पीयर-टर्न है जो ऊर्जा का संरक्षण करता है। | स्टोक्स के प्रमेय द्वारा, का बंद [[ रेखा अभिन्न ]] {{math|''H''·d''l''}} एक समोच्च के चारों ओर कर्ल के खुले सतह के अभिन्न अंग के बराबर है {{math|'''H'''·''d'''''A'''}} बंद समोच्च से घिरी सतह के पार। चूंकि, मैक्सवेल के समीकरणों से, {{math|1=curl '''H''' = '''J'''}}, बंद लाइन का अभिन्न अंग {{math|'''H'''·''d'''''l'''}} सतह से गुजरने वाली कुल धारा का मूल्यांकन करता है। यह उत्तेजना के बराबर है, {{math|''NI''}}, जो सतह से गुजरने वाली धारा को भी मापता है, जिससे यह सत्यापित होता है कि एक बंद प्रणाली में सतह के माध्यम से शुद्ध वर्तमान प्रवाह शून्य एम्पीयर-टर्न है जो ऊर्जा का संरक्षण करता है। |
Revision as of 22:50, 18 January 2023
Part of a series on |
Magnetic circuits |
---|
Models |
Variables |
Elements |
चुंबकीय परिपथ, चुंबकीय प्रवाह वाले एक या अधिक बंद लूप मार्गों से बना होता है। प्रवाह सामान्यतः स्थायी चुम्बकों या विद्युत चुम्बकों द्वारा उत्पन्न होता है और चुंबकीय कोर के द्वारा लोहे जैसे लौह चुंबकीय सामग्री से बना होता है, चूंकि रास्ते में हवा का अंतराल या अन्य सामग्री हो सकती है। चुंबकीय परिपथों को कई यंत्रों जैसे बिजली की मोटर, जेनरेटर, ट्रांसफॉर्मर, रिले, उत्तोलक, विद्युत चुम्बक, स्क्विड्स, बिजली की शक्ति नापने का यंत्र तथा चुंबकीय अभिलेखन को कुशलतापूर्वक चुंबकीय क्षेत्रों के लिए प्रयुक्त किया जाता है।
चुंबकीय संतृप्ति चुंबकीय परिपथ में चुंबकीय प्रवाह, चुंबकत्व बल और चुंबकीय अनिच्छा के बीच के संबंध को हॉपकिन्सन के नियम द्वारा वर्णित किया जा सकता है, जो विद्युत परिपथ में ओम के नियम के लिए स्पष्ट समानता रखता है, जिसके परिणामस्वरूप चुंबकीय परिपथ के गुणों के बीच एक पत्राचार होता है। इस अवधारणा का उपयोग करके विद्युत परिपथों के लिए विकसित विधियों और प्रौद्योगिकी का उपयोग करके ट्रांसफार्मर जैसे जटिल उपकरणों के चुंबकीय क्षेत्र को जल्दी से हल किया जा सकता है।
चुंबकीय परिपथ के कुछ उदाहरण इस प्रकार है
- घोड़े की नाल चुंबक लोहे की कीपर कम अनिच्छा परिपथ के रूप में होती है।
- घोड़े की नाल चुंबक बिना लोहे की कीपर के उच्च अनिच्छा परिपथ के रूप में होती है।
- इलेक्ट्रिक मोटर चर अनिच्छा परिपथ के रूप में होती है।
- कुछ प्रकार के चुंबकीय कार्ट्रिज चर अनिच्छा परिपथ के रूप में होती है।
चुंबकवाहक बल (एमएमएफ)
जिस तरह से वैद्युतवाहक बल (ईएमएफ) विद्युत परिपथों में विद्युत आवेश की धारा को चलाता है, उसी प्रकार चुंबकत्व बल (एमएमएफ)) चुंबकीय परिपथों के माध्यम से चुंबकीय प्रवाह को 'संचालित' करता है। चूंकि चुंबकवाहक बल एक नाम है क्योंकि यह कोई बल नहीं है और न ही कोई गतिमान है। इसे केवल एमएमएफ कहना उचित होगा। विद्युत वाहक बल की परिभाषा के अनुरूप, चुंबकवाहक बल एक बंद लूप के आसपास परिभाषित किया गया जाता है
