सिंटरिंग: Difference between revisions

From Vigyanwiki
Line 16: Line 16:
बंधन क्षेत्र से कण आकार का अनुपात शक्ति और विद्युत चालकता जैसे गुणों के लिए एक निर्धारित कारक है। वांछित बंधन क्षेत्र प्राप्त करने के लिए, तापमान और प्रारंभिक कण के आकार को सिंटरिंग प्रक्रिया पर ठीक से नियंत्रित किया जाता है। स्थिर अवस्था में, कण त्रिज्या और वाष्प का दबाव समानुपाती होता है (p<sub>0</sub>)<sup>2/3</sup> और (p<sub>0</sub>)<sup>1/3</sup>, क्रमशः।<ref name=Kingery/>
बंधन क्षेत्र से कण आकार का अनुपात शक्ति और विद्युत चालकता जैसे गुणों के लिए एक निर्धारित कारक है। वांछित बंधन क्षेत्र प्राप्त करने के लिए, तापमान और प्रारंभिक कण के आकार को सिंटरिंग प्रक्रिया पर ठीक से नियंत्रित किया जाता है। स्थिर अवस्था में, कण त्रिज्या और वाष्प का दबाव समानुपाती होता है (p<sub>0</sub>)<sup>2/3</sup> और (p<sub>0</sub>)<sup>1/3</sup>, क्रमशः।<ref name=Kingery/>


ठोस-अवस्था प्रक्रियाओं के लिए शक्ति का स्रोत गर्दन और कण की सतह के बीच मुक्त या रासायनिक संभावित ऊर्जा में परिवर्तन है। यह ऊर्जा संभव सबसे तेज़ साधनों के माध्यम से पदार्थ का स्थानांतरण करती है; यदि कण आयतन या कणों के बीच कण की सीमा से स्थानांतरण होता है, तो कणों की संख्या कम हो जाएगी और छिद्र नष्ट हो जाएंगे। समान आकार के कई छिद्रों वाले नमूनों में ताकना उन्मूलन सबसे तेज़ होता है क्योंकि सीमा विसरण दूरी सबसे छोटी होती है। प्रक्रिया के बाद के हिस्सों के दौरान, सीमा से सीमा और जाली विसरण महत्वपूर्ण हो जाते हैं।<ref name=Kingery/>
ठोस-अवस्था प्रक्रियाओं के लिए शक्ति का स्रोत गर्दन और कण की सतह के बीच मुक्त या रासायनिक संभावित ऊर्जा में परिवर्तन है। यह ऊर्जा संभव सबसे तेज़ साधनों के माध्यम से पदार्थ का स्थानांतरण करती है; यदि कण आयतन या कणों के बीच कण की सीमा से स्थानांतरण होता है, तो कणों की संख्या कम हो जाती है और छिद्र नष्ट हो जाएंगे। समान आकार के कई छिद्रों वाले नमूनों में ताकना उन्मूलन सबसे तेज़ होता है क्योंकि सीमा विसरण दूरी सबसे छोटी होती है। प्रक्रिया के बाद के हिस्सों के दौरान, सीमा से सीमा और जाली विसरण महत्वपूर्ण हो जाते हैं।<ref name=Kingery/>


सिंटरिंग प्रक्रिया के लिए तापमान का नियंत्रण बहुत महत्वपूर्ण है, क्योंकि कण-सीमा विसरण और आयतन विसरण तापमान, कण आकार, कण वितरण, पदार्थ संरचना और अक्सर सिंटरिंग वातावरण के अन्य गुणों पर बहुत अधिक निर्भर करता है।<ref name=Kingery>{{Cite book|last1 = Kingery|first1 = W. David|last2 = Bowen|first2 = H. K.|last3 = Uhlmann|first3 = Donald R.|title = Introduction to Ceramics|publisher = [[John Wiley & Sons]], [[Academic Press]]|date = April 1976|edition = 2nd|url = https://archive.org/details/introductiontoce0000king|isbn = 0-471-47860-1|url-access = registration}}</ref>
सिंटरिंग प्रक्रिया के लिए तापमान का नियंत्रण बहुत महत्वपूर्ण है, क्योंकि कण-सीमा विसरण और आयतन विसरण तापमान, कण आकार, कण वितरण, पदार्थ संरचना और अक्सर सिंटरिंग वातावरण के अन्य गुणों पर बहुत अधिक निर्भर करता है।<ref name=Kingery>{{Cite book|last1 = Kingery|first1 = W. David|last2 = Bowen|first2 = H. K.|last3 = Uhlmann|first3 = Donald R.|title = Introduction to Ceramics|publisher = [[John Wiley & Sons]], [[Academic Press]]|date = April 1976|edition = 2nd|url = https://archive.org/details/introductiontoce0000king|isbn = 0-471-47860-1|url-access = registration}}</ref>
Line 45: Line 45:
सिंटरिंग स्थिर है जब कुछ बाहरी परिस्थितियों में धातु पाउडर सह-अवधि प्रदर्शित कर सकता है, और फिर भी ऐसी स्थितियों को हटा दिए जाने पर अपने सामान्य व्यवहार में वापस आ जाता है। ज्यादातर मामलों में, कण के संग्रह का घनत्व बढ़ जाता है क्योंकि पदार्थ रिक्तियों में प्रवाहित होती है, जिससे समग्र मात्रा में कमी आती है। सिंटरिंग के दौरान होने वाले बड़े गतिविधि में रीपैकिंग द्वारा कुल सरंध्रता में कमी होती है, इसके बाद [[वाष्पीकरण]] और [[प्रसार|विसरण]] से संघनन के कारण पदार्थ परिवहन होता है। अंतिम चरणों में, धातु के परमाणु क्रिस्टल की सीमाओं के साथ आंतरिक छिद्रों की दीवारों की ओर बढ़ते हैं, वस्तु के आंतरिक बल्क से द्रव्यमान का पुनर्वितरण करते हैं और छिद्रों की दीवारों को चिकना करते हैं। इस गतिविधि के लिए भूतल तनाव प्रेरक शक्ति है।
सिंटरिंग स्थिर है जब कुछ बाहरी परिस्थितियों में धातु पाउडर सह-अवधि प्रदर्शित कर सकता है, और फिर भी ऐसी स्थितियों को हटा दिए जाने पर अपने सामान्य व्यवहार में वापस आ जाता है। ज्यादातर मामलों में, कण के संग्रह का घनत्व बढ़ जाता है क्योंकि पदार्थ रिक्तियों में प्रवाहित होती है, जिससे समग्र मात्रा में कमी आती है। सिंटरिंग के दौरान होने वाले बड़े गतिविधि में रीपैकिंग द्वारा कुल सरंध्रता में कमी होती है, इसके बाद [[वाष्पीकरण]] और [[प्रसार|विसरण]] से संघनन के कारण पदार्थ परिवहन होता है। अंतिम चरणों में, धातु के परमाणु क्रिस्टल की सीमाओं के साथ आंतरिक छिद्रों की दीवारों की ओर बढ़ते हैं, वस्तु के आंतरिक बल्क से द्रव्यमान का पुनर्वितरण करते हैं और छिद्रों की दीवारों को चिकना करते हैं। इस गतिविधि के लिए भूतल तनाव प्रेरक शक्ति है।


सिंटरिंग का एक विशेष रूप (जिसे अभी भी पाउडर धातु विज्ञान का हिस्सा माना जाता है) तरल-अवस्था सिंटरिंग है जिसमें कम से कम एक लेकिन सभी तत्व तरल अवस्था में नहीं होते हैं। [[मजबूत कार्बाइड|सीमेंटेड कार्बाइड]] और [[टंगस्टन कार्बाइड]] बनाने के लिए तरल-अवस्था सिंटरिंग की आवश्यकता होती है।
सिंटरिंग का एक विशेष रूप (जिसे अभी भी पाउडर धातु विज्ञान का हिस्सा माना जाता है) द्रव-अवस्था सिंटरिंग है जिसमें कम से कम एक लेकिन सभी तत्व द्रव अवस्था में नहीं होते हैं। [[मजबूत कार्बाइड|सीमेंटेड कार्बाइड]] और [[टंगस्टन कार्बाइड]] बनाने के लिए द्रव-अवस्था सिंटरिंग की आवश्यकता होती है।


विशेष रूप से निसादित [[कांस्य]] का उपयोग अक्सर [[असर (यांत्रिक)|बेयरिंग (यांत्रिक)]] के लिए पदार्थ के रूप में किया जाता है, क्योंकि इसकी सरंध्रता स्नेहक को इसके माध्यम से प्रवाहित करने या इसके भीतर अधिकृत रहने की अनुमति देती है। निसादित तांबे का उपयोग कुछ प्रकार के [[वेग पाइप]] निर्माण में विकिंग संरचना के रूप में किया जा सकता है, जहां सरंध्रता द्रव पदार्थ को केशिका क्रिया के माध्यम से सरंध्री पदार्थ के माध्यम से स्थानांतरित करने की अनुमति देती है। मोलिब्डेनम, टंगस्टन, [[रेनीयाम]], [[टैंटलम]], [[आज़मियम]] और [[कार्बन]] जैसे उच्च गलनांक वाली पदार्थ के लिए, सिंटरिंग कुछ व्यवहार्य निर्माण प्रक्रियाओं में से एक है। इन मामलों में, बहुत कम सरंध्रता वांछनीय है और अक्सर प्राप्त की जा सकती है।
विशेष रूप से निसादित [[कांस्य]] का उपयोग अक्सर [[असर (यांत्रिक)|बेयरिंग (यांत्रिक)]] के लिए पदार्थ के रूप में किया जाता है, क्योंकि इसकी सरंध्रता स्नेहक को इसके माध्यम से प्रवाहित करने या इसके भीतर अधिकृत रहने की अनुमति देती है। निसादित तांबे का उपयोग कुछ प्रकार के [[वेग पाइप]] निर्माण में विकिंग संरचना के रूप में किया जा सकता है, जहां सरंध्रता द्रव पदार्थ को केशिका क्रिया के माध्यम से सरंध्री पदार्थ के माध्यम से स्थानांतरित करने की अनुमति देती है। मोलिब्डेनम, टंगस्टन, [[रेनीयाम]], [[टैंटलम]], [[आज़मियम]] और [[कार्बन]] जैसे उच्च गलनांक वाली पदार्थ के लिए, सिंटरिंग कुछ व्यवहार्य निर्माण प्रक्रियाओं में से एक है। इन मामलों में, बहुत कम सरंध्रता वांछनीय है और अक्सर प्राप्त की जा सकती है।
Line 66: Line 66:
# ऐसी पदार्थ का उत्पादन करने की क्षमता जिसे किसी अन्य तकनीक द्वारा उत्पादित नहीं किया जा सकता है।
# ऐसी पदार्थ का उत्पादन करने की क्षमता जिसे किसी अन्य तकनीक द्वारा उत्पादित नहीं किया जा सकता है।
# टर्बाइन ब्लेड जैसी उच्च शक्ति वाली पदार्थ बनाने की क्षमता।
# टर्बाइन ब्लेड जैसी उच्च शक्ति वाली पदार्थ बनाने की क्षमता।
# सिंटरिंग के बाद हैंडलिंग की यांत्रिक शक्ति अधिक हो जाती है।
# सिंटरिंग के बाद प्रहस्तन की यांत्रिक शक्ति अधिक हो जाती है।


साहित्य में प्रसंस्करण स्तर पर ठोस/ठोस-चरण यौगिकों या ठोस/पिघल मिश्रण का उत्पादन करने के लिए सिंटरिंग असमान पदार्थ पर कई संदर्भ शामिल हैं। रासायनिक, यांत्रिक या भौतिक प्रक्रियाओं के माध्यम से लगभग किसी भी पदार्थ को पाउडर के रूप में प्राप्त किया जा सकता है, इसलिए मूल रूप से किसी भी पदार्थ को सिंटरिंग के माध्यम से प्राप्त किया जा सकता है। जब शुद्ध तत्वों को सिंटर किया जाता है, तो बचा हुआ पाउडर अभी भी शुद्ध होता है, इसलिए इसे पुनर्नवीनीकरण किया जा सकता है।
साहित्य में प्रसंस्करण स्तर पर ठोस/ठोस-चरण यौगिकों या ठोस/पिघल मिश्रण का उत्पादन करने के लिए सिंटरिंग असमान पदार्थ पर कई संदर्भ शामिल हैं। रासायनिक, यांत्रिक या भौतिक प्रक्रियाओं के माध्यम से लगभग किसी भी पदार्थ को पाउडर के रूप में प्राप्त किया जा सकता है, इसलिए मूल रूप से किसी भी पदार्थ को सिंटरिंग के माध्यम से प्राप्त किया जा सकता है। जब शुद्ध तत्वों को सिंटर किया जाता है, तो बचा हुआ पाउडर अभी भी शुद्ध होता है, इसलिए इसे पुनर्नवीनीकरण किया जा सकता है।
Line 73: Line 73:
पाउडर प्रौद्योगिकी के विशेष नुकसान में शामिल हैं:
पाउडर प्रौद्योगिकी के विशेष नुकसान में शामिल हैं:


# ब्लास्ट फर्नेस में 100% सिंटर (लौह अयस्क) चार्ज नहीं किया जा सकता है
# वात्या भट्टी (ब्लास्ट फर्नेस) में 100% सिंटर (लौह अयस्क) आवेश नहीं किया जा सकता है
# सिंटरिंग एक समान आकार नहीं बना सकता है
# सिंटरिंग एक समान आकार नहीं बना सकता है
# सिंटरिंग से पहले उत्पादित सूक्ष्म और नैनोस्ट्रक्चर अक्सर नष्ट हो जाते हैं।
# सिंटरिंग से पहले उत्पादित सूक्ष्म और नैनोस्ट्रक्चर अक्सर नष्ट हो जाते हैं।


== प्लास्टिक सिंटरिंग ==
== प्लास्टिक सिंटरिंग ==
प्लास्टिक पदार्थ उन अनुप्रयोगों के लिए सिंटरिंग द्वारा बनाई जाती है जिनके लिए विशिष्ट सरंध्रता की पदार्थ की आवश्यकता होती है। निसादित प्लास्टिक सरंध्री घटकों का उपयोग निस्पंदन में और द्रव और गैस प्रवाह को नियंत्रित करने के लिए किया जाता है। सिंटर्ड प्लास्टिक का उपयोग उन अनुप्रयोगों में किया जाता है जिनके लिए कास्टिक द्रव पृथक्करण प्रक्रियाओं की आवश्यकता होती है जैसे कि व्हाइटबोर्ड मार्करों में निब, इनहेलर फिल्टर, और पैकेजिंग पदार्थ पर कैप और लाइनर्स के लिए वेंट।<ref>{{Cite web|url=http://www.porex.com|title=Porex Custom Plastics: Porous Plastics & Porous Polymers|website=www.porex.com|access-date=2017-03-23}}</ref> निसादित [[अति उच्च आणविक भार पॉलीथीन]] पदार्थ का उपयोग स्की और स्नोबोर्ड आधार पदार्थ के रूप में किया जाता है। सरंध्री बनावट आधार पदार्थ की संरचना के भीतर मोम को बनाए रखने की अनुमति देती है, इस प्रकार एक अधिक टिकाऊ मोम कोटिंग प्रदान करती है।
प्लास्टिक पदार्थ उन अनुप्रयोगों के लिए सिंटरिंग द्वारा बनाई जाती है जिनके लिए विशिष्ट सरंध्रता की पदार्थ की आवश्यकता होती है। निसादित प्लास्टिक सरंध्री घटकों का उपयोग निस्पंदन में और द्रव और गैस प्रवाह को नियंत्रित करने के लिए किया जाता है। सिंटर्ड प्लास्टिक का उपयोग उन अनुप्रयोगों में किया जाता है जिनके लिए क्षारक द्रव पृथक्करण प्रक्रियाओं की आवश्यकता होती है जैसे कि व्हाइटबोर्ड मार्करों में निब, इनहेलर फिल्टर, और पैकेजिंग पदार्थ पर कैप और लाइनर्स के लिए वेंट है।<ref>{{Cite web|url=http://www.porex.com|title=Porex Custom Plastics: Porous Plastics & Porous Polymers|website=www.porex.com|access-date=2017-03-23}}</ref> निसादित [[अति उच्च आणविक भार पॉलीथीन]] पदार्थ का उपयोग स्की और स्नोबोर्ड आधार पदार्थ के रूप में किया जाता है। सरंध्री बनावट आधार पदार्थ की संरचना के भीतर मोम को बनाए रखने की अनुमति देती है, इस प्रकार अधिक स्थायी मोम विलेपन प्रदान करती है।


== [[तरल चरण सिंटरिंग]] ==
== [[तरल चरण सिंटरिंग|द्रव प्रावस्था सिंटरिंग]] ==
ऐसी पदार्थ के लिए जिन्हें सिंटर करना मुश्किल होता है, लिक्विड फेज सिंटरिंग नामक एक प्रक्रिया का आमतौर पर उपयोग किया जाता है। जिन पदार्थ के लिए तरल चरण सिंटरिंग आम है, वे हैं Si3N4, WC, [[सिलिकन कार्बाइड]], और बहुत कुछ। तरल चरण सिंटरिंग पाउडर में एक योजक जोड़ने की प्रक्रिया है जो मैट्रिक्स चरण से पहले पिघल जाएगी। लिक्विड फेज सिंटरिंग की प्रक्रिया में तीन चरण होते हैं:
ऐसी पदार्थ के लिए जिन्हें सिंटर करना मुश्किल होता है, द्रव प्रावस्था सिंटरिंग नामक प्रक्रिया का आमतौर पर उपयोग किया जाता है। जिन पदार्थ के लिए द्रव प्रावस्था सिंटरिंग आम है, वे Si<sub>3</sub>N<sub>4</sub>, WC, [[सिलिकन कार्बाइड]], और बहुत कुछ हैं । द्रव प्रावस्था सिंटरिंग पाउडर में योजक जोड़ने की प्रक्रिया है जो मैट्रिक्स चरण से पहले पिघल जाती है। द्रव प्रावस्था सिंटरिंग की प्रक्रिया में तीन चरण होते हैं:


