कोणीय वेग: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
}} | }} | ||
{{Classical mechanics|rotational}} | {{Classical mechanics|rotational}} | ||
भौतिक विज्ञान में, कोणीय वेग या घूर्णन वेग ({{math|ω}}या{{math|Ω}}), कोणीय आवृत्ति सदिश के रूप में भी जाना जाता है,<ref name="UP1">{{cite book | |||
| last = Cummings | | last = Cummings | ||
| first = Karen | | first = Karen | ||
Line 25: | Line 25: | ||
| pages = 449, 484, 485, 487 | | pages = 449, 484, 485, 487 | ||
| url = https://books.google.com/books?id=rAfF_X9cE0EC | | url = https://books.google.com/books?id=rAfF_X9cE0EC | ||
| isbn =978-81-265-0882-2 }}(UP1)</ref> एक [[ स्यूडोवेटर | | | isbn =978-81-265-0882-2 }}(UP1)</ref> एक [[ स्यूडोवेटर |छद्म सदिश]] निरूपण है कि किसी वस्तु की [[ कोणीय स्थिति |कोणीय स्थिति]] या निर्देशन कितनी तेजी से समय के साथ बदलता है(अर्थात् एक वस्तु कितनी जल्दी घूमती है या किसी बिंदु या अक्ष के सापेक्ष घूमती है)। छद्म सदिश का परिमाण [[ कोणीय गति |कोणीय गति]] का निरूपण करता है, जिस दर पर वस्तु घूमती है या परिभ्रमण करती है, और इसकी दिशा [[ सामान्य (ज्यामिति) |सामान्य(ज्यामिति)]] घूर्णन या कोणीय विस्थापन के तात्कालिक तल के लिए सामान्य (ज्यामिति) है। कोणीय वेग का निर्देशन पारंपरिक रूप से दाएं हाथ के नियम द्वारा दर्शाया जाता है।<ref name= EM1>{{cite book | ||
| last = Hibbeler | | last = Hibbeler | ||
| first = Russell C. | | first = Russell C. | ||
Line 37: | Line 37: | ||
कोणीय [[ वेग |वेग]] के दो प्रकार हैं। | कोणीय [[ वेग |वेग]] के दो प्रकार हैं। | ||
* कक्षीय कोणीय वेग एक निश्चित अक्ष के चारों ओर एक बिंदु | * '''कक्षीय कोणीय वेग''' एक निश्चित अक्ष के चारों ओर एक बिंदु वस्तु घूर्णन कितनी तेजी से संदर्भित करता है, अर्थात् [[ मूल (गणित) |मूल(गणित)]] के सापेक्ष अपनी कोणीय स्थिति के परिवर्तन की समय दर। | ||
* झुकाव कोणीय वेग से तात्पर्य है कि एक कठोर शरीर कितनी तेजी से | * '''झुकाव कोणीय वेग''' से तात्पर्य है कि घूर्णन के केंद्र के संबंध में एक कठोर शरीर कितनी तेजी से घूर्णन करता है और कक्षीय कोणीय वेग के तुलना, मूल की पसंद से स्वतंत्र है। | ||
सामान्यतः, कोणीय वेग में प्रति इकाई समय कोण(भौतिकी) का [[ आयाम (भौतिकी) |आयाम(भौतिकी)]] होता है(कोण को सामान्यतः समय के साथ रैखिक वेग से [[ दूरी |दूरी]] की जगह लेता है)।कोणीय वेग की एसआई इकाई [[ प्रति सेकंड रेडियन |प्रति सेकंड रेडियन]] है,<ref>{{cite book |title=International System of Units (SI) |edition=revised 2008 |first1=Barry N. |last1=Taylor |publisher=DIANE Publishing |year=2009 |isbn=978-1-4379-1558-7 |page=27 |url=https://books.google.com/books?id=I-BlErBBeL8C}} [https://books.google.com/books?id=I-BlErBBeL8C&pg=PA27 Extract of page 27]</ref> [[ कांति |रेडियन]] एक [[ आयामहीन मात्रा |आयाम रहित मात्रा]] होने के साथ, इस प्रकार कोणीय वेग की एसआई इकाइयों को एस-1 के रूप में सूचीबद्ध किया जा सकता है। कोणीय वेग सामान्यतः प्रतीक [[ ओमेगा |ओमेगा({{math|ω}}, कभी-कभी{{math|Ω}})]] द्वारा दर्शाया जाता है ।परंपरागत ढंग से, धनात्मक कोणीय वेग काउंटर-वामावर्त घूर्णन को इंगित करता है, जबकि ऋणात्मक [[ दक्षिणावर्त |दक्षिणावर्त]] है। | |||
उदाहरण के लिए, एक [[ जियोसिंक्रोनस ऑर्बिट | | उदाहरण के लिए, एक [[ जियोसिंक्रोनस ऑर्बिट |भूस्थैतिक उपग्रह]] उपग्रह [[ भूमध्य रेखा |भूमध्य रेखा]] के ऊपर प्रति दिन एक कक्षा को पूरा करता है, या प्रति 24 घंटे 360 डिग्री, और कोणीय वेग = (360 °)/(24 और nbsp; h) = 15 °/h, या या 15 °/h, या है, या होता है। यदि कोण को रेडियन में मापा जाता है, तो रैखिक वेग कोणीय वेग का त्रिज्या गुना होता है, <math>v = r\omega</math>। पृथ्वी के केंद्र से 42,000 किमी की कक्षीय त्रिज्या के साथ, अंतरिक्ष के माध्यम से उपग्रह की गति इस प्रकार v = 42,000 किमी × 0.26/घंटा ≈ 11,000 किमी/घंटा है। कोणीय वेग धनात्मक है क्योंकि उपग्रह पृथ्वी के घूर्णन के साथ पूर्व (उत्तरी ध्रुव के ऊपर से वामावर्त) की ओर यात्रा करता है। | ||
== एक बिंदु कण का कक्षीय कोणीय वेग == | == एक बिंदु कण का कक्षीय कोणीय वेग == | ||
=== दो आयामों में कण === | === दो आयामों में कण === | ||
[[Image:Angular velocity1.svg|right| वेग सदिश 'वी' का अंगूठा।]]त्रिज्या पर | [[Image:Angular velocity1.svg|right| वेग सदिश 'वी' का अंगूठा।]]<math>r</math> त्रिज्या पर वृत्तीय गति के सबसे सरल मामले में , कोणीय विस्थापन द्वारा दी गई स्थिति के साथ <math>\phi(t)</math> एक्स-अक्ष से, कक्षीय कोणीय वेग समय के संबंध में कोण के परिवर्तन की दर: <math display="inline">\omega = \frac{d\phi}{dt}</math> है। यदि <math>\phi</math> रेडियन में मापा जाता है, वृत्त के चारों ओर धनात्मक एक्स-अक्ष से चाप-लंबाई कण <math>\ell=r\phi</math> है,और रैखिक वेग है <math display="inline">v(t) = \frac{d\ell}{dt} = r\omega(t)</math>, ताकि <math display="inline">\omega = \frac{v}{r}</math>। | ||
