रासायनिक साम्यावस्था: Difference between revisions
No edit summary |
|||
Line 20: | Line 20: | ||
उपरोक्त समीकरण के अनुसार दर स्थिरांक का अनुपात भी स्थिरांक है जिसे संतुलन स्थिरांक के रूप में जाना जाता है। | उपरोक्त समीकरण के अनुसार दर स्थिरांक का अनुपात भी स्थिरांक है जिसे संतुलन स्थिरांक के रूप में जाना जाता है। | ||
:<math chem>K_c=\frac{k_+}{k_-}=\frac{\{\ce S\}^\sigma \{\ce T\}^\tau } {\{\ce A\}^\alpha \{\ce B\}^\beta}</math> | :<math chem>K_c=\frac{k_+}{k_-}=\frac{\{\ce S\}^\sigma \{\ce T\}^\tau } {\{\ce A\}^\alpha \{\ce B\}^\beta}</math> | ||
सामूहिक क्रिया का नियम केवल समेकित-चरणीय प्रतिक्रियाओं के लिए मान्य है जो संचरण के माध्यम से आगे बढ़ते हैंI सामान्य रूप से यह प्रतिक्रिया दर # दर समीकरण सामान्य रूप से प्रतिक्रिया के [[ स्तुईचिओमेटरी |स्तुईचिओमेटरी]] (रासायनिक प्रतिक्रिया ) | सामूहिक क्रिया का नियम केवल समेकित-चरणीय प्रतिक्रियाओं के लिए मान्य है जो संचरण के माध्यम से आगे बढ़ते हैंI सामान्य रूप से यह प्रतिक्रिया दर # दर समीकरण सामान्य रूप से प्रतिक्रिया के [[ स्तुईचिओमेटरी |स्तुईचिओमेटरी]] (रासायनिक प्रतिक्रिया) का अनुसरण नहीं करते हैंI | ||
गुल्डबर्ग और वेज ने एक रासायनिक व्युत्पत्ति प्रस्तावित की थीI इस व्युत्पत्ति की प्रतिक्रिया के लिए संतुलन स्थिरांक से जुड़ी होती है और स्थिर होती हैI हालांकि यह समीकरण कुछ जरुरी शर्तों में निर्भर करता | गुल्डबर्ग और वेज ने एक रासायनिक व्युत्पत्ति प्रस्तावित की थीI इस व्युत्पत्ति की प्रतिक्रिया के लिए संतुलन स्थिरांक से जुड़ी होती है और स्थिर होती हैI हालांकि यह समीकरण कुछ जरुरी शर्तों में निर्भर करता हैI रासायनिक[[ उत्प्रेरक ]]जोड़ने से अग्र अभिक्रिया और विपरीत अभिक्रिया दोनों समान रूप से प्रभावित होंगीI हालांकि रासायनिक नियमानुसार इसका संतुलन स्थिरांक पर कोई विपरीत प्रभाव नहीं पड़ता है। दोनों उत्प्रेरक प्रतिक्रियाओं की गतिशीलता से उस गति में वृद्धि होगी जिस पर संतुलन पहुंचता है।<ref name=aj>{{cite book|last1=Atkins |first1=Peter W. |last2=Jones |first2=Loretta |title=रासायनिक सिद्धांत: अंतर्दृष्टि की खोज|edition=2nd |isbn=978-0-7167-9903-0|year=2008 }}</ref><ref>{{cite book|title=रसायन विज्ञान: पदार्थ और उसके परिवर्तन|first=James E. |last=Brady |publisher=Fred Senese |edition=4th |isbn=0-471-21517-1|date=2004-02-04 }}</ref> [[ सिरका अम्ल |सिरका अम्ल]] के पानी में घुलने और [[ एसीटेट |एसीटेट]] और [[ हाइड्रोनियम |हाइड्रोनियम]] आयन बनाने की स्थिति में यह फार्मूला परिभाषित होता हैI | ||
: | : CH<sub>3</sub>CO<sub>2</sub>H + H<sub>2</sub>O ⇌ CH<sub>3</sub>CO−2 + H<sub>3</sub>O<sup>+</sup> | ||
प्रोटॉन एसिटिक एसिड के अणु से पानी के अणु पर संचरित होता हैI इससे एसिटेट आयन पर एसिटिक एसिड अणु का निर्माण होता हैI एसिटिक एसिड अणुओं की संख्या को अपरिवर्तित छोड़ सकता है। यह तत्व गतिशील संतुलन का उदाहरण है। संतुलन बाकी थर्मोडायनामिक्स की तरह सांख्यिकीय घटनाएं हैंI | प्रोटॉन एसिटिक एसिड के अणु से पानी के अणु पर संचरित होता हैI इससे एसिटेट आयन पर एसिटिक एसिड अणु का निर्माण होता हैI एसिटिक एसिड अणुओं की संख्या को अपरिवर्तित छोड़ सकता है। यह तत्व गतिशील संतुलन का उदाहरण है। संतुलन बाकी थर्मोडायनामिक्स की तरह सांख्यिकीय घटनाएं हैंI | ||
Line 30: | Line 30: | ||
यदि एसिटिक एसिड मिश्रण में खनिज एसिड मिलाया जाता है तो हाइड्रोनियम आयन की सांद्रता में वृद्धि होती हैI पृथक्करण की मात्रा कम होनी चाहिए क्योंकि प्रतिक्रिया इस सिद्धांत के अनुसार बाईं ओर संचालित होती है। यह प्रतिक्रिया संतुलन स्थिरांक की अभिव्यक्ति के लिए आवश्यक हैI | यदि एसिटिक एसिड मिश्रण में खनिज एसिड मिलाया जाता है तो हाइड्रोनियम आयन की सांद्रता में वृद्धि होती हैI पृथक्करण की मात्रा कम होनी चाहिए क्योंकि प्रतिक्रिया इस सिद्धांत के अनुसार बाईं ओर संचालित होती है। यह प्रतिक्रिया संतुलन स्थिरांक की अभिव्यक्ति के लिए आवश्यक हैI | ||
:<math chem>K=\frac {\{\ce{CH3CO2-}\}\{\ce{H3O+}\}} \ce{\{CH3CO2H\}}</math> | :<math chem>K=\frac {\{\ce{CH3CO2-}\}\{\ce{H3O+}\}} \ce{\{CH3CO2H\}}</math> | ||
अगर { | अगर {H<sub>3</sub>O<sup>+</sup>} की स्थिति बढ़ती है तो ऐसी स्थिति में {CH<sub>3</sub>CO<sub>2</sub>H} बढ़ना चाहिए और {{chem|CH|3|CO|2|−}} घटनी चाहिए। H<sub>2</sub>O यह विलायक है और इसकी सांद्रता उच्च और लगभग स्थिर रहती है। | ||
योशिय्याह विलार्ड गिब्स और जे. डब्ल्यू गिब्स ने 1873 में सुझाव दिया था कि संतुलन तब प्राप्त होता है जब सिस्टम की [[ रासायनिक क्षमता |रासायनिक क्षमता]] अपने न्यूनतम मूल्य पर होती हैI इसका अर्थ यह है कि [[ प्रतिक्रिया समन्वय |प्रतिक्रिया समन्वय]] के संबंध में गिब्स ऊर्जा का व्युत्पन्न[[ प्रतिक्रिया की सीमा | प्रतिक्रिया की सीमा]] का उपाय सभी अभिकारकों के लिए [[ शून्य | शून्य]] से लेकर सभी उत्पादों के लिए अधिकतम होता है I यह[[ स्थिर बिंदु | स्थिर बिंदु]] का संकेत देता है। इस व्युत्पन्न को प्रतिक्रिया गिब्स ऊर्जा या ऊर्जा परिवर्तन कहा जाता हैI यह प्रतिक्रिया मिश्रण की संरचना में अभिकारकों और उत्पादों की रासायनिक क्षमता के बीच अंतर से मेल खाती है।<ref name="Atkins" />यह मानदंड आवश्यक और पर्याप्त दोनों है। यदि मिश्रण संतुलन पर नहीं है तो अतिरिक्त [[ गिब्स ऊर्जा |गिब्स ऊर्जा]] की मुक्ति मिश्रण की संरचना को संतुलन तक पहुंचने तक बदलने के लिए प्रेरक शक्ति है। संतुलन स्थिरांक समीकरण द्वारा प्रतिक्रिया के लिए मानक गिब्स ऊर्जा परिवर्तन से संबंधित हो सकता हैI | योशिय्याह विलार्ड गिब्स और जे. डब्ल्यू गिब्स ने 1873 में सुझाव दिया था कि संतुलन तब प्राप्त होता है जब सिस्टम की [[ रासायनिक क्षमता |रासायनिक क्षमता]] अपने न्यूनतम मूल्य पर होती हैI इसका अर्थ यह है कि [[ प्रतिक्रिया समन्वय |प्रतिक्रिया समन्वय]] के संबंध में गिब्स ऊर्जा का व्युत्पन्न[[ प्रतिक्रिया की सीमा | प्रतिक्रिया की सीमा]] का उपाय सभी अभिकारकों के लिए [[ शून्य | शून्य]] से लेकर सभी उत्पादों के लिए अधिकतम होता है I यह[[ स्थिर बिंदु | स्थिर बिंदु]] का संकेत देता है। इस व्युत्पन्न को प्रतिक्रिया गिब्स ऊर्जा या ऊर्जा परिवर्तन कहा जाता हैI यह प्रतिक्रिया मिश्रण की संरचना में अभिकारकों और उत्पादों की रासायनिक क्षमता के बीच अंतर से मेल खाती है।<ref name="Atkins" />यह मानदंड आवश्यक और पर्याप्त दोनों है। यदि मिश्रण संतुलन पर नहीं है तो अतिरिक्त [[ गिब्स ऊर्जा |गिब्स ऊर्जा]] की मुक्ति मिश्रण की संरचना को संतुलन तक पहुंचने तक बदलने के लिए प्रेरक शक्ति है। संतुलन स्थिरांक समीकरण द्वारा प्रतिक्रिया के लिए मानक गिब्स ऊर्जा परिवर्तन से संबंधित हो सकता हैI | ||
Line 39: | Line 39: | ||
जब अभिकारक उच्च आयनिक शक्ति के माध्यम में विलयन होते हैं तो [[ गतिविधि गुणांक |गतिविधि गुणांक]] के भागफल को स्थिर माना जा सकता है। उस स्थिति में 'एकाग्रता भागफल', K<sub>c</sub>, | जब अभिकारक उच्च आयनिक शक्ति के माध्यम में विलयन होते हैं तो [[ गतिविधि गुणांक |गतिविधि गुणांक]] के भागफल को स्थिर माना जा सकता है। उस स्थिति में 'एकाग्रता भागफल', K<sub>c</sub>, | ||
:<math chem>K_\ce{c}=\frac{[\ce S]^\sigma [\ce T]^\tau } {[\ce A]^\alpha [\ce B]^\beta}</math> | :<math chem>K_\ce{c}=\frac{[\ce S]^\sigma [\ce T]^\tau } {[\ce A]^\alpha [\ce B]^\beta}</math> | ||