*पुनर्व्यवस्था - जैसे ही तरल पिघलता है केशिका क्रिया तरल को छिद्रों में खींच लेगी और कण को अधिक अनुकूल पैकिंग व्यवस्था में पुनर्व्यवस्थित करने का कारण बनेगी।
*पुनर्व्यवस्था - जैसे ही द्रव पिघलता है केशिका क्रिया द्रव को छिद्रों में खींच लेगी और कण को अधिक अनुकूल पैकिंग व्यवस्था में पुनर्व्यवस्थित करने का कारण बनती है।
* समाधान-वर्षा - उन क्षेत्रों में जहां केशिका दबाव अधिक होता है (कण एक साथ बंद होते हैं) परमाणु अधिमानतः समाधान में चले जाते हैं और फिर कम रासायनिक क्षमता वाले क्षेत्रों में अवक्षेपित हो जाते हैं जहां कण करीब या संपर्क में नहीं होते हैं। इसे कॉन्टैक्ट फ्लैटनिंग कहते हैं। यह ठोस अवस्था सिंटरिंग में कण सीमा विसरण के समान एक तरह से प्रणाली को सघन करता है। ओस्टवाल्ड पक्वन भी होगा जहां छोटे कण अधिमानतः विलयन में जाएंगे और बड़े कणों पर अवक्षेपित होकर सघनता की ओर ले जाएंगे।
* समाधान-अवक्षेपण - उन क्षेत्रों में जहां केशिका दबाव अधिक होता है (कण एक साथ बंद होते हैं) परमाणु अधिमानतः समाधान में चले जाते हैं और फिर कम रासायनिक क्षमता वाले क्षेत्रों में अवक्षेपित हो जाते हैं जहां कण करीब या संपर्क में नहीं होते हैं। इसे संपर्क समतल (कॉन्टैक्ट फ्लैटनिंग) कहते हैं। यह ठोस अवस्था सिंटरिंग में कण सीमा विसरण के समान तरह से प्रणाली को सघन करता है। ओस्टवाल्ड पक्वन भी होगा जहां छोटे कण अधिमानतः विलयन में जाएंगे और बड़े कणों पर अवक्षेपित होकर सघनता की ओर ले जाएंगे।
*अंतिम सघनता - ठोस कंकाल नेटवर्क का सघनीकरण, कुशलता से पैक किए गए क्षेत्रों से छिद्रों में तरल गति।
*अंतिम सघनता - ठोस क्षीणकाय नेटवर्क का सघनीकरण, कुशलता से पैक किए गए क्षेत्रों से छिद्रों में द्रव गति।


लिक्विड फेज सिंटरिंग के व्यावहारिक होने के लिए मेजर फेज को लिक्विड फेज में कम से कम थोड़ा घुलनशील होना चाहिए और सॉलिड पार्टिकुलेट नेटवर्क के किसी भी बड़े सिंटरिंग से पहले एडिटिव पिघल जाना चाहिए, अन्यथा कण की पुनर्व्यवस्था नहीं होगी। [[nanoparticle|नैनोकण]] अग्रदूत फिल्मों से पतली अर्धचालक परतों के दाने के विकास में सुधार के लिए तरल चरण सिंटरिंग को सफलतापूर्वक लागू किया गया था।<ref>{{cite journal |doi=10.1002/pip.2529 |title=Liquid-selenium-enhanced grain growth of nanoparticle precursor layers for CuInSe<sub>2</sub> solar cell absorbers |year=2014 |last1=Uhl |first1=A.R.|journal= Progress in Photovoltaics: Research and Applications|display-authors=etal |volume=23 |issue=9 |pages=1110–1119|s2cid=97768071 |url=https://www.dora.lib4ri.ch/empa/islandora/object/empa%3A7088 }}</ref>
द्रव प्रावस्था सिंटरिंग के व्यावहारिक होने के लिए प्रमुख प्रावस्था को द्रव प्रावस्था में कम से कम थोड़ा घुलनशील होना चाहिए और ठोस कण नेटवर्क के किसी भी बड़े सिंटरिंग से पहले योजक पिघल जाना चाहिए, अन्यथा कण की पुनर्व्यवस्था नहीं होती है। [[nanoparticle|नैनोकण]] अग्रदूत फिल्मों से पतली अर्धचालक परतों के कण के विकास में सुधार के लिए द्रव प्रावस्था सिंटरिंग को सफलतापूर्वक लागू किया गया था।<ref>{{cite journal |doi=10.1002/pip.2529 |title=Liquid-selenium-enhanced grain growth of nanoparticle precursor layers for CuInSe<sub>2</sub> solar cell absorbers |year=2014 |last1=Uhl |first1=A.R.|journal= Progress in Photovoltaics: Research and Applications|display-authors=etal |volume=23 |issue=9 |pages=1110–1119|s2cid=97768071 |url=https://www.dora.lib4ri.ch/empa/islandora/object/empa%3A7088 }}</ref>
== इलेक्ट्रिक करंट असिस्टेड सिंटरिंग ==
== विद्युत प्रवाह सहाय सिंटरिंग ==
ये तकनीकें सिंटरिंग को चलाने या बढ़ाने के लिए विद्युत धाराओं का उपयोग करती हैं।<ref>{{cite journal|title=Consolidation/synthesis of materials by electric current activated/assisted sintering|url=https://www.sciencedirect.com/science/article/abs/pii/S0927796X08000995|doi=10.1016/j.mser.2008.09.003|volume=63 |issue=4–6 |journal=Materials Science and Engineering: R: Reports |pages=127–287|date=February 2009 |last1=Orrù |first1=Roberto |last2=Licheri |first2=Roberta |last3=Locci |first3=Antonio Mario |last4=Cincotti |first4=Alberto |last5=Cao |first5=Giacomo }}</ref><ref>{{Cite journal |last1=Grasso |first1=Salvatore|last2=Sakka |first2=Yoshio |last3=Maizza |first3=Giovanni |date=October 2009|title=Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008|journal=Science and Technology of Advanced Materials |volume=10 |issue=5|pages=053001 |doi=10.1088/1468-6996/10/5/053001 |issn=1468-6996 |pmc=5090538 |pmid=27877308}}</ref> अंग्रेजी इंजीनियर ए. जी. ब्लॉक्सम ने 1906 में [[खालीपन|वैक्यूम]] में [[एकदिश धारा]]का उपयोग करके सिंटरिंग पाउडर पर पहला [[पेटेंट]] पंजीकृत किया। उनके आविष्कारों का प्राथमिक उद्देश्य टंगस्टन या मोलिब्डेनम कणों को कॉम्पैक्ट करके तापदीप्त लैंप के लिए तंतुओं का औद्योगिक पैमाने पर उत्पादन था। लगाया गया करंट विशेष रूप से सतह के [[ऑक्साइड]] को कम करने में प्रभावी था जो तंतुओं के [[उत्सर्जन]] को बढ़ाता था।<ref name=grasso/>
ये तकनीकें सिंटरिंग को चलाने या बढ़ाने के लिए विद्युत धाराओं का उपयोग करती हैं।<ref>{{cite journal|title=Consolidation/synthesis of materials by electric current activated/assisted sintering|url=https://www.sciencedirect.com/science/article/abs/pii/S0927796X08000995|doi=10.1016/j.mser.2008.09.003|volume=63 |issue=4–6 |journal=Materials Science and Engineering: R: Reports |pages=127–287|date=February 2009 |last1=Orrù |first1=Roberto |last2=Licheri |first2=Roberta |last3=Locci |first3=Antonio Mario |last4=Cincotti |first4=Alberto |last5=Cao |first5=Giacomo }}</ref><ref>{{Cite journal |last1=Grasso |first1=Salvatore|last2=Sakka |first2=Yoshio |last3=Maizza |first3=Giovanni |date=October 2009|title=Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008|journal=Science and Technology of Advanced Materials |volume=10 |issue=5|pages=053001 |doi=10.1088/1468-6996/10/5/053001 |issn=1468-6996 |pmc=5090538 |pmid=27877308}}</ref> अंग्रेजी इंजीनियर ए. जी. ब्लॉक्सम ने 1906 में [[खालीपन|निर्वात]] में [[एकदिश धारा]] का उपयोग करके सिंटरिंग पाउडर पर पहला [[पेटेंट]] पंजीकृत किया गया था। उनके आविष्कारों का प्राथमिक उद्देश्य टंगस्टन या मोलिब्डेनम कणों को सुसंहत करके तापदीप्त लैंप के लिए तंतुओं का औद्योगिक पैमाने पर उत्पादन था। लगाया गया प्रवाह विशेष रूप से सतह के [[ऑक्साइड]] को कम करने में प्रभावी था जो तंतुओं के [[उत्सर्जन]] को बढ़ाता था।<ref name=grasso/>


1913 में, वेनट्रॉब और रश ने एक संशोधित सिंटरिंग विधि का पेटेंट कराया, जिसने दबाव के साथ विद्युत प्रवाह को संयोजित किया। [[अपवर्तन (धातु विज्ञान)]] के सिंटरिंग के साथ-साथ प्रवाहकीय [[करबैड|कार्बाइड]] या [[नाइट्राइड]] पाउडर के लिए इस पद्धति के लाभ सिद्ध हुए। शुरुआती बोरॉन-कार्बन या [[सिलिकॉन]]-कार्बन पाउडर को विद्युत रूप से [[इन्सुलेटर (विद्युत)]]ट्यूब में रखा गया था और दो छड़ों से संपीड़ित किया गया था जो वर्तमान के लिए [[इलेक्ट्रोड]] के रूप में भी काम करता था। अनुमानित सिंटरिंग तापमान 2000 डिग्री सेल्सियस था।<ref name=grasso/>
1913 में, वेनट्रॉब और रश ने संशोधित सिंटरिंग विधि का पेटेंट कराया, जिसने दबाव के साथ विद्युत प्रवाह को संयोजित किया। [[अपवर्तन (धातु विज्ञान)]] के सिंटरिंग के साथ-साथ प्रवाहकीय [[करबैड|कार्बाइड]] या [[नाइट्राइड]] पाउडर के लिए इस पद्धति के लाभ सिद्ध हुए। प्रारंभिक बोरॉन-कार्बन या [[सिलिकॉन]]-कार्बन पाउडर को विद्युत रूप से [[इन्सुलेटर (विद्युत)|अवरोधक (विद्युत)]] नली में रखा गया था और दो छड़ों से संपीड़ित किया गया था जो विद्युत के लिए [[इलेक्ट्रोड]] के रूप में भी काम करता था। अनुमानित सिंटरिंग तापमान 2000 डिग्री सेल्सियस था।<ref name=grasso/>


संयुक्त राज्य अमेरिका में, सिंटरिंग को पहली बार 1922 में डुवल डी एड्रियन द्वारा पेटेंट कराया गया था। उनकी तीन-चरणीय प्रक्रिया का उद्देश्य [[ज़िरकोनियम डाइऑक्साइड]], [[थोरियम डाइऑक्साइड|थोरिया]] या [[टैंटलम पेंटोक्साइड|टैंटालिया]] जैसे ऑक्साइड पदार्थ से गर्मी प्रतिरोधी ब्लॉकों का उत्पादन करना था। कदम थे:(i) [[मोल्डिंग (प्रक्रिया)]] पाउडर; (ii)इसे कंडक्टिंग बनाने के लिए लगभग 2500 डिग्री सेल्सियस पर एनीलिंग करना; (iii) वींट्राब और रश की विधि के अनुसार करंट-प्रेशर सिंटरिंग लागू करना।<ref name=grasso/>
संयुक्त राज्य अमेरिका में, सिंटरिंग को पहली बार 1922 में डुवल डी एड्रियन द्वारा पेटेंट कराया गया था। उनकी तीन-चरणीय प्रक्रिया का उद्देश्य [[ज़िरकोनियम डाइऑक्साइड]], [[थोरियम डाइऑक्साइड|थोरिया]] या [[टैंटलम पेंटोक्साइड|टैंटालिया]] जैसे ऑक्साइड पदार्थ से गर्मी प्रतिरोधी ब्लॉकों का उत्पादन करना था। कदम थे:(i) [[मोल्डिंग (प्रक्रिया)]] पाउडर; (ii)इसे कंडक्टिंग बनाने के लिए लगभग 2500 डिग्री सेल्सियस पर तापानुशीतन करना; (iii) वींट्राब और रश की विधि के अनुसार प्रवाह-दबाव सिंटरिंग लागू करना।<ref name=grasso/>


डायरेक्ट करंट ताप से पहले ऑक्साइड को खत्म करने के लिए [[समाई|कैपेसिटेंस]] डिस्चार्ज के माध्यम से उत्पादित [[इलेक्ट्रिक आर्क|चाप]] का उपयोग करने वाली सिंटरिंग को 1932 में जीएफ टेलर द्वारा पेटेंट कराया गया था। स्पंदित या वैकल्पिक करंट को नियोजित करने वाली सिंटरिंग विधियों की उत्पत्ति हुई, जो अंततः एक डायरेक्ट करंट पर आरोपित हो गई। उन तकनीकों को कई दशकों में विकसित किया गया है और 640 से अधिक पेटेंटों में संक्षेपित किया गया है।<ref name=grasso>{{cite journal|journal=Sci. Technol. Adv. Mater.|volume= 10|year=2009|page=053001|title=Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008|doi= 10.1088/1468-6996/10/5/053001|issue=5|pmc=5090538|last1= Grasso|first1= S|last2= Sakka|first2= Y|last3= Maizza|first3= G|pmid=27877308}}</ref>
एकदिश धारा ताप से पहले ऑक्साइड को खत्म करने के लिए [[समाई|धारिता]] निर्वहन के माध्यम से उत्पादित [[इलेक्ट्रिक आर्क|चाप]] का उपयोग करने वाली सिंटरिंग को 1932 में जीएफ टेलर द्वारा पेटेंट कराया गया था। स्पंदित या वैकल्पिक प्रवाह को नियोजित करने वाली सिंटरिंग विधियों की उत्पत्ति हुई, जो अंततः एकदिश धारा पर अध्यारोपित हो गई। उन तकनीकों को कई दशकों में विकसित किया गया है और 640 से अधिक पेटेंटों में संक्षेपित किया गया है।<ref name=grasso>{{cite journal|journal=Sci. Technol. Adv. Mater.|volume= 10|year=2009|page=053001|title=Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008|doi= 10.1088/1468-6996/10/5/053001|issue=5|pmc=5090538|last1= Grasso|first1= S|last2= Sakka|first2= Y|last3= Maizza|first3= G|pmid=27877308}}</ref>


इन तकनीकों में से सबसे प्रसिद्ध रेजिस्टेंस सिंटरिंग (जिसे [[गर्म दबाना]] भी कहा जाता है) और [[स्पार्क प्लाज्मा सिंटरिंग]] है, जबकि [[इलेक्ट्रो सिंटर फोर्जिंग]] इस क्षेत्र में नवीनतम प्रगति है।
इन तकनीकों में से सबसे प्रसिद्ध प्रतिरोधक सिंटरिंग (जिसे [[गर्म दबाना|तप्त संपीडन]] भी कहा जाता है) और [[स्पार्क प्लाज्मा सिंटरिंग]] है, जबकि [[इलेक्ट्रो सिंटर फोर्जिंग]] इस क्षेत्र में नवीनतम प्रगति है।