एमएमएफ उस क्षमता का प्रतिनिधित्व करता है जो लूप को पूरा करके काल्पनिक चुंबकीय मोनोपोल प्राप्त करता है। चुंबकीय प्रवाह जो संचालित होता है चुंबकीय आवेश की धारा नहीं है यह केवल एमएमएफ के साथ वही संबंध होता है जो विद्युत धारा का ईएमएफ से है। आगे के वर्णन के लिए नीचे अनिच्छा की सूक्ष्म उत्पत्ति देखें।
चुंबकवाहक बल की इकाई एम्पेयर -टर्न प्रतिवेबर होती है, जो निर्वात में विद्युत प्रवाहकीय सामग्री के सिंगल टर्न लूप में बहने वाले एम्पीयर के स्थिर प्रत्यक्ष विद्युत प्रवाह द्वारा दर्शाया जाता है। 1930 में आईईसी द्वारा स्थापित गिल्बर्ट (जीबी),[1] चुंबकवाहक बल की सीजीएस इकाई है और एम्पीयर-टर्न की तुलना में थोड़ी छोटी इकाई है।विलियम गिल्बर्ट (खगोलविद) (1544-1603) अंग्रेजी चिकित्सक और प्राकृतिक दार्शनिक के नाम पर पर इस यूनिट का नाम रखा गया है।
चुंबकवाहक बल की गणना एम्पीयर के नियम का उपयोग करके जल्दी से की जा सकती है। उदाहरण के लिए, चुंबकवाहक बल एक लंबी कुंडल के रूप में होती है।
जहाँ N फेरों की संख्या है और कुण्डली में धारा है। प्रयोग में इस समीकरण का उपयोग प्रेरक के एमएमएफ के लिए किया जाता है जिसमें N प्रेरक कॉइल की वाइंडिंग संख्या के रूप में होती है।
चुंबकीय प्रवाह
एक लागू एमएमएफ सिस्टम के चुंबकीय घटकों के माध्यम से चुंबकीय प्रवाह को 'संचालित' करता है। एक चुंबकीय घटक के माध्यम से चुंबकीय प्रवाह चुंबकीय क्षेत्र # चुंबकीय क्षेत्र रेखाओं की संख्या के समानुपाती होता है जो उस घटक के क्रॉस सेक्शनल क्षेत्र से गुजरती हैं। यह शुद्ध संख्या है, अर्थात एक दिशा में गुजरने वाली संख्या, दूसरी दिशा में गुजरने वाली संख्या घटाएं। चुंबकीय क्षेत्र सदिश 'B' की दिशा परिभाषा के अनुसार चुम्बक के भीतर चुम्बक के दक्षिण से उत्तरी ध्रुव की ओर होती है; मैदान के बाहर रेखाएँ उत्तर से दक्षिण की ओर जाती हैं।
चुंबकीय क्षेत्र की दिशा के लंबवत क्षेत्र के एक तत्व के माध्यम से प्रवाह चुंबकीय क्षेत्र और क्षेत्र तत्व के उत्पाद द्वारा दिया जाता है। अधिक सामान्यतः , चुंबकीय प्रवाह Φ को चुंबकीय क्षेत्र और क्षेत्र तत्व वेक्टर के स्केलर उत्पाद द्वारा परिभाषित किया जाता है। मात्रात्मक रूप से, सतह S के माध्यम से चुंबकीय प्रवाह को सतह के क्षेत्र में चुंबकीय क्षेत्र के अभिन्न अंग के रूप में परिभाषित किया गया है
एक चुंबकीय घटक के लिए चुंबकीय प्रवाह Φ की गणना करने के लिए उपयोग किया जाने वाला क्षेत्र S सामान्यतः घटक के क्रॉस-सेक्शनल क्षेत्र के रूप में चुना जाता है।
चुंबकीय प्रवाह की माप की SI इकाई वेबर (इकाई) (व्युत्पन्न इकाइयों में: वोल्ट-सेकंड) और चुंबकीय प्रवाह घनत्व (या चुंबकीय प्रेरण) की इकाई है। B) वेबर प्रति वर्ग मीटर या टेस्ला (यूनिट) है।