जहां [ | जहां [A] A की एकाग्रता है आदि, अभिकारकों की [[ विश्लेषणात्मक एकाग्रता ]] से स्वतंत्र है। इस कारण से, समाधान (रसायन विज्ञान) के लिए संतुलन स्थिरांक आमतौर पर उच्च आयनिक शक्ति के मीडिया में [[ संतुलन स्थिरांक का निर्धारण ]] होते हैं। ''K''<sub>c</sub>आयनिक शक्ति, तापमान और दबाव (या आयतन) के साथ बदलता रहता है। इसी तरह ''K''<sub>p</sub>गैसों के लिए [[ आंशिक दबाव ]] पर निर्भर करता है। हाई-स्कूल रसायन विज्ञान पाठ्यक्रमों में इन स्थिरांकों को मापना और उनका सामना करना आसान है। | ||
== ऊष्मप्रवैगिकी == | == ऊष्मप्रवैगिकी == | ||
Line 52: | Line 52: | ||
संतुलन के लिए थर्मोडायनामिक स्थिति को पूरा करने के लिए, गिब्स ऊर्जा स्थिर होनी चाहिए जिसका अर्थ है कि प्रतिक्रिया की सीमा के संबंध में g का व्युत्पन्न शून्य होना चाहिए। यह दिखाया जा सकता है कि इसमें रासायनिक उत्पादों के स्टोइकोमेट्रिक गुणांक के रासायनिक क्षमता का योग अभिकारकों के अनुरूप योग के बराबर है।<ref name="MortimerBook"> Mortimer, R. G. ''Physical Chemistry'', 3rd ed., p. 305, Academic Press, 2008. </ref> इसलिए अभिकारकों की गिब्स ऊर्जाओं का योग उत्पादों की गिब्स ऊर्जाओं के योग के बराबर होना चाहिए। | संतुलन के लिए थर्मोडायनामिक स्थिति को पूरा करने के लिए, गिब्स ऊर्जा स्थिर होनी चाहिए जिसका अर्थ है कि प्रतिक्रिया की सीमा के संबंध में g का व्युत्पन्न शून्य होना चाहिए। यह दिखाया जा सकता है कि इसमें रासायनिक उत्पादों के स्टोइकोमेट्रिक गुणांक के रासायनिक क्षमता का योग अभिकारकों के अनुरूप योग के बराबर है।<ref name="MortimerBook"> Mortimer, R. G. ''Physical Chemistry'', 3rd ed., p. 305, Academic Press, 2008. </ref> इसलिए अभिकारकों की गिब्स ऊर्जाओं का योग उत्पादों की गिब्स ऊर्जाओं के योग के बराबर होना चाहिए। | ||
:<math> \alpha \mu_\mathrm{A} + \beta \mu_\mathrm{B} = \sigma \mu_\mathrm{S} + \tau \mu_\mathrm{T} \,</math> | :<math> \alpha \mu_\mathrm{A} + \beta \mu_\mathrm{B} = \sigma \mu_\mathrm{S} + \tau \mu_\mathrm{T} \,</math> | ||
जहां | जहां μ इस मामले में एक आंशिक दाढ़ गिब्स ऊर्जा एक रासायनिक क्षमता है। अभिकर्मक A की रासायनिक क्षमता उस अभिकर्मक की गतिविधि {A} का कार्य है। | ||
:<math> \mu_\mathrm{A} = \mu_{A}^{\ominus} + RT \ln\{\mathrm{A}\} \,</math> | :<math> \mu_\mathrm{A} = \mu_{A}^{\ominus} + RT \ln\{\mathrm{A}\} \,</math> | ||
Line 61: | Line 61: | ||
:<math> dG = Vdp-SdT+\sum_{i=1}^k \mu_i dN_i </math>. | :<math> dG = Vdp-SdT+\sum_{i=1}^k \mu_i dN_i </math>. | ||
''dN<sub>i</sub>'' = ''ν<sub>i</sub> dξ'' उपरोक्त समीकरण में स्टोइकोमीट्रिक गुणांक प्रदर्शित हो रहा हैI <math> \nu_i~</math>अंतर असीम सीमा तक होने वाली प्रतिक्रिया को दर्शाता हैl रासायनिक प्रतिक्रिया के निरंतर दबाव और तापमान पर उपरोक्त समीकरणों को इस प्रकार लिखा जा सकता हैI | |||
:<math>\left(\frac {dG}{d\xi}\right)_{T,p} = \sum_{i=1}^k \mu_i \nu_i = \Delta_\mathrm{r}G_{T,p}</math> जो प्रतिक्रिया के लिए गिब्स मुक्त ऊर्जा परिवर्तन है। | :<math>\left(\frac {dG}{d\xi}\right)_{T,p} = \sum_{i=1}^k \mu_i \nu_i = \Delta_\mathrm{r}G_{T,p}</math> जो प्रतिक्रिया के लिए गिब्स मुक्त ऊर्जा परिवर्तन है। | ||
Line 95: | Line 95: | ||
संतुलन पर प्रतिक्रियात्मक प्रणाली के लिए Q<sub>r</sub>= K eg=eg | संतुलन पर प्रतिक्रियात्मक प्रणाली के लिए Q<sub>r</sub>= K eg=eg | ||
यदि घटकों की गतिविधियों को संशोधित किया जाता है तो प्रतिक्रिया भागफल का मान बदल जाता है और संतुलन स्थिरांक से भिन्न हो जाता है Qr k <sub>eq</sub> <math display="block">\left(\frac {dG}{d\xi}\right)_{T,p} = \Delta_\mathrm{r}G^{\ominus} + RT \ln Q_\mathrm{r}~</math> तथा <math display="block">\Delta_\mathrm{r}G^{\ominus} = - RT \ln K_{eq}~</math> इसके परिणाम स्वरुप प्राप्त समीकरण <math display="block">\left(\frac {dG}{d\xi}\right)_{T,p} = RT \ln \left(\frac {Q_\mathrm{r}}{K_\mathrm{eq}}\right)~</math>यदि किसी अभिकर्मक की सक्रियता i मानक के अनुरूप बढ़ जाती है तो <math display="block">Q_\mathrm{r} = \frac{\prod (a_j)^{\nu_j}}{\prod(a_i)^{\nu_i}}~,</math>इस प्राप्त समीकरण मानक के अनुसार प्रतिक्रिया भागफल कम हो जाता है। <math display="block">Q_\mathrm{r} < K_\mathrm{eq}~</math>तथा<math display="block">\left(\frac {dG}{d\xi}\right)_{T,p} < 0~</math> प्रतिक्रिया दाईं ओर स्थापित होती हैI इस क्रमानुसार आगे की दिशा में इस तरह के अन्य रासायनिक उत्पाद बनेंगे। | यदि घटकों की गतिविधियों को संशोधित किया जाता है तो प्रतिक्रिया भागफल का मान बदल जाता है और संतुलन स्थिरांक से भिन्न हो जाता है Qr k <sub>eq</sub> <math display="block">\left(\frac {dG}{d\xi}\right)_{T,p} = \Delta_\mathrm{r}G^{\ominus} + RT \ln Q_\mathrm{r}~</math> तथा <math display="block">\Delta_\mathrm{r}G^{\ominus} = - RT \ln K_{eq}~</math> इसके परिणाम स्वरुप प्राप्त समीकरण <math display="block">\left(\frac {dG}{d\xi}\right)_{T,p} = RT \ln \left(\frac {Q_\mathrm{r}}{K_\mathrm{eq}}\right)~</math>यदि किसी अभिकर्मक की सक्रियता i मानक के अनुरूप बढ़ जाती है तो <math display="block">Q_\mathrm{r} = \frac{\prod (a_j)^{\nu_j}}{\prod(a_i)^{\nu_i}}~,</math>इस प्राप्त समीकरण मानक के अनुसार प्रतिक्रिया भागफल कम हो जाता है। <math display="block">Q_\mathrm{r} < K_\mathrm{eq}~</math>तथा<math display="block">\left(\frac {dG}{d\xi}\right)_{T,p} < 0~</math> प्रतिक्रिया दाईं ओर स्थापित होती हैI इस क्रमानुसार आगे की दिशा में इस तरह के अन्य रासायनिक उत्पाद बनेंगे। | ||
*यदि उत्पाद | *यदि उत्पाद ''j'' की गतिविधि बढ़ जाती है तो <math display="block">Q_\mathrm{r} > K_\mathrm{eq}~</math> तथा <math display="block">\left(\frac {dG}{d\xi}\right)_{T,p} >0~</math> प्रतिक्रिया बाईं ओर अर्थात विपरीत दिशा में स्थापित हो जाएगीI | ||
ध्यान दें कि गतिविधियाँ और संतुलन स्थिरांक आयामहीन संख्याएँ हैं। | ध्यान दें कि गतिविधियाँ और संतुलन स्थिरांक आयामहीन संख्याएँ हैं। | ||
Line 101: | Line 101: | ||
=== गतिविधि का उपचार === | === गतिविधि का उपचार === | ||
संतुलन स्थिरांक के व्यंजक को सांद्रता भागफल K के गुणनफल के रूप में लिखा जा सकता | संतुलन स्थिरांक के व्यंजक को सांद्रता भागफल ''K''<sub>c</sub> के गुणनफल के रूप में लिखा जा सकता है ''Γ''. | ||
:<math>K=\frac{[\mathrm{S}] ^\sigma [\mathrm{T}]^\tau ... } {[\mathrm{A}]^\alpha [\mathrm{B}]^\beta ...} | :<math>K=\frac{[\mathrm{S}] ^\sigma [\mathrm{T}]^\tau ... } {[\mathrm{A}]^\alpha [\mathrm{B}]^\beta ...} | ||
\times \frac{{\gamma_\mathrm{S}} ^\sigma {\gamma_\mathrm{T}}^\tau ... } {{\gamma_\mathrm{A}}^\alpha {\gamma_\mathrm{B}}^\beta ...} = K_\mathrm{c} \Gamma</math> | \times \frac{{\gamma_\mathrm{S}} ^\sigma {\gamma_\mathrm{T}}^\tau ... } {{\gamma_\mathrm{A}}^\alpha {\gamma_\mathrm{B}}^\beta ...} = K_\mathrm{c} \Gamma</math> | ||