=== स्पार्क प्लाज्मा सिंटरिंग ===
=== स्पार्क प्लाज्मा सिंटरिंग ===
स्पार्क प्लाज्मा सिंटरिंग (एसपीएस) में, धातु/सिरेमिक पाउडर कॉम्पैक्ट के घनत्व को बढ़ाने के लिए बाहरी दबाव और एक विद्युत क्षेत्र को एक साथ लागू किया जाता है। हालांकि, व्यावसायीकरण के बाद यह निर्धारित किया गया था कि कोई प्लाज्मा नहीं है, इसलिए लेनेल द्वारा गढ़ा गया उचित नाम स्पार्क सिंटरिंग है। विद्युत क्षेत्र संचालित घनत्व सिंटरिंग को गर्म दबाने के एक रूप के साथ पूरक करता है, जिससे कम तापमान को सक्षम किया जा सके और सामान्य सिंटरिंग की तुलना में कम समय लगता है।<ref name = Tuan>{{Cite book|last1 = Tuan|first1 = W.H.|last2 =Guo|first2 =J.K.|publisher =Springer|year = 2004 |isbn = 3-540-40516-X|title = Multi-phased ceramic materials: processing and potential}}</ref> कई वर्षों तक, यह अनुमान लगाया गया था कि कणों के बीच चिंगारी या प्लाज्मा का अस्तित्व सिंटरिंग में सहायता कर सकता है; हालांकि, हल्बर्ट और सहकर्मियों ने व्यवस्थित रूप से साबित कर दिया कि स्पार्क प्लाज्मा सिंटरिंग के दौरान उपयोग किए जाने वाले विद्युत पैरामीटर इसे (अत्यधिक) असंभव बनाते हैं।<ref>{{cite journal | last1 = Hulbert | first1 = D. M. | display-authors = etal  | year = 2008 | title = The Absence of Plasma in' Spark Plasma Sintering' | doi = 10.1063/1.2963701 | journal = Journal of Applied Physics | volume = 104 | issue = 3| pages = 033305–033305–7 | bibcode = 2008JAP...104c3305H | s2cid = 54726651 | url = http://www.escholarship.org/uc/item/2c14z63t }}</ref> इसके प्रकाश में, "स्पार्क प्लाज्मा सिंटरिंग" नाम अप्रचलित हो गया है। सिंटरिंग समुदाय द्वारा फील्ड असिस्टेड सिंटरिंग तकनीक (FAST), इलेक्ट्रिक फील्ड असिस्टेड सिंटरिंग (EFAS) और डायरेक्ट करंट सिंटरिंग (DCS) जैसी शर्तों को लागू किया गया है।<ref>Anselmi-Tamburini, U. et al. in Sintering: Nanodensification and Field Assisted Processes (Castro, R. & van Benthem, K.) (Springer Verlag, 2012).</ref> विद्युत प्रवाह के रूप में एक दिष्ट धारा (DC) स्पंद का उपयोग करके, चिंगारी प्लाज्मा, चिंगारी प्रभाव दबाव, जूल तापन, और एक विद्युत क्षेत्र विसरण प्रभाव बनाया जाएगा।<ref name=Palmer>{{Cite book|last1 = Palmer|first1 = R.E.|last2 = Wilde|first2 = G.|title = Mechanical Properties of Nanocomposite Materials|publisher = Elsevier Ltd.|date = December 22, 2008|location =EBL Database|isbn = 978-0-08-044965-4}}</ref>ग्रेफाइट डाई डिज़ाइन और इसकी असेंबली को संशोधित करके, स्पार्क प्लाज्मा सिंटरिंग सुविधा में [[दबाव रहित सिंटरिंग]] करना संभव है। इस संशोधित डाई डिज़ाइन सेटअप को पारंपरिक दबाव रहित सिंटरिंग और स्पार्क प्लाज़्मा सिंटरिंग तकनीकों दोनों के लाभों के तालमेल के लिए बताया गया है।<ref>{{cite journal
स्पार्क प्लाज्मा सिंटरिंग (एसपीएस) में, धातु/सिरेमिक पाउडर सुसंहत के घनत्व को बढ़ाने के लिए बाहरी दबाव और विद्युत क्षेत्र को एक साथ लागू किया जाता है। हालांकि, व्यावसायीकरण के बाद यह निर्धारित किया गया था कि कोई प्लाज्मा नहीं है, इसलिए लेनेल द्वारा गढ़ा गया उचित नाम स्पार्क सिंटरिंग है। विद्युत क्षेत्र संचालित घनत्व सिंटरिंग को तप्त संपीडन के रूप के साथ पूरक करता है, जिससे कम तापमान को सक्षम किया जा सके और सामान्य सिंटरिंग की तुलना में कम समय लगता है।<ref name = Tuan>{{Cite book|last1 = Tuan|first1 = W.H.|last2 =Guo|first2 =J.K.|publisher =Springer|year = 2004 |isbn = 3-540-40516-X|title = Multi-phased ceramic materials: processing and potential}}</ref> कई वर्षों तक, यह अनुमान लगाया गया था कि कणों के बीच चिंगारी या प्लाज्मा का अस्तित्व सिंटरिंग में सहायता कर सकता है; हालांकि, हल्बर्ट और सहकर्मियों ने व्यवस्थित रूप से साबित कर दिया कि स्पार्क प्लाज्मा सिंटरिंग के दौरान उपयोग किए जाने वाले विद्युत मापदण्ड इसे (अत्यधिक) असंभव बनाते हैं।<ref>{{cite journal | last1 = Hulbert | first1 = D. M. | display-authors = etal  | year = 2008 | title = The Absence of Plasma in' Spark Plasma Sintering' | doi = 10.1063/1.2963701 | journal = Journal of Applied Physics | volume = 104 | issue = 3| pages = 033305–033305–7 | bibcode = 2008JAP...104c3305H | s2cid = 54726651 | url = http://www.escholarship.org/uc/item/2c14z63t }}</ref> इसके प्रकाश में, "स्पार्क प्लाज्मा सिंटरिंग" नाम अप्रचलित हो गया है। सिंटरिंग समुदाय द्वारा क्षेत्र सहाय सिंटरिंग तकनीक (एफएएसटी), इलेक्ट्रिक क्षेत्र सहाय सिंटरिंग (ईएफएएस) और एकदिश धारा सिंटरिंग (डीसीएस) जैसी शर्तों को लागू किया गया है।<ref>Anselmi-Tamburini, U. et al. in Sintering: Nanodensification and Field Assisted Processes (Castro, R. & van Benthem, K.) (Springer Verlag, 2012).</ref> विद्युत प्रवाह के रूप में एक दिष्ट धारा (डीसीएस) स्पंद का उपयोग करके, चिंगारी प्लाज्मा, चिंगारी प्रभाव दबाव, जूल तापन, और विद्युत क्षेत्र विसरण प्रभाव बनाया जाएगा।<ref name=Palmer>{{Cite book|last1 = Palmer|first1 = R.E.|last2 = Wilde|first2 = G.|title = Mechanical Properties of Nanocomposite Materials|publisher = Elsevier Ltd.|date = December 22, 2008|location =EBL Database|isbn = 978-0-08-044965-4}}</ref>ग्रेफाइट डाई डिज़ाइन और इसकी असेंबली को संशोधित करके, स्पार्क प्लाज्मा सिंटरिंग सुविधा में [[दबाव रहित सिंटरिंग]] करना संभव है। इस संशोधित डाई डिज़ाइन व्यवस्थापन को पारंपरिक दबाव रहित सिंटरिंग और स्पार्क प्लाज़्मा सिंटरिंग तकनीकों दोनों के लाभों के तालमेल के लिए बताया गया है।<ref>{{cite journal
|authors=K. Sairam, J.K. Sonber, T.S.R.Ch. Murthy, A.K. Sahu, R.D. Bedse, J.K. Chakravartty
|authors=K. Sairam, J.K. Sonber, T.S.R.Ch. Murthy, A.K. Sahu, R.D. Bedse, J.K. Chakravartty
|title=Pressureless sintering of chromium diboride using spark plasma sintering facility
|title=Pressureless sintering of chromium diboride using spark plasma sintering facility
Line 108: Line 108:
}}</ref>
}}</ref>
=== इलेक्ट्रो सिंटर फोर्जिंग ===
=== इलेक्ट्रो सिंटर फोर्जिंग ===
इलेक्ट्रो सिंटर फोर्जिंग एक इलेक्ट्रिक करंट असिस्टेड सिंटरिंग (ECAS) तकनीक है जो[[कैपेसिटर डिस्चार्ज सिंटरिंग]] से उत्पन्न हुई है। इसका उपयोग डायमंड मेटल मैट्रिक्स सम्मिश्र के उत्पादन के लिए किया जाता है और कठोर धातुओं,<ref>Fais, A. "Discharge sintering of hard metal cutting tools". ''International Powder Metallurgy Congress and Exhibition'', Euro PM 2013</ref> [[NiTiNOL|नाइटिनोल]]<ref>{{cite journal|doi=10.1016/j.intermet.2015.08.016|title=Electro-sinter-forged Ni–Ti alloy|journal=Intermetallics|volume=68|pages=31–41|year=2016|last1=Balagna|first1=Cristina|last2=Fais|first2=Alessandro|last3=Brunelli|first3=Katya|last4=Peruzzo|first4=Luca|last5=Horynová|first5=Miroslava|last6=Čelko|first6=Ladislav|last7=Spriano|first7=Silvia}}</ref> और अन्य धातुओं और इंटरमेटेलिक्स के उत्पादन के लिए मूल्यांकन किया जाता है। यह बहुत कम सिंटरिंग समय की विशेषता है, जिससे मशीनों को संघनन प्रेस के समान गति से सिंटर करने की अनुमति मिलती है।
इलेक्ट्रो सिंटर फोर्जिंग विद्युत प्रवाह सहाय सिंटरिंग (ईसीएएस) तकनीक है जो [[कैपेसिटर डिस्चार्ज सिंटरिंग|संधारित्र निर्वहन सिंटरिंग]] से उत्पन्न हुई है। इसका उपयोग डायमंड मेटल मैट्रिक्स सम्मिश्र के उत्पादन के लिए किया जाता है और कठोर धातुओं,<ref>Fais, A. "Discharge sintering of hard metal cutting tools". ''International Powder Metallurgy Congress and Exhibition'', Euro PM 2013</ref> [[NiTiNOL|नाइटिनोल]]<ref>{{cite journal|doi=10.1016/j.intermet.2015.08.016|title=Electro-sinter-forged Ni–Ti alloy|journal=Intermetallics|volume=68|pages=31–41|year=2016|last1=Balagna|first1=Cristina|last2=Fais|first2=Alessandro|last3=Brunelli|first3=Katya|last4=Peruzzo|first4=Luca|last5=Horynová|first5=Miroslava|last6=Čelko|first6=Ladislav|last7=Spriano|first7=Silvia}}</ref> और अन्य धातुओं और अंतराधात्विक के उत्पादन के लिए मूल्यांकन किया जाता है। यह बहुत कम सिंटरिंग समय की विशेषता है, जिससे मशीनों को संघनन दबाव के समान गति से सिंटर करने की अनुमति मिलती है।


== दबाव रहित सिंटरिंग ==
== दबाव रहित सिंटरिंग ==
दबाव रहित सिंटरिंग बिना दबाव के एक पाउडर कॉम्पैक्ट (कभी-कभी बहुत उच्च तापमान पर, पाउडर के आधार पर) का सिंटरिंग होता है। यह अंतिम घटक में घनत्व भिन्नता से बचा जाता है, जो कि अधिक पारंपरिक गर्म दबाव विधियों के साथ होता है।<ref name="Microstructure Evolution">{{cite journal|last1=Maca|first1=Karel|title=Microstructure evolution during pressureless sintering of bulk oxide ceramics|journal=Processing and Application of Ceramics|date=2009|volume=3|issue=1–2|pages=13–17|doi=10.2298/pac0902013m|doi-access=free}}</ref>
दबाव रहित सिंटरिंग बिना दबाव के पाउडर सुसंहत (कभी-कभी बहुत उच्च तापमान पर, पाउडर के आधार पर) का सिंटरिंग होता है। यह अंतिम घटक में घनत्व भिन्नता से बचा जाता है, जो कि अधिक पारंपरिक तप्त संपीडन विधियों के साथ होता है।<ref name="Microstructure Evolution">{{cite journal|last1=Maca|first1=Karel|title=Microstructure evolution during pressureless sintering of bulk oxide ceramics|journal=Processing and Application of Ceramics|date=2009|volume=3|issue=1–2|pages=13–17|doi=10.2298/pac0902013m|doi-access=free}}</ref>


पाउडर कॉम्पैक्ट (यदि एक सिरेमिक) [[स्लिप कास्टिंग]], [[इंजेक्शन मोल्डिंग]] और [[आइसोस्टैटिक प्रेस]] द्वारा बनाया जा सकता है। प्रीइंटरिंग के बाद, अंतिम ग्रीन कॉम्पैक्ट को उत्पाद करने से पहले उसके अंतिम आकार में मशीनीकृत किया जा सकता है।
पाउडर सुसंहत (यदि एक सिरेमिक) [[स्लिप कास्टिंग]], [[इंजेक्शन मोल्डिंग|अंतःक्षेपी संचन]] और [[आइसोस्टैटिक प्रेस|तप्त समस्थैतिक दाबन]] द्वारा बनाया जा सकता है। प्रीइंटरिंग के बाद, अंतिम ग्रीन सुसंहत को उत्पाद करने से पहले उसके अंतिम आकार में मशीनीकृत किया जा सकता है।


दबाव रहित सिंटरिंग के साथ तीन अलग-अलग ताप शेड्यूल किए जा सकते हैं: ताप की निरंतर दर (CRH), रेट-नियंत्रित सिंटरिंग (RCS), और टू-स्टेप सिंटरिंग (TSS)मिट्टी के पात्र की सूक्ष्म संरचना और दाने का आकार प्रयुक्त पदार्थ और विधि के आधार पर भिन्न हो सकता है।<ref name="Microstructure Evolution" />
दबाव रहित सिंटरिंग के साथ तीन अलग-अलग ताप अनुसूची किए जा सकते हैं: ताप की निरंतर दर (सीआरएच), रेट-नियंत्रित सिंटरिंग (आरसीएस), और टू-स्टेप सिंटरिंग (टीएसएस) हैं। मिट्टी के पात्र की सूक्ष्म संरचना और कण का आकार प्रयुक्त पदार्थ और विधि के आधार पर भिन्न हो सकता है।<ref name="Microstructure Evolution" />


ताप की स्थिर-दर (CRH), जिसे तापमान-नियंत्रित सिंटरिंग के रूप में भी जाना जाता है, में सिंटरिंग तापमान तक स्थिर दर पर ग्रीन कॉम्पैक्ट को गर्म करना शामिल है।<ref name="Effect of sintering">{{cite journal|last1=Maca|first1=Karl|last2=Simonikova|first2=Sarka|title=Effect of sintering schedule on grain size of oxide ceramics|journal=Journal of Materials Science|date=2005|volume=40|issue=21|pages=5581–5589|doi=10.1007/s10853-005-1332-1|bibcode=2005JMatS..40.5581M|s2cid=137157248}}</ref> सीआरएच विधि के लिए सिंटरिंग तापमान और सिंटरिंग दर को अनुकूलित करने के लिए जिरकोनिया के साथ प्रयोग किए गए हैं। परिणामों से पता चला कि कण के आकार समान थे जब नमूनों को एक ही घनत्व में उत्पाद किया गया था, यह साबित करते हुए कि कण का आकार सीआरएच तापमान मोड के बजाय नमूना घनत्व का एक कार्य है।
ताप की स्थिर-दर (सीआरएच), जिसे तापमान-नियंत्रित सिंटरिंग के रूप में भी जाना जाता है, में सिंटरिंग तापमान तक स्थिर दर पर ग्रीन सुसंहत को गर्म करना शामिल है।<ref name="Effect of sintering">{{cite journal|last1=Maca|first1=Karl|last2=Simonikova|first2=Sarka|title=Effect of sintering schedule on grain size of oxide ceramics|journal=Journal of Materials Science|date=2005|volume=40|issue=21|pages=5581–5589|doi=10.1007/s10853-005-1332-1|bibcode=2005JMatS..40.5581M|s2cid=137157248}}</ref> सीआरएच विधि के लिए सिंटरिंग तापमान और सिंटरिंग दर को अनुकूलित करने के लिए जिरकोनिया के साथ प्रयोग किए गए हैं। परिणामों से पता चला कि कण के आकार समान थे जब नमूनों को एक ही घनत्व में उत्पाद किया गया था, यह साबित करते हुए कि कण का आकार सीआरएच तापमान मोड के बजाय नमूना घनत्व का कार्य है।


दर-नियंत्रित सिंटरिंग (आरसीएस) में, ओपन-पोरसिटी चरण में घनत्व दर सीआरएच विधि की तुलना में कम है।<ref name="Effect of sintering" /> परिभाषा के अनुसार, ओपन-पोरसिटी चरण में सापेक्षिक घनत्व, ρrel, 90% से कम है। हालांकि इससे छिद्रों को कण की सीमाओं से अलग होने से रोकना चाहिए, यह सांख्यिकीय रूप से सिद्ध हो गया है कि आरसीएस ने एल्यूमिना, जिरकोनिया और सेरिया के नमूनों के लिए सीआरएच की तुलना में छोटे कण के आकार का उत्पादन नहीं किया।<ref name="Microstructure Evolution" />
दर-नियंत्रित सिंटरिंग (आरसीएस) में, ओपन-पोरसिटी चरण में घनत्व दर सीआरएच विधि की तुलना में कम है।<ref name="Effect of sintering" /> परिभाषा के अनुसार, ओपन-पोरसिटी चरण में सापेक्षिक घनत्व, ρ<sub>rel</sub>, 90% से कम है। हालांकि इससे छिद्रों को कण की सीमाओं से अलग होने से रोकना चाहिए, यह सांख्यिकीय रूप से सिद्ध हो गया है कि आरसीएस ने एल्यूमिना, जिरकोनिया और सेरिया के नमूनों के लिए सीआरएच की तुलना में छोटे कण के आकार का उत्पादन नहीं किया।<ref name="Microstructure Evolution" />


टू-स्टेप सिंटरिंग (TSS) दो अलग-अलग सिंटरिंग तापमान का उपयोग करता है। पहले सिंटरिंग तापमान को सैद्धांतिक नमूना घनत्व के 75% से अधिक सापेक्ष घनत्व की गारंटी देनी चाहिए। यह शरीर से सुपरक्रिटिकल पोर्स को हटा देगा। इसके बाद सैंपल को ठंडा किया जाएगा और डेंसिफिकेशन पूरा होने तक दूसरे सिंटरिंग तापमान पर रखा जाएगा। CRH की तुलना में TSS द्वारा क्यूबिक ज़िरकोनिया और क्यूबिक स्ट्रोंटियम टाइटेनेट के कण को काफी परिष्कृत किया गया था। हालांकि, अन्य सिरेमिक पदार्थ में कण के आकार में परिवर्तन, जैसे टेट्रागोनल ज़िरकोनिया और हेक्सागोनल एल्यूमिना, सांख्यिकीय रूप से महत्वपूर्ण नहीं थे।<ref name="Microstructure Evolution"/>
टू-स्टेप सिंटरिंग (टीएसएस) दो अलग-अलग सिंटरिंग तापमान का उपयोग करता है। पहले सिंटरिंग तापमान को सैद्धांतिक नमूना घनत्व के 75% से अधिक सापेक्ष घनत्व की गारंटी देनी चाहिए। यह शरीर से अतिक्रांतिक रन्ध्र को हटा देगा। इसके बाद सैंपल को ठंडा किया जाएगा और घनीभवन पूरा होने तक दूसरे सिंटरिंग तापमान पर रखा जाएगा। सीआरएच की तुलना में टीएसएस द्वारा घनीय ज़िरकोनिया और घनीय स्ट्रोंटियम टाइटेनेट के कण को काफी परिष्कृत किया गया था। हालांकि, अन्य सिरेमिक पदार्थ में कण के आकार में परिवर्तन, जैसे द्विसमलंबाक्ष ज़िरकोनिया और षट्कोणीय एल्यूमिना, सांख्यिकीय रूप से महत्वपूर्ण नहीं थे।<ref name="Microstructure Evolution"/>
== [[माइक्रोवेव]] सिंटरिंग ==
== [[माइक्रोवेव|सूक्ष्मतरंग]] सिंटरिंग ==
माइक्रोवेव सिंटरिंग में, गर्मी कभी-कभी पदार्थ के भीतर आंतरिक रूप से उत्पन्न होती है, बजाय बाहरी ताप स्रोत से सतही विकिरण ताप हस्तांतरण के माध्यम से। कुछ पदार्थ युगल में विफल होती हैं और अन्य भाग-दौड़ का व्यवहार प्रदर्शित करती हैं, इसलिए यह उपयोगिता में प्रतिबंधित है। माइक्रोवेव सिंटरिंग का एक लाभ छोटे भार के लिए तेजी से गर्म करना है, जिसका अर्थ है कि सिंटरिंग तापमान तक पहुंचने के लिए कम समय की आवश्यकता होती है, कम ताप ऊर्जा की आवश्यकता होती है और उत्पाद के गुणों में सुधार होता है।<ref name="OghbaeiMirzaee2010">{{cite journal|last1=Oghbaei|first1=Morteza|last2=Mirzaee|first2=Omid|title=Microwave versus conventional sintering: A review of fundamentals, advantages and applications|journal=Journal of Alloys and Compounds|volume=494|issue=1–2|year=2010|pages=175–189|doi=10.1016/j.jallcom.2010.01.068}}</ref>
सूक्ष्मतरंग सिंटरिंग में, गर्मी कभी-कभी पदार्थ के भीतर आंतरिक रूप से उत्पन्न होती है, बजाय बाहरी ताप स्रोत से सतही विकिरण ताप हस्तांतरण के माध्यम से। कुछ पदार्थ युगल में विफल होती हैं और अन्य भाग-दौड़ का व्यवहार प्रदर्शित करती हैं, इसलिए यह उपयोगिता में प्रतिबंधित है। सूक्ष्मतरंग सिंटरिंग का एक लाभ छोटे भार के लिए तेजी से गर्म करना है, जिसका अर्थ है कि सिंटरिंग तापमान तक पहुंचने के लिए कम समय की आवश्यकता होती है, कम ताप ऊर्जा की आवश्यकता होती है और उत्पाद के गुणों में सुधार होता है।<ref name="OghbaeiMirzaee2010">{{cite journal|last1=Oghbaei|first1=Morteza|last2=Mirzaee|first2=Omid|title=Microwave versus conventional sintering: A review of fundamentals, advantages and applications|journal=Journal of Alloys and Compounds|volume=494|issue=1–2|year=2010|pages=175–189|doi=10.1016/j.jallcom.2010.01.068}}</ref>


