अनंत: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Mathematical concept}} | {{short description|Mathematical concept}} | ||
{{About|| | {{About||प्रतीक के लिए |अनंत प्रतीक देखें।|"अनंत" और "अनंत" के अन्य उपयोगों के लिए, अनंत (बहुविकल्पी) देखें।}} | ||
{{distinguish| | {{distinguish|अनंत (बहुविकल्पी) के साथ भ्रमित न हों।}} | ||
[[File:Reflections 1090029.jpg|thumb|upright=1.5|right|निरंतर प्रकाश प्रतिबिंब [[अनंत दर्पण]] के कारण, ऐसा लगता है कि उनके अंदर असीमित स्थान और पुनरावृत्ति है।]]अनंत वह है जो असीम, अंतहीन या किसी भी [[प्राकृतिक संख्या]] से बड़ा है। इसे अक्सर अनंत प्रतीक | [[File:Reflections 1090029.jpg|thumb|upright=1.5|right|निरंतर प्रकाश प्रतिबिंब [[अनंत दर्पण]] के कारण, ऐसा लगता है कि उनके अंदर असीमित स्थान और पुनरावृत्ति है।]]अनंत वह है जो असीम, अंतहीन या किसी भी [[प्राकृतिक संख्या]] से बड़ा है। इसे अक्सर अनंत प्रतीक {{char|<math>\infty</math>}} द्वारा निरूपित किया जाता है। | ||
[[ग्रीक गणित]] के समय से ही इन्फिनिटी (दर्शनशास्त्र) दार्शनिकों के बीच कई चर्चाओं का विषय रहा है। 17वीं शताब्दी में अनंत प्रतीक की शुरुआत के साथ<ref name=":1">{{Cite web |last=Allen |first=Donald |date=2003 |title=The History of Infinity |url=https://www.math.tamu.edu/~dallen/masters/infinity/infinity.pdf |access-date=Nov 15, 2019 |website=Texas A&M Mathematics}}</ref> और [[अतिसूक्ष्म कलन]], गणितज्ञों ने [[अनंत श्रृंखला]] के साथ काम करना शुरू किया और क्या कुछ गणितज्ञों (गिलौमे डे ल'हॉपिटल सहित)<ref name="Jesseph" />असीम रूप से छोटी मात्रा के रूप में माना जाता है, लेकिन अनंत अनंत प्रक्रियाओं से जुड़ा रहा। जैसा कि गणितज्ञ कलन की नींव के साथ संघर्ष कर रहे थे, यह स्पष्ट नहीं था कि अनंत को संख्या या परिमाण के रूप में माना जा सकता है और यदि ऐसा है तो यह कैसे किया जा सकता है।<ref name=":1" />19वीं शताब्दी के अंत में, [[जॉर्ज कैंटर]] ने [[अनंत सेट]]ों और ट्रांसफ़िनिट संख्याओं का अध्ययन करके अनंत के गणितीय अध्ययन का विस्तार किया, यह दिखाते हुए कि वे विभिन्न आकारों के हो सकते हैं।<ref name=":1" /><ref>{{Cite book |last1=Gowers |first1=Timothy |url=https://www.worldcat.org/oclc/659590835 |title=The Princeton companion to mathematics |last2=Barrow-Green |first2=June |publisher=Princeton University Press |others=Imre Leader, Princeton University |year=2008 |isbn=978-1-4008-3039-8 |location=Princeton |language=en |oclc=659590835}}</ref> उदाहरण के लिए, यदि किसी रेखा को उसके सभी बिंदुओं के समुच्चय के रूप में देखा जाता है, तो उनकी अनंत संख्या (अर्थात् रेखा की [[प्रमुखता]]) [[पूर्णांक]]ों की संख्या से बड़ी होती है।<ref>{{harvnb|Maddox|2002|loc=pp. 113–117}}</ref> इस प्रयोग में, अनंत एक गणितीय अवधारणा है, और अनंत [[गणितीय वस्तु]]ओं का अध्ययन किया जा सकता है, हेरफेर किया जा सकता है और किसी अन्य गणितीय वस्तु की तरह ही उपयोग किया जा सकता है। | [[ग्रीक गणित]] के समय से ही इन्फिनिटी (दर्शनशास्त्र) दार्शनिकों के बीच कई चर्चाओं का विषय रहा है। 17वीं शताब्दी में अनंत प्रतीक की शुरुआत के साथ<ref name=":1">{{Cite web |last=Allen |first=Donald |date=2003 |title=The History of Infinity |url=https://www.math.tamu.edu/~dallen/masters/infinity/infinity.pdf |access-date=Nov 15, 2019 |website=Texas A&M Mathematics}}</ref> और [[अतिसूक्ष्म कलन]], गणितज्ञों ने [[अनंत श्रृंखला]] के साथ काम करना शुरू किया और क्या कुछ गणितज्ञों (गिलौमे डे ल'हॉपिटल सहित)<ref name="Jesseph" />असीम रूप से छोटी मात्रा के रूप में माना जाता है, लेकिन अनंत अनंत प्रक्रियाओं से जुड़ा रहा। जैसा कि गणितज्ञ कलन की नींव के साथ संघर्ष कर रहे थे, यह स्पष्ट नहीं था कि अनंत को संख्या या परिमाण के रूप में माना जा सकता है और यदि ऐसा है तो यह कैसे किया जा सकता है।<ref name=":1" />19वीं शताब्दी के अंत में, [[जॉर्ज कैंटर]] ने [[अनंत सेट]]ों और ट्रांसफ़िनिट संख्याओं का अध्ययन करके अनंत के गणितीय अध्ययन का विस्तार किया, यह दिखाते हुए कि वे विभिन्न आकारों के हो सकते हैं।