A अभिकर्मक A आदि की एकाग्रता है। सिद्धांत रूप में गतिविधि गुणांक के मूल्यों को प्राप्त करना संभव | A अभिकर्मक A आदि की एकाग्रता है। सिद्धांत रूप में गतिविधि गुणांक के मूल्यों को प्राप्त करना संभव है γ। समाधान के लिए समीकरण जैसे कि डेबी-हकल समीकरण या एक्सटेंशन जैसे [[ डेविस समीकरण |डेविस समीकरण]] <ref>{{cite book|first=C. W. |last=Davies |title=आयन संघ|publisher=Butterworths |date=1962}}</ref> [[ विशिष्ट आयन अंतःक्रिया सिद्धांत ]] या [[ पिट्ज़र समीकरण ]]<ref name="davies">{{cite web |first1=I. |last1=Grenthe |first2=H. |last2=Wanner |url=http://www.nea.fr/html/dbtdb/guidelines/tdb2.pdf |title=शून्य आयनिक शक्ति के एक्सट्रपलेशन के लिए दिशानिर्देश|access-date=2007-05-16 |archive-date=2008-12-17 |archive-url=https://web.archive.org/web/20081217001051/http://www.nea.fr/html/dbtdb/guidelines/tdb2.pdf |url-status=dead }}</ref> उपयोग किया जा सकता है। हालांकि यह हमेशा संभव नहीं होता है। यह आम धारणा है कि स्थिरांक और थर्मोडायनामिक संतुलन स्थिरांक के स्थान पर सांद्रता भागफल का प्रयोग करता हैI सटीक एकाग्रता भागफल के बजाय संतुलन स्थिरांक शब्द का उपयोग करना भी सामान्य अभ्यास है। | ||
गैस चरण में प्रतिक्रियाओं के लिए गतिविधि गुणांक के स्थान पर एकाग्रता और फ्यूगेसिटी गुणांक के स्थान पर आंशिक दबाव का उपयोग किया जाता है। नीचे दी गयी रासायनिक प्रतिक्रिया में 'f' आंशिक दबाव और पलायनता गुणांक का गुणनफल है। | गैस चरण में प्रतिक्रियाओं के लिए गतिविधि गुणांक के स्थान पर एकाग्रता और फ्यूगेसिटी गुणांक के स्थान पर आंशिक दबाव का उपयोग किया जाता है। नीचे दी गयी रासायनिक प्रतिक्रिया में 'f' आंशिक दबाव और पलायनता गुणांक का गुणनफल है। | ||
:<math>\mu = \mu^{\ominus} + RT \ln \left( \frac{f}{\mathrm{bar}} \right) = \mu^{\ominus} + RT \ln \left( \frac{p}{\mathrm{bar}} \right) + RT \ln \gamma </math> | :<math>\mu = \mu^{\ominus} + RT \ln \left( \frac{f}{\mathrm{bar}} \right) = \mu^{\ominus} + RT \ln \left( \frac{p}{\mathrm{bar}} \right) + RT \ln \gamma </math> | ||
संतुलन स्थिरांक को परिभाषित करने वाला सामान्य व्यंजक विलयन और गैस प्रावस्था दोनों के लिए मान्य है। | संतुलन स्थिरांक को परिभाषित करने वाला सामान्य व्यंजक विलयन और गैस प्रावस्था दोनों के लिए मान्य है। | ||
=== संकेंद्रण भागफल === | === संकेंद्रण भागफल === | ||
जलीय रासायनिक में संतुलन स्थिरांक सामान्यता [[ सोडियम नाइट्रेट |सोडियम नाइट्रेट]] नैनो3 या [[ पोटेशियम परक्लोरेट |पोटेशियम परक्लोरेट]] KClO<sub>4</sub> जैसे अक्रिय इलेक्ट्रोलाइट की उपस्थिति में निर्धारित होते हैंI रासायनिक विलयन की शक्ति के अनुसार निर्धारित समीकरण | जलीय रासायनिक में संतुलन स्थिरांक सामान्यता [[ सोडियम नाइट्रेट |सोडियम नाइट्रेट]] नैनो3 या [[ पोटेशियम परक्लोरेट |पोटेशियम परक्लोरेट]] KClO<sub>4</sub> जैसे अक्रिय इलेक्ट्रोलाइट की उपस्थिति में निर्धारित होते हैंI रासायनिक विलयन की शक्ति के अनुसार निर्धारित समीकरण | ||
:<math> I = \frac12\sum_{i=1}^N c_i z_i^2 </math> | :<math> I = \frac12\sum_{i=1}^N c_i z_i^2 </math> | ||
जहां | जहां ''c<sub>i</sub>'' और z<sub>i</sub>आयन प्रकार i की सांद्रता और आयनिक आवेश के लिए हैI योग समाधान में सभी ''N'' प्रकार की आवेशित प्रजातियों पर लिया जाता है। जब विलयी नमक की सांद्रता अभिकर्मकों की विश्लेषणात्मक सांद्रता से बहुत अधिक होती है तो विलयी नमक से उत्पन्न आयन आयनिक शक्ति निर्धारित करते हैंI चूंकि गतिविधि गुणांक आयनिक शक्ति पर निर्भर करते हैं इसलिए आयनिक शक्ति प्रभावी रूप से स्थिर होती है। एकाग्रता भागफल संतुलन स्थिरांक का साधारण गुणज है।<ref>{{cite book|first1=F. J. C. |last1=Rossotti |first2=H. |last2=Rossotti |title=स्थिरता स्थिरांक का निर्धारण|publisher=McGraw-Hill |date=1961}}</ref> | ||
:<math> K_\mathrm{c} = \frac{K}{\Gamma} </math> | :<math> K_\mathrm{c} = \frac{K}{\Gamma} </math> | ||
ज्ञात समीकरण अनुसार K<sub>c</sub> आयनिक शक्ति के साथ भिन्न होता है। यदि इसे विभिन्न आयनिक शक्तियों की श्रृंखला के तौर पर मापा जाता है तो मान को शून्य आयनिक शक्ति में बहिर्वेशन किया जा सकता है।<ref name="davies"/>इस तरह से प्राप्त संकेंद्रण भागफल को विरोधाभासी रूप से थर्मोडायनामिक संतुलन स्थिरांक के रूप में जाना जाता है। | ज्ञात समीकरण अनुसार K<sub>c</sub> आयनिक शक्ति के साथ भिन्न होता है। यदि इसे विभिन्न आयनिक शक्तियों की श्रृंखला के तौर पर मापा जाता है तो मान को शून्य आयनिक शक्ति में बहिर्वेशन किया जा सकता है।<ref name="davies"/>इस तरह से प्राप्त संकेंद्रण भागफल को विरोधाभासी रूप से थर्मोडायनामिक संतुलन स्थिरांक के रूप में जाना जाता है। | ||
Line 120: | Line 120: | ||
रासायनिक समायोजन के अनुरूप रासायनिक यौगिक मिश्रण में परिवर्तन की कोई प्रवृत्ति नहीं हैI हालांकि यह प्रभाव और तर्क संतुलन पर निर्भर नहीं है। उदाहरण के लिए सल्फर डाइऑक्साइड का मिश्रण SO<sub>2</sub>और ऑक्सीजन O<sub>2</sub>है क्योंकि उत्पाद के निर्माण के लिए [[ सक्रियण ऊर्जा |सक्रियण ऊर्जा]] सल्फर ट्राइऑक्साइड SO<sub>3</sub>हैI | रासायनिक समायोजन के अनुरूप रासायनिक यौगिक मिश्रण में परिवर्तन की कोई प्रवृत्ति नहीं हैI हालांकि यह प्रभाव और तर्क संतुलन पर निर्भर नहीं है। उदाहरण के लिए सल्फर डाइऑक्साइड का मिश्रण SO<sub>2</sub>और ऑक्सीजन O<sub>2</sub>है क्योंकि उत्पाद के निर्माण के लिए [[ सक्रियण ऊर्जा |सक्रियण ऊर्जा]] सल्फर ट्राइऑक्साइड SO<sub>3</sub>हैI | ||
: | :2 SO<sub>2</sub> + O<sub>2</sub> ⇌ 2 SO<sub>3</sub> | ||
इसी तरह [[ कार्बन डाइआक्साइड | कार्बन डाइआक्साइड]] और [[ पानी |पानी]] से [[ बिकारबोनिट |बाइकार्बोनाइट]] का निर्माण सामान्य परिस्थितियों में बहुत धीमा होता हैI | इसी तरह [[ कार्बन डाइआक्साइड | कार्बन डाइआक्साइड]] और [[ पानी |पानी]] से [[ बिकारबोनिट |बाइकार्बोनाइट]] का निर्माण सामान्य परिस्थितियों में बहुत धीमा होता हैI | ||
: | :CO<sub>2</sub> + 2 H<sub>2</sub>O ⇌ HCO−3 + H<sub>3</sub>O<sup>+</sup> | ||
==शुद्ध पदार्थ== | ==शुद्ध पदार्थ== | ||
Line 128: | Line 128: | ||
पानी में एसिटिक एसिड के जलमिश्रित घोल के विशिष्ट स्थिति के लिए संतुलन स्थिरांक के सामान्य सूत्र को लागू करने पर जो समीकरण प्राप्त होता है उसके अनुसार | पानी में एसिटिक एसिड के जलमिश्रित घोल के विशिष्ट स्थिति के लिए संतुलन स्थिरांक के सामान्य सूत्र को लागू करने पर जो समीकरण प्राप्त होता है उसके अनुसार | ||
: | : CH<sub>3</sub>CO<sub>2</sub>H + H<sub>2</sub>O ⇌ CH<sub>3</sub>CO<sub>2</sub><sup>−</sup> + H<sub>3</sub>O<sup>+ स</sup><sup></sup><sup>्थिरांक बनता है I</sup> | ||
:<math>K_\mathrm{c}=\frac \mathrm{[{CH_3CO_2}^-][{H_3O}^+]} \mathrm{[{CH_3CO_2H}][{H_2O}]}</math> | :<math>K_\mathrm{c}=\frac \mathrm{[{CH_3CO_2}^-][{H_3O}^+]} \mathrm{[{CH_3CO_2H}][{H_2O}]}</math> | ||
बहुत ही केंद्रित समाधानों के लिए पानी को शुद्ध तरल माना जा सकता है इसमें एक एक क्रिया के अनुसार गतिविधि संतुलन स्थिरांक व्यंजक को आमतौर पर इस प्रकार लिखा जा सकता है I | बहुत ही केंद्रित समाधानों के लिए पानी को शुद्ध तरल माना जा सकता है इसमें एक एक क्रिया के अनुसार गतिविधि संतुलन स्थिरांक व्यंजक को आमतौर पर इस प्रकार लिखा जा सकता है I | ||
:<math>K=\frac \mathrm{[{CH_3CO_2}^-][{H_3O}^+]} \mathrm{[{CH_3CO_2H}]} = K_\mathrm{c}</math>. | :<math>K=\frac \mathrm{[{CH_3CO_2}^-][{H_3O}^+]} \mathrm{[{CH_3CO_2H}]} = K_\mathrm{c}</math>. | ||
:2 H<sub>2</sub>O ⇌ H<sub>3</sub>O<sup>+</sup> + OH<sup>−</sup> | |||
पानी विलायक रूप में होता हैऔर इसकी एक गतिविधि हैI पानी के आत्म-आयनीकरण स्थिरांक को इस प्रकार परिभाषित किया गया है | पानी विलायक रूप में होता हैऔर इसकी एक गतिविधि हैI पानी के आत्म-आयनीकरण स्थिरांक को इस प्रकार परिभाषित किया गया है | ||
:<math>K_\mathrm{w} = \mathrm{[H^+][OH^-]}</math> | :<math>K_\mathrm{w} = \mathrm{[H^+][OH^-]}</math> | ||