माइक्रोवेव सिंटरिंग की विफलता यह है कि यह आम तौर पर एक समय में केवल एक कॉम्पैक्ट सिंटर करता है, इसलिए कलाकारों के लिए एक तरह की सिंटरिंग वाली स्थितियों को छोड़कर समग्र उत्पादकता खराब हो जाती है। चूंकि माइक्रोवेव उच्च चालकता और उच्च [[पारगम्यता (विद्युत चुंबकत्व)]] वाली पदार्थ में केवल एक छोटी दूरी तक प्रवेश कर सकते हैं, इसलिए माइक्रोवेव सिंटरिंग के लिए विशेष पदार्थ में माइक्रोवेव की प्रवेश गहराई के आसपास एक कण आकार के साथ पाउडर में नमूना वितरित करने की आवश्यकता होती है। सिंटरिंग प्रक्रिया और साइड-रिएक्शन एक ही तापमान पर माइक्रोवेव सिंटरिंग के दौरान कई गुना तेजी से चलते हैं, जिसके परिणामस्वरूप उत्पाद किए गए उत्पाद के लिए अलग-अलग गुण होते हैं।<ref name="OghbaeiMirzaee2010" />
सूक्ष्मतरंग सिंटरिंग की विफलता यह है कि यह आम तौर पर एक समय में केवल एक सुसंहत सिंटर करता है, इसलिए कलाकारों के लिए एक तरह की सिंटरिंग वाली स्थितियों को छोड़कर समग्र उत्पादकता खराब हो जाती है। चूंकि सूक्ष्मतरंग उच्च चालकता और उच्च [[पारगम्यता (विद्युत चुंबकत्व)]] वाली पदार्थ में केवल एक छोटी दूरी तक प्रवेश कर सकते हैं, इसलिए सूक्ष्मतरंग सिंटरिंग के लिए विशेष पदार्थ में सूक्ष्मतरंग की प्रवेश गहराई के आसपास एक कण आकार के साथ पाउडर में नमूना वितरित करने की आवश्यकता होती है। सिंटरिंग प्रक्रिया और साइड-रिएक्शन एक ही तापमान पर सूक्ष्मतरंग सिंटरिंग के दौरान कई गुना तेजी से चलते हैं, जिसके परिणामस्वरूप उत्पाद किए गए उत्पाद के लिए अलग-अलग गुण होते हैं।<ref name="OghbaeiMirzaee2010" />


इस तकनीक को निसादित [[bioceramics|बायोसेरामिक]] में बारीक कण/नैनो आकार के कण को बनाए रखने में काफी प्रभावी माना जाता है। मैग्नीशियम फॉस्फेट और कैल्शियम फॉस्फेट ऐसे उदाहरण हैं जिन्हें माइक्रोवेव सिंटरिंग तकनीक के माध्यम से संसाधित किया गया है।<ref>{{cite journal|last1=Babaie|first1=Elham|last2=Ren|first2=Yufu|last3=Bhaduri|first3=Sarit B.|title=Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization|journal=Journal of Materials Research|date=23 March 2016|volume=31|issue=8|pages=995–1003|doi=10.1557/jmr.2016.84|bibcode=2016JMatR..31..995B}}</ref>
इस तकनीक को निसादित [[bioceramics|बायोसेरामिक]] में बारीक कण/नैनो आकार के कण को बनाए रखने में काफी प्रभावी माना जाता है। मैग्नीशियम फॉस्फेट और कैल्शियम फॉस्फेट ऐसे उदाहरण हैं जिन्हें सूक्ष्मतरंग सिंटरिंग तकनीक के माध्यम से संसाधित किया गया है।<ref>{{cite journal|last1=Babaie|first1=Elham|last2=Ren|first2=Yufu|last3=Bhaduri|first3=Sarit B.|title=Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization|journal=Journal of Materials Research|date=23 March 2016|volume=31|issue=8|pages=995–1003|doi=10.1557/jmr.2016.84|bibcode=2016JMatR..31..995B}}</ref>
== सघनता, विट्रीफिकेशन और कण वृद्धि ==
== सघनता, विट्रीफिकेशन और कण वृद्धि ==
सिंटरिंग व्यवहार में सघनता और कण वृद्धि दोनों का नियंत्रण है। [[घनत्व]] एक नमूने में सरंध्रता को कम करने का कार्य है, जिससे यह सघन हो जाता है। कण की वृद्धि औसत कण के आकार को बढ़ाने के लिए कण की सीमा गति और ओस्टवाल्ड पकने की प्रक्रिया है। उच्च आपेक्षिक घनत्व और छोटे दाने के आकार, दोनों से कई गुण ([[यांत्रिक शक्ति]], विद्युत टूटने की शक्ति, आदि) लाभान्वित होते हैं। इसलिए, प्रसंस्करण के दौरान इन गुणों को नियंत्रित करने में सक्षम होना उच्च तकनीकी महत्व का है। चूंकि चूर्ण के घनत्व के लिए उच्च तापमान की आवश्यकता होती है, सिंटरिंग के दौरान कण की वृद्धि स्वाभाविक रूप से होती है। इस प्रक्रिया को कम करना कई इंजीनियरिंग सिरेमिक के लिए महत्वपूर्ण है। रसायन विज्ञान और अभिविन्यास की कुछ शर्तों के तहत, सिंटरिंग के दौरान कुछ कण अपने पड़ोसियों की कीमत पर तेजी से बढ़ सकते हैं। यह घटना, जिसे [[असामान्य अनाज वृद्धि|असामान्य कण वृद्धि]] (एजीजी) के रूप में जाना जाता है, के परिणामस्वरूप कण के आकार का एक बिमोडल वितरण होता है, जिसके यांत्रिक, ढांकता हुआ और निसादित पदार्थ के तापीय प्रदर्शन के परिणाम होते हैं।
सिंटरिंग व्यवहार में सघनता और कण वृद्धि दोनों का नियंत्रण है। [[घनत्व]] एक नमूने में सरंध्रता को कम करने का कार्य है, जिससे यह सघन हो जाता है। कण की वृद्धि औसत कण के आकार को बढ़ाने के लिए कण की सीमा गति और ओस्टवाल्ड पकने की प्रक्रिया है। उच्च आपेक्षिक घनत्व और छोटे कण के आकार, दोनों से कई गुण ([[यांत्रिक शक्ति]], विद्युत टूटने की शक्ति, आदि) लाभान्वित होते हैं। इसलिए, प्रसंस्करण के दौरान इन गुणों को नियंत्रित करने में सक्षम होना उच्च तकनीकी महत्व का है। चूंकि चूर्ण के घनत्व के लिए उच्च तापमान की आवश्यकता होती है, सिंटरिंग के दौरान कण की वृद्धि स्वाभाविक रूप से होती है। इस प्रक्रिया को कम करना कई इंजीनियरिंग सिरेमिक के लिए महत्वपूर्ण है। रसायन विज्ञान और अभिविन्यास की कुछ शर्तों के तहत, सिंटरिंग के दौरान कुछ कण अपने पड़ोसियों की कीमत पर तेजी से बढ़ सकते हैं। यह घटना, जिसे [[असामान्य अनाज वृद्धि|असामान्य कण वृद्धि]] (एजीजी) के रूप में जाना जाता है, के परिणामस्वरूप कण के आकार का एक बिमोडल वितरण होता है, जिसके यांत्रिक, ढांकता हुआ और निसादित पदार्थ के तापीय प्रदर्शन के परिणाम होते हैं।


सघनता को त्वरित गति से होने के लिए आवश्यक है कि (1) तरल चरण की मात्रा जो आकार में बड़ी हो, (2) तरल में ठोस की लगभग पूर्ण घुलनशीलता, और (3) ठोस का गीला होना तरल। घनत्व के पीछे की शक्ति ठीक ठोस कणों के बीच स्थित तरल चरण के केशिका दबाव से ली गई है। जब तरल चरण ठोस कणों को भिगोता है, तो कणों के बीच का प्रत्येक स्थान एक केशिका बन जाता है जिसमें पर्याप्त केशिका दबाव विकसित होता है। सबमाइक्रोमीटर कण आकार के लिए, 0.1 से 1 माइक्रोमीटर के व्यास वाले केशिकाएं सिलिकेट तरल पदार्थ के लिए 175 पाउंड प्रति वर्ग इंच (1,210 kPa) से 1,750 पाउंड प्रति वर्ग इंच (12,100 kPa) की सीमा में और 975 की सीमा में दबाव विकसित करती हैं। तरल कोबाल्ट जैसी धातु के लिए पाउंड प्रति वर्ग इंच (6,720 kPa) से 9,750 पाउंड प्रति वर्ग इंच (67,200 kPa)।<ref name=Kingery/>
सघनता को त्वरित गति से होने के लिए आवश्यक है कि (1) द्रव प्रावस्था की मात्रा जो आकार में बड़ी हो, (2) द्रव में ठोस की लगभग पूर्ण घुलनशीलता, और (3) ठोस का गीला होना द्रव। घनत्व के पीछे की शक्ति ठीक ठोस कणों के बीच स्थित द्रव प्रावस्था के केशिका दबाव से ली गई है। जब द्रव प्रावस्था ठोस कणों को भिगोता है, तो कणों के बीच का प्रत्येक स्थान एक केशिका बन जाता है जिसमें पर्याप्त केशिका दबाव विकसित होता है। सबमाइक्रोमीटर कण आकार के लिए, 0.1 से 1 माइक्रोमीटर के व्यास वाले केशिकाएं सिलिकेट द्रव पदार्थ के लिए 175 पाउंड प्रति वर्ग इंच (1,210 kPa) से 1,750 पाउंड प्रति वर्ग इंच (12,100 kPa) की सीमा में और 975 की सीमा में दबाव विकसित करती हैं। द्रव कोबाल्ट जैसी धातु के लिए पाउंड प्रति वर्ग इंच (6,720 kPa) से 9,750 पाउंड प्रति वर्ग इंच (67,200 kPa)।<ref name=Kingery/>


घनत्व के लिए निरंतर [[केशिका दबाव]] की आवश्यकता होती है जहां केवल समाधान-वर्षा पदार्थ स्थानांतरण घनत्व उत्पन्न नहीं करेगा। आगे सघनता के लिए, अतिरिक्त कण संचलन जबकि कण कण-विकास से गुजरता है और कण-आकार में परिवर्तन होता है। सिकुड़न का परिणाम तब होता है जब तरल कणों के बीच फिसल जाता है और संपर्क के बिंदुओं पर दबाव बढ़ जाता है जिससे पदार्थ संपर्क क्षेत्रों से दूर चली जाती है, कण केंद्रों को एक दूसरे के पास आने के लिए मजबूर करती है।<ref name=Kingery/>
घनत्व के लिए निरंतर [[केशिका दबाव]] की आवश्यकता होती है जहां केवल समाधान-अवक्षेपण पदार्थ स्थानांतरण घनत्व उत्पन्न नहीं करेगा। आगे सघनता के लिए, अतिरिक्त कण संचलन जबकि कण कण-विकास से गुजरता है और कण-आकार में परिवर्तन होता है। सिकुड़न का परिणाम तब होता है जब द्रव कणों के बीच फिसल जाता है और संपर्क के बिंदुओं पर दबाव बढ़ जाता है जिससे पदार्थ संपर्क क्षेत्रों से दूर चली जाती है, कण केंद्रों को एक दूसरे के पास आने के लिए मजबूर करती है।<ref name=Kingery/>


तरल-चरण पदार्थ के सिंटरिंग में इसके व्यास के आनुपातिक आवश्यक केशिका दबाव बनाने के लिए एक महीन दाने वाला ठोस चरण शामिल होता है, और तरल सांद्रता को सीमा के भीतर आवश्यक केशिका दबाव भी बनाना चाहिए, अन्यथा प्रक्रिया समाप्त हो जाती है। विट्रीफिकेशन दर छिद्र के आकार, चिपचिपाहट और तरल चरण की मात्रा पर निर्भर करती है, जो समग्र संरचना की चिपचिपाहट और सतह के तनाव की ओर ले जाती है। घनत्व के लिए तापमान निर्भरता प्रक्रिया को नियंत्रित करती है क्योंकि उच्च तापमान पर चिपचिपाहट कम हो जाती है और तरल पदार्थ बढ़ जाती है। इसलिए, जब संरचना और प्रसंस्करण में परिवर्तन किए जाते हैं, तो यह विट्रीफिकेशन प्रक्रिया को प्रभावित करेगा।<ref name=Kingery/>
द्रव-चरण पदार्थ के सिंटरिंग में इसके व्यास के आनुपातिक आवश्यक केशिका दबाव बनाने के लिए एक महीन कण वाला ठोस चरण शामिल होता है, और द्रव सांद्रता को सीमा के भीतर आवश्यक केशिका दबाव भी बनाना चाहिए, अन्यथा प्रक्रिया समाप्त हो जाती है। विट्रीफिकेशन दर छिद्र के आकार, चिपचिपाहट और द्रव प्रावस्था की मात्रा पर निर्भर करती है, जो समग्र संरचना की चिपचिपाहट और सतह के तनाव की ओर ले जाती है। घनत्व के लिए तापमान निर्भरता प्रक्रिया को नियंत्रित करती है क्योंकि उच्च तापमान पर चिपचिपाहट कम हो जाती है और द्रव पदार्थ बढ़ जाती है। इसलिए, जब संरचना और प्रसंस्करण में परिवर्तन किए जाते हैं, तो यह विट्रीफिकेशन प्रक्रिया को प्रभावित करेगा।<ref name=Kingery/>
=== सिंटरिंग तंत्र ===
=== सिंटरिंग तंत्र ===
माइक्रोस्ट्रक्चर के माध्यम से परमाणुओं के विसरण से सिंटरिंग होता है। यह विसरण रासायनिक क्षमता के एक ढाल के कारण होता है - परमाणु उच्च रासायनिक क्षमता वाले क्षेत्र से कम रासायनिक क्षमता वाले क्षेत्र में चले जाते हैं। एक स्थान से दूसरे स्थान पर जाने के लिए परमाणु जिन विभिन्न रास्तों का सहारा लेते हैं, वे सिंटरिंग मैकेनिज्म हैं। छह सामान्य तंत्र हैं:
माइक्रोस्ट्रक्चर के माध्यम से परमाणुओं के विसरण से सिंटरिंग होता है। यह विसरण रासायनिक क्षमता के एक ढाल के कारण होता है - परमाणु उच्च रासायनिक क्षमता वाले क्षेत्र से कम रासायनिक क्षमता वाले क्षेत्र में चले जाते हैं। एक स्थान से दूसरे स्थान पर जाने के लिए परमाणु जिन विभिन्न रास्तों का सहारा लेते हैं, वे सिंटरिंग मैकेनिज्म हैं। छह सामान्य तंत्र हैं:
Line 162: Line 162:
डीए के साथ कण-सीमा क्षेत्र में प्रति इकाई लंबाई में वृद्धि के रूप में कण-सीमा क्षेत्र में माना जाता है।<ref name="Fundamentals of Materials Science" /><sup>[पेज 478]</sup>
डीए के साथ कण-सीमा क्षेत्र में प्रति इकाई लंबाई में वृद्धि के रूप में कण-सीमा क्षेत्र में माना जाता है।<ref name="Fundamentals of Materials Science" /><sup>[पेज 478]</sup>


जीबी तनाव को सतह पर परमाणुओं के बीच आकर्षक बल के रूप में भी माना जा सकता है और इन परमाणुओं के बीच तनाव इस तथ्य के कारण है कि बल्क (यानी सतह तनाव) की तुलना में सतह पर उनके बीच एक बड़ी अंतर-दूरी है। . जब सतह का क्षेत्रफल बड़ा हो जाता है तो बांड अधिक खिंचते हैं और जीबी तनाव बढ़ता है। तनाव में इस वृद्धि का प्रतिकार करने के लिए जीबी तनाव को स्थिर रखते हुए सतह पर परमाणुओं का परिवहन होना चाहिए। परमाणुओं का यह विसरण तरल पदार्थों में निरंतर सतही तनाव के कारण होता है। फिर तर्क,<math display="block">\sigma_{GB} dA  \text{ (work done)} = \gamma_{GB} dA \text{ (energy change)}\,\!</math>
जीबी तनाव को सतह पर परमाणुओं के बीच आकर्षक बल के रूप में भी माना जा सकता है और इन परमाणुओं के बीच तनाव इस तथ्य के कारण है कि बल्क (यानी सतह तनाव) की तुलना में सतह पर उनके बीच एक बड़ी अंतर-दूरी है। . जब सतह का क्षेत्रफल बड़ा हो जाता है तो बांड अधिक खिंचते हैं और जीबी तनाव बढ़ता है। तनाव में इस वृद्धि का प्रतिकार करने के लिए जीबी तनाव को स्थिर रखते हुए सतह पर परमाणुओं का परिवहन होना चाहिए। परमाणुओं का यह विसरण द्रव पदार्थों में निरंतर सतही तनाव के कारण होता है। फिर तर्क,<math display="block">\sigma_{GB} dA  \text{ (work done)} = \gamma_{GB} dA \text{ (energy change)}\,\!</math>