<ref name=":1" /><ref>{{Cite book |last1=Gowers |first1=Timothy |url=https://www.worldcat.org/oclc/659590835 |title=The Princeton companion to mathematics |last2=Barrow-Green |first2=June |publisher=Princeton University Press |others=Imre Leader, Princeton University |year=2008 |isbn=978-1-4008-3039-8 |location=Princeton |language=en |oclc=659590835}}</ref> उदाहरण के लिए, यदि किसी रेखा को उसके सभी बिंदुओं के समुच्चय के रूप में देखा जाता है, तो उनकी अनंत संख्या (अर्थात् रेखा की [[प्रमुखता]]) [[पूर्णांक]]ों की संख्या से बड़ी होती है।<ref>{{harvnb|Maddox|2002|loc=pp. 113–117}}</ref> इस प्रयोग में, अनंत एक गणितीय अवधारणा है, और अनंत [[गणितीय वस्तु]]ओं का अध्ययन किया जा सकता है, हेरफेर किया जा सकता है और किसी अन्य गणितीय वस्तु की तरह ही उपयोग किया जा सकता है। |
Revision as of 20:28, 8 February 2023
अनंत वह है जो असीम, अंतहीन या किसी भी प्राकृतिक संख्या से बड़ा है। इसे अक्सर अनंत प्रतीक द्वारा निरूपित किया जाता है।
ग्रीक गणित के समय से ही इन्फिनिटी (दर्शनशास्त्र) दार्शनिकों के बीच कई चर्चाओं का विषय रहा है। 17वीं शताब्दी में अनंत प्रतीक की शुरुआत के साथ[1] और अतिसूक्ष्म कलन, गणितज्ञों ने अनंत श्रृंखला के साथ काम करना शुरू किया और क्या कुछ गणितज्ञों (गिलौमे डे ल'हॉपिटल सहित)[2]असीम रूप से छोटी मात्रा के रूप में माना जाता है, लेकिन अनंत अनंत प्रक्रियाओं से जुड़ा रहा। जैसा कि गणितज्ञ कलन की नींव के साथ संघर्ष कर रहे थे, यह स्पष्ट नहीं था कि अनंत को संख्या या परिमाण के रूप में माना जा सकता है और यदि ऐसा है तो यह कैसे किया जा सकता है।[1]19वीं शताब्दी के अंत में, जॉर्ज कैंटर ने अनंत सेटों और ट्रांसफ़िनिट संख्याओं का अध्ययन करके अनंत के गणितीय अध्ययन का विस्तार किया, यह दिखाते हुए कि वे विभिन्न आकारों के हो सकते हैं।[1][3] उदाहरण के लिए, यदि किसी रेखा को उसके सभी बिंदुओं के समुच्चय के रूप में देखा जाता है, तो उनकी अनंत संख्या (अर्थात् रेखा की प्रमुखता) पूर्णांकों की संख्या से बड़ी होती है।[4] इस प्रयोग में, अनंत एक गणितीय अवधारणा है, और अनंत गणितीय वस्तुओं का अध्ययन किया जा सकता है, हेरफेर किया जा सकता है और किसी अन्य गणितीय वस्तु की तरह ही उपयोग किया जा सकता है।
अनंत की गणितीय अवधारणा पुरानी दार्शनिक अवधारणा को परिशोधित और विस्तारित करती है, विशेष रूप से अनंत सेटों के असीमित कई अलग-अलग आकारों को पेश करके। जर्मेलो-फ्रेंकेल समुच्चय सिद्धांत के स्वयंसिद्ध सिद्धांतों में, जिस पर अधिकांश आधुनिक गणित विकसित किए जा सकते हैं, अनंत का स्वयंसिद्ध है, जो अनंत समुच्चयों के अस्तित्व की गारंटी देता है।[1]अनंतता की गणितीय अवधारणा और अनंत समुच्चयों के हेरफेर का उपयोग गणित में हर जगह किया जाता है, यहां तक कि साहचर्य जैसे क्षेत्रों में भी जिनका उनसे कोई लेना-देना नहीं है। उदाहरण के लिए, फर्मेट के अंतिम प्रमेय का विल्स का प्रमाण | फर्मेट के अंतिम प्रमेय का विल्स का प्रमाण ग्रोथेंडिक ब्रह्मांड के अस्तित्व पर निर्भर करता है[5] प्राथमिक अंकगणित के संदर्भ में दीर्घकालीन समस्या को हल करने के लिए।
भौतिकी और ब्रह्माण्ड विज्ञान में, ब्रह्मांड#आकार और क्षेत्र एक खुला प्रश्न है।
इतिहास
प्राचीन संस्कृतियों में अनंत की प्रकृति के बारे में विभिन्न विचार थे। वैदिक काल और प्राचीन ग्रीस ने आधुनिक गणित की तरह सटीक औपचारिकता में अनंतता को परिभाषित नहीं किया, बल्कि एक दार्शनिक अवधारणा के रूप में अनंत तक पहुंचे।
प्रारंभिक ग्रीक
ग्रीस में अनन्तता का सबसे पुराना अभिलिखित विचार Anaximander (सी. 610 – सी. 546 ईसा पूर्व) का हो सकता है जो एक पूर्व-ईश्वरीय दर्शन|पूर्व-ईश्वरीय यूनानी दार्शनिक था। उन्होंने एपिरोन (ब्रह्मांड विज्ञान) शब्द का प्रयोग किया, जिसका अर्थ है असीमित, अनिश्चित, और शायद इसका अनुवाद अनंत के रूप में किया जा सकता है।[1][6] अरस्तू (350 ईसा पूर्व) संभावित अनंत को वास्तविक अनंत से अलग करता है, जिसे वह विभिन्न विरोधाभासों के कारण असंभव मानता था जो इसे उत्पन्न करता था।[7] यह तर्क दिया गया है कि, इस दृष्टिकोण के अनुरूप, हेलेनिस्टिक यूनानियों के पास अनंत का आतंक था[8][9] जो, उदाहरण के लिए, समझाएगा कि क्यों यूक्लिड (सी। 300 ईसा पूर्व) ने यह नहीं कहा कि अभाज्य संख्याएँ अनंत हैं, बल्कि अभाज्य संख्याएँ अभाज्य संख्याओं की किसी भी निर्दिष्ट भीड़ से अधिक हैं।[10] यह भी कायम रखा गया है, कि, अभाज्य संख्याओं की अनंतता को साबित करने में, यूक्लिड सबसे पहले अनंत की भयावहता को दूर करने वाला था।[11] यूक्लिड की समानांतर अभिधारणा से संबंधित एक समान विवाद है, जिसका कभी-कभी अनुवाद किया जाता है:
If a straight line falling across two [other] straight lines makes internal angles on the same side [of itself whose sum is] less than two right angles, then the two [other] straight lines, being produced to infinity, meet on that side [of the original straight line] that the [sum of the internal angles] is less than two right angles.[12]
हालांकि, अन्य अनुवादक अनुवाद को दो सीधी रेखाओं में पसंद करते हैं, यदि अनिश्चित काल तक उत्पादित किया जाता है ...,[13] इस प्रकार इस निहितार्थ से बचना कि यूक्लिड अनंत की धारणा के साथ सहज था। अंत में, यह बनाए रखा गया है कि अनंत पर एक प्रतिबिंब, अनंत के आतंक को दूर करने से दूर, सभी प्रारंभिक ग्रीक दर्शन को रेखांकित करता है और अरस्तू की संभावित अनंतता इस अवधि की सामान्य प्रवृत्ति से एक विपथन है।[14]
ज़ेनो: दुखती और कछुआ
एलिया का ज़ेनो (c. 495 – c. 430 ईसा पूर्व) ने अनंत से संबंधित किसी भी विचार को आगे नहीं बढ़ाया। फिर भी, उसके विरोधाभास,[15] विशेष रूप से एच्लीस और कछुआ, इसमें महत्वपूर्ण योगदान थे कि उन्होंने लोकप्रिय धारणाओं की अपर्याप्तता को स्पष्ट किया। विरोधाभासों को बर्ट्रेंड रसेल द्वारा बेहद सूक्ष्म और गहन के रूप में वर्णित किया गया था।[16] Achilles एक कछुआ दौड़ता है, बाद वाले को एक प्रमुख शुरुआत देता है।
- चरण #1: कछुआ के शुरुआती बिंदु पर अकिलिस दौड़ता है जबकि कछुआ आगे बढ़ता है।
- चरण #2: अकिलिस आगे बढ़ता है जहां कछुआ चरण #1 के अंत में था जबकि कछुआ अभी और आगे जाता है।
- चरण #3: अकिलिस आगे बढ़ता है जहां कछुआ चरण #2 के अंत में था जबकि कछुआ अभी और आगे जाता है।
- चरण #4: अकिलिस आगे बढ़ता है जहां चरण #3 के अंत में कछुआ था, जबकि कछुआ अभी और आगे जाता है।
वगैरह।
जाहिरा तौर पर, अकिलिस कभी भी कछुए से आगे नहीं निकलता है, क्योंकि वह कितने भी कदम पूरे कर लेता है, कछुआ उसके आगे रहता है।
ज़ेनो अनंतता के बारे में बात करने का प्रयास नहीं कर रहा था। एलीटिक्स स्कूल के एक सदस्य के रूप में, जो गति को एक भ्रम मानता था, उसने यह मान लेना एक गलती के रूप में देखा कि अकिलिस दौड़ सकता है। इसके बाद के विचारकों ने इस समाधान को अस्वीकार्य पाया, तर्क में अन्य कमजोरियों को खोजने के लिए दो सहस्राब्दियों तक संघर्ष किया।
अंत में, 1821 में, ऑगस्टिन-लुई कॉची ने एक सीमा की एक संतोषजनक परिभाषा और एक प्रमाण प्रदान किया कि, के लिए 0 < x < 1,[17]
प्रारंभिक भारतीय
भारतीय गणित पाठ सूर्य प्रज्ञापति (सी। चौथी-तीसरी शताब्दी ईसा पूर्व) सभी संख्याओं को तीन सेटों में वर्गीकृत करता है: गणना योग्य, असंख्य और अनंत। इनमें से प्रत्येक को आगे तीन आदेशों में विभाजित किया गया था:[18]
- गणनीय: निम्नतम, मध्यवर्ती और उच्चतम
- असंख्य: लगभग असंख्य, वास्तव में असंख्य, और असंख्य असंख्य
- अनंत: लगभग अनंत, वास्तव में अनंत, असीम रूप से अनंत
17वीं शताब्दी
17वीं शताब्दी में, यूरोपीय गणितज्ञों ने एक व्यवस्थित तरीके से अनंत संख्याओं और अनंत व्यंजकों का उपयोग करना शुरू किया। 1655 में, जॉन वालिस ने पहली बार नोटेशन का इस्तेमाल किया था इन शंकु वर्गों में ऐसी संख्या के लिए,[19] और क्षेत्र की गणना में इस क्षेत्र को चौड़ाई के अत्यल्प स्ट्रिप्स में विभाजित करके इसका शोषण किया [20] लेकिन अरिथमेटिका इन्फिनिटोरम (1655 में भी) में, वह कुछ शर्तों या कारकों को लिखकर और फिर जोड़ कर अनंत श्रृंखला, अनंत उत्पादों और अनंत निरंतर अंशों को इंगित करता है। , जैसा कि 1, 6, 12, 18, 24, और सी में है।[21] 1699 में, आइजैक न्यूटन ने अपने काम में असीमित संख्या वाले समीकरणों के बारे में लिखा था।[22]
गणित
हरमन वेइल ने 1930 में दिए गए एक गणितीय-दार्शनिक पते को खोला:[23]
Mathematics is the science of the infinite.