यह लिखना पूरी तरह से वैध है [H<sup>+</sup>] [[ हाइड्रोनियम आयन | हाइड्रोनियम आयन]] सांद्रता के लिए प्रोटॉन के विलायकयोजन की स्थिति स्थिर होती हैI संतुलन सांद्रता को प्रभावित नहीं करती है। | यह लिखना पूरी तरह से वैध है [H<sup>+</sup>] [[ हाइड्रोनियम आयन | हाइड्रोनियम आयन]] सांद्रता के लिए प्रोटॉन के विलायकयोजन की स्थिति स्थिर होती हैI संतुलन सांद्रता को प्रभावित नहीं करती है। ''K''<sub>w</sub> आयनिक शक्ति या तापमान में भिन्नता के साथ परिवर्तिति होता रहता है I | ||
H | H<sup>+</sup> की सांद्रता और OH<sup>−</sup> स्वतंत्र मात्रा नहीं हैं। आमतौर पर OH<sup>−</sup> को K में परिवर्तित कर दिया जाता हैI ''K''<sub>w</sub>[H<sup>+</sup>]<sup>−1</sup>संतुलन स्थिरांक व्यंजकों में[[ हाइड्रॉक्साइड आयन | हाइड्रॉक्साइड आयन]] उपस्थित है I | ||
:2 CO {{eqm}} CO<sub>2</sub> +C | :2 CO {{eqm}} CO<sub>2</sub> +C | ||
Line 150: | Line 151: | ||
==एकाधिक संतुलन== | ==एकाधिक संतुलन== | ||
द्विक्षारकीय अम्ल | द्विक्षारकीय अम्ल H<sub>2</sub>A की स्थिति पर विचार करें तो इसमें द्विक्षारकीय अम्ल पानी में घुलने पर Hद्विक्षारकीय अम्ल होगा H<sub>2</sub>A, HA<sup>−</sup> and A<sup>2−</sup>इस संतुलन को दो चरणों में विभाजित किया जा सकता है जिनमें से प्रत्येक में प्रोटॉन मुक्त होता है। | ||
:<math chem>\begin{array}{rl} | :<math chem>\begin{array}{rl} | ||
\ce{H2A <=> HA^- + H+} : & K_1=\frac \ce{[HA-][H+]} \ce{[H2A]} \\ | \ce{H2A <=> HA^- + H+} : & K_1=\frac \ce{[HA-][H+]} \ce{[H2A]} \\ | ||
\ce{HA- <=> A^2- + H+} : & K_2=\frac \ce{[A^{2-}][H+]} \ce{[HA-]} | \ce{HA- <=> A^2- + H+} : & K_2=\frac \ce{[A^{2-}][H+]} \ce{[HA-]} | ||
\end{array}</math> | \end{array}</math> | ||
K<sub>1</sub> और | ''K''<sub>1</sub> और ''K''<sub>2</sub> चरणवार संतुलन स्थिरांक के उदाहरण हैं। समग्र संतुलन स्थिरांक, β<sub>D</sub>, चरणबद्ध स्थिरांक का गुणनफल है। | ||
:< | :<chem>H2A <=> A^2- + 2H+</chem>:{{spaces|5}}<math chem>\beta_\ce{D} = \frac \ce{[A^{2-}][H^+]^2} \ce{[H_2A]}=K_1K_2</math> | ||
ध्यान दें कि ये स्थिरांक [[ अम्ल वियोजन स्थिरांक ]]हैं क्योंकि संतुलन व्यंजक के दायीं ओर रासायनिक उत्पाद वियोजन उत्पाद हैं। कई स्थितियों में स्थिरांक का उपयोग करना बेहतर होता है। | ध्यान दें कि ये स्थिरांक [[ अम्ल वियोजन स्थिरांक ]]हैं क्योंकि संतुलन व्यंजक के दायीं ओर रासायनिक उत्पाद वियोजन उत्पाद हैं। कई स्थितियों में स्थिरांक का उपयोग करना बेहतर होता है। | ||
:<math chem>\begin{array}{ll} | :<math chem>\begin{array}{ll} | ||
Line 168: | Line 169: | ||
संतुलन स्थिरांक पर तापमान में परिवर्तन का प्रभाव वैन टी हॉफ समीकरण द्वारा दिया जाता हैI | संतुलन स्थिरांक पर तापमान में परिवर्तन का प्रभाव वैन टी हॉफ समीकरण द्वारा दिया जाता हैI | ||
:<math>\frac {d\ln K} {dT} = \frac{\Delta H_\mathrm{m}^\ominus} {RT^2}</math> | :<math>\frac {d\ln K} {dT} = \frac{\Delta H_\mathrm{m}^\ominus} {RT^2}</math> | ||
इस प्रकार[[ एक्ज़ोथिर्मिक | एग्जोथर्मिक]] एक प्रकार की रासायनिक प्रतिक्रिया के लिए ΔH | इस प्रकार[[ एक्ज़ोथिर्मिक | एग्जोथर्मिक]] एक प्रकार की रासायनिक प्रतिक्रिया के लिए ΔH ऋणात्मक हैI K तापमान में वृद्धि के साथ घटता है लेकिन एण्डोथेरमिक एक प्रकार की रासायनिक प्रतिक्रिया ΔH धनात्मक हैI K बढ़ते तापमान के साथ बढ़ता है। इसके लिए वैकल्पिक सूत्रीकरण हैI | ||
:<math>\frac {d\ln K} {d(T^{-1})} = -\frac{\Delta H_\mathrm{m}^\ominus} {R}</math> | :<math>\frac {d\ln K} {d(T^{-1})} = -\frac{\Delta H_\mathrm{m}^\ominus} {R}</math> | ||
पहली नज़र में यह तापमान के साथ K की भिन्नता का अध्ययन करके प्रतिक्रिया की मानक मोलर एन्थैल्पी प्राप्त करने का एक साधन प्रदान करता प्रतीत होता है। हालांकि व्यवहारिक तौर पर विधि अविश्वसनीय है क्योंकि त्रुटि प्रसार लगभग हमेशा इस तरह से गणना किए गए मूल्यों पर बहुत बड़ी त्रुटियां देता है। | पहली नज़र में यह तापमान के साथ K की भिन्नता का अध्ययन करके प्रतिक्रिया की मानक मोलर एन्थैल्पी प्राप्त करने का एक साधन प्रदान करता प्रतीत होता है। हालांकि व्यवहारिक तौर पर विधि अविश्वसनीय है क्योंकि त्रुटि प्रसार लगभग हमेशा इस तरह से गणना किए गए मूल्यों पर बहुत बड़ी त्रुटियां देता है। | ||
Line 206: | Line 207: | ||
==मिश्रण की संरचना== | ==मिश्रण की संरचना== | ||
जब मिश्रण की संरचना के रूप में 1:1 जोड़ के निर्माण का एकमात्र संतुलन के कई तरीके हैं जिनसे मिश्रण की संरचना की गणना की जा सकती है। उदाहरण के लिए अस्थिर एसिड | जब मिश्रण की संरचना के रूप में 1:1 जोड़ के निर्माण का एकमात्र संतुलन के कई तरीके हैं जिनसे मिश्रण की संरचना की गणना की जा सकती है। उदाहरण के लिए अस्थिर एसिड pH की गणना करने की विधि के लिए ICE तालिका पर ध्यान देंI | ||
संतुलन पर मिश्रण की संरचना की सामान्य गणना के लिए तीन दृष्टिकोण हैं। | संतुलन पर मिश्रण की संरचना की सामान्य गणना के लिए तीन दृष्टिकोण हैं। | ||
Line 216: | Line 217: | ||
=== द्रव्यमान संतुलन समीकरण === | === द्रव्यमान संतुलन समीकरण === | ||
सामान्य तौर पर द्रव्यमान गणनाएं जटिल होती हैं। उदाहरण के लिए डिबासिक एसिड में H<sub>2</sub>पानी में घुलनशील दो अभिकारकों को संयुग्म आधार के रूप में निर्दिष्ट किया जा सकता हैI A<sup>2−</sup>और हाइड्रोनियम H+ <sup>एथिलेनेडियम 1,2-डायमिनोइथेन द्रव्यमान-संतुलन के निम्नलिखित समीकरण आधार पर समान रूप से लागू हो सकते हैं i | सामान्य तौर पर द्रव्यमान गणनाएं जटिल होती हैं। उदाहरण के लिए डिबासिक एसिड में H<sub>2</sub>पानी में घुलनशील दो अभिकारकों को संयुग्म आधार के रूप में निर्दिष्ट किया जा सकता हैI A<sup>2−</sup>और हाइड्रोनियम H<sup>+</sup> <sup>एथिलेनेडियम 1,2-डायमिनोइथेन द्रव्यमान-संतुलन के निम्नलिखित समीकरण आधार पर समान रूप से लागू हो सकते हैं i | ||
:<math>T_\mathrm{A} = \mathrm{[A] + [HA] +[H_2A]} \,</math> | :<math>T_\mathrm{A} = \mathrm{[A] + [HA] +[H_2A]} \,</math> | ||
:<math>T_\mathrm{H} = \mathrm{[H] + [HA] + 2[H_2A] - [OH]} \,</math> | :<math>T_\mathrm{H} = \mathrm{[H] + [HA] + 2[H_2A] - [OH]} \,</math> | ||
T | T<sub>A</sub> प्रजातियों की कुल सांद्रता A है I ध्यान दें कि इन समीकरणों को लिखते और उपयोग करते समय आयनिक आवेशों को का ध्यान रखना अनिवार्य है I | ||
जब संतुलन स्थिरांक होते हैं और कुल सांद्रता निर्दिष्ट होती है तो दो अज्ञात मुक्त सांद्रता a और h में दो समीकरण होते हैं। यह इस तथ्य का अनुसरण करता है कि [HA] = β<sub>1</sub>[a] [h], [h<sub>2a</sub>] = बी<sub>2</sub>[a] [h]<sup>2</sup> और [OH] = K<sub>w</sub>[एच]<sup>-1रूप में निहित होता है i</sup> | जब संतुलन स्थिरांक होते हैं और कुल सांद्रता निर्दिष्ट होती है तो दो अज्ञात मुक्त सांद्रता a और h में दो समीकरण होते हैं। यह इस तथ्य का अनुसरण करता है कि [HA] = β<sub>1</sub>[a] [h], [h<sub>2a</sub>] = बी<sub>2</sub>[a] [h]<sup>2</sup> और [OH] = K<sub>w</sub>[एच]<sup>-1रूप में निहित होता है i</sup> |
Revision as of 13:04, 25 January 2023
रासायनिक प्रतिक्रिया में रासायनिक संतुलन वह अवस्था है जिसमें अभिकर्मक और उत्पाद दोनों तत्व उपस्थित होते हैं एवं जिसमें परिवर्तन की कोई प्रवृत्ति नहीं होती है।[1] यह स्थिति तब उत्पन्न होती है जब रासायनिक संचरण में अग्र अभिक्रिया प्रतिवर्ती प्रतिक्रिया के समान दर से आगे बढ़ती है। अग्रसर और पश्चवर्ती प्रतिक्रियाओं की प्रतिक्रिया दर आम तौर पर शून्य नहीं होती लेकिन वे सामान दर से कार्य करती है I जिस कारण अभिकारकों और उत्पादों की सांद्रता में कोई शुद्ध परिवर्तन नहीं होता है। ऐसी स्थिति को गतिशील संतुलन के रूप में जाना जाता है।[2][3]