परिपथ मॉडल
प्रतिरोध-अनिच्छा मॉडल एक चुंबकीय परिपथ का प्रतिनिधित्व करने का सबसे सामान्य तरीका है, जो विद्युत और चुंबकीय परिपथ के बीच एक समानता बनाता है। यह मॉडल उन प्रणालियों के लिए अच्छा है जिनमें केवल चुंबकीय घटक होते हैं, लेकिन एक ऐसी प्रणाली के मॉडलिंग के लिए जिसमें विद्युत और चुंबकीय दोनों भाग होते हैं, इसमें गंभीर कमियां हैं। यह विद्युत और चुंबकीय डोमेन के बीच शक्ति और ऊर्जा प्रवाह को ठीक से मॉडल नहीं करता है। ऐसा इसलिए है क्योंकि विद्युत प्रतिरोध ऊर्जा को नष्ट कर देगा जबकि चुंबकीय अनिच्छा इसे संग्रहीत करती है और बाद में इसे वापस कर देती है। एक वैकल्पिक मॉडल जो ऊर्जा प्रवाह को सही ढंग से मॉडल करता है वह जाइरेटर-कैपेसिटर मॉडल है।
प्रतिरोध-अनिच्छा मॉडल
चुंबकीय परिपथ के लिए प्रतिरोध-अनिच्छा मॉडल एक गांठ-तत्व मॉडल है जो विद्युत प्रतिरोध को चुंबकीय अनिच्छा के अनुरूप बनाता है।
हॉपकिन्सन का नियम
विद्युत परिपथों में, ओम का नियम इलेक्ट्रोमोटिव बल के बीच एक अनुभवजन्य संबंध है एक तत्व और वर्तमान (बिजली) में लागू यह उस तत्व के माध्यम से उत्पन्न होता है। इसे इस प्रकार लिखा गया है:
मॉडलिंग शक्ति और ऊर्जा प्रवाह के संदर्भ में हॉपकिंसन का नियम ओम के नियम के साथ एक सही सादृश्य नहीं है। विशेष रूप से, चुंबकीय अनिच्छा से संबंधित कोई शक्ति अपव्यय नहीं होता है जैसे विद्युत प्रतिरोध में अपव्यय होता है। चुंबकीय प्रतिरोध जो इस संबंध में विद्युत प्रतिरोध का एक वास्तविक सादृश्य है, को चुंबकत्व बल के अनुपात और चुंबकीय प्रवाह के परिवर्तन की दर के रूप में परिभाषित किया गया है। यहाँ विद्युत प्रवाह के लिए चुंबकीय प्रवाह के परिवर्तन की दर खड़ी है और ओम का नियम सादृश्य बन जाता है,
अनिच्छा
चुंबकीय प्रतिरोध, या चुंबकीय प्रतिरोध, विद्युत विद्युत नेटवर्क में विद्युत प्रतिरोध के समान है (चूंकि यह चुंबकीय ऊर्जा को नष्ट नहीं करता है)। जिस प्रकार से एक विद्युत क्षेत्र एक विद्युत प्रवाह को कम से कम प्रतिरोध के पथ का अनुसरण करने का कारण बनता है, एक चुंबकीय क्षेत्र चुंबकीय प्रवाह को कम से कम चुंबकीय अनिच्छा के पथ का अनुसरण करने का कारण बनता है। यह एक अदिश (भौतिकी) है, गहन और व्यापक गुण # व्यापक गुण, विद्युत प्रतिरोध के समान।
कुल प्रतिरोध एक निष्क्रिय चुंबकीय परिपथ में एमएमएफ के अनुपात और इस परिपथ में चुंबकीय प्रवाह के बराबर है। एक एसी क्षेत्र में, रिलक्टेंस साइन वेव एमएमएफ और चुंबकीय प्रवाह के लिए आयाम मानों का अनुपात है। (फासर (साइन तरंग ें) देखें)
परिभाषा को इस प्रकार व्यक्त किया जा सकता है:
मैक्सवेल के समीकरणों द्वारा वर्णित चुंबकीय प्रवाह हमेशा एक बंद लूप बनाता है, लेकिन लूप का मार्ग आसपास की सामग्रियों की अनिच्छा पर निर्भर करता है। यह कम से कम अनिच्छा के मार्ग पर केंद्रित है। वायु और निर्वात में उच्च प्रतिबाधा होती है, जबकि आसानी से चुंबकित सामग्री जैसे नरम लोहे में कम अनिच्छा होती है। कम-प्रतिरोध सामग्री में प्रवाह की एकाग्रता मजबूत अस्थायी ध्रुव बनाती है और यांत्रिक बलों का कारण बनती है जो सामग्री को उच्च प्रवाह के क्षेत्रों की ओर ले जाती है, इसलिए यह हमेशा एक आकर्षक बल (पुल) होता है।
अनिच्छा के व्युत्क्रम को अनुमेय कहा जाता है।
पारगम्यता और चालकता
चुंबकीय रूप से समान चुंबकीय परिपथ तत्व की अनिच्छा की गणना इस प्रकार की जा सकती है:
- l तत्व की लंबाई है,
- सामग्री की पारगम्यता (विद्युत चुंबकत्व) है ( सामग्री (आयाम रहित) की सापेक्ष पारगम्यता है, और मुक्त स्थान की पारगम्यता है), और
- A परिपथ का क्रॉस-सेक्शनल क्षेत्र है।
यह सामग्री में विद्युत प्रतिरोध के समीकरण के समान है, जिसमें पारगम्यता चालकता के अनुरूप होती है; पारगम्यता के व्युत्क्रम को चुंबकीय सापेक्षता के रूप में जाना जाता है और प्रतिरोधकता के अनुरूप है। कम पारगम्यता वाले लंबे, पतले ज्यामिति उच्च अनिच्छा की ओर ले जाते हैं। विद्युत परिपथों में कम प्रतिरोध जैसे कम प्रतिरोध को सामान्यतः पसंद किया जाता है।[citation needed]
सादृश्य का सारांश
निम्न तालिका विद्युत परिपथ सिद्धांत और चुंबकीय परिपथ सिद्धांत के बीच गणितीय समानता को सारांशित करती है। यह गणितीय सादृश्य है और भौतिक नहीं है। एक ही पंक्ति में वस्तुओं की समान गणितीय भूमिका होती है; दो सिद्धांतों के भौतिकी बहुत भिन्न हैं। उदाहरण के लिए, धारा विद्युत आवेश का प्रवाह है, जबकि चुंबकीय प्रवाह किसी मात्रा का प्रवाह नहीं है।
Magnetic | Electric | |||||
---|---|---|---|---|---|---|
Name | Symbol | Units | Name | Symbol | Units | |
Magnetomotive force (एमएमएफ ) | ampere-turn | Electromotive force (ईएमएफ ) | volt | |||
Magnetic field | H | ampere/meter | Electric field | E | volt/meter = newton/coulomb | |
Magnetic flux | weber | Electric current | I | ampere | ||
Hopkinson's law or Rowland's law | ampere-turn | Ohm's law | ||||
Reluctance | 1/henry | Electrical resistance | R | ohm | ||
Permeance | henry | Electric conductance | G = 1/R | 1/ohm = mho = siemens | ||
Relation between B and H | Microscopic Ohm's law | |||||
Magnetic flux density B | B | tesla | Current density | J | ampere/square meter | |
Permeability | μ | henry/meter | Electrical conductivity | σ | siemens/meter |
समानता की सीमाएं