प्रतीक
अनंत का प्रतीक (कभी-कभी limniscate कहा जाता है) एक गणितीय प्रतीक है जो अनंत की अवधारणा का प्रतिनिधित्व करता है। प्रतीक यूनिकोड में एन्कोड किया गया है U+221E ∞ INFINITY (∞)[24] और LaTeX में as \infty
.[25]
इसे 1655 में जॉन वालिस द्वारा पेश किया गया था।[26][27] और इसकी शुरूआत के बाद से, आधुनिक रहस्यवाद में इसका उपयोग गणित के बाहर भी किया गया है[28] और साहित्यिक प्रतीकवाद।[29]
कलन
Gottfried Wilhelm Leibniz, जो कि इनफिनिटिमल कैलकुलस के सह-अन्वेषकों में से एक थे, ने अनंत संख्याओं और गणित में उनके उपयोग के बारे में व्यापक रूप से अनुमान लगाया। लाइबनिज के लिए, दोनों अपरिमेय और अनंत मात्राएं आदर्श संस्थाएं थीं, प्रशंसनीय मात्राओं के समान प्रकृति की नहीं, लेकिन निरंतरता के कानून के अनुसार समान गुणों का आनंद ले रही थीं।[30][2]
वास्तविक विश्लेषण
वास्तविक विश्लेषण में, प्रतीक , जिसे अनंत कहा जाता है, का उपयोग किसी फ़ंक्शन की असीमित सीमा को दर्शाने के लिए किया जाता है।[31] अंकन मतलब किबिना किसी सीमा के बढ़ता है, और मतलब किबिना सीमा के घटता है। उदाहरण के लिए, अगर हर एक के लिए, तब[32]
- मतलब कि से परिमित क्षेत्र को बाध्य नहीं करता है को
- का अर्थ है कि इसके अंतर्गत क्षेत्र अनंत है।
- का अर्थ है कि कुल क्षेत्रफल परिमित है, और के बराबर है
इन्फिनिटी का उपयोग अनंत श्रृंखला का वर्णन करने के लिए भी किया जा सकता है:
- इसका मतलब है कि अनंत श्रृंखला अभिसरण श्रृंखला का योग कुछ वास्तविक मूल्य के लिए है
- इसका मतलब है कि अनंत श्रृंखला का योग उचित रूप से अनंत तक भिन्न श्रृंखला है, इस अर्थ में कि आंशिक योग बिना किसी सीमा के बढ़ता है।[33]
एक सीमा को परिभाषित करने के अलावा, अनंत को विस्तारित वास्तविक संख्या प्रणाली में मान के रूप में भी इस्तेमाल किया जा सकता है। अंक अंकित और वास्तविक संख्याओं के टोपोलॉजिकल स्पेस में जोड़ा जा सकता है, वास्तविक संख्याओं के दो-बिंदु संघनन (गणित) का उत्पादन करता है। इसमें बीजगणितीय गुण जोड़ने से हमें विस्तारित वास्तविक संख्याएँ प्राप्त होती हैं।[34] हम इलाज भी कर सकते हैं और उसी के रूप में, वास्तविक संख्याओं के एक-बिंदु संघनन की ओर अग्रसर होता है, जो वास्तविक प्रक्षेपी रेखा है।[35] प्रक्षेपी ज्यामिति भी समतल ज्यामिति में अनंत पर एक रेखा, त्रि-आयामी अंतरिक्ष में अनंत पर एक विमान और सामान्य आयाम (गणित और भौतिकी) के लिए अनंत पर एक हाइपरप्लेन को संदर्भित करता है, प्रत्येक में अनंत पर बिंदु होता है।[36]
जटिल विश्लेषण
जटिल विश्लेषण में प्रतीक , जिसे अनंत कहा जाता है, एक अहस्ताक्षरित अनंत सीमा (गणित) को दर्शाता है। इसका मतलब है कि परिमाण काकिसी नियत मूल्य से अधिक बढ़ता है। अनंत पर एक बिंदु | बिंदु लेबल कॉम्प्लेक्स प्लेन में एक टोपोलॉजिकल स्पेस के रूप में जोड़ा जा सकता है, जो कॉम्प्लेक्स प्लेन का एक-पॉइंट कॉम्पैक्टिफिकेशन देता है।[37] जब यह किया जाता है, तो परिणामी स्थान एक आयामी जटिल मैनिफोल्ड या रीमैन सतह होता है, जिसे विस्तारित जटिल विमान या रीमैन क्षेत्र कहा जाता है। विस्तारित वास्तविक संख्याओं के लिए ऊपर दिए गए समान अंकगणितीय संक्रियाओं को भी परिभाषित किया जा सकता है, हालांकि संकेतों में कोई अंतर नहीं है (जो एक अपवाद की ओर जाता है कि अनंत को स्वयं में नहीं जोड़ा जा सकता है)। दूसरी ओर, इस तरह की अनंतता विभाजन को शून्य से सक्षम बनाती है, अर्थात् किसी भी अशून्य जटिल संख्या के लिए. इस संदर्भ में, यह अक्सर मेरोमॉर्फिक फ़ंक्शन पर विचार करने के लिए उपयोगी होता है क्योंकि रीमैन क्षेत्र में नक्शे का मूल्य लेते हैं ध्रुवों पर। अनंत पर बिंदु को शामिल करने के लिए एक जटिल-मूल्यवान फ़ंक्शन का डोमेन बढ़ाया जा सकता है। ऐसे कार्यों का एक महत्वपूर्ण उदाहरण मोबियस ट्रांसफॉर्मेशन का समूह है (देखें मोबियस ट्रांसफॉर्मेशन#ओवरव्यू| मोबियस ट्रांसफॉर्मेशन § ओवरव्यू)।
अमानक विश्लेषण
आइज़ैक न्यूटन और गॉटफ्रीड लीबनिज़ द्वारा अत्यल्प कैलकुलस के मूल सूत्रीकरण में अत्यल्प मात्राओं का उपयोग किया गया था। 20वीं शताब्दी के उत्तरार्ध में, यह दिखाया गया था कि इस उपचार को विभिन्न तार्किक प्रणालियों के माध्यम से एक कठोर स्तर पर रखा जा सकता है, जिसमें सहज अत्यल्प विश्लेषण और गैर-मानक विश्लेषण शामिल हैं। उत्तरार्द्ध में, अपरिमेय व्युत्क्रमणीय होते हैं, और उनके व्युत्क्रम अनंत संख्याएँ होते हैं। इस अर्थ में अनन्त एक अतिवास्तविक संख्या का हिस्सा हैं; उनके बीच कोई समानता नहीं है जैसा कि कैंटोरियन ट्रांसफ़िनिटी संख्या के साथ है। उदाहरण के लिए, यदि एच इस अर्थ में एक अनंत संख्या है, तो एच + एच = 2 एच और एच + 1 विशिष्ट अनंत संख्याएं हैं। गैर-मानक कलन के लिए यह दृष्टिकोण पूरी तरह से में विकसित हुआ है Keisler (1986).