ऐतिहासिक परिचय
रासायनिक संतुलन की अवधारणा 1803 में विकसित की गयी थीI इस अवधारणा के अंतर्गत क्लाउड लुई बर्थोलेट ने पाया कि इसमें कुछ रासायनिक प्रतिक्रियाएं "प्रतिवर्ती प्रतिक्रिया" हैI [4] किसी मिश्रण के संतुलन पर उपस्थिति के लिए किसी भी प्रतिक्रिया की अग्र अभिक्रिया और पश्चगामी अभिक्रिया दोनों प्रक्रियाओं की प्रतिक्रिया दर समान होनी चाहिए I जैसा की ग्राफ में समीकरण द्वारा प्रदर्शित किया गया है I ग्राफ में a और b दोनों प्रतिक्रियाशील रासायनिक क्रियाएं हैंI समीकरण S और T दोनों ही रासायनिक उत्पादित प्रतिक्रियाएं हैं I अल्फा (अक्षर)|α, बीटा (अक्षर)|β, सिग्मा|σ, और ताऊ|τ संबंधित अभिकारक और उत्पाद स्टोइकोमेट्रिक गुणांक हैंI
- α A+ β B ⇌ σS + T
किसी अभिक्रिया की साम्यावस्था सान्द्रता की स्थिति दायीं ओर स्थित हैI इसके विपरीत यदि अभिकारकों से उत्पन्न कोई रासायनिक उत्पाद का निर्माण होता है तो संतुलन स्थिति को बाईं ओर संचारित किया जाता है I
काटो मैक्सिमिलियन गुल्डबर्ग और पीटर वेज (1865) ने बर्थोलेट ने इसके लिए सामूहिक रूप से विचार प्रस्तुत किये हैं I
उपरोक्त समीकरण के अनुसार दर स्थिरांक का अनुपात भी स्थिरांक है जिसे संतुलन स्थिरांक के रूप में जाना जाता है।
सामूहिक क्रिया का नियम केवल समेकित-चरणीय प्रतिक्रियाओं के लिए मान्य है जो संचरण के माध्यम से आगे बढ़ते हैंI सामान्य रूप से यह प्रतिक्रिया दर # दर समीकरण सामान्य रूप से प्रतिक्रिया के स्तुईचिओमेटरी (रासायनिक प्रतिक्रिया) का अनुसरण नहीं करते हैंI
गुल्डबर्ग और वेज ने एक रासायनिक व्युत्पत्ति प्रस्तावित की थीI इस व्युत्पत्ति की प्रतिक्रिया के लिए संतुलन स्थिरांक से जुड़ी होती है और स्थिर होती हैI हालांकि यह समीकरण कुछ जरुरी शर्तों में निर्भर करता हैI रासायनिकउत्प्रेरक जोड़ने से अग्र अभिक्रिया और विपरीत अभिक्रिया दोनों समान रूप से प्रभावित होंगीI हालांकि रासायनिक नियमानुसार इसका संतुलन स्थिरांक पर कोई विपरीत प्रभाव नहीं पड़ता है। दोनों उत्प्रेरक प्रतिक्रियाओं की गतिशीलता से उस गति में वृद्धि होगी जिस पर संतुलन पहुंचता है।[2][5] सिरका अम्ल के पानी में घुलने और एसीटेट और हाइड्रोनियम आयन बनाने की स्थिति में यह फार्मूला परिभाषित होता हैI
- CH3CO2H + H2O ⇌ CH3CO−2 + H3O+
प्रोटॉन एसिटिक एसिड के अणु से पानी के अणु पर संचरित होता हैI इससे एसिटेट आयन पर एसिटिक एसिड अणु का निर्माण होता हैI एसिटिक एसिड अणुओं की संख्या को अपरिवर्तित छोड़ सकता है। यह तत्व गतिशील संतुलन का उदाहरण है। संतुलन बाकी थर्मोडायनामिक्स की तरह सांख्यिकीय घटनाएं हैंI
ले चेटेलियर का सिद्धांत (1884) संतुलन प्रणाली के व्यवहार की भविष्यवाणी करता है जब इसकी प्रतिक्रिया की स्थिति में परिवर्तन होता है। यदि परिस्थितियों को बदलने से गतिशील संतुलन गड़बड़ा जाता है तो संतुलन की स्थिति आंशिक रूप से परिवर्तन को पलट देती है। उदाहरण के लिए बाहरी क्रिया के अंतर्गत S जोड़ने से रासायनिक उत्पादों की अधिकता होगीI यह सिस्टम विपरीत प्रतिक्रिया को बढ़ाकर संतुलन बिंदु को पीछे की ओर धकेल कर इसका प्रतिकार करने का प्रयास करेगाI
यदि एसिटिक एसिड मिश्रण में खनिज एसिड मिलाया जाता है तो हाइड्रोनियम आयन की सांद्रता में वृद्धि होती हैI पृथक्करण की मात्रा कम होनी चाहिए क्योंकि प्रतिक्रिया इस सिद्धांत के अनुसार बाईं ओर संचालित होती है। यह प्रतिक्रिया संतुलन स्थिरांक की अभिव्यक्ति के लिए आवश्यक हैI
अगर {H3O+} की स्थिति बढ़ती है तो ऐसी स्थिति में {CH3CO2H} बढ़ना चाहिए और CH
3CO−
2 घटनी चाहिए। H2O यह विलायक है और इसकी सांद्रता उच्च और लगभग स्थिर रहती है।
योशिय्याह विलार्ड गिब्स और जे. डब्ल्यू गिब्स ने 1873 में सुझाव दिया था कि संतुलन तब प्राप्त होता है जब सिस्टम की रासायनिक क्षमता अपने न्यूनतम मूल्य पर होती हैI इसका अर्थ यह है कि प्रतिक्रिया समन्वय के संबंध में गिब्स ऊर्जा का व्युत्पन्न प्रतिक्रिया की सीमा का उपाय सभी अभिकारकों के लिए शून्य से लेकर सभी उत्पादों के लिए अधिकतम होता है I यह स्थिर बिंदु का संकेत देता है। इस व्युत्पन्न को प्रतिक्रिया गिब्स ऊर्जा या ऊर्जा परिवर्तन कहा जाता हैI यह प्रतिक्रिया मिश्रण की संरचना में अभिकारकों और उत्पादों की रासायनिक क्षमता के बीच अंतर से मेल खाती है।[1]यह मानदंड आवश्यक और पर्याप्त दोनों है। यदि मिश्रण संतुलन पर नहीं है तो अतिरिक्त गिब्स ऊर्जा की मुक्ति मिश्रण की संरचना को संतुलन तक पहुंचने तक बदलने के लिए प्रेरक शक्ति है। संतुलन स्थिरांक समीकरण द्वारा प्रतिक्रिया के लिए मानक गिब्स ऊर्जा परिवर्तन से संबंधित हो सकता हैI
जहाँ R सार्वत्रिक गैस नियतांक है और T ताप है।
जब अभिकारक उच्च आयनिक शक्ति के माध्यम में विलयन होते हैं तो गतिविधि गुणांक के भागफल को स्थिर माना जा सकता है। उस स्थिति में 'एकाग्रता भागफल', Kc,
जहां [A] A की एकाग्रता है आदि, अभिकारकों की विश्लेषणात्मक एकाग्रता से स्वतंत्र है। इस कारण से, समाधान (रसायन विज्ञान) के लिए संतुलन स्थिरांक आमतौर पर उच्च आयनिक शक्ति के मीडिया में संतुलन स्थिरांक का निर्धारण होते हैं। Kcआयनिक शक्ति, तापमान और दबाव (या आयतन) के साथ बदलता रहता है। इसी तरह Kpगैसों के लिए आंशिक दबाव पर निर्भर करता है। हाई-स्कूल रसायन विज्ञान पाठ्यक्रमों में इन स्थिरांकों को मापना और उनका सामना करना आसान है।
ऊष्मप्रवैगिकी
निरंतर तापमान और दबाव परगिब्स मुक्त ऊर्जा G पर विचार करना चाहिए जबकि स्थिर तापमान और आयतन पर प्रतिक्रिया के लिए हेल्महोल्ट्ज़ मुक्त ऊर्जा A पर विचार करना चाहिए और निरंतर आंतरिक ऊर्जा और आयतन पर प्रतिक्रिया के लिए एन्ट्रापी S पर विचार करना चाहिए।
भू-रसायन और वायुमंडलीय रसायन विज्ञान में निरंतर आयतन का मामला महत्वपूर्ण है जहां दबाव भिन्नताएं महत्वपूर्ण हैं। ध्यान दें कि यदि अभिकारक और उत्पाद मानक अवस्था में हैं तो कोई उत्क्रमणीयता और कोई संतुलन नहीं होगा। उत्पादों और अभिकारकों का मिश्रण उत्पादों और अभिकारकों के समान एन्ट्रापी वृद्धि के रूप में जाना जाता हैI ये मानक गिब्स ऊर्जा परिवर्तन और मिश्रण की गिब्स ऊर्जा के साथ मिलकर संतुलन की स्थिति निर्धारित करते हैं।[6][7] गिब्स मुक्त ऊर्जा और संतुलन स्थिरांक के बीच संबंध रासायनिक क्षमता पर विचार करके पाया जा सकता है।[1]
एक लागू वोल्टेज की अनुपस्थिति में निरंतर तापमान और दबाव पर प्रतिक्रिया के लिए गिब्स मुक्त ऊर्जा G केवल प्रतिक्रिया की सीमा पर निर्भर करता हैI इसका मतलब है कि प्रतिक्रिया होने पर ξ के संबंध में G का व्युत्पन्न नकारात्मक होना चाहिएI संतुलन पर यह व्युत्पन्न 0 के बराबर है।
- : संतुलन
संतुलन के लिए थर्मोडायनामिक स्थिति को पूरा करने के लिए, गिब्स ऊर्जा स्थिर होनी चाहिए जिसका अर्थ है कि प्रतिक्रिया की सीमा के संबंध में g का व्युत्पन्न शून्य होना चाहिए। यह दिखाया जा सकता है कि इसमें रासायनिक उत्पादों के स्टोइकोमेट्रिक गुणांक के रासायनिक क्षमता का योग अभिकारकों के अनुरूप योग के बराबर है।[8] इसलिए अभिकारकों की गिब्स ऊर्जाओं का योग उत्पादों की गिब्स ऊर्जाओं के योग के बराबर होना चाहिए।
जहां μ इस मामले में एक आंशिक दाढ़ गिब्स ऊर्जा एक रासायनिक क्षमता है। अभिकर्मक A की रासायनिक क्षमता उस अभिकर्मक की गतिविधि {A} का कार्य है।
इस समीकऱण में μo
A मानक रासायनिक क्षमता है।
गिब्स ऊर्जा समीकरण की परिभाषा उत्पादन के लिए मौलिक थर्मोडायनामिक संबंध के साथ परस्पर क्रिया करती हैI
- .