तल में जाने वाले एक कण के सामान्य मामले में, कक्षीय कोणीय वेग वह दर है जिस पर एक चुने हुए मूल के सापेक्ष स्थिति सदिश कोण से बाहर निकलती है।आरेख स्थिति सदिश दिखाता है <math>\mathbf{r}</math> मूल से <math>O</math> एक कण को <math>P</math>, इसके ध्रुवीय निर्देशांक के साथ <math>(r, \phi)</math>।(सभी चर समय के कार्य हैं <math>t</math>।) कण में रैखिक वेग के रूप में विभाजित होता है <math>\mathbf{v} = \mathbf{v}_\|+\mathbf{v}_\perp</math>, रेडियल घटक के साथ <math>\mathbf{v}_\|</math> त्रिज्या के समानांतर, और क्रॉस-रेडियल (या स्पर्शरेखा) घटक <math>\mathbf{v}_\perp</math> त्रिज्या के लिए लंबवत।जब कोई रेडियल घटक नहीं होता है, तो कण एक वृत्त में मूल के चारों ओर चलता है;लेकिन जब कोई क्रॉस-रेडियल घटक नहीं होता है, तो यह मूल से एक सीधी रेखा में चलता है।चूंकि रेडियल गति कोण को अपरिवर्तित छोड़ देती है, केवल रैखिक वेग का क्रॉस-रेडियल घटक कोणीय वेग में योगदान देता है। | |||
कोणीय वेग ω समय के संबंध में कोणीय स्थिति के परिवर्तन की दर है, जिसे क्रॉस-रेडियल वेग से गणना की जा सकती है: | कोणीय वेग ω समय के संबंध में कोणीय स्थिति के परिवर्तन की दर है, जिसे क्रॉस-रेडियल वेग से गणना की जा सकती है: | ||
: <math qid=Q240105>\omega = \frac{d\phi}{dt} = \frac{v_\perp}{r}.</math> | : <math qid=Q240105>\omega = \frac{d\phi}{dt} = \frac{v_\perp}{r}.</math> | ||
यहाँ क्रॉस-रेडियल स्पीड <math>v_\perp</math> का हस्ताक्षरित परिमाण है <math>\mathbf{v}_\perp</math>, काउंटर-क्लॉकवाइज गति के लिए सकारात्मक, दक्षिणावर्त के लिए | यहाँ क्रॉस-रेडियल स्पीड <math>v_\perp</math> का हस्ताक्षरित परिमाण है <math>\mathbf{v}_\perp</math>, काउंटर-क्लॉकवाइज गति के लिए सकारात्मक, दक्षिणावर्त के लिए ऋणात्मक ।रैखिक वेग के लिए ध्रुवीय निर्देशांक लेना <math>\mathbf{v}</math> परिमाण देता है <math>v</math> (रैखिक गति) और कोण <math>\theta</math> त्रिज्या सदिश के सापेक्ष;इन शब्दों में, <math>v_\perp = v\sin(\theta)</math>, ताकि | ||
: <math qid=Q161635>\omega = \frac{v\sin(\theta)}{r}.</math> | : <math qid=Q161635>\omega = \frac{v\sin(\theta)}{r}.</math> | ||
इन सूत्रों को किया जा सकता है <math>\mathbf{r}=(r\cos(\varphi),r\sin(\varphi))</math>, हो रहा <math>r</math> समय के संबंध में मूल के लिए दूरी का एक कार्य, और <math>\varphi</math> सदिश और एक्स अक्ष के बीच कोण का एक कार्य।फिर {{nowrap|<math display="inline">\frac{d\mathbf{r}}{Dutt} = (\ dot {r} \ chos (\ varfi) - r \ dot {\ varfi} \ sin (\ varfi), \ dot {r} \ sin (\ varaf) \ chos (\ varfa)) <) <) < / मैट>।}} विच आइस के साथ {{nowrap|<math>\dot{r}(\cos(\varphi), \sin(\varphi)) + r\dot{\varphi}(-\sin(\varphi), \cos(\varphi)) = \dot{r}\hat{r} + r\dot{\varphi}\hat{\varphi}</math>.}} (बेलनाकार निर्देशांक में [[ इकाई वेक्टर |इकाई सदिश]] देखें)।जानने {{nowrap|<math display="inline">\frac{d\mathbf{r}}{dt} = \ mathbf {v} </math>,}} हम यह निष्कर्ष निकालते हैं कि वेग का रेडियल घटक द्वारा दिया गया है {{nowrap|<math>\dot{r}</math>,}} क्योंकि <math>\hat{r}</math> एक रेडियल | इन सूत्रों को किया जा सकता है <math>\mathbf{r}=(r\cos(\varphi),r\sin(\varphi))</math>, हो रहा <math>r</math> समय के संबंध में मूल के लिए दूरी का एक कार्य, और <math>\varphi</math> सदिश और एक्स अक्ष के बीच कोण का एक कार्य।फिर {{nowrap|<math display="inline">\frac{d\mathbf{r}}{Dutt} = (\ dot {r} \ chos (\ varfi) - r \ dot {\ varfi} \ sin (\ varfi), \ dot {r} \ sin (\ varaf) \ chos (\ varfa)) <) <) < / मैट>।}} विच आइस के साथ {{nowrap|<math>\dot{r}(\cos(\varphi), \sin(\varphi)) + r\dot{\varphi}(-\sin(\varphi), \cos(\varphi)) = \dot{r}\hat{r} + r\dot{\varphi}\hat{\varphi}</math>.}} (बेलनाकार निर्देशांक में [[ इकाई वेक्टर |इकाई सदिश]] देखें)।जानने {{nowrap|<math display="inline">\frac{d\mathbf{r}}{dt} = \ mathbf {v} </math>,}} हम यह निष्कर्ष निकालते हैं कि वेग का रेडियल घटक द्वारा दिया गया है {{nowrap|<math>\dot{r}</math>,}} क्योंकि <math>\hat{r}</math> एक रेडियल इकाई सदिश है;और लंबवत घटक द्वारा दिया गया है <math>r\dot{\varphi}</math> क्योंकि <math>\hat{\varphi}</math> एक लंबवत इकाई सदिश है। | ||
दो आयामों में, कोणीय वेग प्लस या माइनस साइन के साथ एक संख्या है जो | दो आयामों में, कोणीय वेग प्लस या माइनस साइन के साथ एक संख्या है जो निर्देशन का संकेत देती है, लेकिन एक दिशा में इंगित नहीं करती है।यदि RADIUS सदिश काउंटर-क्लॉकवाइज हो जाता है, और यदि दक्षिणावर्त हो तो ऋणात्मक हो जाता है।कोणीय वेग को तब एक [[ स्यूडोस्केलर |स्यूडोस्केलर]] कहा जा सकता है, एक संख्यात्मक मात्रा जो एक [[ समता (भौतिकी) |समता (भौतिकी)]] के तहत हस्ताक्षर को बदलता है, जैसे कि एक अक्ष को इनवर्ट करना या दो अक्षों को स्विच करना। | ||
=== तीन आयामों में कण === | === तीन आयामों में कण === | ||