Line 173: Line 173:
<math>\sigma_{GB}</math> सामान्य रूप से की इकाइयों में व्यक्त किया जाता है <math>\frac{N}{m}</math> जबकि <math>\gamma_{GB}</math> सामान्य रूप से की इकाइयों में व्यक्त किया जाता है <math>\frac{J}{m^2}</math> <math>(J = Nm)</math> चूंकि वे विभिन्न भौतिक गुण हैं।<ref name="Fundamentals of Materials Science" />
<math>\sigma_{GB}</math> सामान्य रूप से की इकाइयों में व्यक्त किया जाता है <math>\frac{N}{m}</math> जबकि <math>\gamma_{GB}</math> सामान्य रूप से की इकाइयों में व्यक्त किया जाता है <math>\frac{J}{m^2}</math> <math>(J = Nm)</math> चूंकि वे विभिन्न भौतिक गुण हैं।<ref name="Fundamentals of Materials Science" />
==== [[यांत्रिक संतुलन]] ====
==== [[यांत्रिक संतुलन]] ====
द्वि-आयामी आइसोटोपिक पदार्थ में कण के लिए कण सीमा तनाव समान होगा। यह जीबी जंक्शन पर 120 डिग्री का कोण देगा जहां तीन कण मिलते हैं। यह संरचना को एक[[हेक्सागोनल]] पैटर्न देगा जो 2डी नमूने की [[मेटास्टेबल]] अवस्था (या यांत्रिक संतुलन) है। इसका एक परिणाम यह है कि जितना संभव हो सके संतुलन के करीब रहने की कोशिश करते रहने के लिए, छह से कम पक्षों वाले कण जीबी को एक दूसरे के बीच 120 डिग्री कोण रखने की कोशिश करने के लिए झुकाएंगे। इसका परिणाम घुमावदार सीमा में होता है, जिसकी [[वक्रता]] स्वयं की ओर होती है। जैसा कि उल्लेख किया गया है, छह भुजाओं वाले कण की सीधी सीमाएँ होंगी, जबकि छह से अधिक भुजाओं वाले कण की घुमावदार सीमाएँ होंगी, जिसकी वक्रता स्वयं से दूर होगी। छह सीमाओं वाला कण (यानी हेक्सागोनल संरचना) 2डी संरचना के भीतर एक मेटास्टेबल स्थिति (यानी स्थानीय संतुलन) में है।<ref name="Fundamentals of Materials Science" />तीन आयामों में संरचनात्मक विवरण समान हैं लेकिन बहुत अधिक जटिल हैं और कण के लिए मेटास्टेबल संरचना एक गैर-नियमित 14-पक्षीय [[बहुकोणीय आकृति]] जिसमें दोगुने घुमावदार चेहरे हैं। व्यवहार में कण के सभी व्यूह हमेशा अस्थिर होते हैं और इस प्रकार हमेशा तब तक बढ़ते हैं जब तक कि एक प्रतिबल द्वारा रोका न जाए।<ref name="Physical Metallurgy ch 28">{{cite book|author=Cahn, Robert W. and Haasen, Peter |title=Physical Metallurgy|year=1996|isbn=978-0-444-89875-3|pages=2399–2500|edition=Fourth}}</ref>
द्वि-आयामी आइसोटोपिक पदार्थ में कण के लिए कण सीमा तनाव समान होगा। यह जीबी जंक्शन पर 120 डिग्री का कोण देगा जहां तीन कण मिलते हैं। यह संरचना को एक[[हेक्सागोनल]] पैटर्न देगा जो 2डी नमूने की [[मेटास्टेबल]] अवस्था (या यांत्रिक संतुलन) है। इसका एक परिणाम यह है कि जितना संभव हो सके संतुलन के करीब रहने की कोशिश करते रहने के लिए, छह से कम पक्षों वाले कण जीबी को एक दूसरे के बीच 120 डिग्री कोण रखने की कोशिश करने के लिए झुकाएंगे। इसका परिणाम घुमावदार सीमा में होता है, जिसकी [[वक्रता]] स्वयं की ओर होती है। जैसा कि उल्लेख किया गया है, छह भुजाओं वाले कण की सीधी सीमाएँ होंगी, जबकि छह से अधिक भुजाओं वाले कण की घुमावदार सीमाएँ होंगी, जिसकी वक्रता स्वयं से दूर होगी। छह सीमाओं वाला कण (यानी षट्कोणीय संरचना) 2डी संरचना के भीतर एक मेटास्टेबल स्थिति (यानी स्थानीय संतुलन) में है।<ref name="Fundamentals of Materials Science" />तीन आयामों में संरचनात्मक विवरण समान हैं लेकिन बहुत अधिक जटिल हैं और कण के लिए मेटास्टेबल संरचना एक गैर-नियमित 14-पक्षीय [[बहुकोणीय आकृति]] जिसमें दोगुने घुमावदार चेहरे हैं। व्यवहार में कण के सभी व्यूह हमेशा अस्थिर होते हैं और इस प्रकार हमेशा तब तक बढ़ते हैं जब तक कि एक प्रतिबल द्वारा रोका न जाए।<ref name="Physical Metallurgy ch 28">{{cite book|author=Cahn, Robert W. and Haasen, Peter |title=Physical Metallurgy|year=1996|isbn=978-0-444-89875-3|pages=2399–2500|edition=Fourth}}</ref>


कण अपनी ऊर्जा को कम करने का प्रयास करते हैं, और एक घुमावदार सीमा में सीधी सीमा की तुलना में अधिक ऊर्जा होती है। इसका मतलब है कि कण की सीमा वक्रता की ओर पलायन करेगी। [स्पष्टीकरण की आवश्यकता] इसका परिणाम यह है कि 6 से कम भुजाओं वाले कण का आकार घट जाएगा जबकि 6 से अधिक भुजाओं वाले कण का आकार बढ़ जाएगा।<ref name="Ceramic materials ch sintering">{{cite book|last1=Carter|first1=C. Barry|last2=Norton|first2=M. Grant|title=Ceramic Materials: Science and Engineering|url=https://archive.org/details/ceramicmaterials00cart|url-access=limited|year=2007|publisher=Springer Science+Business Media, LLC.|isbn=978-0-387-46270-7|pages=[https://archive.org/details/ceramicmaterials00cart/page/n425 427]–443}}</ref>
कण अपनी ऊर्जा को कम करने का प्रयास करते हैं, और एक घुमावदार सीमा में सीधी सीमा की तुलना में अधिक ऊर्जा होती है। इसका मतलब है कि कण की सीमा वक्रता की ओर पलायन करेगी। [स्पष्टीकरण की आवश्यकता] इसका परिणाम यह है कि 6 से कम भुजाओं वाले कण का आकार घट जाएगा जबकि 6 से अधिक भुजाओं वाले कण का आकार बढ़ जाएगा।<ref name="Ceramic materials ch sintering">{{cite book|last1=Carter|first1=C. Barry|last2=Norton|first2=M. Grant|title=Ceramic Materials: Science and Engineering|url=https://archive.org/details/ceramicmaterials00cart|url-access=limited|year=2007|publisher=Springer Science+Business Media, LLC.|isbn=978-0-387-46270-7|pages=[https://archive.org/details/ceramicmaterials00cart/page/n425 427]–443}}</ref>


कण की वृद्धि कण की सीमा के पार परमाणुओं की गति के कारण होती है। अवतल सतहों की तुलना में उत्तल सतहों में उच्च रासायनिक क्षमता होती है, इसलिए कण की सीमाएं उनके वक्रता के केंद्र की ओर बढ़ेंगी। चूंकि छोटे कणों में वक्रता का एक उच्च दायरा होता है और इसके परिणामस्वरूप छोटे कण बड़े कण में परमाणु खो देते हैं और सिकुड़ जाते हैं। यह ओस्टवाल्ड पकने नामक एक प्रक्रिया है। छोटे दानों की कीमत पर बड़े दाने उगते हैं।
कण की वृद्धि कण की सीमा के पार परमाणुओं की गति के कारण होती है। अवतल सतहों की तुलना में उत्तल सतहों में उच्च रासायनिक क्षमता होती है, इसलिए कण की सीमाएं उनके वक्रता के केंद्र की ओर बढ़ेंगी। चूंकि छोटे कणों में वक्रता का एक उच्च दायरा होता है और इसके परिणामस्वरूप छोटे कण बड़े कण में परमाणु खो देते हैं और सिकुड़ जाते हैं। यह ओस्टवाल्ड पकने नामक एक प्रक्रिया है। छोटे दानों की कीमत पर बड़े कण उगते हैं।


एक साधारण मॉडल में कण की वृद्धि निम्न पाई जाती है:
एक साधारण मॉडल में कण की वृद्धि निम्न पाई जाती है:
<math display="block">G^m= G_0^m+Kt</math>
<math display="block">G^m= G_0^m+Kt</math>
यहाँ G अंतिम औसत दाने का आकार है, G0 प्रारंभिक औसत दाने का आकार है, t समय है, m 2 और 4 के बीच का एक कारक है, और K एक कारक है:<math display="block">K= K_0 e^{\frac{-Q}{RT}}</math>
यहाँ G अंतिम औसत कण का आकार है, G0 प्रारंभिक औसत कण का आकार है, t समय है, m 2 और 4 के बीच का एक कारक है, और K एक कारक है:<math display="block">K= K_0 e^{\frac{-Q}{RT}}</math>




Line 189: Line 189:
विलेय आयन
विलेय आयन


यदि पदार्थ में डोपेंट मिलाया जाता है (उदाहरण: BaTiO3 में Nd) तो अशुद्धता कण की सीमाओं से चिपक जाएगी। जैसे ही कण की सीमा बढ़ने की कोशिश करती है (जैसा कि परमाणु उत्तल से अवतल सतह पर कूदते हैं) कण की सीमा पर डोपेंट की एकाग्रता में परिवर्तन सीमा पर एक खिंचाव लगाएगा। कण की सीमा के आसपास विलेय की मूल सांद्रता ज्यादातर मामलों में विषम होगी। चूंकि कण की सीमा बढ़ने की कोशिश करती है, गति के विपरीत दिशा में एकाग्रता में उच्च एकाग्रता होगी और इसलिए उच्च रासायनिक क्षमता होगी। यह बढ़ी हुई रासायनिक क्षमता मूल रासायनिक संभावित ढाल के लिए एक बैकफोर्स के रूप में कार्य करेगी जो कि कण सीमा गतिविधि का कारण है। शुद्ध रासायनिक क्षमता में यह कमी कण की सीमा के वेग को कम करेगी और इसलिए कण की वृद्धि होगी।
यदि पदार्थ में डोपेंट मिलाया जाता है (उदाहरण: BaTiO3 में Nd) तो अशुद्धता कण की सीमाओं से चिपक जाती है। जैसे ही कण की सीमा बढ़ने की कोशिश करती है (जैसा कि परमाणु उत्तल से अवतल सतह पर कूदते हैं) कण की सीमा पर डोपेंट की एकाग्रता में परिवर्तन सीमा पर एक खिंचाव लगाएगा। कण की सीमा के आसपास विलेय की मूल सांद्रता ज्यादातर मामलों में विषम होगी। चूंकि कण की सीमा बढ़ने की कोशिश करती है, गति के विपरीत दिशा में एकाग्रता में उच्च एकाग्रता होगी और इसलिए उच्च रासायनिक क्षमता होगी। यह बढ़ी हुई रासायनिक क्षमता मूल रासायनिक संभावित ढाल के लिए एक बैकफोर्स के रूप में कार्य करेगी जो कि कण सीमा गतिविधि का कारण है। शुद्ध रासायनिक क्षमता में यह कमी कण की सीमा के वेग को कम करेगी और इसलिए कण की वृद्धि होगी।


;ठीक दूसरे चरण के कण
;ठीक दूसरे चरण के कण


यदि दूसरे चरण के कण जो मैट्रिक्स चरण में अघुलनशील होते हैं, पाउडर में बहुत महीन पाउडर के रूप में जोड़े जाते हैं, तो इससे कण की सीमा गति कम हो जाएगी। जब कण की सीमा परमाणुओं के समावेशन विसरण को एक दाने से दूसरे दाने तक ले जाने की कोशिश करती है, तो यह अघुलनशील कण द्वारा बाधित हो जाएगा। ऐसा इसलिए है क्योंकि कणों का कण की सीमाओं में रहना फायदेमंद होता है और वे कण की सीमा प्रवास की तुलना में विपरीत दिशा में बल लगाते हैं। इस प्रभाव को उस व्यक्ति के नाम पर जेनर प्रभाव कहा जाता है जिसने इस ड्रैग फोर्स का अनुमान लगाया था
यदि दूसरे चरण के कण जो मैट्रिक्स चरण में अघुलनशील होते हैं, पाउडर में बहुत महीन पाउडर के रूप में जोड़े जाते हैं, तो इससे कण की सीमा गति कम हो जाती है। जब कण की सीमा परमाणुओं के समावेशन विसरण को एक कण से दूसरे कण तक ले जाने की कोशिश करती है, तो यह अघुलनशील कण द्वारा बाधित हो जाएगा। ऐसा इसलिए है क्योंकि कणों का कण की सीमाओं में रहना फायदेमंद होता है और वे कण की सीमा प्रवास की तुलना में विपरीत दिशा में बल लगाते हैं। इस प्रभाव को उस व्यक्ति के नाम पर जेनर प्रभाव कहा जाता है जिसने इस ड्रैग फोर्स का अनुमान लगाया था


<math display="block"> F = \pi r \lambda \sin (2\theta)\,\!</math>
<math display="block"> F = \pi r \lambda \sin (2\theta)\,\!</math>

Revision as of 15:53, 13 February 2023

गर्मी और संघनन छोटे कणों को एक सघन थोक में संयोजन कर देते हैं
सिंटरिंग द्वारा निर्मित क्लिंकर (सीमेंट) नोड्यूल सिंटरिंग या फ्रिटेज दबाव द्वारा पदार्थ के ठोस द्रव्यमान को संकुचित करने और बनाने की प्रक्रिया है[1] या गर्मी[2] द्रवीकरण के बिंदु तक इसे पिघलाए बिना। धातु, चीनी मिट्टी की चीज़ें, प्लास्टिक और अन्य पदार्थ के साथ उपयोग की जाने वाली निर्माण प्रक्रिया के हिस्से के रूप में सिंटरिंग होता है। पदार्थ में परमाणु कणों की सीमाओं के पार फैलते हैं, कणों को एक साथ जोड़कर एक ठोस टुकड़ा बनाते हैं। क्योंकि सिंटरिंग तापमान को पदार्थ के पिघलने बिंदु तक नहीं पहुंचना पड़ता है, सिंटरिंग को अक्सर टंगस्टन और मोलिब्डेनम जैसे अत्यधिक उच्च पिघलने वाले बिंदुओं वाली पदार्थ के लिए आकार देने की प्रक्रिया के रूप में चुना जाता है। धातुकर्म पाउडर से संबंधित प्रक्रियाओं में सिंटरिंग के अध्ययन को पाउडर धातुकर्म के रूप में जाना जाता है। सिंटरिंग का एक उदाहरण तब देखा जा सकता है जब एक गिलास पानी में बर्फ के टुकड़े एक दूसरे से चिपक जाते हैं, जो पानी और बर्फ के बीच के तापमान के अंतर से संचालित होता है। दबाव से चलने वाले सिंटरिंग के उदाहरण एक ग्लेशियर में हिमपात का संघनन है, या एक साथ ढीली बर्फ को दबाकर एक कठोर स्नोबॉल का निर्माण करना है। सिंटरिंग द्वारा उत्पादित पदार्थ को सिंटर कहा जाता है। सिंटर शब्द मध्य उच्च जर्मन से आया है sinter, अंग्रेजी का सजातीय शब्द: सिंडर।

सामान्य सिंटरिंग

सिंटरिंग टूल का क्रॉस सेक्शन और सिंटर्ड पार्ट
सिंटरिंग को आम तौर पर तब सफल माना जाता है जब प्रक्रिया सरंध्रता को कम करती है और शक्ति, विद्युत चालकता, पारभासकता और तापीय चालकता जैसे गुणों को बढ़ाती है। कुछ विशेष मामलों में, सरंध्रता को संरक्षित करते हुए पदार्थ की ताकत बढ़ाने के लिए सिंटरिंग को सावधानी से लागू किया जाता है (उदाहरण के लिए फिल्टर या उत्प्रेरक में, जहां गैस अवशोषक प्राथमिकता है)। फायरिंग प्रक्रिया के दौरान, प्रक्रिया के अंत में छोटे छिद्रों के अंतिम उन्मूलन के लिए पाउडर के बीच गर्दन के गठन से शुरू होने पर, परमाणु विसरण विभिन्न चरणों में पाउडर सतह के उन्मूलन को चलाता है। सघनता के लिए प्रेरणा शक्ति सतह क्षेत्र में कमी और ठोस-वाष्प इंटरफेस के प्रतिस्थापन द्वारा सतह मुक्त ऊर्जा को कम करने से मुक्त ऊर्जा (थर्मोडायनामिक्स) में परिवर्तन है। यह कुल मुक्त ऊर्जा में शुद्ध कमी के साथ नए लेकिन कम ऊर्जा वाले ठोस-ठोस इंटरफेस बनाता है। एक सूक्ष्म पैमाने पर, भौतिक स्थानांतरण दबाव में परिवर्तन और घुमावदार सतह पर मुक्त ऊर्जा में अंतर से प्रभावित होता है। यदि कण का आकार छोटा है (और इसकी वक्रता अधिक है), तो ये प्रभाव परिमाण में बहुत बड़े हो जाते हैं। जब वक्रता की त्रिज्या कुछ माइक्रोमीटर से कम होती है, तो ऊर्जा में परिवर्तन बहुत अधिक होता है, जो मुख्य कारणों में से एक है कि बहुत सी सिरेमिक तकनीक ठीक-कण पदार्थ के उपयोग पर आधारित है।[3] बंधन क्षेत्र से कण आकार का अनुपात शक्ति और विद्युत चालकता जैसे गुणों के लिए एक निर्धारित कारक है। वांछित बंधन क्षेत्र प्राप्त करने के लिए, तापमान और प्रारंभिक कण के आकार को सिंटरिंग प्रक्रिया पर ठीक से नियंत्रित किया जाता है। स्थिर अवस्था में, कण त्रिज्या और वाष्प का दबाव समानुपाती होता है (p0)2/3 और (p0)1/3, क्रमशः।[3] ठोस-अवस्था प्रक्रियाओं के लिए शक्ति का स्रोत गर्दन और कण की सतह के बीच मुक्त या रासायनिक संभावित ऊर्जा में परिवर्तन है। यह ऊर्जा संभव सबसे तेज़ साधनों के माध्यम से पदार्थ का स्थानांतरण करती है; यदि कण आयतन या कणों के बीच कण की सीमा से स्थानांतरण होता है, तो कणों की संख्या कम हो जाती है और छिद्र नष्ट हो जाएंगे। समान आकार के कई छिद्रों वाले नमूनों में ताकना उन्मूलन सबसे तेज़ होता है क्योंकि सीमा विसरण दूरी सबसे छोटी होती है। प्रक्रिया के बाद के हिस्सों के दौरान, सीमा से सीमा और जाली विसरण महत्वपूर्ण हो जाते हैं।[3] सिंटरिंग प्रक्रिया के लिए तापमान का नियंत्रण बहुत महत्वपूर्ण है, क्योंकि कण-सीमा विसरण और आयतन विसरण तापमान, कण आकार, कण वितरण, पदार्थ संरचना और अक्सर सिंटरिंग वातावरण के अन्य गुणों पर बहुत अधिक निर्भर करता है।[3]

सिरेमिक सिंटरिंग

Template:Unref section सिंटरिंग [[कुंभकारी

सिंटरिंग कुंभकारी और अन्य सिरेमिक वस्तुओं के निर्माण में उपयोग की जाने वाली फायरिंग प्रक्रिया का हिस्सा है। ये वस्तुएं कांच, अल्युमिना, जिरकोनियम(IV) ऑक्साइड, सिलिका, मैग्नीशिया (खनिज)खनिज), चूना (खनिज), बेरिलियम ऑक्साइड और फेरिक ऑक्साइड जैसे पदार्थों से बनी हैं। कुछ सिरेमिक कच्चे माल में मिट्टी की तुलना में पानी के लिए कम आत्मीयता और कमप्लास्टिसिटी इंडेक्स होता है, जिसके लिए सिंटरिंग से पहले चरणों में कार्बनिक योजक की आवश्यकता होती है। पाउडर के सिंटरिंग के माध्यम से सिरेमिक वस्तुओं को बनाने की सामान्य प्रक्रिया में शामिल हैं:

  • घोल बनाने के लिए पानी, बाइंडर (पदार्थ), विलोकुलक और बिना पकाए सिरेमिक पाउडर को मिलाना
  • घोल को फुहारशुष्कन करना
  • स्प्रे सूखे पाउडर को सांचे में डालकर हरे रंग की तत्व (बिना सिले सिरेमिक आइटम) बनाने के लिए इसे दबाएं
  • बाइंडर को जलाने के लिए ग्रीन तत्व को कम तापमान पर गर्म करना
  • सिरेमिक कणों को साथ संयोजन करने के लिए उच्च तापमान पर सिंटरिंग।