dNi = νi dξ उपरोक्त समीकरण में स्टोइकोमीट्रिक गुणांक प्रदर्शित हो रहा हैI अंतर असीम सीमा तक होने वाली प्रतिक्रिया को दर्शाता हैl रासायनिक प्रतिक्रिया के निरंतर दबाव और तापमान पर उपरोक्त समीकरणों को इस प्रकार लिखा जा सकता हैI
- जो प्रतिक्रिया के लिए गिब्स मुक्त ऊर्जा परिवर्तन है।
इसमें यह परिणाम:
- .
रासायनिक क्षमता को प्रतिस्थापित करके
- ,
रिश्ता बन जाता हैI
- :
प्रतिक्रिया के लिए स्थापित मानक गिब्स ऊर्जा परिवर्तन का सोर्स या साधन है जिसकी गणना थर्मोडायनामिक तालिकाओं का उपयोग करके की जाती है।
इसलिए
संतुलन पर
के लिए अग्रणी
तथा
मानक गिब्स ऊर्जा परिवर्तन का मान प्राप्त करना संतुलन स्थिरांक की गणना की अनुमति देता है।
अभिकारकों या उत्पादों का योग
संतुलन पर प्रतिक्रियात्मक प्रणाली के लिए Qr= K eg=eg यदि घटकों की गतिविधियों को संशोधित किया जाता है तो प्रतिक्रिया भागफल का मान बदल जाता है और संतुलन स्थिरांक से भिन्न हो जाता है Qr k eq
- यदि उत्पाद j की गतिविधि बढ़ जाती है तो तथाप्रतिक्रिया बाईं ओर अर्थात विपरीत दिशा में स्थापित हो जाएगीI
ध्यान दें कि गतिविधियाँ और संतुलन स्थिरांक आयामहीन संख्याएँ हैं।
गतिविधि का उपचार
संतुलन स्थिरांक के व्यंजक को सांद्रता भागफल Kc के गुणनफल के रूप में लिखा जा सकता है Γ.
A अभिकर्मक A आदि की एकाग्रता है। सिद्धांत रूप में गतिविधि गुणांक के मूल्यों को प्राप्त करना संभव है γ। समाधान के लिए समीकरण जैसे कि डेबी-हकल समीकरण या एक्सटेंशन जैसे डेविस समीकरण [9] विशिष्ट आयन अंतःक्रिया सिद्धांत या पिट्ज़र समीकरण [10] उपयोग किया जा सकता है। हालांकि यह हमेशा संभव नहीं होता है। यह आम धारणा है कि स्थिरांक और थर्मोडायनामिक संतुलन स्थिरांक के स्थान पर सांद्रता भागफल का प्रयोग करता हैI सटीक एकाग्रता भागफल के बजाय संतुलन स्थिरांक शब्द का उपयोग करना भी सामान्य अभ्यास है।
गैस चरण में प्रतिक्रियाओं के लिए गतिविधि गुणांक के स्थान पर एकाग्रता और फ्यूगेसिटी गुणांक के स्थान पर आंशिक दबाव का उपयोग किया जाता है। नीचे दी गयी रासायनिक प्रतिक्रिया में 'f' आंशिक दबाव और पलायनता गुणांक का गुणनफल है।
संतुलन स्थिरांक को परिभाषित करने वाला सामान्य व्यंजक विलयन और गैस प्रावस्था दोनों के लिए मान्य है।
संकेंद्रण भागफल
जलीय रासायनिक में संतुलन स्थिरांक सामान्यता सोडियम नाइट्रेट नैनो3 या पोटेशियम परक्लोरेट KClO4 जैसे अक्रिय इलेक्ट्रोलाइट की उपस्थिति में निर्धारित होते हैंI रासायनिक विलयन की शक्ति के अनुसार निर्धारित समीकरण
जहां ci और ziआयन प्रकार i की सांद्रता और आयनिक आवेश के लिए हैI योग समाधान में सभी N प्रकार की आवेशित प्रजातियों पर लिया जाता है। जब विलयी नमक की सांद्रता अभिकर्मकों की विश्लेषणात्मक सांद्रता से बहुत अधिक होती है तो विलयी नमक से उत्पन्न आयन आयनिक शक्ति निर्धारित करते हैंI चूंकि गतिविधि गुणांक आयनिक शक्ति पर निर्भर करते हैं इसलिए आयनिक शक्ति प्रभावी रूप से स्थिर होती है। एकाग्रता भागफल संतुलन स्थिरांक का साधारण गुणज है।[11]
ज्ञात समीकरण अनुसार Kc आयनिक शक्ति के साथ भिन्न होता है। यदि इसे विभिन्न आयनिक शक्तियों की श्रृंखला के तौर पर मापा जाता है तो मान को शून्य आयनिक शक्ति में बहिर्वेशन किया जा सकता है।[10]इस तरह से प्राप्त संकेंद्रण भागफल को विरोधाभासी रूप से थर्मोडायनामिक संतुलन स्थिरांक के रूप में जाना जाता है।
मेटास्टेबल मिश्रण
रासायनिक समायोजन के अनुरूप रासायनिक यौगिक मिश्रण में परिवर्तन की कोई प्रवृत्ति नहीं हैI हालांकि यह प्रभाव और तर्क संतुलन पर निर्भर नहीं है। उदाहरण के लिए सल्फर डाइऑक्साइड का मिश्रण SO2और ऑक्सीजन O2है क्योंकि उत्पाद के निर्माण के लिए सक्रियण ऊर्जा सल्फर ट्राइऑक्साइड SO3हैI
- 2 SO2 + O2 ⇌ 2 SO3
इसी तरह कार्बन डाइआक्साइड और पानी से बाइकार्बोनाइट का निर्माण सामान्य परिस्थितियों में बहुत धीमा होता हैI
- CO2 + 2 H2O ⇌ HCO−3 + H3O+
शुद्ध पदार्थ
जब शुद्ध पदार्थ तरल या ठोस संतुलन में शामिल होते हैं तो उनकी गतिविधियाँ संतुलन में स्थिर नहीं दिखाई देती हैं[12] क्योंकि उनके संख्यात्मक मान समरूप हैI
पानी में एसिटिक एसिड के जलमिश्रित घोल के विशिष्ट स्थिति के लिए संतुलन स्थिरांक के सामान्य सूत्र को लागू करने पर जो समीकरण प्राप्त होता है उसके अनुसार
- CH3CO2H + H2O ⇌ CH3CO2− + H3O+ स्थिरांक बनता है I
बहुत ही केंद्रित समाधानों के लिए पानी को शुद्ध तरल माना जा सकता है इसमें एक एक क्रिया के अनुसार गतिविधि संतुलन स्थिरांक व्यंजक को आमतौर पर इस प्रकार लिखा जा सकता है I
- .