[[Image:Angular velocity.svg|thumb|250px|कक्षीय कोणीय वेग सदिश कोणीय स्थिति के परिवर्तन की समय दर, साथ ही कोणीय विस्थापन के तात्कालिक | [[Image:Angular velocity.svg|thumb|250px|कक्षीय कोणीय वेग सदिश कोणीय स्थिति के परिवर्तन की समय दर, साथ ही कोणीय विस्थापन के तात्कालिक तल को एन्कोड करता है।इस मामले में (काउंटर-क्लॉकवाइज सर्कुलर मोशन) सदिश इंगित करता है।]]त्रि-आयामी स्थान में, हमारे पास फिर से एक चलती कण की स्थिति सदिश आर है।यहां, कक्षीय कोणीय वेग एक स्यूडोसदिश है जिसका परिमाण वह दर है जिस पर आर कोण को बाहर निकालता है, और जिसकी दिशा तात्कालिक तल के लिए लंबवत है जिसमें आर आर कोण को बाहर निकालता है (अर्थात् तल आर और वी द्वारा फैलाया जाता है)।हालांकि, जैसा कि किसी भी तल के लिए लंबवत ''दो'' दिशाएं हैं, कोणीय वेग की दिशा को विशिष्ट रूप से निर्दिष्ट करने के लिए एक अतिरिक्त स्थिति आवश्यक है;परंपरागत रूप से, दाहिने हाथ के नियम का उपयोग किया जाता है। | ||
छद्म सदिश को चलो <math>\mathbf{u}</math> आर और वी द्वारा फैले हुए | छद्म सदिश को चलो <math>\mathbf{u}</math> आर और वी द्वारा फैले हुए तल के लिए इकाई सदिश लंबवत बनें, ताकि दाहिने हाथ का नियम संतुष्ट हो (अर्थात् कोणीय विस्थापन की तात्कालिक दिशा काउंटर-क्लॉकवाइज है जो ऊपर से दिख रही है <math>\mathbf{u}</math>)।ध्रुवीय निर्देशांक लेना <math>(r,\phi)</math> इस तल में, जैसा कि ऊपर दो-आयामी मामले में, कोई भी कक्षीय कोणीय वेग सदिश को परिभाषित कर सकता है: | ||
: <math>\boldsymbol\omega =\omega \mathbf u = \frac{d\phi}{dt}\mathbf u=\frac{v \sin(\theta)}{r}\mathbf u,</math> | : <math>\boldsymbol\omega =\omega \mathbf u = \frac{d\phi}{dt}\mathbf u=\frac{v \sin(\theta)}{r}\mathbf u,</math> | ||
Line 78: | Line 78: | ||
== एक कठोर शरीर या संदर्भ फ्रेम का झुकाव कोणीय वेग == | == एक कठोर शरीर या संदर्भ फ्रेम का झुकाव कोणीय वेग == | ||
तीन | तीन इकाई समन्वय वैक्टर के एक घूर्णन फ्रेम को देखते हुए, तीनों में प्रत्येक तत्काल में एक ही कोणीय गति होनी चाहिए।इस तरह के फ्रेम में, प्रत्येक सदिश को निरंतर स्केलर त्रिज्या के साथ एक चलती कण के रूप में माना जा सकता है। | ||
घूर्णन फ्रेम कठोर शरीर के संदर्भ में दिखाई देता है, और इसके लिए विशेष उपकरण विकसित किए गए हैं: झुकाव कोणीय वेग को सदिश के रूप में या समकक्ष रूप से एक [[ टेन्सर |टेन्सर]] के रूप में वर्णित किया जा सकता है। | घूर्णन फ्रेम कठोर शरीर के संदर्भ में दिखाई देता है, और इसके लिए विशेष उपकरण विकसित किए गए हैं: झुकाव कोणीय वेग को सदिश के रूप में या समकक्ष रूप से एक [[ टेन्सर |टेन्सर]] के रूप में वर्णित किया जा सकता है। | ||
Line 120: | Line 120: | ||
(\dot\alpha \sin\beta \cos\gamma - \dot\beta\sin\gamma) \hat\mathbf j + | (\dot\alpha \sin\beta \cos\gamma - \dot\beta\sin\gamma) \hat\mathbf j + | ||
(\dot\alpha \cos\beta + \dot\gamma) \hat\mathbf k</math> | (\dot\alpha \cos\beta + \dot\gamma) \hat\mathbf k</math> | ||
कहाँ पे <math>\hat\mathbf i, \hat\mathbf j, \hat\mathbf k</math> मूविंग बॉडी में तय किए गए फ्रेम के लिए | कहाँ पे <math>\hat\mathbf i, \hat\mathbf j, \hat\mathbf k</math> मूविंग बॉडी में तय किए गए फ्रेम के लिए इकाई वैक्टर हैं।यह उदाहरण Z-X-Z कन्वेंशन के लिए Euler कोणों के लिए किया गया है।{{Citation needed|date=June 2020}} | ||
Line 140: | Line 140: | ||
=== | === निर्देशन आव्यूह से गणना === | ||
एक सदिश <math>\mathbf r</math> एक निश्चित अक्ष के आसपास समान | एक सदिश <math>\mathbf r</math> एक निश्चित अक्ष के आसपास समान वृत्तीय गति से गुजरना संतुष्टि: | ||
:<math>\frac {d \mathbf r} {dt} = \boldsymbol{\omega} \times\mathbf{r} = W \cdot \mathbf{r}</math> | :<math>\frac {d \mathbf r} {dt} = \boldsymbol{\omega} \times\mathbf{r} = W \cdot \mathbf{r}</math> | ||
Line 148: | Line 148: | ||
: <math>\frac {dA}{dt} = W \cdot A.</math> | : <math>\frac {dA}{dt} = W \cdot A.</math> | ||
(यह तब भी धारण करता है जब a (t) समान रूप से नहीं | (यह तब भी धारण करता है जब a (t) समान रूप से नहीं घूर्णन है।) इसलिए कोणीय वेग प्रदिश है: | ||
: <math>W = \frac {dA} {dt} \cdot A^{-1} = \frac {dA} {dt} \cdot A^{\mathrm{T}},</math> | : <math>W = \frac {dA} {dt} \cdot A^{-1} = \frac {dA} {dt} \cdot A^{\mathrm{T}},</math> | ||
Line 193: | Line 193: | ||
: <math>0 = \frac{dA}{dt}A^\text{T}+\left(\frac{dA}{dt} A^\text{T}\right)^\text{T} = W + W^\text{T}</math> | : <math>0 = \frac{dA}{dt}A^\text{T}+\left(\frac{dA}{dt} A^\text{T}\right)^\text{T} = W + W^\text{T}</math> | ||
इस प्रकार, डब्ल्यू इसके ट्रांसपोज़ का | इस प्रकार, डब्ल्यू इसके ट्रांसपोज़ का ऋणात्मक है, जिसका अर्थ है कि यह तिरछा सममित है। | ||
=== समन्वय-मुक्त विवरण === | === समन्वय-मुक्त विवरण === | ||