सेट सिद्धांत
इन्फिनिटी का एक अलग रूप सेट थ्योरी की क्रमसूचक संख्या और बुनियादी संख्या इन्फिनिटी हैं- सबसे पहले जॉर्ज कैंटर द्वारा विकसित ट्रांसफिनिट नंबर की एक प्रणाली। इस प्रणाली में, पहला ट्रांसफिनिट कार्डिनल एलीफ-नल है (ℵ0), प्राकृतिक संख्याओं के समुच्चय की प्रमुखता। मात्रात्मक अनंत की यह आधुनिक गणितीय अवधारणा 19वीं शताब्दी के अंत में कैंटर, भगवान फ्रीज का शुक्र है, रिचर्ड डेडेकिंड और अन्य के कार्यों से विकसित हुई- संग्रह या सेट के विचार का उपयोग करते हुए।[1]
डेडेकिंड का दृष्टिकोण अनिवार्य रूप से सेट के आकार की तुलना करने के लिए एक-से-एक पत्राचार के विचार को एक मानक के रूप में अपनाने और गैलीलियो (यूक्लिड से प्राप्त) के विचार को अस्वीकार करने के लिए था कि पूरे भाग के समान आकार नहीं हो सकते। (हालांकि, गैलीलियो के विरोधाभास को देखें जहां गैलीलियो ने निष्कर्ष निकाला है कि सकारात्मक पूर्णांक की तुलना सकारात्मक वर्ग संख्या के उपसमुच्चय से नहीं की जा सकती है क्योंकि दोनों अनंत सेट हैं।) भागों; अनंत की इस धारणा को डेडेकिंड अनंत कहा जाता है। दाईं ओर आरेख एक उदाहरण देता है: बिंदुओं के अनंत सेट के रूप में देखने वाली रेखाएं, निचली नीली रेखा के बाएं आधे हिस्से को उच्च नीली रेखा के लिए एक-से-एक तरीके से (हरे पत्राचार) में मैप किया जा सकता है, और बदले में , पूरी निचली नीली रेखा (लाल पत्राचार); इसलिए पूरी निचली नीली रेखा और उसके बाएँ आधे हिस्से में एक ही कार्डिनैलिटी, यानी आकार है।[citation needed] कैंटर ने दो प्रकार की अनंत संख्याओं को परिभाषित किया: क्रमसूचक संख्याएँ और कार्डिनल संख्याएँ। क्रमिक संख्याएँ सुव्यवस्थित सेटों की विशेषता बताती हैं, या किसी भी रोक बिंदु पर की गई गिनती, जिसमें एक अनंत संख्या के बाद के अंक पहले ही गिने जा चुके हैं। परिमित और (साधारण) अनंत अनुक्रमों का सामान्यीकरण, जो धनात्मक पूर्णांकों से मानचित्र हैं, क्रमसूचक संख्याओं से ट्रांसफिनिट अनुक्रमों तक कार्य (गणित) की ओर ले जाते हैं। कार्डिनल नंबर सेट के आकार को परिभाषित करते हैं, जिसका अर्थ है कि उनमें कितने सदस्य हैं, और उस आकार के कार्डिनल नंबर का प्रतिनिधित्व करने के लिए एक निश्चित आकार की पहली क्रमिक संख्या चुनकर मानकीकृत किया जा सकता है। सबसे छोटी क्रमसूचक अनन्तता धनात्मक पूर्णांकों की होती है, और कोई भी समुच्चय जिसमें पूर्णांकों की प्रधानता होती है, गणनीय समुच्चय होता है। यदि एक सेट सकारात्मक पूर्णांकों के साथ एक-से-एक पत्राचार में रखने के लिए बहुत बड़ा है, तो इसे बेशुमार सेट कहा जाता है। कैंटर के विचार प्रचलित थे और आधुनिक गणित एक सुसंगत और सुसंगत सिद्धांत के हिस्से के रूप में वास्तविक अनंतता को स्वीकार करता है।[38][39][page needed] कुछ विस्तारित संख्या प्रणालियाँ, जैसे कि अतिवास्तविक संख्याएँ, साधारण (परिमित) संख्याएँ और विभिन्न आकारों की अनंत संख्याएँ शामिल करती हैं।[citation needed]
सातत्य की प्रमुखता
कैंटर के सबसे महत्वपूर्ण परिणामों में से एक यह था कि सातत्य की प्रमुखता प्राकृतिक संख्या से अधिक है ; अर्थात्, अधिक वास्तविक संख्याएँ हैं R प्राकृतिक संख्या की तुलना में N. अर्थात्, कैंटर ने दिखाया .[40]
सातत्य परिकल्पना बताती है कि वास्तविक संख्या और प्राकृतिक संख्या की प्रमुखता के बीच कोई मुख्य संख्या नहीं है, अर्थात, .
इस परिकल्पना को व्यापक रूप से स्वीकृत ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के भीतर सिद्ध या अस्वीकृत नहीं किया जा सकता है, यहाँ तक कि च्वाइस के स्वयंसिद्ध को भी मानते हुए।[41]
कार्डिनल अंकगणित का उपयोग न केवल यह दिखाने के लिए किया जा सकता है कि वास्तविक संख्या रेखा में बिंदुओं की संख्या किसी भी रेखा खंड में बिंदुओं की संख्या के बराबर है, बल्कि यह भी कि यह विमान पर बिंदुओं की संख्या के बराबर है और वास्तव में, कोई परिमित-आयामी स्थान।[citation needed]
इनमें से पहला परिणाम, उदाहरण के लिए, स्पर्शरेखा (त्रिकोणमितीय फलन) फलन पर विचार करने से स्पष्ट होता है, जो अंतराल (गणित) के बीच एक-से-एक पत्राचार प्रदान करता है (−π/2, π/2) और R.