प्रतिरोध-अनिच्छा मॉडल की सीमाएँ हैं। हॉपकिंसन के नियम और ओम के नियम के बीच समानता के कारण इलेक्ट्रिक और चुंबकीय परिपथ केवल सतही रूप से समान हैं। चुंबकीय परिपथ में महत्वपूर्ण अंतर होते हैं जिन्हें उनके निर्माण में ध्यान में रखा जाना चाहिए:
- विद्युत धाराएँ कणों (इलेक्ट्रॉनों) के प्रवाह का प्रतिनिधित्व करती हैं और शक्ति (भौतिकी) को ले जाती हैं, जिनमें से कुछ या सभी को प्रतिरोधों में गर्मी के रूप में फैलाया जाता है। चुंबकीय क्षेत्र किसी भी चीज के प्रवाह का प्रतिनिधित्व नहीं करते हैं, और अनिच्छा में कोई शक्ति नष्ट नहीं होती है।
- विशिष्ट विद्युत परिपथों में धारा बहुत कम रिसाव के साथ परिपथ तक ही सीमित होती है। ठेठ चुंबकीय परिपथ में सभी चुंबकीय क्षेत्र चुंबकीय परिपथ तक ही सीमित नहीं होते हैं क्योंकि चुंबकीय पारगम्यता सामग्री के बाहर भी उपलब्ध होती है (वैक्यूम पारगम्यता देखें)। इस प्रकार, चुंबकीय कोर के बाहर अंतरिक्ष में महत्वपूर्ण रिसाव प्रवाह हो सकता है, जिसे ध्यान में रखा जाना चाहिए लेकिन गणना करना अधिकांशतः मुश्किल होता है।
- सबसे महत्वपूर्ण बात, चुंबकीय परिपथ अरैखिक तत्व हैं; एक चुंबकीय परिपथ में प्रतिरोध स्थिर नहीं है, जैसा कि प्रतिरोध है, लेकिन चुंबकीय क्षेत्र के आधार पर भिन्न होता है। उच्च चुंबकीय प्रवाह पर चुंबकीय परिपथ संतृप्ति (चुंबकीय) के कोर के लिए उपयोग की जाने वाली लौह-चुंबकीय सामग्री , चुंबकीय प्रवाह की और वृद्धि को सीमित करती है, इसलिए इस स्तर से ऊपर अनिच्छा तेजी से बढ़ जाती है। इसके अतिरिक्त , लौह-चुंबकीय सामग्री हिस्टैरिसीस से पीड़ित होती है, इसलिए उनमें प्रवाह न केवल तात्कालिक एमएमएफ पर अपितु एमएमएफ के इतिहास पर भी निर्भर करता है। चुंबकीय प्रवाह के स्रोत को बंद करने के बाद, लौह-चुंबकीय सामग्रियों में अवशेष चुंबकत्व छोड़ दिया जाता है, जिससे कोई एमएमएफ वाला प्रवाह नहीं होता है।
परिपथ कानून
चुंबकीय परिपथ अन्य कानूनों का पालन करते हैं जो विद्युत परिपथ कानूनों के समान हैं। उदाहरण के लिए, कुल अनिच्छा अनिच्छा की श्रृंखला में है:
साथ में, उपरोक्त तीन नियम विद्युत परिपथ के समान तरीके से चुंबकीय परिपथ का विश्लेषण करने के लिए एक पूर्ण प्रणाली बनाते हैं। दो प्रकार के परिपथ ों की तुलना करने से पता चलता है कि:
- प्रतिरोध R के समतुल्य अनिच्छा है
- वर्तमान I के समतुल्य चुंबकीय प्रवाह Φ है
- वोल्टेज वी के बराबर चुंबकवाहक फोर्स एफ है
शुद्ध स्रोत/प्रतिरोध परिपथ के लिए किरचॉफ के परिपथ कानूनों | किरचॉफ के वोल्टेज नियम (केवीएल ) के चुंबकीय समकक्ष के आवेदन से प्रत्येक शाखा में प्रवाह के लिए चुंबकीय परिपथ को हल किया जा सकता है। विशेष रूप से, जबकि केवीएल बताता है कि लूप पर लागू वोल्टेज उत्तेजना लूप करंट चारों ओर वोल्टेज ड्रॉप्स (प्रतिरोध समय वर्तमान) के योग के बराबर है, चुंबकीय एनालॉग बताता है कि चुंबकवाहक