किसी भी पल में <math>t</math>, कोणीय वेग प्रदिश स्थिति सदिश के बीच एक रैखिक मानचित्र का | किसी भी पल में <math>t</math>, कोणीय वेग प्रदिश स्थिति सदिश के बीच एक रैखिक मानचित्र का निरूपण करता है <math>\mathbf{r}(t)</math> और वेग वैक्टर <math>\mathbf{v}(t)</math> मूल के चारों ओर घूमने वाले एक कठोर शरीर पर एक बिंदु: | ||
: <math> \mathbf{v} = W\mathbf{r} .</math> | : <math> \mathbf{v} = W\mathbf{r} .</math> | ||
Line 235: | Line 235: | ||
{{See also|axes conventions}} | {{See also|axes conventions}} | ||
[[Image:AngularVelocity02.svg|right|320 px | कठोर शरीर में स्थित बिंदु P की स्थिति (नीले रंग में दिखाया गया है)।आर<sub>''i''</sub> लैब फ्रेम के संबंध में स्थिति है, जो ओ और 'आर' पर केंद्रित है<sub>''i''</sub> कठोर शरीर के फ्रेम के संबंध में स्थिति है, पर केंद्रित है {{′|''O''}}।कठोर शरीर के फ्रेम की उत्पत्ति लैब फ्रेम से सदिश स्थिति आर पर है।]]कोणीय गति के लिए समान समीकरणों को एक घूर्णन कठोर शरीर पर तर्क प्राप्त किया जा सकता है।यहाँ यह नहीं माना जाता है कि कठोर शरीर मूल के चारों ओर | [[Image:AngularVelocity02.svg|right|320 px | कठोर शरीर में स्थित बिंदु P की स्थिति (नीले रंग में दिखाया गया है)।आर<sub>''i''</sub> लैब फ्रेम के संबंध में स्थिति है, जो ओ और 'आर' पर केंद्रित है<sub>''i''</sub> कठोर शरीर के फ्रेम के संबंध में स्थिति है, पर केंद्रित है {{′|''O''}}।कठोर शरीर के फ्रेम की उत्पत्ति लैब फ्रेम से सदिश स्थिति आर पर है।]]कोणीय गति के लिए समान समीकरणों को एक घूर्णन कठोर शरीर पर तर्क प्राप्त किया जा सकता है।यहाँ यह नहीं माना जाता है कि कठोर शरीर मूल के चारों ओर घूर्णन है।इसके बजाय, यह एक मनमाना बिंदु के चारों ओर घूर्णन हुआ माना जा सकता है जो प्रत्येक तत्काल में एक रैखिक वेग v (t) के साथ आगे बढ़ रहा है। | ||
समीकरणों को प्राप्त करने के लिए, फ्रेम से जुड़े एक कठोर शरीर की कल्पना करना और एक समन्वय प्रणाली पर विचार करना सुविधाजनक है जो कठोर शरीर के संबंध में तय है।फिर हम इस समन्वय और निश्चित प्रयोगशाला प्रणाली के बीच समन्वय परिवर्तनों का अध्ययन करेंगे। | समीकरणों को प्राप्त करने के लिए, फ्रेम से जुड़े एक कठोर शरीर की कल्पना करना और एक समन्वय प्रणाली पर विचार करना सुविधाजनक है जो कठोर शरीर के संबंध में तय है।फिर हम इस समन्वय और निश्चित प्रयोगशाला प्रणाली के बीच समन्वय परिवर्तनों का अध्ययन करेंगे। | ||
Line 242: | Line 242: | ||
: <math>\mathbf{R}_i=\mathbf{R}+\mathbf{r}_i</math> | : <math>\mathbf{R}_i=\mathbf{R}+\mathbf{r}_i</math> | ||
एक कठोर शरीर की परिभाषित विशेषता यह है कि कठोर शरीर में किसी भी दो बिंदुओं के बीच की दूरी समय में अपरिवर्तित होती है।इसका मतलब है कि सदिश की लंबाई <math>\mathbf{r}_i</math> अपरिवर्तित है।यूलर के घूर्णन प्रमेय द्वारा, हम सदिश को बदल सकते हैं <math>\mathbf{r}_i</math> साथ <math>\mathcal{R}\mathbf{r}_{io}</math> कहाँ पे <math>\mathcal{R}</math> एक 3 × 3 [[ रोटेशन मैट्रिक्स | घूर्णन]] आव्यूह है और <math>\mathbf{r}_{io}</math> समय में कुछ निश्चित बिंदु पर कण की स्थिति है, कहते हैं {{nowrap|1=''t'' = 0}}।यह प्रतिस्थापन उपयोगी है, क्योंकि अब यह केवल घूर्णन आव्यूह है <math>\mathcal{R}</math> यह समय में बदल रहा है न कि संदर्भ सदिश <math>\mathbf{r}_{io}</math>, जैसे कि कठोर शरीर बिंदु के बारे में | एक कठोर शरीर की परिभाषित विशेषता यह है कि कठोर शरीर में किसी भी दो बिंदुओं के बीच की दूरी समय में अपरिवर्तित होती है।इसका मतलब है कि सदिश की लंबाई <math>\mathbf{r}_i</math> अपरिवर्तित है।यूलर के घूर्णन प्रमेय द्वारा, हम सदिश को बदल सकते हैं <math>\mathbf{r}_i</math> साथ <math>\mathcal{R}\mathbf{r}_{io}</math> कहाँ पे <math>\mathcal{R}</math> एक 3 × 3 [[ रोटेशन मैट्रिक्स | घूर्णन]] आव्यूह है और <math>\mathbf{r}_{io}</math> समय में कुछ निश्चित बिंदु पर कण की स्थिति है, कहते हैं {{nowrap|1=''t'' = 0}}।यह प्रतिस्थापन उपयोगी है, क्योंकि अब यह केवल घूर्णन आव्यूह है <math>\mathcal{R}</math> यह समय में बदल रहा है न कि संदर्भ सदिश <math>\mathbf{r}_{io}</math>, जैसे कि कठोर शरीर बिंदु के बारे में घूर्णन है {{′|''O''}}।इसके अलावा, चूंकि घूर्णन आव्यूह के तीन कॉलम कठोर शरीर के साथ एक साथ घूमते हुए एक संदर्भ फ्रेम के तीन [[ पाठ्यक्रम में हो |पाठ्यक्रम में हो]] ्स का निरूपण करते हैं, किसी भी अक्ष के बारे में कोई भी घूर्णन अब दिखाई देता है, जबकि सदिश <math>\mathbf{r}_i</math> यदि घूर्णन अक्ष इसके समानांतर थे, तो नहीं घूमेंगे, और इसलिए यह केवल एक अक्ष के बारे में एक घूर्णन का वर्णन करेगा (यानी, यह कोणीय वेग के घटक को नहीं देखेगा, इसके समानांतर स्यूडोवेक्टर, और केवल गणना की अनुमति देगाइसके लिए लंबवत घटक)।कण की स्थिति अब के रूप में लिखी गई है: | ||
: <math>\mathbf{R}_i=\mathbf{R}+\mathcal{R}\mathbf{r}_{io}</math> | : <math>\mathbf{R}_i=\mathbf{R}+\mathcal{R}\mathbf{r}_{io}</math> | ||
Line 267: | Line 267: | ||
=== स्थिरता === | === स्थिरता === | ||