दूसरा परिणाम 1878 में कैंटर द्वारा सिद्ध किया गया था, लेकिन केवल 1890 में सहज रूप से स्पष्ट हो गया, जब जोसेफ पीनो ने स्पेस-फिलिंग कर्व्स, घुमावदार रेखाएं पेश कीं जो किसी भी वर्ग, या घन, या हाइपरघनक्षेत्र, या पूरे को भरने के लिए पर्याप्त मुड़ती और मुड़ती हैं। परिमित-आयामी स्थान। इन वक्रों का उपयोग वर्ग के एक तरफ के बिंदुओं और वर्ग के बिंदुओं के बीच एक-से-एक पत्राचार को परिभाषित करने के लिए किया जा सकता है।[42]
ज्यामिति
19वीं सदी के अंत तक, ज्यामिति में अनन्तता की शायद ही कभी चर्चा की गई थी, सिवाय उन प्रक्रियाओं के संदर्भ में जिन्हें बिना किसी सीमा के जारी रखा जा सकता था। उदाहरण के लिए, एक रेखा (ज्यामिति) वह थी जिसे अब एक रेखा खंड कहा जाता है, इस प्रावधान के साथ कि कोई इसे जहाँ तक चाहे बढ़ा सकता है; लेकिन इसे असीम रूप से विस्तारित करना प्रश्न से बाहर था। इसी तरह, एक रेखा को आमतौर पर असीमित रूप से कई बिंदुओं से बना नहीं माना जाता था, लेकिन वह एक ऐसा स्थान था जहां एक बिंदु रखा जा सकता था। यहां तक कि अगर असीम रूप से कई संभावित स्थान हैं, तो एक रेखा पर केवल सीमित अंक ही रखे जा सकते हैं। इसका एक गवाह एक बिंदु का लोकस (गणित) है जो कुछ संपत्ति (एकवचन) को संतुष्ट करता है, जहां आधुनिक गणितज्ञ आम तौर पर उन बिंदुओं के सेट को कहेंगे जिनके पास संपत्ति (बहुवचन) है।
वास्तविक अनंत को शामिल करने वाली गणितीय अवधारणा के दुर्लभ अपवादों में से एक प्रक्षेपी ज्यामिति थी, जहां अनंत पर बिंदुओं को परिप्रेक्ष्य (ग्राफिकल) प्रभाव के मॉडलिंग के लिए यूक्लिडियन अंतरिक्ष में जोड़ा जाता है जो अनंत पर प्रतिच्छेद करने वाली समानांतर रेखाओं को दिखाता है। गणितीय रूप से, अनंत पर बिंदुओं को कुछ विशेष मामलों पर विचार न करने की अनुमति देने का लाभ होता है। उदाहरण के लिए, एक प्रक्षेपी तल में, दो अलग-अलग रेखाएँ (ज्यामिति) ठीक एक बिंदु पर प्रतिच्छेद करती हैं, जबकि अनंत पर बिंदुओं के बिना, समानांतर रेखाओं के लिए कोई प्रतिच्छेदन बिंदु नहीं होते हैं। इसलिए, शास्त्रीय ज्यामिति में समानांतर और गैर-समानांतर रेखाओं का अलग-अलग अध्ययन किया जाना चाहिए, जबकि प्रक्षेपी ज्यामिति में उन्हें अलग करने की आवश्यकता नहीं है।
गणित की नींव के लिए समुच्चय सिद्धान्त के उपयोग से पहले, बिंदुओं और रेखाओं को अलग-अलग संस्थाओं के रूप में देखा जाता था, और एक बिंदु को एक रेखा पर स्थित किया जा सकता था। गणित में सेट सिद्धांत के सार्वभौमिक उपयोग के साथ, दृष्टिकोण नाटकीय रूप से बदल गया है: एक रेखा को अब इसके बिंदुओं के समुच्चय के रूप में माना जाता है, और एक कहता है कि एक बिंदु एक रेखा पर स्थित होने के बजाय एक रेखा से संबंधित है (हालांकि, बाद वाला वाक्यांश अभी भी प्रयोग किया जाता है)।
विशेष रूप से, आधुनिक गणित में, रेखाएँ अनंत समुच्चय होती हैं।
अनंत आयाम
शास्त्रीय ज्यामिति में होने वाले वेक्टर रिक्त स्थान में हमेशा एक परिमित आयाम (सदिश स्थल) होता है, आम तौर पर दो या तीन। हालांकि, यह सदिश स्थान की अमूर्त परिभाषा से निहित नहीं है, और अनंत आयाम के सदिश स्थानों पर विचार किया जा सकता है। यह आमतौर पर कार्यात्मक विश्लेषण में होता है जहां फ़ंक्शन रिक्त स्थान आमतौर पर अनंत आयाम के वेक्टर स्थान होते हैं।
टोपोलॉजी में, कुछ निर्माण अनंत आयाम के सामयिक स्थान उत्पन्न कर सकते हैं। विशेष रूप से, यह पुनरावृत्त लूप रिक्त स्थान का मामला है।
भग्न
एक भग्न वस्तु की संरचना इसके आवर्धन में दोहराई जाती है। फ्रैक्टल्स को अपनी संरचना खोए बिना और चिकना बनाए बिना अनिश्चित काल के लिए बड़ा किया जा सकता है; उनके पास अनंत परिमाप हैं, और अनंत या परिमित क्षेत्र हो सकते हैं। एक अनंत परिधि और परिमित क्षेत्र के साथ ऐसा ही एक भग्न वक्र कोच हिमपात है।[citation needed]
अनंत के बिना गणित
लियोपोल्ड क्रोनकर अनंत की धारणा और 1870 और 1880 के दशक में उनके साथी गणितज्ञ इसका उपयोग कैसे कर रहे थे, इस पर संदेह था। इस संशयवाद को गणित के दर्शन में विकसित किया गया था जिसे finitism कहा जाता है, जो गणितीय रचनावाद और अंतर्ज्ञानवाद के सामान्य दार्शनिक और गणितीय विद्यालयों में गणितीय दर्शन का एक चरम रूप है।[43]
भौतिकी
भौतिक विज्ञान में, वास्तविक संख्याओं के सन्निकटन का उपयोग सातत्य (सिद्धांत) मापन के लिए किया जाता है और प्राकृतिक संख्याओं का उपयोग गणनीय मापन (अर्थात, गिनती) के लिए किया जाता है। अनंत वस्तुओं की अवधारणाएं जैसे अनंत समतल तरंगें मौजूद हैं, लेकिन उन्हें उत्पन्न करने के लिए कोई प्रायोगिक साधन नहीं हैं।[44]
ब्रह्माण्ड विज्ञान
पहला प्रकाशित प्रस्ताव कि ब्रह्मांड अनंत है, 1576 में थॉमस डिग्ज से आया था।[45] आठ साल बाद, 1584 में, इतालवी दार्शनिक और खगोलशास्त्री जियोर्डानो ब्रूनो ने ऑन द इनफिनिट यूनिवर्स एंड वर्ल्ड्स में एक असीमित ब्रह्मांड का प्रस्ताव रखा: असंख्य सूर्य मौजूद हैं; असंख्य पृथ्वियां इन सूर्य के चारों ओर उसी तरह घूमती हैं जैसे सात ग्रह हमारे सूर्य के चारों ओर घूमते हैं। जीवित प्राणी इन संसारों में निवास करते हैं।[46]