चरण परिवर्तन, कांच के संक्रमण और गलनांक से जुड़े सभी विशिष्ट तापमान, विशेष सिरेमिक निर्माण (यानी, अवशिष्ट और फ्रिट्स) के सिंटरीकरण चक्र के दौरान होने वालेऑप्टिकल डिलेटोमीटर तापीय विश्लेषण के दौरान विस्तार-तापमान वक्रों को देखकर आसानी से प्राप्त किए जा सकते हैं। वास्तव में, सिंटरीकरण पदार्थ के उल्लेखनीय संकुचन के साथ जुड़ा हुआ है क्योंकि कांच के चरण उनके संक्रमण तापमान तक पहुंचने के बाद प्रवाहित होते हैं, और चूर्णी संरचना को मजबूत करना शुरू करते हैं और पदार्थ की सरंध्रता को काफी कम करते हैं।

सिंटरिंग उच्च तापमान पर किया जाता है। इसके अतिरिक्त, एक दूसरे और/या तीसरे बाहरी बल (जैसे दबाव, विद्युत प्रवाह) का उपयोग किया जा सकता है। आमतौर पर इस्तेमाल किया जाने वाला दूसरा बाहरी बल दबाव है। केवल ताप द्वारा की जाने वाली सिंटरिंग को आम तौर पर "दबाव रहित सिंटरिंग" कहा जाता है, जो क्रमिक मेटल-सिरेमिक सम्मिश्र के साथ संभव है, नैनोपार्टिकल सिंटरिंग सहायता और बल्क मोल्डिंग तकनीक का उपयोग करता है। 3D आकृतियों के लिए उपयोग किए जाने वाले संस्करण को तप्त समस्थैतिक दाबन कहा जाता है।

सिंटरिंग के दौरान भट्ठी में उत्पाद के कुशल चितीयन की अनुमति देने और भागों को एक साथ अनुलग्न से रोकने के लिए, कई उत्पादक सिरेमिक पाउडर पृथक्कारक शीट्स का उपयोग करके बर्तन को अलग करते हैं। ये चादरें एल्यूमिना, ज़िरकोनिया और मैग्नेशिया जैसी विभिन्न पदार्थ में उपलब्ध हैं। उन्हें अतिरिक्त रूप से सूक्ष्म, मध्यम और मोटे कण आकार द्वारा वर्गीकृत किया जाता है। पदार्थ और कण आकार को उत्पाद किए जा रहे बर्तन से मिलान करके, भट्ठी के भरण को अधिकतम करते हुए सतह की क्षति और संदूषण को कम किया जा सकता है।

धात्विक चूर्ण की सिंटरिंग

अधिकांश, यदि सभी, धातुओं को निसादित नहीं किया जा सकता है। यह विशेष रूप से निर्वात में उत्पादित शुद्ध धातुओं पर लागू होता है जो सतह संदूषण से ग्रस्त नहीं होते हैं। वायुमंडलीय दबाव के तहत सिंटरिंग के लिए सुरक्षात्मक गैस के उपयोग की आवश्यकता होती है, जो अक्सर ऊष्माशोषी गैस होती है। सिंटरिंग, बाद में फिर से काम करने के साथ, भौतिक गुणों की बड़ी श्रृंखला का उत्पादन कर सकता है। घनत्व, मिश्रधातु और ताप उपचार में परिवर्तन विभिन्न उत्पादों की भौतिक विशेषताओं को बदल सकते हैं। उदाहरण के लिए, निसादित लोहे के चूर्ण का यंग मापांक En, सिंटरिंग समय, मिश्रधातु, या मूल पाउडर में कम सिंटरिंग तापमान के लिए कण आकार के प्रति कुछ हद तक असंवेदनशील रहता है, लेकिन अंतिम उत्पाद के घनत्व पर निर्भर करता है:

जहाँ D घनत्व है, E यंग का मापांक है और d लोहे का अधिकतम घनत्व है।

सिंटरिंग स्थिर है जब कुछ बाहरी परिस्थितियों में धातु पाउडर सह-अवधि प्रदर्शित कर सकता है, और फिर भी ऐसी स्थितियों को हटा दिए जाने पर अपने सामान्य व्यवहार में वापस आ जाता है। ज्यादातर मामलों में, कण के संग्रह का घनत्व बढ़ जाता है क्योंकि पदार्थ रिक्तियों में प्रवाहित होती है, जिससे समग्र मात्रा में कमी आती है। सिंटरिंग के दौरान होने वाले बड़े गतिविधि में रीपैकिंग द्वारा कुल सरंध्रता में कमी होती है, इसके बाद वाष्पीकरण और विसरण से संघनन के कारण पदार्थ परिवहन होता है। अंतिम चरणों में, धातु के परमाणु क्रिस्टल की सीमाओं के साथ आंतरिक छिद्रों की दीवारों की ओर बढ़ते हैं, वस्तु के आंतरिक बल्क से द्रव्यमान का पुनर्वितरण करते हैं और छिद्रों की दीवारों को चिकना करते हैं। इस गतिविधि के लिए भूतल तनाव प्रेरक शक्ति है।

सिंटरिंग का एक विशेष रूप (जिसे अभी भी पाउडर धातु विज्ञान का हिस्सा माना जाता है) द्रव-अवस्था सिंटरिंग है जिसमें कम से कम एक लेकिन सभी तत्व द्रव अवस्था में नहीं होते हैं। सीमेंटेड कार्बाइड और टंगस्टन कार्बाइड बनाने के लिए द्रव-अवस्था सिंटरिंग की आवश्यकता होती है।

विशेष रूप से निसादित कांस्य का उपयोग अक्सर बेयरिंग (यांत्रिक) के लिए पदार्थ के रूप में किया जाता है, क्योंकि इसकी सरंध्रता स्नेहक को इसके माध्यम से प्रवाहित करने या इसके भीतर अधिकृत रहने की अनुमति देती है। निसादित तांबे का उपयोग कुछ प्रकार के वेग पाइप निर्माण में विकिंग संरचना के रूप में किया जा सकता है, जहां सरंध्रता द्रव पदार्थ को केशिका क्रिया के माध्यम से सरंध्री पदार्थ के माध्यम से स्थानांतरित करने की अनुमति देती है। मोलिब्डेनम, टंगस्टन, रेनीयाम, टैंटलम, आज़मियम और कार्बन जैसे उच्च गलनांक वाली पदार्थ के लिए, सिंटरिंग कुछ व्यवहार्य निर्माण प्रक्रियाओं में से एक है। इन मामलों में, बहुत कम सरंध्रता वांछनीय है और अक्सर प्राप्त की जा सकती है।

निसादित धातु के पाउडर का उपयोग भंगुरता शॉटगन के गोले बनाने के लिए किया जाता है, जिसे ब्रीचिंग राउंड कहा जाता है, जैसा कि सेना और स्वाट टीमों द्वारा बंद कमरे में प्रवेश करने के लिए जल्दी से उपयोग किया जाता है। इन शॉटगन के गोले को छिटकना या दरवाजे के माध्यम से घातक गति से उड़कर जीवन को जोखिम में डाले बिना दरवाजे के डेडबोल्ट, ताले और टिका को नष्ट करने के लिए डिज़ाइन किया गया है। वे जिस वस्तु से टकराते हैं उसे नष्ट करके काम करते हैं और फिर अपेक्षाकृत हानिरहित पाउडर में फैल जाते हैं।

निस्यंदक तत्व को पुन: उत्पन्न करने की क्षमता को बनाए रखते हुए उच्च तापमान प्रतिरोध की आवश्यकता वाले अनुप्रयोगों में निसादित कांस्य और स्टेनलेस स्टील का उपयोग निस्यंदक पदार्थ के रूप में किया जाता है। उदाहरण के लिए, भोजन और फार्मास्युटिकल अनुप्रयोगों में भाप को निस्यंदक के लिए निसादित स्टेनलेस स्टील तत्वों का उपयोग किया जाता है, और वायुयान हाइड्रोलिक सिस्टम में निसादित कांस्य का उपयोग किया जाता है।

चांदी और सोने जैसी कीमती धातुओं वाले पाउडर की सिंटरिंग का उपयोग छोटे गहने बनाने के लिए किया जाता है। सुपरक्रिस्टल में कोलाइडल सिल्वर नैनोक्यूब के बाष्पीकरणीय स्व-संयोजन को 200 डिग्री सेल्सियस से कम तापमान पर विद्युत जोड़ों के सिंटरिंग की अनुमति देने के लिए दिखाया गया है।[4]

लाभ

पाउडर प्रौद्योगिकी के विशेष लाभों में शामिल हैं:

  1. आरंभिक पदार्थ में बहुत उच्च स्तर की शुद्धता (बहुविकल्पी) और एकरूपता
  2. शुद्धता का संरक्षण, सरल बाद की निर्माण प्रक्रिया (कम चरणों) के कारण जो इसे संभव बनाता है
  3. निविष्ट चरणों के दौरान स्फटिक आकार के नियंत्रण द्वारा दोहराए जाने वाले संचालन के विवरण का स्थिरीकरण
  4. अलग-अलग पाउडर कणों के बीच बाध्यकारी संपर्क की अनुपस्थिति - या "समावेशन" (स्ट्रिंगिंग कहा जाता है) - जैसा अक्सर पिघलने की प्रक्रिया में होता है
  5. कण के दिशात्मक बढ़ाव के उत्पादन के लिए किसी विकृति की आवश्यकता नहीं है
  6. नियंत्रित, समान सरंध्रता की पदार्थ का उत्पादन करने की क्षमता।
  7. लगभग जाल के आकार की वस्तुओं का उत्पादन करने की क्षमता।
  8. ऐसी पदार्थ का उत्पादन करने की क्षमता जिसे किसी अन्य तकनीक द्वारा उत्पादित नहीं किया जा सकता है।
  9. टर्बाइन ब्लेड जैसी उच्च शक्ति वाली पदार्थ बनाने की क्षमता।
  10. सिंटरिंग के बाद प्रहस्तन की यांत्रिक शक्ति अधिक हो जाती है।

साहित्य में प्रसंस्करण स्तर पर ठोस/ठोस-चरण यौगिकों या ठोस/पिघल मिश्रण का उत्पादन करने के लिए सिंटरिंग असमान पदार्थ पर कई संदर्भ शामिल हैं। रासायनिक, यांत्रिक या भौतिक प्रक्रियाओं के माध्यम से लगभग किसी भी पदार्थ को पाउडर के रूप में प्राप्त किया जा सकता है, इसलिए मूल रूप से किसी भी पदार्थ को सिंटरिंग के माध्यम से प्राप्त किया जा सकता है। जब शुद्ध तत्वों को सिंटर किया जाता है, तो बचा हुआ पाउडर अभी भी शुद्ध होता है, इसलिए इसे पुनर्नवीनीकरण किया जा सकता है।

नुकसान

पाउडर प्रौद्योगिकी के विशेष नुकसान में शामिल हैं:

  1. वात्या भट्टी (ब्लास्ट फर्नेस) में 100% सिंटर (लौह अयस्क) आवेश नहीं किया जा सकता है
  2. सिंटरिंग एक समान आकार नहीं बना सकता है
  3. सिंटरिंग से पहले उत्पादित सूक्ष्म और नैनोस्ट्रक्चर अक्सर नष्ट हो जाते हैं।

प्लास्टिक सिंटरिंग

प्लास्टिक पदार्थ उन अनुप्रयोगों के लिए सिंटरिंग द्वारा बनाई जाती है जिनके लिए विशिष्ट सरंध्रता की पदार्थ की आवश्यकता होती है। निसादित प्लास्टिक सरंध्री घटकों का उपयोग निस्पंदन में और द्रव और गैस प्रवाह को नियंत्रित करने के लिए किया जाता है। सिंटर्ड प्लास्टिक का उपयोग उन अनुप्रयोगों में किया जाता है जिनके लिए क्षारक द्रव पृथक्करण प्रक्रियाओं की आवश्यकता होती है जैसे कि व्हाइटबोर्ड मार्करों में निब, इनहेलर फिल्टर, और पैकेजिंग पदार्थ पर कैप और लाइनर्स के लिए वेंट है।[5] निसादित अति उच्च आणविक भार पॉलीथीन पदार्थ का उपयोग स्की और स्नोबोर्ड आधार पदार्थ के रूप में किया जाता है। सरंध्री बनावट आधार पदार्थ की संरचना के भीतर मोम को बनाए रखने की अनुमति देती है, इस प्रकार अधिक स्थायी मोम विलेपन प्रदान करती है।

द्रव प्रावस्था सिंटरिंग

ऐसी पदार्थ के लिए जिन्हें सिंटर करना मुश्किल होता है, द्रव प्रावस्था सिंटरिंग नामक प्रक्रिया का आमतौर पर उपयोग किया जाता है। जिन पदार्थ के लिए द्रव प्रावस्था सिंटरिंग आम है, वे Si3N4, WC, सिलिकन कार्बाइड, और बहुत कुछ हैं । द्रव प्रावस्था सिंटरिंग पाउडर में योजक जोड़ने की प्रक्रिया है जो मैट्रिक्स चरण से पहले पिघल जाती है। द्रव प्रावस्था सिंटरिंग की प्रक्रिया में तीन चरण होते हैं:

  • पुनर्व्यवस्था - जैसे ही द्रव पिघलता है केशिका क्रिया द्रव को छिद्रों में खींच लेगी और कण को अधिक अनुकूल पैकिंग व्यवस्था में पुनर्व्यवस्थित करने का कारण बनती है।
  • समाधान-अवक्षेपण - उन क्षेत्रों में जहां केशिका दबाव अधिक होता है (कण एक साथ बंद होते हैं) परमाणु अधिमानतः समाधान में चले जाते हैं और फिर कम रासायनिक क्षमता वाले क्षेत्रों में अवक्षेपित हो जाते हैं जहां कण करीब या संपर्क में नहीं होते हैं। इसे संपर्क समतल (कॉन्टैक्ट फ्लैटनिंग) कहते हैं। यह ठोस अवस्था सिंटरिंग में कण सीमा विसरण के समान तरह से प्रणाली को सघन करता है। ओस्टवाल्ड पक्वन भी होगा जहां छोटे कण अधिमानतः विलयन में जाएंगे और बड़े कणों पर अवक्षेपित होकर सघनता की ओर ले जाएंगे।
  • अंतिम सघनता - ठोस क्षीणकाय नेटवर्क का सघनीकरण, कुशलता से पैक किए गए क्षेत्रों से छिद्रों में द्रव गति।

द्रव प्रावस्था सिंटरिंग के व्यावहारिक होने के लिए प्रमुख प्रावस्था को द्रव प्रावस्था में कम से कम थोड़ा घुलनशील होना चाहिए और ठोस कण नेटवर्क के किसी भी बड़े सिंटरिंग से पहले योजक पिघल जाना चाहिए, अन्यथा कण की पुनर्व्यवस्था नहीं होती है। नैनोकण अग्रदूत फिल्मों से पतली अर्धचालक परतों के कण के विकास में सुधार के लिए द्रव प्रावस्था सिंटरिंग को सफलतापूर्वक लागू किया गया था।[6]

विद्युत प्रवाह सहाय सिंटरिंग

ये तकनीकें सिंटरिंग को चलाने या बढ़ाने के लिए विद्युत धाराओं का उपयोग करती हैं।[7][8] अंग्रेजी इंजीनियर ए. जी. ब्लॉक्सम ने 1906 में निर्वात में एकदिश धारा का उपयोग करके सिंटरिंग पाउडर पर पहला पेटेंट पंजीकृत किया गया था। उनके आविष्कारों का प्राथमिक उद्देश्य टंगस्टन या मोलिब्डेनम कणों को सुसंहत करके तापदीप्त लैंप के लिए तंतुओं का औद्योगिक पैमाने पर उत्पादन था। लगाया गया प्रवाह विशेष रूप से सतह के ऑक्साइड को कम करने में प्रभावी था जो तंतुओं के उत्सर्जन को बढ़ाता था।[9]

1913 में, वेनट्रॉब और रश ने संशोधित सिंटरिंग विधि का पेटेंट कराया, जिसने दबाव के साथ विद्युत प्रवाह को संयोजित किया। अपवर्तन (धातु विज्ञान) के सिंटरिंग के साथ-साथ प्रवाहकीय कार्बाइड या नाइट्राइड पाउडर के लिए इस पद्धति के लाभ सिद्ध हुए। प्रारंभिक बोरॉन-कार्बन या सिलिकॉन-कार्बन पाउडर को विद्युत रूप से अवरोधक (विद्युत) नली में रखा गया था और दो छड़ों से संपीड़ित किया गया था जो विद्युत के लिए इलेक्ट्रोड के रूप में भी काम करता था। अनुमानित सिंटरिंग तापमान 2000 डिग्री सेल्सियस था।[9]

संयुक्त राज्य अमेरिका में, सिंटरिंग को पहली बार 1922 में डुवल डी एड्रियन द्वारा पेटेंट कराया गया था। उनकी तीन-चरणीय प्रक्रिया का उद्देश्य ज़िरकोनियम डाइऑक्साइड, थोरिया या टैंटालिया जैसे ऑक्साइड पदार्थ से गर्मी प्रतिरोधी ब्लॉकों का उत्पादन करना था। कदम थे:(i) मोल्डिंग (प्रक्रिया) पाउडर; (ii)इसे कंडक्टिंग बनाने के लिए लगभग 2500 डिग्री सेल्सियस पर तापानुशीतन करना; (iii) वींट्राब और रश की विधि के अनुसार प्रवाह-दबाव सिंटरिंग लागू करना।[9]

एकदिश धारा ताप से पहले ऑक्साइड को खत्म करने के लिए धारिता निर्वहन के माध्यम से उत्पादित चाप का उपयोग करने वाली सिंटरिंग को 1932 में जीएफ टेलर द्वारा पेटेंट कराया गया था। स्पंदित या वैकल्पिक प्रवाह को नियोजित करने वाली सिंटरिंग विधियों की उत्पत्ति हुई, जो अंततः एकदिश धारा पर अध्यारोपित हो गई। उन तकनीकों को कई दशकों में विकसित किया गया है और 640 से अधिक पेटेंटों में संक्षेपित किया गया है।[9]

इन तकनीकों में से सबसे प्रसिद्ध प्रतिरोधक सिंटरिंग (जिसे तप्त संपीडन भी कहा जाता है) और स्पार्क प्लाज्मा सिंटरिंग है, जबकि इलेक्ट्रो सिंटर फोर्जिंग इस क्षेत्र में नवीनतम प्रगति है।