हमने माना है कि कठोर शरीर एक मनमाना बिंदु के चारों ओर | हमने माना है कि कठोर शरीर एक मनमाना बिंदु के चारों ओर घूर्णन है।हमें यह साबित करना चाहिए कि पहले परिभाषित झुकाव कोणीय वेग मूल की पसंद से स्वतंत्र है, जिसका अर्थ है कि झुकाव कोणीय वेग कताई कठोर शरीर की एक आंतरिक संपत्ति है।(एक बिंदु कण के कक्षीय कोणीय वेग के साथ इसके चिह्नित विपरीत पर ध्यान दें, जो निश्चित रूप से मूल की पसंद पर निर्भर करता है।) | ||
[[image:AngularVelocity03.svg|right|320 पीएक्स |अँगूठा | [[image:AngularVelocity03.svg|right|320 पीएक्स |अँगूठा |
Revision as of 01:02, 27 January 2023
Angular velocity | |
---|---|
सामान्य प्रतीक | ω |
SI आधार इकाइयाँ में | s−1 |
व्यापक? | yes |
गहन? | yes (for rigid body only) |
संरक्षित? | no |
Behaviour under समन्वय परिवर्तन | pseudovector |
अन्य मात्राओं से व्युत्पत्तियां | ω = dθ / dt |
आयाम | Script error: The module returned a nil value. It is supposed to return an export table. |
Part of a series on |
चिरसम्मत यांत्रिकी |
---|
भौतिक विज्ञान में, कोणीय वेग या घूर्णन वेग (ωयाΩ), कोणीय आवृत्ति सदिश के रूप में भी जाना जाता है,[1] एक छद्म सदिश निरूपण है कि किसी वस्तु की कोणीय स्थिति या निर्देशन कितनी तेजी से समय के साथ बदलता है(अर्थात् एक वस्तु कितनी जल्दी घूमती है या किसी बिंदु या अक्ष के सापेक्ष घूमती है)। छद्म सदिश का परिमाण कोणीय गति का निरूपण करता है, जिस दर पर वस्तु घूमती है या परिभ्रमण करती है, और इसकी दिशा सामान्य(ज्यामिति) घूर्णन या कोणीय विस्थापन के तात्कालिक तल के लिए सामान्य (ज्यामिति) है। कोणीय वेग का निर्देशन पारंपरिक रूप से दाएं हाथ के नियम द्वारा दर्शाया जाता है।[2]
कोणीय वेग के दो प्रकार हैं।
- कक्षीय कोणीय वेग एक निश्चित अक्ष के चारों ओर एक बिंदु वस्तु घूर्णन कितनी तेजी से संदर्भित करता है, अर्थात् मूल(गणित) के सापेक्ष अपनी कोणीय स्थिति के परिवर्तन की समय दर।
- झुकाव कोणीय वेग से तात्पर्य है कि घूर्णन के केंद्र के संबंध में एक कठोर शरीर कितनी तेजी से घूर्णन करता है और कक्षीय कोणीय वेग के तुलना, मूल की पसंद से स्वतंत्र है।
सामान्यतः, कोणीय वेग में प्रति इकाई समय कोण(भौतिकी) का आयाम(भौतिकी) होता है(कोण को सामान्यतः समय के साथ रैखिक वेग से दूरी की जगह लेता है)।कोणीय वेग की एसआई इकाई प्रति सेकंड रेडियन है,[3] रेडियन एक आयाम रहित मात्रा होने के साथ, इस प्रकार कोणीय वेग की एसआई इकाइयों को एस-1 के रूप में सूचीबद्ध किया जा सकता है। कोणीय वेग सामान्यतः प्रतीक [[ओमेगा |ओमेगा(ω, कभी-कभीΩ)]] द्वारा दर्शाया जाता है ।परंपरागत ढंग से, धनात्मक कोणीय वेग काउंटर-वामावर्त घूर्णन को इंगित करता है, जबकि ऋणात्मक दक्षिणावर्त है।
उदाहरण के लिए, एक भूस्थैतिक उपग्रह उपग्रह भूमध्य रेखा के ऊपर प्रति दिन एक कक्षा को पूरा करता है, या प्रति 24 घंटे 360 डिग्री, और कोणीय वेग = (360 °)/(24 और nbsp; h) = 15 °/h, या या 15 °/h, या है, या होता है। यदि कोण को रेडियन में मापा जाता है, तो रैखिक वेग कोणीय वेग का त्रिज्या गुना होता है, । पृथ्वी के केंद्र से 42,000 किमी की कक्षीय त्रिज्या के साथ, अंतरिक्ष के माध्यम से उपग्रह की गति इस प्रकार v = 42,000 किमी × 0.26/घंटा ≈ 11,000 किमी/घंटा है। कोणीय वेग धनात्मक है क्योंकि उपग्रह पृथ्वी के घूर्णन के साथ पूर्व (उत्तरी ध्रुव के ऊपर से वामावर्त) की ओर यात्रा करता है।
एक बिंदु कण का कक्षीय कोणीय वेग
दो आयामों में कण
त्रिज्या पर वृत्तीय गति के सबसे सरल मामले में , कोणीय विस्थापन द्वारा दी गई स्थिति के साथ एक्स-अक्ष से, कक्षीय कोणीय वेग समय के संबंध में कोण के परिवर्तन की दर: है। यदि रेडियन में मापा जाता है, वृत्त के चारों ओर धनात्मक एक्स-अक्ष से चाप-लंबाई कण है,और रैखिक वेग है , ताकि ।
तल में जाने वाले एक कण के सामान्य मामले में, कक्षीय कोणीय वेग वह दर है जिस पर एक चुने हुए मूल के सापेक्ष स्थिति सदिश कोण से बाहर निकलती है।आरेख स्थिति सदिश दिखाता है मूल से एक कण को , इसके ध्रुवीय निर्देशांक के साथ ।(सभी चर समय के कार्य हैं ।) कण में रैखिक वेग के रूप में विभाजित होता है , रेडियल घटक के साथ त्रिज्या के समानांतर, और क्रॉस-रेडियल (या स्पर्शरेखा) घटक त्रिज्या के लिए लंबवत।जब कोई रेडियल घटक नहीं होता है, तो कण एक वृत्त में मूल के चारों ओर चलता है;लेकिन जब कोई क्रॉस-रेडियल घटक नहीं होता है, तो यह मूल से एक सीधी रेखा में चलता है।चूंकि रेडियल गति कोण को अपरिवर्तित छोड़ देती है, केवल रैखिक वेग का क्रॉस-रेडियल घटक कोणीय वेग में योगदान देता है।
कोणीय वेग ω समय के संबंध में कोणीय स्थिति के परिवर्तन की दर है, जिसे क्रॉस-रेडियल वेग से गणना की जा सकती है:
यहाँ क्रॉस-रेडियल स्पीड का हस्ताक्षरित परिमाण है , काउंटर-क्लॉकवाइज गति के लिए सकारात्मक, दक्षिणावर्त के लिए ऋणात्मक ।रैखिक वेग के लिए ध्रुवीय निर्देशांक लेना परिमाण देता है (रैखिक गति) और कोण त्रिज्या सदिश के सापेक्ष;इन शब्दों में, , ताकि