ब्रह्मांड विज्ञान ने लंबे समय से यह पता लगाने की कोशिश की है कि क्या हमारे भौतिक ब्रह्मांड में अनंतता मौजूद है: क्या अनंत संख्या में तारे हैं? क्या ब्रह्मांड में अनंत मात्रा है? क्या अंतरिक्ष ब्रह्मांड का आकार है? यह अभी भी भौतिक ब्रह्माण्ड विज्ञान का एक खुला प्रश्न है। अनंत होने का प्रश्न तार्किक रूप से सीमाओं के होने के प्रश्न से अलग है। उदाहरण के लिए, पृथ्वी की द्वि-आयामी सतह परिमित है, फिर भी इसका कोई किनारा नहीं है। पृथ्वी की वक्रता के संबंध में एक सीधी रेखा में यात्रा करके, व्यक्ति अंततः उसी स्थान पर वापस आ जाएगा जहां से शुरू किया था। ब्रह्मांड, कम से कम सिद्धांत रूप में, एक समान टोपोलॉजी हो सकती है। यदि ऐसा है, तो ब्रह्मांड के माध्यम से एक सीधी रेखा में काफी लंबे समय तक यात्रा करने के बाद अंततः व्यक्ति अपने शुरुआती बिंदु पर वापस आ सकता है।[47]
कॉस्मिक माइक्रोवेव पृष्ठभूमि विकिरण के स्पेक्ट्रम में ब्रह्मांड की वक्रता को बहुध्रुव क्षणों के माध्यम से मापा जा सकता है। तिथि करने के लिए, WMAP अंतरिक्ष यान द्वारा दर्ज किए गए विकिरण पैटर्न का विश्लेषण संकेत देता है कि ब्रह्मांड में एक सपाट टोपोलॉजी है। यह एक अनंत भौतिक ब्रह्मांड के अनुरूप होगा।Cite error: Closing </ref>
missing for <ref>
tag
हालाँकि, ब्रह्मांड परिमित हो सकता है, भले ही इसकी वक्रता समतल हो। इसे समझने का एक आसान तरीका द्वि-आयामी उदाहरणों पर विचार करना है, जैसे वीडियो गेम जहां स्क्रीन के एक किनारे को छोड़ने वाले आइटम दूसरे पर फिर से दिखाई देते हैं। ऐसे खेलों की टोपोलॉजी टोरस्र्स है और ज्यामिति समतल है। त्रि-आयामी अंतरिक्ष के लिए कई संभावित बाध्य, सपाट संभावनाएं भी मौजूद हैं।[48]
अनंत की अवधारणा भी बहुविविध परिकल्पना तक फैली हुई है, जो रास्ता लिखो जैसे खगोल भौतिकीविदों द्वारा समझाए जाने पर यह मानती है कि ब्रह्मांडों की अनंत संख्या और विविधताएं हैं।[49] इसके अलावा, चक्रीय मॉडल महा विस्फोट्स की एक अनंत मात्रा को प्रस्तुत करते हैं, जिसके परिणामस्वरूप एक अनंत चक्र में प्रत्येक बिग बैंग घटना के बाद ब्रह्मांडों की एक अनंत विविधता होती है।[50]
तर्क
तर्क में, एक अनंत प्रतिगमन तर्क एक विशिष्ट दार्शनिक प्रकार का तर्क है जो यह दर्शाता है कि एक थीसिस दोषपूर्ण है क्योंकि यह एक अनंत श्रृंखला उत्पन्न करता है जब या तो (फॉर्म ए) ऐसी कोई श्रृंखला मौजूद नहीं होती है या (फॉर्म बी) मौजूद होती है, थीसिस भूमिका की कमी होगी (उदाहरण के लिए, औचित्य की) जिसे इसे निभाना चाहिए।[51]
कंप्यूटिंग
IEEE फ़्लोटिंग-पॉइंट मानक (IEEE 754) एक धनात्मक और एक ऋणात्मक अनंत मान (और NaN मान भी) निर्दिष्ट करता है। इन्हें अंकगणितीय अतिप्रवाह, शून्य से विभाजन, और अन्य असाधारण संचालन के परिणाम के रूप में परिभाषित किया गया है।[52] कुछ प्रोग्रामिंग लैंग्वेज, जैसे [[जावा (प्रोग्रामिंग भाषा)]][53] और जे (प्रोग्रामिंग भाषा),[54] भाषा स्थिरांक के रूप में प्रोग्रामर को धनात्मक और ऋणात्मक अनंत मानों तक स्पष्ट पहुंच की अनुमति देता है। इन्हें महानतम तत्व के रूप में इस्तेमाल किया जा सकता है, क्योंकि वे तुलना (क्रमशः) अन्य सभी मूल्यों से अधिक या कम करते हैं। छँटाई, खोज कलन विधि, या खिड़की समारोह से जुड़े एल्गोरिदम में प्रहरी मूल्यों के रूप में उनका उपयोग होता है।[citation needed] उन भाषाओं में जिनमें सबसे बड़े और सबसे कम तत्व नहीं हैं, लेकिन ऑपरेटर को रिलेशनल ऑपरेटरों ऑपरेटर ओवरलोडिंग की अनुमति देते हैं, एक प्रोग्रामर के लिए सबसे बड़ा और सबसे कम तत्व बनाना संभव है। उन भाषाओं में जो कार्यक्रम की प्रारंभिक स्थिति से ऐसे मूल्यों तक स्पष्ट पहुंच प्रदान नहीं करते हैं, लेकिन फ़्लोटिंग-पॉइंट डेटा प्रकार को लागू करते हैं, कुछ कार्यों के परिणाम के रूप में अनंत मान अभी भी सुलभ और उपयोग योग्य हो सकते हैं।[citation needed] प्रोग्रामिंग में, एक अनंत लूप एक पाश (कंप्यूटिंग) होता है, जिसकी निकास स्थिति कभी भी संतुष्ट नहीं होती है, इस प्रकार अनिश्चित काल तक क्रियान्वित होती है।
कला, खेल और संज्ञानात्मक विज्ञान
परिप्रेक्ष्य (ग्राफ़िकल) आर्टवर्क गायब होने वाले बिंदुओं की अवधारणा का उपयोग करता है, जो लगभग अनंत पर गणितीय बिंदु के अनुरूप होता है, जो पर्यवेक्षक से अनंत दूरी पर स्थित होता है। यह कलाकारों को ऐसे चित्र बनाने की अनुमति देता है जो वास्तविक रूप से स्थान, दूरी और रूपों को प्रस्तुत करते हैं।[55] कलाकार एम.सी. एस्चर विशेष रूप से इस और अन्य तरीकों से अपने काम में अनंतता की अवधारणा को नियोजित करने के लिए जाना जाता है।[citation needed] एक असीमित बोर्ड पर खेले जाने वाले शतरंज के रूपों को अनंत शतरंज कहा जाता है।[56][57] संज्ञानात्मक विज्ञान जॉर्ज लैकॉफ गणित और विज्ञान में अनंतता की अवधारणा को एक रूपक के रूप में मानते हैं। यह परिप्रेक्ष्य अनंत के मूल रूपक (बीएमआई) पर आधारित है, जिसे हमेशा बढ़ते क्रम <1,2,3,...> के रूप में परिभाषित किया गया है।[58]
यह भी देखें
- 0.999...