- 2 H2O ⇌ H3O+ + OH−
पानी विलायक रूप में होता हैऔर इसकी एक गतिविधि हैI पानी के आत्म-आयनीकरण स्थिरांक को इस प्रकार परिभाषित किया गया है
यह लिखना पूरी तरह से वैध है [H+] हाइड्रोनियम आयन सांद्रता के लिए प्रोटॉन के विलायकयोजन की स्थिति स्थिर होती हैI संतुलन सांद्रता को प्रभावित नहीं करती है। Kw आयनिक शक्ति या तापमान में भिन्नता के साथ परिवर्तिति होता रहता है I
H+ की सांद्रता और OH− स्वतंत्र मात्रा नहीं हैं। आमतौर पर OH− को K में परिवर्तित कर दिया जाता हैI Kw[H+]−1संतुलन स्थिरांक व्यंजकों में हाइड्रॉक्साइड आयन उपस्थित है I
- 2 CO ⇌ CO2 +C
ठोस रहित कार्बन के लिए प्राप्त समीकरण इस प्रकार है I
ठोस कार्बन के बिना इस प्रकार लिखा गया हैI
एकाधिक संतुलन
द्विक्षारकीय अम्ल H2A की स्थिति पर विचार करें तो इसमें द्विक्षारकीय अम्ल पानी में घुलने पर Hद्विक्षारकीय अम्ल होगा H2A, HA− and A2−इस संतुलन को दो चरणों में विभाजित किया जा सकता है जिनमें से प्रत्येक में प्रोटॉन मुक्त होता है।
K1 और K2 चरणवार संतुलन स्थिरांक के उदाहरण हैं। समग्र संतुलन स्थिरांक, βD, चरणबद्ध स्थिरांक का गुणनफल है।
- :
ध्यान दें कि ये स्थिरांक अम्ल वियोजन स्थिरांक हैं क्योंकि संतुलन व्यंजक के दायीं ओर रासायनिक उत्पाद वियोजन उत्पाद हैं। कई स्थितियों में स्थिरांक का उपयोग करना बेहतर होता है।
β1 और β2 संघ स्थिरांक के उदाहरण हैं। स्पष्ट रूप से इसके लिए β1 = 1/K2 तथा β2 = 1/βD; log β1 = pK2 तथा log β2 = pK2 + pK1[13]समीकरण होगा I
तापमान का प्रभाव
संतुलन स्थिरांक पर तापमान में परिवर्तन का प्रभाव वैन टी हॉफ समीकरण द्वारा दिया जाता हैI
इस प्रकार एग्जोथर्मिक एक प्रकार की रासायनिक प्रतिक्रिया के लिए ΔH ऋणात्मक हैI K तापमान में वृद्धि के साथ घटता है लेकिन एण्डोथेरमिक एक प्रकार की रासायनिक प्रतिक्रिया ΔH धनात्मक हैI K बढ़ते तापमान के साथ बढ़ता है। इसके लिए वैकल्पिक सूत्रीकरण हैI
पहली नज़र में यह तापमान के साथ K की भिन्नता का अध्ययन करके प्रतिक्रिया की मानक मोलर एन्थैल्पी प्राप्त करने का एक साधन प्रदान करता प्रतीत होता है। हालांकि व्यवहारिक तौर पर विधि अविश्वसनीय है क्योंकि त्रुटि प्रसार लगभग हमेशा इस तरह से गणना किए गए मूल्यों पर बहुत बड़ी त्रुटियां देता है।
विद्युत और चुंबकीय क्षेत्रों का प्रभाव
संतुलन पर विद्युत क्षेत्र के प्रभाव का अध्ययन मैनफ्रेड आइजेन ने किया है[14][15]
संतुलन के प्रकार
- N2 (g) ⇌ N2 (adsorbed)
- N2 (adsorbed) ⇌ 2 N (adsorbed)
- H2 (g) ⇌ H2 (adsorbed)
- H2 (adsorbed) ⇌ 2 H (adsorbed)
- N (adsorbed) + 3 H(adsorbed) ⇌ NH3 (adsorbed)
- NH3 (adsorbed) ⇌ NH3 (g)
संतुलन को मोटे तौर पर विषमांगी और सजातीय संतुलन के रूप में वर्गीकृत किया जा सकता है।[16] सजातीय संतुलन में एक ही चरण से संबंधित अभिकारक और रासायनिक उत्पाद होते हैं जबकि विभिन्न चरणों में अभिकारकों और उत्पादों के लिए विषम संतुलन आता है।
- गैस चरण में: रॉकेट इंजन [17]
- हाबर-बॉश प्रक्रिया (दाएं चित्रित) में अमोनिया जैसे औद्योगिक संश्लेषण, सोखना प्रक्रियाओं सहित संतुलन चरणों के उत्तराधिकार के माध्यम से होता हैI
- वायुमंडलीय रसायन विज्ञान
- समुद्री जल और अन्य प्राकृतिक जल: रासायनिक समुद्र विज्ञान
- दो चरणों के बीच वितरण
- विभाजन गुणांक: फार्मास्यूटिकल्स के लिए महत्वपूर्ण जहां लिपोफिलिसिटी एक दवा की एक महत्वपूर्ण संपत्ति है
- तरल-तरल निष्कर्षण, आयन विनिमय , क्रोमैटोग्राफी
- घुलनशीलता संतुलन
- रक्त में हीमोग्लोबिन द्वारा ऑक्सीजन ग्रहण करना और छोड़ना
- अम्ल-क्षार संतुलन: अम्ल वियोजन स्थिरांक, जल-अपघटन, बफर विलयन, PH सूचक, अम्ल-क्षार समस्थिति
- मेटल-लिगैंड कॉम्प्लेक्शन: केलेशन, केलेशन थेरेपी , चुम्बकीय अनुनाद इमेजिंग , श्लेनक संतुलन
- जोड़ निर्माण: मेजबान-अतिथि रसायन विज्ञान, सुपरमॉलेक्यूलर रसायन विज्ञान, आणविक मान्यता , डाइनाइट्रोजन टेट्रोक्साइड
- कुछ दोलन प्रतिक्रियाओं में, संतुलन के लिए दृष्टिकोण स्पर्शोन्मुख रूप से नहीं बल्कि दोलन के रूप में होता है।[12]* इलेक्ट्रोकैमिस्ट्री में संबंधित नर्नस्ट समीकरण रेडॉक्स सांद्रता के रूप में इलेक्ट्रोड क्षमता में अंतर प्रकट करता है I
- जब संतुलन के प्रत्येक पक्ष पर अणु द्वितीयक प्रतिक्रियाओं में अपरिवर्तनीय रूप से आगे प्रतिक्रिया करने में सक्षम होते हैं तो अंतिम उत्पाद अनुपात कर्टिन-हैमेट सिद्धांत के अनुसार निर्धारित किया जाता है।
इन अनुप्रयोगों में, स्थिरता स्थिरांक, गठन स्थिरांक, बंधन स्थिरांक, आत्मीयता स्थिरांक स्थिरांक और वियोजन स्थिरांक जैसे शब्दों का उपयोग किया जाता है। जैव रसायन में, बाध्यकारी स्थिरांक के लिए इकाइयाँ देना आम बात है जो स्थिरांक का मान निर्धारित होने पर उपयोग की जाने वाली सांद्रता इकाइयों को परिभाषित करने का काम करती हैं।
मिश्रण की संरचना
जब मिश्रण की संरचना के रूप में 1:1 जोड़ के निर्माण का एकमात्र संतुलन के कई तरीके हैं जिनसे मिश्रण की संरचना की गणना की जा सकती है। उदाहरण के लिए अस्थिर एसिड pH की गणना करने की विधि के लिए ICE तालिका पर ध्यान देंI
संतुलन पर मिश्रण की संरचना की सामान्य गणना के लिए तीन दृष्टिकोण हैं।
- सबसे बुनियादी दृष्टिकोण विभिन्न संतुलन स्थिरांक में हेरफेर करना है जब तक कि वांछित सांद्रता को माप संतुलन स्थिरांक और प्रारंभिक स्थितियों के संदर्भ में व्यक्त नहीं किया जाता है।
- सिस्टम की गिब्स ऊर्जा को कम करें।[18][19]
- द्रव्यमान संतुलन के समीकरण को स्वीकृत करें। द्रव्यमान संतुलन के समीकरण ऐसे कथन हैं जो प्रदर्शित करते हैं कि प्रत्येक अभिकारक की कुल सांद्रता द्रव्यमान के संरक्षण के नियम द्वारा स्थिर होनी चाहिए।
द्रव्यमान संतुलन समीकरण
सामान्य तौर पर द्रव्यमान गणनाएं जटिल होती हैं। उदाहरण के लिए डिबासिक एसिड में H2पानी में घुलनशील दो अभिकारकों को संयुग्म आधार के रूप में निर्दिष्ट किया जा सकता हैI A2−और हाइड्रोनियम H+ एथिलेनेडियम 1,2-डायमिनोइथेन द्रव्यमान-संतुलन के निम्नलिखित समीकरण आधार पर समान रूप से लागू हो सकते हैं i
TA प्रजातियों की कुल सांद्रता A है I ध्यान दें कि इन समीकरणों को लिखते और उपयोग करते समय आयनिक आवेशों को का ध्यान रखना अनिवार्य है I
जब संतुलन स्थिरांक होते हैं और कुल सांद्रता निर्दिष्ट होती है तो दो अज्ञात मुक्त सांद्रता a और h में दो समीकरण होते हैं। यह इस तथ्य का अनुसरण करता है कि [HA] = β1[a] [h], [h2a] = बी2[a] [h]2 और [OH] = Kw[एच]-1रूप में निहित होता है i
सांद्रता की गणना मुक्त सांद्रता और संतुलन स्थिरांक से की जाती है। दो अभिकर्मकों a और b साथ सभी प्रणालियों पर लागू होने वाले सामान्य व्यंजक होंगे
यह देखना आसान है कि तीन या अधिक अभिकर्मकों तक कैसे इसकी वृद्धि हो सकती है।
पॉलीबेसिक एसिड
अभिकारकों A और H वाले विलयनों की संरचना pH के फलन के रूप में परिकलित करना आसान है। जब H ज्ञात हो तो A में द्रव्यमान-संतुलन समीकरण से मुक्त सांद्रता A की गणना की जाती है।
साथ में दिया गया चित्र, एल्युमिनियम लुईस एसिड Al . के हाइड्रोलिसिस का एक उदाहरण दिखाता है3+(aq)[20] 5 × 10 . के लिए प्रजातियों की सांद्रता को दर्शाता है−6 पीएच के कार्य के रूप में एल्यूमीनियम नमक का एम समाधान। प्रत्येक एकाग्रता को कुल एल्यूमीनियम के प्रतिशत के रूप में दिखाया गया है।
समाधान और अवक्षेपण
ऊपर दिया गया चित्र इस बिंदु को दर्शाता है कि अवक्षेपण जो समाधान संतुलन में मुख्य तत्व में से एक नहीं है उसे आसानी पूर्वक स्थापित किया जा सकता हैI 5.5 के ठीक नीचे pH पर Al के 5 μM मिश्रण में मौजूद मुख्य तत्व एल्युमिनियम हाइड्रॉक्साइड Al(OH) हैं2+, AlOH+
2 तथा Al
13(OH)7+
32, लेकिन PH एल्युमिनियम हाइड्रॉक्साइड बढ़ाने पर Al(OH) मिश्रण से प्राप्त होता हैI Al(OH)3 बड़ी रासायनिक ऊर्जा में से एक हैI जैसे जैसे PH मान में वृद्धि होती है OH3 समाधान से बाहर आता है। यह ले चेटेलियर के सिद्धांत का एक उदाहरण हैI हाइड्रॉक्साइड आयन की वृद्धि से अधिक एल्यूमीनियम हाइड्रॉक्साइड अवक्षेपित होता है जो समाधान से हाइड्रॉक्साइड तत्व को विस्थापित कर देता है I जब हाइड्रॉक्साइड की सांद्रता पर्याप्त रूप से अधिक हो जाती है तो घुलनशील एलुमिनेट Al(OH)−