इन सूत्रों को किया जा सकता है , हो रहा समय के संबंध में मूल के लिए दूरी का एक कार्य, और सदिश और एक्स अक्ष के बीच कोण का एक कार्य।फिर Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "म" found.in 1:159"): {\textstyle \frac{d\mathbf{r}}{Dutt} = (\ dot {r} \ chos (\ varfi) - r \ dot {\ varfi} \ sin (\ varfi), \ dot {r} \ sin (\ varaf) \ chos (\ varfa)) <) <) < / मैट>।}} विच आइस के साथ {{nowrap|<math>\dot{r}(\cos(\varphi), \sin(\varphi)) + r\dot{\varphi}(-\sin(\varphi), \cos(\varphi)) = \dot{r}\hat{r} + r\dot{\varphi}\hat{\varphi}} . (बेलनाकार निर्देशांक में इकाई सदिश देखें)।जानने , हम यह निष्कर्ष निकालते हैं कि वेग का रेडियल घटक द्वारा दिया गया है , क्योंकि एक रेडियल इकाई सदिश है;और लंबवत घटक द्वारा दिया गया है क्योंकि एक लंबवत इकाई सदिश है।
दो आयामों में, कोणीय वेग प्लस या माइनस साइन के साथ एक संख्या है जो निर्देशन का संकेत देती है, लेकिन एक दिशा में इंगित नहीं करती है।यदि RADIUS सदिश काउंटर-क्लॉकवाइज हो जाता है, और यदि दक्षिणावर्त हो तो ऋणात्मक हो जाता है।कोणीय वेग को तब एक स्यूडोस्केलर कहा जा सकता है, एक संख्यात्मक मात्रा जो एक समता (भौतिकी) के तहत हस्ताक्षर को बदलता है, जैसे कि एक अक्ष को इनवर्ट करना या दो अक्षों को स्विच करना।
तीन आयामों में कण
त्रि-आयामी स्थान में, हमारे पास फिर से एक चलती कण की स्थिति सदिश आर है।यहां, कक्षीय कोणीय वेग एक स्यूडोसदिश है जिसका परिमाण वह दर है जिस पर आर कोण को बाहर निकालता है, और जिसकी दिशा तात्कालिक तल के लिए लंबवत है जिसमें आर आर कोण को बाहर निकालता है (अर्थात् तल आर और वी द्वारा फैलाया जाता है)।हालांकि, जैसा कि किसी भी तल के लिए लंबवत दो दिशाएं हैं, कोणीय वेग की दिशा को विशिष्ट रूप से निर्दिष्ट करने के लिए एक अतिरिक्त स्थिति आवश्यक है;परंपरागत रूप से, दाहिने हाथ के नियम का उपयोग किया जाता है।
छद्म सदिश को चलो आर और वी द्वारा फैले हुए तल के लिए इकाई सदिश लंबवत बनें, ताकि दाहिने हाथ का नियम संतुष्ट हो (अर्थात् कोणीय विस्थापन की तात्कालिक दिशा काउंटर-क्लॉकवाइज है जो ऊपर से दिख रही है )।ध्रुवीय निर्देशांक लेना इस तल में, जैसा कि ऊपर दो-आयामी मामले में, कोई भी कक्षीय कोणीय वेग सदिश को परिभाषित कर सकता है:
जहां and 'r' और 'v' के बीच का कोण है।क्रॉस उत्पाद के संदर्भ में, यह है:
उपरोक्त समीकरण से, कोई भी स्पर्शरेखा वेग को ठीक कर सकता है:
एक कठोर शरीर या संदर्भ फ्रेम का झुकाव कोणीय वेग
तीन इकाई समन्वय वैक्टर के एक घूर्णन फ्रेम को देखते हुए, तीनों में प्रत्येक तत्काल में एक ही कोणीय गति होनी चाहिए।इस तरह के फ्रेम में, प्रत्येक सदिश को निरंतर स्केलर त्रिज्या के साथ एक चलती कण के रूप में माना जा सकता है।
घूर्णन फ्रेम कठोर शरीर के संदर्भ में दिखाई देता है, और इसके लिए विशेष उपकरण विकसित किए गए हैं: झुकाव कोणीय वेग को सदिश के रूप में या समकक्ष रूप से एक टेन्सर के रूप में वर्णित किया जा सकता है।
सामान्य परिभाषा के अनुरूप, एक फ्रेम के झुकाव कोणीय वेग को घूर्णन के अपने स्वयं के केंद्र के संबंध में तीन वैक्टर (सभी के लिए समान) के कक्षीय कोणीय वेग के रूप में परिभाषित किया गया है।फ्रेम के लिए कोणीय वेग वैक्टर के अलावा भी सामान्य सदिश जोड़ (रैखिक आंदोलनों की संरचना) द्वारा परिभाषित किया गया है, और घूर्णन को एक गिम्बल में विघटित करने के लिए उपयोगी हो सकता है।सदिश के सभी घटकों की गणना चलती फ्रेम (यूलर कोण या घूर्णन मैट्रिसेस) को परिभाषित करने वाले मापदंडों के डेरिवेटिव के रूप में की जा सकती है।जैसा कि सामान्य मामले में, इसके अलावा कम्यूटेटिव है: ।
यूलर के घूर्णन प्रमेय द्वारा, किसी भी घूर्णन फ्रेम में घूर्णन की एक तात्कालिक अक्ष होता है, जो कोणीय वेग सदिश की दिशा है, और कोणीय वेग का परिमाण दो-आयामी मामले के अनुरूप है।
यदि हम एक संदर्भ बिंदु चुनते हैं कठोर शरीर में तय, वेग शरीर में किसी भी बिंदु द्वारा दिया जाता है
बॉडी-फिक्स्ड फ्रेम के आधार वैक्टर से घटक
एक निश्चित बिंदु ओ के बारे में एक कठोर शरीर पर विचार करें। शरीर में एक संदर्भ फ्रेम का निर्माण करें जिसमें वैक्टर के एक ऑर्थोनॉर्मल सेट शामिल हैं शरीर के लिए और ओ में उनके सामान्य मूल के साथ। ओ के बारे में फ्रेम और शरीर दोनों के झुकाव कोणीय वेग सदिश तब है
कहाँ पे फ्रेम सदिश के परिवर्तन की समय दर है घूर्णन के कारण।
ध्यान दें कि यह सूत्र कक्षीय कोणीय वेग के लिए अभिव्यक्ति के साथ असंगत है
चूंकि यह सूत्र ओ के बारे में एक बिंदु के लिए कोणीय वेग को परिभाषित करता है, जबकि इस खंड में सूत्र एक फ्रेम या कठोर शरीर पर लागू होता है।एक कठोर शरीर के मामले में एक एकल शरीर में सभी कणों की गति के लिए जिम्मेदार है।
यूलर कोण से घटक
झुकाव कोणीय वेग छद्म सदिश के घटकों की गणना पहले लियोनहार्ड यूलर द्वारा अपने यूलर कोण ों और एक मध्यवर्ती फ्रेम के उपयोग का उपयोग करके की गई थी:
- संदर्भ फ्रेम की एक धुरी (प्रीसेशन एक्सिस)
- संदर्भ फ्रेम (पोषण अक्ष) के संबंध में मूविंग फ्रेम के नोड्स की रेखा
- चलती फ्रेम की एक अक्ष (आंतरिक घूर्णन अक्ष)
यूलर ने साबित किया कि इन तीन अक्षों में से प्रत्येक पर कोणीय वेग स्यूडोसदिश के अनुमान इसके संबद्ध कोण का व्युत्पन्न है (जो तात्कालिक घूर्णन को तीन तात्कालिक यूलर घूर्णन में विघटित करने के बराबर है)।इसलिए:[5]