बल (एम्पियर-टर्न उत्तेजना से प्राप्त) के बराबर है एमएमएफ का योग शेष लूप में गिरता है (प्रवाह और अनिच्छा का उत्पाद)। (यदि कई लूप हैं, तो प्रत्येक शाखा में करंट को एक मैट्रिक्स समीकरण के माध्यम से हल किया जा सकता है - लूप विश्लेषण में मेष परिपथ शाखा धाराओं के लिए एक मैट्रिक्स समाधान के रूप में प्राप्त किया जाता है - जिसके बाद भिन्न -भिन्न शाखा धाराओं को जोड़कर और / या घटाकर प्राप्त किया जाता है। घटक लूप धाराएं, जैसा कि अपनाए गए साइन कन्वेंशन और लूप ओरिएंटेशन द्वारा इंगित किया गया है।) एम्पीयर के नियम के अनुसार, उत्तेजना करंट का उत्पाद है और पूरे किए गए लूप की संख्या है और इसे एम्पीयर-टर्न में मापा जाता है। अधिक सामान्यतः कहा गया है:
अधिक जटिल चुंबकीय प्रणाली, जहां प्रवाह एक साधारण पाश तक सीमित नहीं है, मैक्सवेल के समीकरणों का उपयोग करके पहले सिद्धांतों से विश्लेषण किया जाना चाहिए।
अनुप्रयोग
- संतृप्ति (चुंबकीय) के प्रभाव को कम करने के लिए कुछ ट्रांसफार्मर के कोर में एयर गैप बनाया जा सकता है। यह चुंबकीय परिपथ की अनिच्छा को बढ़ाता है, और इसे कोर संतृप्ति से पहले अधिक ऊर्जा संग्रहित करने में सक्षम बनाता है। इस प्रभाव का उपयोग कैथोड-रे ट्यूब वीडियो डिस्प्ले के फ्लाईबैक ट्रांसफार्मर और कुछ प्रकार की स्विच्ड-मोड बिजली की आपूर्ति |स्विच-मोड पावर सप्लाई में किया जाता है।
- अनिच्छा का परिवर्तन अनिच्छा मोटर (या चर अनिच्छा जनरेटर) और एलेक्जेंडरसन अल्टरनेटर के पीछे का सिद्धांत है।
- टेलीविजन और अन्य कैथोड रे ट्यूब के कारण होने वाले चुंबकीय हस्तक्षेप को कम करने के लिए मल्टीमीडिया ध्वनि-विस्तारक यंत्र ों को सामान्यतः चुंबकीय रूप से ढाल दिया जाता है। आवारा चुंबकीय क्षेत्र को कम करने के लिए स्पीकर चुंबक को नरम लोहे जैसी सामग्री से ढका जाता है।
अनिच्छा को परिवर्तनीय अनिच्छा (चुंबकीय) पिक अप (संगीत प्रौद्योगिकी) पर भी लागू किया जा सकता है।
यह भी देखें
- चुंबकीय क्षमता
- चुंबकीय जटिल अनिच्छा
- tocarmack
संदर्भ
- ↑ "International Electrotechnical Commission".
- ↑ Matthew M. Radmanesh, The Gateway to Understanding: Electrons to Waves and Beyond, p. 539, AuthorHouse, 2005 ISBN 1418487406.
- ↑ Rowland H., Phil. Mag. (4), vol. 46, 1873, p. 140.
- ↑ "Magnetism (flash)".
- ↑ Tesche, Fredrick; Michel Ianoz; Torbjörn Karlsson (1997). EMC Analysis Methods and Computational Models. Wiley-IEEE. p. 513. ISBN 0-471-15573-X.
बाहरी कड़ियाँ
- Magnetic–Electric Analogs by Dennis L. Feucht, Innovatia Laboratories (PDF) Archived July 17, 2012, at the Wayback Machine
- Interactive Java Tutorial on Magnetic Shunts National High Magnetic Field Laboratory