स्पार्क प्लाज्मा सिंटरिंग

स्पार्क प्लाज्मा सिंटरिंग (एसपीएस) में, धातु/सिरेमिक पाउडर सुसंहत के घनत्व को बढ़ाने के लिए बाहरी दबाव और विद्युत क्षेत्र को एक साथ लागू किया जाता है। हालांकि, व्यावसायीकरण के बाद यह निर्धारित किया गया था कि कोई प्लाज्मा नहीं है, इसलिए लेनेल द्वारा गढ़ा गया उचित नाम स्पार्क सिंटरिंग है। विद्युत क्षेत्र संचालित घनत्व सिंटरिंग को तप्त संपीडन के रूप के साथ पूरक करता है, जिससे कम तापमान को सक्षम किया जा सके और सामान्य सिंटरिंग की तुलना में कम समय लगता है।[10] कई वर्षों तक, यह अनुमान लगाया गया था कि कणों के बीच चिंगारी या प्लाज्मा का अस्तित्व सिंटरिंग में सहायता कर सकता है; हालांकि, हल्बर्ट और सहकर्मियों ने व्यवस्थित रूप से साबित कर दिया कि स्पार्क प्लाज्मा सिंटरिंग के दौरान उपयोग किए जाने वाले विद्युत मापदण्ड इसे (अत्यधिक) असंभव बनाते हैं।[11] इसके प्रकाश में, "स्पार्क प्लाज्मा सिंटरिंग" नाम अप्रचलित हो गया है। सिंटरिंग समुदाय द्वारा क्षेत्र सहाय सिंटरिंग तकनीक (एफएएसटी), इलेक्ट्रिक क्षेत्र सहाय सिंटरिंग (ईएफएएस) और एकदिश धारा सिंटरिंग (डीसीएस) जैसी शर्तों को लागू किया गया है।[12] विद्युत प्रवाह के रूप में एक दिष्ट धारा (डीसीएस) स्पंद का उपयोग करके, चिंगारी प्लाज्मा, चिंगारी प्रभाव दबाव, जूल तापन, और विद्युत क्षेत्र विसरण प्रभाव बनाया जाएगा।[13]ग्रेफाइट डाई डिज़ाइन और इसकी असेंबली को संशोधित करके, स्पार्क प्लाज्मा सिंटरिंग सुविधा में दबाव रहित सिंटरिंग करना संभव है। इस संशोधित डाई डिज़ाइन व्यवस्थापन को पारंपरिक दबाव रहित सिंटरिंग और स्पार्क प्लाज़्मा सिंटरिंग तकनीकों दोनों के लाभों के तालमेल के लिए बताया गया है।[14]

इलेक्ट्रो सिंटर फोर्जिंग

इलेक्ट्रो सिंटर फोर्जिंग विद्युत प्रवाह सहाय सिंटरिंग (ईसीएएस) तकनीक है जो संधारित्र निर्वहन सिंटरिंग से उत्पन्न हुई है। इसका उपयोग डायमंड मेटल मैट्रिक्स सम्मिश्र के उत्पादन के लिए किया जाता है और कठोर धातुओं,[15] नाइटिनोल[16] और अन्य धातुओं और अंतराधात्विक के उत्पादन के लिए मूल्यांकन किया जाता है। यह बहुत कम सिंटरिंग समय की विशेषता है, जिससे मशीनों को संघनन दबाव के समान गति से सिंटर करने की अनुमति मिलती है।

दबाव रहित सिंटरिंग

दबाव रहित सिंटरिंग बिना दबाव के पाउडर सुसंहत (कभी-कभी बहुत उच्च तापमान पर, पाउडर के आधार पर) का सिंटरिंग होता है। यह अंतिम घटक में घनत्व भिन्नता से बचा जाता है, जो कि अधिक पारंपरिक तप्त संपीडन विधियों के साथ होता है।[17]

पाउडर सुसंहत (यदि एक सिरेमिक) स्लिप कास्टिंग, अंतःक्षेपी संचन और तप्त समस्थैतिक दाबन द्वारा बनाया जा सकता है। प्रीइंटरिंग के बाद, अंतिम ग्रीन सुसंहत को उत्पाद करने से पहले उसके अंतिम आकार में मशीनीकृत किया जा सकता है।

दबाव रहित सिंटरिंग के साथ तीन अलग-अलग ताप अनुसूची किए जा सकते हैं: ताप की निरंतर दर (सीआरएच), रेट-नियंत्रित सिंटरिंग (आरसीएस), और टू-स्टेप सिंटरिंग (टीएसएस) हैं। मिट्टी के पात्र की सूक्ष्म संरचना और कण का आकार प्रयुक्त पदार्थ और विधि के आधार पर भिन्न हो सकता है।[17]

ताप की स्थिर-दर (सीआरएच), जिसे तापमान-नियंत्रित सिंटरिंग के रूप में भी जाना जाता है, में सिंटरिंग तापमान तक स्थिर दर पर ग्रीन सुसंहत को गर्म करना शामिल है।[18] सीआरएच विधि के लिए सिंटरिंग तापमान और सिंटरिंग दर को अनुकूलित करने के लिए जिरकोनिया के साथ प्रयोग किए गए हैं। परिणामों से पता चला कि कण के आकार समान थे जब नमूनों को एक ही घनत्व में उत्पाद किया गया था, यह साबित करते हुए कि कण का आकार सीआरएच तापमान मोड के बजाय नमूना घनत्व का कार्य है।

दर-नियंत्रित सिंटरिंग (आरसीएस) में, ओपन-पोरसिटी चरण में घनत्व दर सीआरएच विधि की तुलना में कम है।[18] परिभाषा के अनुसार, ओपन-पोरसिटी चरण में सापेक्षिक घनत्व, ρrel, 90% से कम है। हालांकि इससे छिद्रों को कण की सीमाओं से अलग होने से रोकना चाहिए, यह सांख्यिकीय रूप से सिद्ध हो गया है कि आरसीएस ने एल्यूमिना, जिरकोनिया और सेरिया के नमूनों के लिए सीआरएच की तुलना में छोटे कण के आकार का उत्पादन नहीं किया।[17]

टू-स्टेप सिंटरिंग (टीएसएस) दो अलग-अलग सिंटरिंग तापमान का उपयोग करता है। पहले सिंटरिंग तापमान को सैद्धांतिक नमूना घनत्व के 75% से अधिक सापेक्ष घनत्व की गारंटी देनी चाहिए। यह शरीर से अतिक्रांतिक रन्ध्र को हटा देगा। इसके बाद सैंपल को ठंडा किया जाएगा और घनीभवन पूरा होने तक दूसरे सिंटरिंग तापमान पर रखा जाएगा। सीआरएच की तुलना में टीएसएस द्वारा घनीय ज़िरकोनिया और घनीय स्ट्रोंटियम टाइटेनेट के कण को काफी परिष्कृत किया गया था। हालांकि, अन्य सिरेमिक पदार्थ में कण के आकार में परिवर्तन, जैसे द्विसमलंबाक्ष ज़िरकोनिया और षट्कोणीय एल्यूमिना, सांख्यिकीय रूप से महत्वपूर्ण नहीं थे।[17]

सूक्ष्मतरंग सिंटरिंग

सूक्ष्मतरंग सिंटरिंग में, गर्मी कभी-कभी पदार्थ के भीतर आंतरिक रूप से उत्पन्न होती है, बजाय बाहरी ताप स्रोत से सतही विकिरण ताप हस्तांतरण के माध्यम से। कुछ पदार्थ युगल में विफल होती हैं और अन्य भाग-दौड़ का व्यवहार प्रदर्शित करती हैं, इसलिए यह उपयोगिता में प्रतिबंधित है। सूक्ष्मतरंग सिंटरिंग का एक लाभ छोटे भार के लिए तेजी से गर्म करना है, जिसका अर्थ है कि सिंटरिंग तापमान तक पहुंचने के लिए कम समय की आवश्यकता होती है, कम ताप ऊर्जा की आवश्यकता होती है और उत्पाद के गुणों में सुधार होता है।[19]

सूक्ष्मतरंग सिंटरिंग की विफलता यह है कि यह आम तौर पर एक समय में केवल एक सुसंहत सिंटर करता है, इसलिए कलाकारों के लिए एक तरह की सिंटरिंग वाली स्थितियों को छोड़कर समग्र उत्पादकता खराब हो जाती है। चूंकि सूक्ष्मतरंग उच्च चालकता और उच्च पारगम्यता (विद्युत चुंबकत्व) वाली पदार्थ में केवल एक छोटी दूरी तक प्रवेश कर सकते हैं, इसलिए सूक्ष्मतरंग सिंटरिंग के लिए विशेष पदार्थ में सूक्ष्मतरंग की प्रवेश गहराई के आसपास एक कण आकार के साथ पाउडर में नमूना वितरित करने की आवश्यकता होती है। सिंटरिंग प्रक्रिया और साइड-रिएक्शन एक ही तापमान पर सूक्ष्मतरंग सिंटरिंग के दौरान कई गुना तेजी से चलते हैं, जिसके परिणामस्वरूप उत्पाद किए गए उत्पाद के लिए अलग-अलग गुण होते हैं।[19]

इस तकनीक को निसादित बायोसेरामिक में बारीक कण/नैनो आकार के कण को बनाए रखने में काफी प्रभावी माना जाता है। मैग्नीशियम फॉस्फेट और कैल्शियम फॉस्फेट ऐसे उदाहरण हैं जिन्हें सूक्ष्मतरंग सिंटरिंग तकनीक के माध्यम से संसाधित किया गया है।[20]

सघनता, विट्रीफिकेशन और कण वृद्धि

सिंटरिंग व्यवहार में सघनता और कण वृद्धि दोनों का नियंत्रण है। घनत्व एक नमूने में सरंध्रता को कम करने का कार्य है, जिससे यह सघन हो जाता है। कण की वृद्धि औसत कण के आकार को बढ़ाने के लिए कण की सीमा गति और ओस्टवाल्ड पकने की प्रक्रिया है। उच्च आपेक्षिक घनत्व और छोटे कण के आकार, दोनों से कई गुण (यांत्रिक शक्ति, विद्युत टूटने की शक्ति, आदि) लाभान्वित होते हैं। इसलिए, प्रसंस्करण के दौरान इन गुणों को नियंत्रित करने में सक्षम होना उच्च तकनीकी महत्व का है। चूंकि चूर्ण के घनत्व के लिए उच्च तापमान की आवश्यकता होती है, सिंटरिंग के दौरान कण की वृद्धि स्वाभाविक रूप से होती है। इस प्रक्रिया को कम करना कई इंजीनियरिंग सिरेमिक के लिए महत्वपूर्ण है। रसायन विज्ञान और अभिविन्यास की कुछ शर्तों के तहत, सिंटरिंग के दौरान कुछ कण अपने पड़ोसियों की कीमत पर तेजी से बढ़ सकते हैं। यह घटना, जिसे असामान्य कण वृद्धि (एजीजी) के रूप में जाना जाता है, के परिणामस्वरूप कण के आकार का एक बिमोडल वितरण होता है, जिसके यांत्रिक, ढांकता हुआ और निसादित पदार्थ के तापीय प्रदर्शन के परिणाम होते हैं।

सघनता को त्वरित गति से होने के लिए आवश्यक है कि (1) द्रव प्रावस्था की मात्रा जो आकार में बड़ी हो, (2) द्रव में ठोस की लगभग पूर्ण घुलनशीलता, और (3) ठोस का गीला होना द्रव। घनत्व के पीछे की शक्ति ठीक ठोस कणों के बीच स्थित द्रव प्रावस्था के केशिका दबाव से ली गई है। जब द्रव प्रावस्था ठोस कणों को भिगोता है, तो कणों के बीच का प्रत्येक स्थान एक केशिका बन जाता है जिसमें पर्याप्त केशिका दबाव विकसित होता है। सबमाइक्रोमीटर कण आकार के लिए, 0.1 से 1 माइक्रोमीटर के व्यास वाले केशिकाएं सिलिकेट द्रव पदार्थ के लिए 175 पाउंड प्रति वर्ग इंच (1,210 kPa) से 1,750 पाउंड प्रति वर्ग इंच (12,100 kPa) की सीमा में और 975 की सीमा में दबाव विकसित करती हैं। द्रव कोबाल्ट जैसी धातु के लिए पाउंड प्रति वर्ग इंच (6,720 kPa) से 9,750 पाउंड प्रति वर्ग इंच (67,200 kPa)।[3]

घनत्व के लिए निरंतर केशिका दबाव की आवश्यकता होती है जहां केवल समाधान-अवक्षेपण पदार्थ स्थानांतरण घनत्व उत्पन्न नहीं करेगा। आगे सघनता के लिए, अतिरिक्त कण संचलन जबकि कण कण-विकास से गुजरता है और कण-आकार में परिवर्तन होता है। सिकुड़न का परिणाम तब होता है जब द्रव कणों के बीच फिसल जाता है और संपर्क के बिंदुओं पर दबाव बढ़ जाता है जिससे पदार्थ संपर्क क्षेत्रों से दूर चली जाती है, कण केंद्रों को एक दूसरे के पास आने के लिए मजबूर करती है।[3]

द्रव-चरण पदार्थ के सिंटरिंग में इसके व्यास के आनुपातिक आवश्यक केशिका दबाव बनाने के लिए एक महीन कण वाला ठोस चरण शामिल होता है, और द्रव सांद्रता को सीमा के भीतर आवश्यक केशिका दबाव भी बनाना चाहिए, अन्यथा प्रक्रिया समाप्त हो जाती है। विट्रीफिकेशन दर छिद्र के आकार, चिपचिपाहट और द्रव प्रावस्था की मात्रा पर निर्भर करती है, जो समग्र संरचना की चिपचिपाहट और सतह के तनाव की ओर ले जाती है। घनत्व के लिए तापमान निर्भरता प्रक्रिया को नियंत्रित करती है क्योंकि उच्च तापमान पर चिपचिपाहट कम हो जाती है और द्रव पदार्थ बढ़ जाती है। इसलिए, जब संरचना और प्रसंस्करण में परिवर्तन किए जाते हैं, तो यह विट्रीफिकेशन प्रक्रिया को प्रभावित करेगा।[3]

सिंटरिंग तंत्र

माइक्रोस्ट्रक्चर के माध्यम से परमाणुओं के विसरण से सिंटरिंग होता है। यह विसरण रासायनिक क्षमता के एक ढाल के कारण होता है - परमाणु उच्च रासायनिक क्षमता वाले क्षेत्र से कम रासायनिक क्षमता वाले क्षेत्र में चले जाते हैं। एक स्थान से दूसरे स्थान पर जाने के लिए परमाणु जिन विभिन्न रास्तों का सहारा लेते हैं, वे सिंटरिंग मैकेनिज्म हैं। छह सामान्य तंत्र हैं:

  • सतह विसरण - एक कण की सतह के साथ परमाणुओं का विसरण
  • वाष्प परिवहन - परमाणुओं का वाष्पीकरण जो एक अलग सतह पर संघनित होता है
  • सतह से जाली विसरण - सतह से परमाणु जाली के माध्यम से फैलते हैं
  • कण सीमा से जाली विसरण - कण सीमा से परमाणु जाली के माध्यम से फैलता है
  • ग्रेन बाउंड्री डिफ्यूज़न - ग्रेन बाउंड्री के साथ परमाणु विसरित होते हैं
  • प्लास्टिक विरूपण - अव्यवस्था गति के कारण पदार्थ का प्रवाह होता है।

इसके अलावा, सघनता और गैर-घनत्व तंत्र के बीच अंतर करना चाहिए। ऊपर दिए गए 1-3 गैर-सघन हैं - वे सतह से परमाणु लेते हैं और उन्हें दूसरी सतह या उसी सतह के हिस्से पर पुनर्व्यवस्थित करते हैं। ये तंत्र सरंध्रता के अंदर पदार्थ को बस पुनर्व्यवस्थित करते हैं और छिद्रों को सिकोड़ने का कारण नहीं बनते हैं। तंत्र 4-6 सघन तंत्र हैं - परमाणुओं को बल्क से छिद्रों की सतह पर ले जाया जाता है, जिससे सरंध्रता समाप्त हो जाती है और नमूने का घनत्व बढ़ जाता है।

अन्न वृद्धि

ग्रेन बाउंड्री (जीबी) एक ही रासायनिक और जाली संरचना के आसन्न क्रिस्टलीय (या कण) के बीच संक्रमण क्षेत्र या इंटरफ़ेस है, जिसे चरण सीमा के साथ भ्रमित नहीं किया जाना चाहिए। आसन्न अनाजों में जाली का समान अभिविन्यास नहीं होता है, इस प्रकार जीबी में परमाणुओं को क्रिस्टल में जाली के सापेक्ष स्थानांतरित कर दिया जाता है। कण के क्रिस्टल जाली में परमाणुओं की तुलना में जीबी में परमाणुओं की स्थानांतरित स्थिति के कारण उनके पास उच्च ऊर्जा स्थिति होती है। यह अपूर्णता है जो जीबी को चुनिंदा रूप से खोदना संभव बनाती है जब कोई चाहता है कि सूक्ष्म संरचना दिखाई दे।[21]

इसकी ऊर्जा को कम करने का प्रयास नमूना के भीतर एक मेटास्टेबल राज्य तक पहुंचने के लिए सूक्ष्म संरचना के मोटे होने की ओर जाता है। इसमें इसके जीबी क्षेत्र को कम करना और इसकी ऊर्जा को कम करने के लिए इसकी स्थलीय संरचना को बदलना शामिल है। कण की यह वृद्धि या तो सामान्य या असामान्य हो सकती है, एक सामान्य कण की वृद्धि को नमूने में सभी अनाजों की समान वृद्धि और आकार की विशेषता है। कण का असामान्य विकास तब होता है जब कुछ कण शेष बहुमत से बहुत बड़ा हो जाता है।[22]

कण सीमा ऊर्जा/तनाव

जीबी में परमाणु सामान्य रूप से थोक पदार्थ में उनके समतुल्य की तुलना में उच्च ऊर्जा अवस्था में होते हैं। यह उनके अधिक खिंचे हुए बंधनों के कारण होता है, जो एक जीबी तनाव को जन्म देता है .। यह अतिरिक्त ऊर्जा जो परमाणुओं के पास होती है, कण सीमा ऊर्जा कहलाती है, । कण इस अतिरिक्त ऊर्जा को कम करना चाहेगा, इस प्रकार कण सीमा क्षेत्र को छोटा करने का प्रयास करेगा और इस परिवर्तन के लिए ऊर्जा की आवश्यकता होगी।[22]

"या, दूसरे शब्दों में, बल की दिशा में कण सीमा क्षेत्र का विस्तार करने के लिए, कण सीमा के विमान में और कण सीमा क्षेत्र में एक रेखा के साथ कार्य करने के लिए एक बल लागू किया जाना चाहिए। बल प्रति इकाई लंबाई, यानी तनाव/तनाव, उल्लिखित रेखा के साथ σGB है। इस तर्क के आधार पर यह अनुसरण करेगा कि:

डीए के साथ कण-सीमा क्षेत्र में प्रति इकाई लंबाई में वृद्धि के रूप में कण-सीमा क्षेत्र में माना जाता है।[22][पेज 478]

जीबी तनाव को सतह पर परमाणुओं के बीच आकर्षक बल के रूप में भी माना जा सकता है और इन परमाणुओं के बीच तनाव इस तथ्य के कारण है कि बल्क (यानी सतह तनाव) की तुलना में सतह पर उनके बीच एक बड़ी अंतर-दूरी है। . जब सतह का क्षेत्रफल बड़ा हो जाता है तो बांड अधिक खिंचते हैं और जीबी तनाव बढ़ता है। तनाव में इस वृद्धि का प्रतिकार करने के लिए जीबी तनाव को स्थिर रखते हुए सतह पर परमाणुओं का परिवहन होना चाहिए। परमाणुओं का यह विसरण द्रव पदार्थों में निरंतर सतही तनाव के कारण होता है। फिर तर्क,