यह आधार ऑर्थोनॉर्मल नहीं है और इसका उपयोग करना मुश्किल है, लेकिन अब वेग सदिश को निश्चित फ्रेम या मूविंग फ्रेम में केवल ठिकानों के परिवर्तन के साथ बदला जा सकता है।उदाहरण के लिए, मोबाइल फ्रेम में बदलना:
कहाँ पे मूविंग बॉडी में तय किए गए फ्रेम के लिए इकाई वैक्टर हैं।यह उदाहरण Z-X-Z कन्वेंशन के लिए Euler कोणों के लिए किया गया है।[citation needed]
प्रदिश
कोणीय वेग सदिश ऊपर परिभाषित किया जा सकता है एक कोणीय वेग प्रदिश के रूप में व्यक्त किया जा सकता है, आव्यूह (या रैखिक मानचित्रण) w = w t ) द्वारा परिभाषित:
यह एक कोणीय विस्थापन#infinitesimal घूर्णन मैट्रिसेस है।रैखिक मैपिंग डब्ल्यू के रूप में कार्य करता है :
निर्देशन आव्यूह से गणना
एक सदिश एक निश्चित अक्ष के आसपास समान वृत्तीय गति से गुजरना संतुष्टि:
एक फ्रेम के ओरिएंटेशन आव्यूह ए (टी) को देखते हुए, जिनके कॉलम चलती ऑर्थोनॉर्मल कोऑर्डिनेट वैक्टर हैं , हम इसके कोणीय वेग प्रदिश डब्ल्यू (टी) प्राप्त कर सकते हैं।कोणीय वेग तीन वैक्टर के लिए समान होना चाहिए , इसलिए एक आव्यूह के स्तंभों में तीन सदिश समीकरणों की व्यवस्था करना, हमारे पास है:
(यह तब भी धारण करता है जब a (t) समान रूप से नहीं घूर्णन है।) इसलिए कोणीय वेग प्रदिश है:
ऑर्थोगोनल आव्यूह के व्युत्क्रम के बाद से इसका ट्रांसपोज़ है ।
गुण
सामान्य तौर पर, एन-डायमेंशनल स्पेस में कोणीय वेग कोणीय विस्थापन प्रदिश का समय व्युत्पन्न होता है, जो एक दूसरी रैंक तिरछी-सममितीय प्रदिश है।
यह प्रदिश डब्ल्यू होगा n(n−1)/2 स्वतंत्र घटक, जो एक एन-डायमेंशनल इनर प्रोडक्ट स्पेस के घूर्णन के झूठ समूह के झूठ बीजगणित का आयाम है।[6]
वेग सदिश के संबंध में द्वंद्व
तीन आयामों में, कोणीय वेग को एक स्यूडोसदिश द्वारा दर्शाया जा सकता है क्योंकि दूसरे रैंक टेन्सर तीन आयामों में स्यूडोवेक्टर्स के लिए दोहरे स्थान हैं।चूंकि कोणीय वेग प्रदिश w = w (t) एक तिरछा-सममित आव्यूह है:
इसका हॉज ड्यूल एक सदिश है, जो पिछले कोणीय वेग सदिश है ।
=== डब्ल्यू === का घातांक
यदि हम एक प्रारंभिक फ्रेम ए (0) जानते हैं और हमें एक निरंतर कोणीय वेग प्रदिश डब्ल्यू दिया जाता है, तो हम किसी भी टी के लिए ए (टी) प्राप्त कर सकते हैं।आव्यूह अंतर समीकरण को याद करें:
इस समीकरण को देने के लिए एकीकृत किया जा सकता है:
जो घूर्णन के झूठ समूह के साथ एक संबंध दिखाता है।
डब्ल्यू तिरछा-सममितीय है
हम साबित करते हैं कि कोणीय वेग प्रदिश तिरछा-सममित आव्यूह है, अर्थात् संतुष्ट ।
एक घूर्णन आव्यूह ए ऑर्थोगोनल है, इसके ट्रांसपोज़ के लिए उलटा है, इसलिए हमारे पास है ।के लिए एक फ्रेम मैट्रिक्स, समीकरण का समय व्युत्पन्न देता है:
सूत्र को लागू करना ,
इस प्रकार, डब्ल्यू इसके ट्रांसपोज़ का ऋणात्मक है, जिसका अर्थ है कि यह तिरछा सममित है।
समन्वय-मुक्त विवरण
किसी भी पल में , कोणीय वेग प्रदिश स्थिति सदिश के बीच एक रैखिक मानचित्र का निरूपण करता है और वेग वैक्टर मूल के चारों ओर घूमने वाले एक कठोर शरीर पर एक बिंदु:
इस रैखिक मानचित्र और कोणीय वेग छद्म सदिश के बीच संबंध निम्नलखित में से कोई।
क्योंकि w एक ऑर्थोगोनल परिवर्तन का व्युत्पन्न है, बिलिनियर रूप
बिलिनियर फॉर्म#सममित, तिरछा-सममितीय और वैकल्पिक रूप हैं। स्केव-सममितीय।इस प्रकार हम बाहरी बीजगणित के तथ्य को लागू कर सकते हैं कि एक अद्वितीय रैखिक रूप है पर वह
कहाँ पे का बाहरी उत्पाद है और ।
संगीत आइसोमोर्फिज्म एल लेना♯ एल हम प्राप्त करते हैं
परिचय , एल के हॉज दोहरे के रूप में♯, और हॉज की परिभाषा को दो बार दो बार लागू करना, यह मानते हुए कि पसंदीदा इकाई 3-सदिश है
कहाँ पे
परिभाषा से।
क्योंकि एक मनमाना सदिश है, स्केलर उत्पाद के nondegeneracy से
सदिश क्षेत्र के रूप में कोणीय वेग
चूंकि एक कठोर शरीर का झुकाव कोणीय वेग प्रदिश(इसके आराम फ्रेम में) एक रैखिक परिवर्तन है जो मैप्स को वेग (कठोर शरीर के भीतर) के लिए स्थान देता है, इसे एक निरंतर सदिश क्षेत्र के रूप में माना जा सकता है।विशेष रूप से, झुकाव कोणीय वेग 3-आयामी घूर्णन समूह SO (3) के झूठ बीजगणित SO (3) के एक तत्व से संबंधित एक हत्या सदिश क्षेत्र है।
इसके अलावा, यह दिखाया जा सकता है कि झुकाव कोणीय वेग सदिश क्षेत्र कठोर शरीर के रैखिक वेग सदिश क्षेत्र V (R) के कर्ल (गणित) का आधा हिस्सा है।प्रतीकों में,
कठोर शरीर के विचार
कोणीय गति के लिए समान समीकरणों को एक घूर्णन कठोर शरीर पर तर्क प्राप्त किया जा सकता है।यहाँ यह नहीं माना जाता है कि कठोर शरीर मूल के चारों ओर घूर्णन है।इसके बजाय, यह एक मनमाना बिंदु के चारों ओर घूर्णन हुआ माना जा सकता है जो प्रत्येक तत्काल में एक रैखिक वेग v (t) के साथ आगे बढ़ रहा है।
समीकरणों को प्राप्त करने के लिए, फ्रेम से जुड़े एक कठोर शरीर की कल्पना करना और एक समन्वय प्रणाली पर विचार करना सुविधाजनक है जो कठोर शरीर के संबंध में तय है।फिर हम इस समन्वय और निश्चित प्रयोगशाला प्रणाली के बीच समन्वय परिवर्तनों का अध्ययन करेंगे।
जैसा कि दाईं ओर आंकड़े में दिखाया गया है, लैब सिस्टम की उत्पत्ति बिंदु ओ पर है, कठोर शरीर प्रणाली की उत्पत्ति पर है O′ और ओ से सदिश O′ क्या आर। एक कण ( i ) कठोर शरीर में बिंदु P पर स्थित है और इस कण की सदिश स्थिति r हैi लैब फ्रेम में, और स्थिति आर परi शरीर के फ्रेम में।यह देखा जाता है कि कण की स्थिति लिखी जा सकती है:
एक कठोर शरीर की परिभाषित विशेषता यह है कि कठोर शरीर में किसी भी दो बिंदुओं के बीच की दूरी समय में अपरिवर्तित होती है।इसका मतलब है कि सदिश की लंबाई अपरिवर्तित है।यूलर के घूर्णन प्रमेय द्वारा, हम सदिश को बदल सकते हैं साथ कहाँ पे एक 3 × 3 घूर्णन आव्यूह है और समय में कुछ निश्चित बिंदु पर कण की स्थिति है, कहते हैं t = 0।यह प्रतिस्थापन उपयोगी है, क्योंकि अब यह केवल घूर्णन आव्यूह है यह समय में बदल रहा है न कि संदर्भ सदिश , जैसे कि कठोर शरीर बिंदु के बारे में घूर्णन है O′।इसके अलावा, चूंकि घूर्णन आव्यूह के तीन कॉलम कठोर शरीर के साथ एक साथ घूमते हुए एक संदर्भ फ्रेम के तीन पाठ्यक्रम में हो ्स का निरूपण करते हैं, किसी भी अक्ष के बारे में कोई भी घूर्णन अब दिखाई देता है, जबकि सदिश यदि घूर्णन अक्ष इसके समानांतर थे, तो नहीं घूमेंगे, और इसलिए यह केवल एक अक्ष के बारे में एक घूर्णन का वर्णन करेगा (यानी, यह कोणीय वेग के घटक को नहीं देखेगा, इसके समानांतर स्यूडोवेक्टर, और केवल गणना की अनुमति देगाइसके लिए लंबवत घटक)।कण की स्थिति अब के रूप में लिखी गई है:
समय व्युत्पन्न लेने से कण का वेग पैदा होता है:
जहां वीi कण का वेग (लैब फ्रेम में) और v का वेग है O′ (कठोर शरीर के फ्रेम की उत्पत्ति)।तब से एक घूर्णन आव्यूह है इसका उलटा इसका ट्रांसपोज़ है।तो हम स्थानापन्न करते हैं :
या
कहाँ पे पिछले कोणीय वेग प्रदिश है।
यह #W हो सकता है कि यह तिरछा है कि यह एक तिरछा-सममितीय आव्यूह है, इसलिए हम एक 3 आयामी स्यूडोसदिश प्राप्त करने के लिए इसकी दोहरी जगह ले सकते हैं जो पिछले कोणीय वेग सदिश है :
उपरोक्त वेग अभिव्यक्ति में डब्ल्यू के लिए ω को प्रतिस्थापित करना, और एक समकक्ष क्रॉस उत्पाद द्वारा आव्यूह गुणन को बदलना:
यह देखा जा सकता है कि एक कठोर शरीर में एक बिंदु के वेग को दो शब्दों में विभाजित किया जा सकता है - कठोर शरीर में तय एक संदर्भ बिंदु का वेग और क्रॉस उत्पाद शब्द संदर्भ के संबंध में कण के कक्षीय कोणीय वेग को शामिल करता हैबिंदु।यह कोणीय वेग वह है जिसे भौतिक विज्ञानी कठोर शरीर के झुकाव कोणीय वेग को कहते हैं, जैसा कि संदर्भ बिंदु के कक्षीय कोणीय वेग के विपरीत है O′ मूल के बारे में ओ।
स्थिरता
हमने माना है कि कठोर शरीर एक मनमाना बिंदु के चारों ओर घूर्णन है।हमें यह साबित करना चाहिए कि पहले परिभाषित झुकाव कोणीय वेग मूल की पसंद से स्वतंत्र है, जिसका अर्थ है कि झुकाव कोणीय वेग कताई कठोर शरीर की एक आंतरिक संपत्ति है।(एक बिंदु कण के कक्षीय कोणीय वेग के साथ इसके चिह्नित विपरीत पर ध्यान दें, जो निश्चित रूप से मूल की पसंद पर निर्भर करता है।)
[[image:AngularVelocity03.svg|right|320 पीएक्स |अँगूठा
ग्राफ को दाईं ओर देखें: लैब फ्रेम की उत्पत्ति ओ है, जबकि ओ1 और ओ2 कठोर शरीर पर दो निश्चित बिंदु हैं, जिसका वेग है और क्रमश।मान लीजिए कि ओ के संबंध में कोणीय वेग1 और ओ2 है और क्रमश।प्वाइंट पी और ओ के बाद से2 केवल एक वेग है,
उपरोक्त दो पैदावार
बिंदु पी के बाद से (और इस प्रकार ) मनमाना है, यह इस प्रकार है
यदि संदर्भ बिंदु घूर्णन की तात्कालिक अक्ष है, तो कठोर शरीर में एक बिंदु के वेग की अभिव्यक्ति सिर्फ कोणीय वेग शब्द होगा।ऐसा इसलिए है क्योंकि घूर्णन के तात्कालिक अक्ष का वेग शून्य है। घूर्णन के तात्कालिक अक्ष का एक उदाहरण एक दरवाजे का काज है।एक अन्य उदाहरण एक विशुद्ध रूप से रोलिंग गोलाकार (या, अधिक आम तौर पर, उत्तल) कठोर शरीर के संपर्क का बिंदु है।
यह भी देखें
- कोणीय त्वरण
- कोणीय आवृत्ति
- कोणीय गति
- एरियल वेग
- आइसोमेट्री
- ऑर्थोगोनल ग्रुप
- कठोर शरीर की गतिशीलता
- Vorticity
संदर्भ
- ↑ Cummings, Karen; Halliday, David (2007). Understanding physics. New Delhi: John Wiley & Sons Inc., authorized reprint to Wiley – India. pp. 449, 484, 485, 487. ISBN 978-81-265-0882-2.(UP1)
- ↑ Hibbeler, Russell C. (2009). Engineering Mechanics. Upper Saddle River, New Jersey: Pearson Prentice Hall. pp. 314, 153. ISBN 978-0-13-607791-6.(EM1)
- ↑ Taylor, Barry N. (2009). International System of Units (SI) (revised 2008 ed.). DIANE Publishing. p. 27. ISBN 978-1-4379-1558-7. Extract of page 27
- ↑ Singh, Sunil K. "Angular Velocity". OpenStax. Rice University. Retrieved 21 May 2021.
- ↑ K.S.HEDRIH: Leonhard Euler (1707–1783) and rigid body dynamics
- ↑ Rotations and Angular Momentum on the Classical Mechanics page of the website of John Baez, especially Questions 1 and 2.
- Symon, Keith (1971). Mechanics. Addison-Wesley, Reading, MA. ISBN 978-0-201-07392-8.
- Landau, L.D.; Lifshitz, E.M. (1997). Mechanics. Butterworth-Heinemann. ISBN 978-0-7506-2896-9.
बाहरी कड़ियाँ
- A college text-book of physics By Arthur Lalanne Kimball (Angular Velocity of a particle)
- Pickering, Steve (2009). "ω Speed of Rotation [Angular Velocity]". Sixty Symbols. Brady Haran for the University of Nottingham.