4 का निर्माण होता है I
गिब्स ऊर्जा का न्यूनीकरण
संतुलन पर एक निर्दिष्ट तापमान और दबाव पर और बिना किसी बाहरी बल के गिब्स मुक्त ऊर्जा G न्यूनतम क्रिया के अनुरूप प्रतिरूपित हैI
जहां μj आणविक तत्वों की रासायनिक क्षमता है j और Njआणविक तत्वों की मात्रा है j कोथर्मोडायनामिक गतिविधि के रूप में व्यक्त किया जा सकता हैI
कहाँ पे मानक अवस्था में रासायनिक क्षमता है, R गैस स्थिरांक है T निरपेक्ष तापमान है और Ajगतिविधि है।
एक बंद प्रणाली के लिए, कोई भी कण प्रवेश या छोड़ नहीं सकता हैI हालांकि वे विभिन्न तरीकों से संयोजित हो सकते हैं। प्रत्येक तत्व के परमाणुओं की कुल संख्या स्थिर रहेगी। इसका मतलब यह है कि ऊपर दिए गए न्यूनीकरण को बाध्यताओं के अधीन होना चाहिएI
जहाँ ijअणु j और b में तत्व i के परमाणुओं की संख्या है0
i I यदि समीकरण में आयन शामिल हैं तो a में अतिरिक्त पंक्ति जोड़ी जाती हैI मैट्रिक्स प्रत्येक अणु पर संबंधित चार्ज को निर्दिष्ट करता है जिसका योग शून्य है।
यह अनुकूलन (गणित) में एक मानक समस्या है जिसे विवश न्यूनीकरण के रूप में जाना जाता है। इसे हल करने का सबसे आम तरीका लैग्रेंज गुणक विधि का उपयोग है[21][17]इसे अन्य तरह से परिभाषित किया जा सकता है I
जहांiलैग्रेंज गुणक हैंI जिसमें प्रत्येक तत्व के लिए nj aj की अनुमति देता हैI इसे बहुभिन्नरूपी कलन के उपकरणों का उपयोग करके दिखाया जा सकता हैI इसे निम्न समीकरण द्वारा प्रतिष्ठापित किया जा सकता है I
यह समीकरण (m + k) समीकरणों का एक सेट है (m + k) अज्ञात (N) मेंjऔर i संतुलन सांद्रता n के लिए हल किया जा सकता हैI jरासायनिक गतिविधियों को दिए गए तापमान और दबाव पर सांद्रता के कार्यों के रूप में जाना जाता है।
संतुलन रासायनिक सांद्रता की गणना की यह विधि बड़ी संख्या में विभिन्न अणुओं वाले सिस्टम के लिए उपयोगी है। द्रव्यमान के लिए k परमाणु तत्व संरक्षण समीकरणों का उपयोग सीधा है और स्टोइकोमेट्रिक गुणांक समीकरणों के उपयोग को प्रतिस्थापित करता है।[17]परिणाम रासायनिक समीकरणों द्वारा निर्दिष्ट परिणामों के अनुरूप हैं। उदाहरण के लिए यदि संतुलन को एकल रासायनिक समीकरण द्वारा निर्दिष्ट किया जाता हैI,[22]
पहली संतुलन स्थिति को ν से गुणा करनाj और उपरोक्त समीकरण पैदावार का उपयोग करते हुएI
ऊपर के रूप में, G . को परिभाषित करना
जहां Kcसंतुलन स्थिरांक है और ΔG संतुलन पर शून्य है ।
अन्य थर्मोडायनामिक क्षमता को कम करने के लिए अनुरूप प्रक्रियाएं समीकरण में मौजूद हैं।[17]
यह भी देखें
- एसिडोसिस
- क्षारमयता
- धमनी रक्त गैस
- बेनेसी-हिल्डेब्रांड विधि
- संतुलन स्थिरांक का निर्धारण
- निरंतर संतुलन
- हेंडरसन-हसलबल्च समीकरण
- माइकलिस-मेंटेन कैनेटीक्स
- pCO2|pCO2* पीएच
- pKa|pKa* मानक इलेक्ट्रोड क्षमता
- स्थिर अवस्था (रसायन विज्ञान)
- शुद्ध पदार्थों के लिए थर्मोडायनामिक डेटाबेस
- गैर-यादृच्छिक दो-तरल मॉडल (NRTL मॉडल) - चरण संतुलन गणना
- UNIQUAC मॉडल - चरण संतुलन गणना
संदर्भ
- ↑ 1.0 1.1 1.2 Atkins, Peter; De Paula, Julio (2006). एटकिंस 'भौतिक रसायन विज्ञान (8th ed.). W. H. Freeman. pp. 200–202. ISBN 0-7167-8759-8.
- ↑ 2.0 2.1 Atkins, Peter W.; Jones, Loretta (2008). रासायनिक सिद्धांत: अंतर्दृष्टि की खोज (2nd ed.). ISBN 978-0-7167-9903-0.
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "chemical equilibrium". doi:10.1351/goldbook.C01023
- ↑ Berthollet, C.L. (1803). रासायनिक स्थैतिक परीक्षण [Essay on chemical statics] (in français). Paris, France: Firmin Didot. On pp. 404–407, Berthellot mentions that when he accompanied Napoleon on his expedition to Egypt, he (Berthellot) visited Lake Natron and found sodium carbonate along its shores. He realized that this was a product of the reverse of the usual reaction Na2CO3 + CaCl2 → 2NaCl + CaCO3↓ and therefore that the final state of a reaction was a state of equilibrium between two opposing processes. From p. 405: " … la décomposition du muriate de soude continue donc jusqu'à ce qu'il se soit formé assez de muriate de chaux, parce que l'acide muriatique devant se partager entre les deux bases en raison de leur action, il arrive un terme où leurs forces se balancent." ( … the decomposition of the sodium chloride thus continues until enough calcium chloride is formed, because the hydrochloric acid must be shared between the two bases in the ratio of their action [i.e., capacity to react]; it reaches an end [point] at which their forces are balanced.)
- ↑ Brady, James E. (2004-02-04). रसायन विज्ञान: पदार्थ और उसके परिवर्तन (4th ed.). Fred Senese. ISBN 0-471-21517-1.
- ↑ Schultz, Mary Jane (1999). "संतुलन क्यों? मिश्रण की एन्ट्रापी को समझना". Journal of Chemical Education. 76 (10): 1391. Bibcode:1999JChEd..76.1391S. doi:10.1021/ed076p1391.
- ↑ Clugston, Michael J. (1990). "मिश्रण के एन्ट्रापी से उष्मागतिकी के दूसरे नियम का गणितीय सत्यापन". Journal of Chemical Education. 67 (3): 203. Bibcode:1990JChEd..67Q.203C. doi:10.1021/ed067p203.
- ↑ Mortimer, R. G. Physical Chemistry, 3rd ed., p. 305, Academic Press, 2008.
- ↑ Davies, C. W. (1962). आयन संघ. Butterworths.
- ↑ 10.0 10.1 Grenthe, I.; Wanner, H. "शून्य आयनिक शक्ति के एक्सट्रपलेशन के लिए दिशानिर्देश" (PDF). Archived from the original (PDF) on 2008-12-17. Retrieved 2007-05-16.
- ↑ Rossotti, F. J. C.; Rossotti, H. (1961). स्थिरता स्थिरांक का निर्धारण. McGraw-Hill.
- ↑ 12.0 12.1 Eagleson, Mary (1994). "जैव रसायन (द्वितीय संस्करण)". Concise Encyclopedia Chemistry. ISBN 0-89925-457-8.
- ↑ Beck, M. T.; Nagypál, I. (1990). जटिल संतुलन की रसायन शास्त्र (2nd ed.). Budapest: Akadémiai Kaidó.
- ↑ "रसायन विज्ञान में नोबेल पुरस्कार 1967". NobelPrize.org (in English). Retrieved 2019-11-02.
- ↑ Eigen, Manfred (December 11, 1967). "अतुलनीय रूप से तेज प्रतिक्रियाएं" (PDF). Nobel Prize. Archived (PDF) from the original on 2022-10-09. Retrieved November 2, 2019.
- ↑ "संतुलन स्थिरांक - Kc".
- ↑ 17.0 17.1 17.2 17.3 Gordon, Sanford; McBride, Bonnie J. (1994). "जटिल रासायनिक संतुलन रचनाओं और अनुप्रयोगों की गणना के लिए कंप्यूटर प्रोग्राम" (PDF). NASA Reference publication 1311. NASA. Archived from the original (PDF) on 2006-04-21.
- ↑ Smith, W. R.; Missen, R. W. (1991). रासायनिक प्रतिक्रिया संतुलन विश्लेषण: सिद्धांत और एल्गोरिदम (Reprinted ed.). Malabar, FL: Krieger Publishing.
- ↑ "मैथट्रेक सिस्टम्स".
- ↑ The diagram was created with the program HySS
- ↑ "अनुप्रयोगों के साथ रासायनिक संतुलन". NASA. Archived from the original on September 1, 2000. Retrieved October 5, 2019.
- ↑ C. Kittel, H. Kroemer (1980). "9". थर्मल भौतिकी (2 ed.). W. H. Freeman Company. ISBN 0-7167-1088-9.
अग्रिम पठन
Library resources about Chemical equilibrium |
- Van Zeggeren, F.; Storey, S. H. (1970). The Computation of Chemical Equilibria. Cambridge University Press. Mainly concerned with gas-phase equilibria.
- Leggett, D. J., ed. (1985). Computational Methods for the Determination of Formation Constants. Plenum Press.
- Martell, A. E.; Motekaitis, R. J. (1992). The Determination and Use of Stability Constants. Wiley-VCH.
बाहरी संबंध
- Media related to Chemical equilibria at Wikimedia Commons