सच धारण करता है। दूसरी ओर, ठोस पदार्थों के लिए, सतह पर परमाणुओं का विसरण पर्याप्त नहीं हो सकता है और सतह के क्षेत्र में वृद्धि के साथ सतह का तनाव भिन्न हो सकता है।[23] एक ठोस के लिए, जीबी क्षेत्र, डीए के परिवर्तन पर गिब्स मुक्त ऊर्जा, डीजी में परिवर्तन के लिए एक अभिव्यक्ति प्राप्त कर सकते हैं। डीजी द्वारा दिया गया है

जो देता है

सामान्य रूप से की इकाइयों में व्यक्त किया जाता है जबकि सामान्य रूप से की इकाइयों में व्यक्त किया जाता है चूंकि वे विभिन्न भौतिक गुण हैं।[22]

यांत्रिक संतुलन

द्वि-आयामी आइसोटोपिक पदार्थ में कण के लिए कण सीमा तनाव समान होगा। यह जीबी जंक्शन पर 120 डिग्री का कोण देगा जहां तीन कण मिलते हैं। यह संरचना को एकहेक्सागोनल पैटर्न देगा जो 2डी नमूने की मेटास्टेबल अवस्था (या यांत्रिक संतुलन) है। इसका एक परिणाम यह है कि जितना संभव हो सके संतुलन के करीब रहने की कोशिश करते रहने के लिए, छह से कम पक्षों वाले कण जीबी को एक दूसरे के बीच 120 डिग्री कोण रखने की कोशिश करने के लिए झुकाएंगे। इसका परिणाम घुमावदार सीमा में होता है, जिसकी वक्रता स्वयं की ओर होती है। जैसा कि उल्लेख किया गया है, छह भुजाओं वाले कण की सीधी सीमाएँ होंगी, जबकि छह से अधिक भुजाओं वाले कण की घुमावदार सीमाएँ होंगी, जिसकी वक्रता स्वयं से दूर होगी। छह सीमाओं वाला कण (यानी षट्कोणीय संरचना) 2डी संरचना के भीतर एक मेटास्टेबल स्थिति (यानी स्थानीय संतुलन) में है।[22]तीन आयामों में संरचनात्मक विवरण समान हैं लेकिन बहुत अधिक जटिल हैं और कण के लिए मेटास्टेबल संरचना एक गैर-नियमित 14-पक्षीय बहुकोणीय आकृति जिसमें दोगुने घुमावदार चेहरे हैं। व्यवहार में कण के सभी व्यूह हमेशा अस्थिर होते हैं और इस प्रकार हमेशा तब तक बढ़ते हैं जब तक कि एक प्रतिबल द्वारा रोका न जाए।[24]

कण अपनी ऊर्जा को कम करने का प्रयास करते हैं, और एक घुमावदार सीमा में सीधी सीमा की तुलना में अधिक ऊर्जा होती है। इसका मतलब है कि कण की सीमा वक्रता की ओर पलायन करेगी। [स्पष्टीकरण की आवश्यकता] इसका परिणाम यह है कि 6 से कम भुजाओं वाले कण का आकार घट जाएगा जबकि 6 से अधिक भुजाओं वाले कण का आकार बढ़ जाएगा।[25]

कण की वृद्धि कण की सीमा के पार परमाणुओं की गति के कारण होती है। अवतल सतहों की तुलना में उत्तल सतहों में उच्च रासायनिक क्षमता होती है, इसलिए कण की सीमाएं उनके वक्रता के केंद्र की ओर बढ़ेंगी। चूंकि छोटे कणों में वक्रता का एक उच्च दायरा होता है और इसके परिणामस्वरूप छोटे कण बड़े कण में परमाणु खो देते हैं और सिकुड़ जाते हैं। यह ओस्टवाल्ड पकने नामक एक प्रक्रिया है। छोटे दानों की कीमत पर बड़े कण उगते हैं।

एक साधारण मॉडल में कण की वृद्धि निम्न पाई जाती है:

यहाँ G अंतिम औसत कण का आकार है, G0 प्रारंभिक औसत कण का आकार है, t समय है, m 2 और 4 के बीच का एक कारक है, और K एक कारक है:


यहाँ Q दाढ़ सक्रियण ऊर्जा है, R आदर्श गैस स्थिरांक है, T परम तापमान है, और K0 एक पदार्थ पर निर्भर कारक है। अधिकांश पदार्थ में निसादित कण का आकार भिन्नात्मक सरंध्रता के व्युत्क्रम वर्गमूल के अनुपात में होता है, जिसका अर्थ है कि छिद्र सिंटरिंग के दौरान कण के विकास के लिए सबसे प्रभावी मंदक हैं।

कण की वृद्धि को कम करना

विलेय आयन

यदि पदार्थ में डोपेंट मिलाया जाता है (उदाहरण: BaTiO3 में Nd) तो अशुद्धता कण की सीमाओं से चिपक जाती है। जैसे ही कण की सीमा बढ़ने की कोशिश करती है (जैसा कि परमाणु उत्तल से अवतल सतह पर कूदते हैं) कण की सीमा पर डोपेंट की एकाग्रता में परिवर्तन सीमा पर एक खिंचाव लगाएगा। कण की सीमा के आसपास विलेय की मूल सांद्रता ज्यादातर मामलों में विषम होगी। चूंकि कण की सीमा बढ़ने की कोशिश करती है, गति के विपरीत दिशा में एकाग्रता में उच्च एकाग्रता होगी और इसलिए उच्च रासायनिक क्षमता होगी। यह बढ़ी हुई रासायनिक क्षमता मूल रासायनिक संभावित ढाल के लिए एक बैकफोर्स के रूप में कार्य करेगी जो कि कण सीमा गतिविधि का कारण है। शुद्ध रासायनिक क्षमता में यह कमी कण की सीमा के वेग को कम करेगी और इसलिए कण की वृद्धि होगी।

ठीक दूसरे चरण के कण

यदि दूसरे चरण के कण जो मैट्रिक्स चरण में अघुलनशील होते हैं, पाउडर में बहुत महीन पाउडर के रूप में जोड़े जाते हैं, तो इससे कण की सीमा गति कम हो जाती है। जब कण की सीमा परमाणुओं के समावेशन विसरण को एक कण से दूसरे कण तक ले जाने की कोशिश करती है, तो यह अघुलनशील कण द्वारा बाधित हो जाएगा। ऐसा इसलिए है क्योंकि कणों का कण की सीमाओं में रहना फायदेमंद होता है और वे कण की सीमा प्रवास की तुलना में विपरीत दिशा में बल लगाते हैं। इस प्रभाव को उस व्यक्ति के नाम पर जेनर प्रभाव कहा जाता है जिसने इस ड्रैग फोर्स का अनुमान लगाया था

जहाँ r कण की त्रिज्या है और λ सीमा की अंतरापृष्ठीय ऊर्जा है यदि प्रति इकाई आयतन में N कण हैं तो उनका आयतन अंश f है
यह मानते हुए कि वे बेतरतीब ढंग से वितरित किए गए हैं। इकाई क्षेत्र की एक सीमा 2r के आयतन के भीतर सभी कणों को काटेगी जो कि 2Nr कण है। तो कण सीमा के एक इकाई क्षेत्र को काटने वाले कणों की संख्या है:


अब, यह मानते हुए कि वक्रता के प्रभाव के कारण ही कण बढ़ता है, विकास की प्रेरक शक्ति है जहां (सजातीय कण संरचना के लिए) आर कण के औसत व्यास के लगभग अनुमानित है। इसके साथ कण के बढ़ने से पहले महत्वपूर्ण व्यास तक पहुंचना होता है:

इसे कम किया जा सकता है
इसलिए कण का महत्वपूर्ण व्यास कण की सीमाओं पर कणों के आकार और आयतन अंश पर निर्भर करता है।[26]

यह भी दिखाया गया है कि छोटे बुलबुले या गुहा समावेशन के रूप में कार्य कर सकते हैं

अधिक जटिल अंतःक्रियाएं जो कण की सीमा गति को धीमा करती हैं, उनमें दो अनाजों की सतह ऊर्जा और समावेशन शामिल हैं और सी.एस. स्मिथ द्वारा विस्तार से चर्चा की गई है।[27]

उत्प्रेरकों का सिंटरिंग

सिंटरिंग उत्प्रेरक गतिविधि के नुकसान का एक महत्वपूर्ण कारण है, विशेष रूप से समर्थित धातु उत्प्रेरकों पर। यह उत्प्रेरक के सतह क्षेत्र को घटाता है और सतह की संरचना को बदलता है।[28] सरंध्री उत्प्रेरक सतह के लिए, सिंटरिंग के कारण छिद्र ढह सकते हैं, जिसके परिणामस्वरूप सतह क्षेत्र का नुकसान होता है। सिंटरिंग सामान्य रूप से एक अपरिवर्तनीय प्रक्रिया है।[29]

छोटे उत्प्रेरक कणों में उच्चतम संभावित सापेक्ष सतह क्षेत्र और उच्च प्रतिक्रिया तापमान होता है, दोनों कारक जो आम तौर पर उत्प्रेरक की प्रतिक्रियाशीलता को बढ़ाते हैं। हालाँकि, ये कारक भी ऐसी परिस्थितियाँ हैं जिनमें सिंटरिंग होती है।[30] विशिष्ट पदार्थ भी सिंटरिंग की दर बढ़ा सकती है। दूसरी ओर, अन्य पदार्थ के साथ उत्प्रेरकों को मिश्रित करके, सिंटरिंग को कम किया जा सकता है। विशेष रूप से दुर्लभ-पृथ्वी धातुओं को मिश्रित होने पर धातु उत्प्रेरकों के सिंटरिंग को कम करने के लिए दिखाया गया है।[31]

कई समर्थित धातु उत्प्रेरकों के लिए, 500 डिग्री सेल्सियस (932 डिग्री फ़ारेनहाइट) से अधिक तापमान पर सिंटरिंग एक महत्वपूर्ण प्रभाव बनने लगता है।[28]उत्प्रेरक जो उच्च तापमान पर काम करते हैं, जैसे कार उत्प्रेरक, सिंटरिंग को कम करने या रोकने के लिए संरचनात्मक सुधारों का उपयोग करते हैं। ये सुधार आमतौर पर सिलिका, कार्बन या एल्यूमिना जैसे एक निष्क्रिय और तापीय रूप से स्थिर पदार्थ से बने समर्थन के रूप में होते हैं। [[32]


यह भी देखें


संदर्भ

  1. "Meaning of "sintered"". The Free Dictionary. Retrieved May 1, 2014.
  2. "Definition of "sinter"". Merriam Webster (in English). Retrieved 2022-10-11.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 Kingery, W. David; Bowen, H. K.; Uhlmann, Donald R. (April 1976). Introduction to Ceramics (2nd ed.). John Wiley & Sons, Academic Press. ISBN 0-471-47860-1.
  4. Bronchy, M.; Roach, L.; Mendizabal, L.; Feautrier, C.; Durand, E.; Heintz, J.-M.; Duguet, E.; Tréguer-Delapierre, M. (18 January 2022). "Improved Low Temperature Sinter Bonding Using Silver Nanocube Superlattices". J. Phys. Chem. C. 126 (3): 1644–1650. doi:10.1021/acs.jpcc.1c09125. eISSN 1932-7455. ISSN 1932-7447.
  5. "Porex Custom Plastics: Porous Plastics & Porous Polymers". www.porex.com. Retrieved 2017-03-23.
  6. Uhl, A.R.; et al. (2014). "Liquid-selenium-enhanced grain growth of nanoparticle precursor layers for CuInSe2 solar cell absorbers". Progress in Photovoltaics: Research and Applications. 23 (9): 1110–1119. doi:10.1002/pip.2529. S2CID 97768071.
  7. Orrù, Roberto; Licheri, Roberta; Locci, Antonio Mario; Cincotti, Alberto; Cao, Giacomo (February 2009). "Consolidation/synthesis of materials by electric current activated/assisted sintering". Materials Science and Engineering: R: Reports. 63 (4–6): 127–287. doi:10.1016/j.mser.2008.09.003.
  8. Grasso, Salvatore; Sakka, Yoshio; Maizza, Giovanni (October 2009). "Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008". Science and Technology of Advanced Materials. 10 (5): 053001. doi:10.1088/1468-6996/10/5/053001. ISSN 1468-6996. PMC 5090538. PMID 27877308.
  9. 9.0 9.1 9.2 9.3 Grasso, S; Sakka, Y; Maizza, G (2009). "Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008". Sci. Technol. Adv. Mater. 10 (5): 053001. doi:10.1088/1468-6996/10/5/053001. PMC 5090538. PMID 27877308.
  10. Tuan, W.H.; Guo, J.K. (2004). Multi-phased ceramic materials: processing and potential. Springer. ISBN 3-540-40516-X.
  11. Hulbert, D. M.; et al. (2008). "The Absence of Plasma in' Spark Plasma Sintering'". Journal of Applied Physics. 104 (3): 033305–033305–7. Bibcode:2008JAP...104c3305H. doi:10.1063/1.2963701. S2CID 54726651.
  12. Anselmi-Tamburini, U. et al. in Sintering: Nanodensification and Field Assisted Processes (Castro, R. & van Benthem, K.) (Springer Verlag, 2012).
  13. Palmer, R.E.; Wilde, G. (December 22, 2008). Mechanical Properties of Nanocomposite Materials. EBL Database: Elsevier Ltd. ISBN 978-0-08-044965-4.
  14. K. Sairam, J.K. Sonber, T.S.R.Ch. Murthy, A.K. Sahu, R.D. Bedse, J.K. Chakravartty (2016). "Pressureless sintering of chromium diboride using spark plasma sintering facility". International Journal of Refractory Metals and Hard Materials. 58: 165–171. doi:10.1016/j.ijrmhm.2016.05.002.{{cite journal}}: CS1 maint: uses authors parameter (link)
  15. Fais, A. "Discharge sintering of hard metal cutting tools". International Powder Metallurgy Congress and Exhibition, Euro PM 2013
  16. Balagna, Cristina; Fais, Alessandro; Brunelli, Katya; Peruzzo, Luca; Horynová, Miroslava; Čelko, Ladislav; Spriano, Silvia (2016). "Electro-sinter-forged Ni–Ti alloy". Intermetallics. 68: 31–41. doi:10.1016/j.intermet.2015.08.016.
  17. 17.0 17.1 17.2 17.3 Maca, Karel (2009). "Microstructure evolution during pressureless sintering of bulk oxide ceramics". Processing and Application of Ceramics. 3 (1–2): 13–17. doi:10.2298/pac0902013m.
  18. 18.0 18.1 Maca, Karl; Simonikova, Sarka (2005). "Effect of sintering schedule on grain size of oxide ceramics". Journal of Materials Science. 40 (21): 5581–5589. Bibcode:2005JMatS..40.5581M. doi:10.1007/s10853-005-1332-1. S2CID 137157248.
  19. 19.0 19.1 Oghbaei, Morteza; Mirzaee, Omid (2010). "Microwave versus conventional sintering: A review of fundamentals, advantages and applications". Journal of Alloys and Compounds. 494 (1–2): 175–189. doi:10.1016/j.jallcom.2010.01.068.
  20. Babaie, Elham; Ren, Yufu; Bhaduri, Sarit B. (23 March 2016). "Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization". Journal of Materials Research. 31 (8): 995–1003. Bibcode:2016JMatR..31..995B. doi:10.1557/jmr.2016.84.
  21. Smallman R. E., Bishop, Ray J (1999). Modern physical metallurgy and materials engineering: science, process, applications. Oxford : Butterworth-Heinemann. ISBN 978-0-7506-4564-5.{{cite book}}: CS1 maint: multiple names: authors list (link)
  22. 22.0 22.1 22.2 22.3 22.4 Mittemeijer, Eric J. (2010). Fundamentals of Materials Science The Microstructure–Property Relationship Using Metals as Model Systems. Springer Heidelberg Dordrecht London New York. pp. 463–496. ISBN 978-3-642-10499-2.
  23. Kang, Suk-Joong L. (2005). Sintering: Densification, Grain Growth, and Microstructure. Elsevier Ltd. pp. 9–18. ISBN 978-0-7506-6385-4.
  24. Cahn, Robert W. and Haasen, Peter (1996). Physical Metallurgy (Fourth ed.). pp. 2399–2500. ISBN 978-0-444-89875-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  25. Carter, C. Barry; Norton, M. Grant (2007). Ceramic Materials: Science and Engineering. Springer Science+Business Media, LLC. pp. 427–443. ISBN 978-0-387-46270-7.
  26. Cahn, Robert W. and Haasen, Peter (1996). Physical Metallurgy (Fourth ed.). ISBN 978-0-444-89875-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  27. Smith, Cyril S. (February 1948). "Introduction to Grains, Phases and Interphases: an Introduction to Microstructure". {{cite journal}}: Cite journal requires |journal= (help)
  28. 28.0 28.1 G. Kuczynski (6 December 2012). Sintering and Catalysis. Springer Science & Business Media. ISBN 978-1-4684-0934-5.
  29. Bartholomew, Calvin H (2001). "Mechanisms of catalyst deactivation". Applied Catalysis A: General. 212 (1–2): 17–60. doi:10.1016/S0926-860X(00)00843-7.
  30. Harris, P (1986). "The sintering of platinum particles in an alumina-supported catalyst: Further transmission electron microscopy studies". Journal of Catalysis. 97 (2): 527–542. doi:10.1016/0021-9517(86)90024-2.
  31. Figueiredo, J. L. (2012). Progress in Catalyst Deactivation: Proceedings of the NATO Advanced Study Institute on Catalyst Deactivation, Algarve, Portugal, May 18–29, 1981. Springer Science & Business Media. p. 11. ISBN 978-94-009-7597-2.
  32. Chorkendorff, I.; Niemantsverdriet, J. W. (6 March 2006). Concepts of Modern Catalysis and Kinetics. John Wiley & Sons. ISBN 978-3-527-60564-4.


अग्रिम पठन

  • Chiang, Yet-Ming; Birnie, Dunbar P.; Kingery, W. David (May 1996). Physical Ceramics: Principles for Ceramic Science and Engineering. John Wiley & Sons. ISBN 0-471-59873-9.
  • Green, D.J.; Hannink, R.; Swain, M.V. (1989). Transformation Toughening of Ceramics. Boca Raton: CRC Press. ISBN 0-8493-6594-5.
  • German, R.M. (1996). Sintering Theory and Practice. John Wiley & Sons, Inc. ISBN 0-471-05786-X.
  • Kang, Suk-Joong L. (2005). Sintering (1st ed.). Oxford: Elsevier, Butterworth Heinemann. ISBN 0-7506-6385-5.


बाहरी संबंध