- अलेफ संख्या
- अनंत (अनंत)
- घातांक
- अनिश्चित रूप
- अनंत बंदर प्रमेय
- अनंत सेट
- अनंत
- अनंत का विरोधाभास
- सुपरटास्क
- असली संख्या
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Allen, Donald (2003). "The History of Infinity" (PDF). Texas A&M Mathematics. Retrieved Nov 15, 2019.
- ↑ 2.0 2.1 Jesseph, Douglas Michael (Spring–Summer 1998). "Leibniz on the Foundations of the Calculus: The Question of the Reality of Infinitesimal Magnitudes". Perspectives on Science. 6 (1&2): 6–40. doi:10.1162/posc_a_00543. ISSN 1063-6145. OCLC 42413222. S2CID 118227996. Archived from the original on 11 January 2012. Retrieved 1 November 2019 – via Project MUSE.
{{cite journal}}
: CS1 maint: date and year (link) - ↑ Gowers, Timothy; Barrow-Green, June (2008). The Princeton companion to mathematics (in English). Imre Leader, Princeton University. Princeton: Princeton University Press. ISBN 978-1-4008-3039-8. OCLC 659590835.
- ↑ Maddox 2002, pp. 113–117
- ↑ McLarty, Colin (15 January 2014) [September 2010]. "What Does it Take to Prove Fermat's Last Theorem? Grothendieck and the Logic of Number Theory". The Bulletin of Symbolic Logic. 16 (3): 359–377. doi:10.2178/bsl/1286284558. S2CID 13475845 – via Cambridge University Press.
- ↑ Wallace 2004, p. 44
- ↑ Aristotle. भौतिक विज्ञान. Translated by Hardie, R. P.; Gaye, R. K. The Internet Classics Archive. Book 3, Chapters 5–8.
- ↑ Goodman, Nicolas D. (1981). Richman, F. (ed.). "Reflections on Bishop's philosophy of mathematics". Constructive Mathematics. Lecture Notes in Mathematics. Lecture Notes in Mathematics. Springer. 873: 135–145. doi:10.1007/BFb0090732. ISBN 978-3-540-10850-4.
- ↑ Maor, p. 3
- ↑ Sarton, George (March 1928). "The Thirteen Books of Euclid's Elements. Thomas L. Heath , Heiberg". Isis. 10 (1): 60–62. doi:10.1086/346308. ISSN 0021-1753 – via The University of Chicago Press Journals.
- ↑ Hutten, Ernest Hirschlaff (1962). The origins of science; an inquiry into the foundations of Western thought (in English). Internet Archive. London, Allen and Unwin. pp. 1–241. ISBN 978-0-04-946007-2. Retrieved 2020-01-09.
- ↑ Euclid (2008) [c. 300 BC]. Euclid's Elements of Geometry (PDF). Translated by Fitzpatrick, Richard. p. 6 (Book I, Postulate 5). ISBN 978-0-6151-7984-1.
- ↑ Heath, Sir Thomas Little; Heiberg, Johan Ludvig (1908). The Thirteen Books of Euclid's Elements. Vol. v. 1. The University Press. p. 212.
- ↑ Drozdek, Adam (2008). In the Beginning Was the Apeiron: Infinity in Greek Philosophy. Stuttgart, Germany: Franz Steiner Verlag. ISBN 978-3-515-09258-6.
- ↑ "Zeno's Paradoxes". Stanford University. October 15, 2010. Retrieved April 3, 2017.
- ↑ Russell 1996, p. 347
- ↑ Cauchy, Augustin-Louis (1821). Cours d'Analyse de l'École Royale Polytechnique. Libraires du Roi & de la Bibliothèque du Roi. p. 124. Retrieved October 12, 2019.
- ↑ Ian Stewart (2017). Infinity: a Very Short Introduction. Oxford University Press. p. 117. ISBN 978-0-19-875523-4. Archived from the original on April 3, 2017.
- ↑ Cajori, Florian (2007). A History of Mathematical Notations (in English). Vol. 1. Cosimo, Inc. p. 214. ISBN 9781602066854.
- ↑ Cajori 1993, Sec. 421, Vol. II, p. 44
- ↑ Cajori 1993, Sec. 435, Vol. II, p. 58
- ↑ Grattan-Guinness, Ivor (2005). Landmark Writings in Western Mathematics 1640-1940. Elsevier. p. 62. ISBN 978-0-08-045744-4. Archived from the original on 2016-06-03. Extract of p. 62
- ↑ Weyl, Hermann (2012), Peter Pesic (ed.), Levels of Infinity / Selected Writings on Mathematics and Philosophy, Dover, p. 17, ISBN 978-0-486-48903-2
- ↑ AG, Compart. "Unicode Character "∞" (U+221E)". Compart.com (in English). Retrieved 2019-11-15.
- ↑ "List of LaTeX mathematical symbols - OeisWiki". oeis.org. Retrieved 2019-11-15.
- ↑ Scott, Joseph Frederick (1981), The mathematical work of John Wallis, D.D., F.R.S., (1616–1703) (2 ed.), American Mathematical Society, p. 24, ISBN 978-0-8284-0314-6, archived from the original on 2016-05-09
- ↑ Martin-Löf, Per (1990), "Mathematics of infinity", COLOG-88 (Tallinn, 1988), Lecture Notes in Computer Science, vol. 417, Berlin: Springer, pp. 146–197, doi:10.1007/3-540-52335-9_54, ISBN 978-3-540-52335-2, MR 1064143
- ↑ O'Flaherty, Wendy Doniger (1986), Dreams, Illusion, and Other Realities, University of Chicago Press, p. 243, ISBN 978-0-226-61855-5, archived from the original on 2016-06-29
- ↑ Toker, Leona (1989), Nabokov: The Mystery of Literary Structures, Cornell University Press, p. 159, ISBN 978-0-8014-2211-9, archived from the original on 2016-05-09
- ↑ Bell, John Lane. "Continuity and Infinitesimals". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy.
- ↑ Taylor 1955, p. 63
- ↑ These uses of infinity for integrals and series can be found in any standard calculus text, such as, Swokowski 1983, pp. 468–510
- ↑ "Properly Divergent Sequences - Mathonline". mathonline.wikidot.com. Retrieved 2019-11-15.
- ↑ Aliprantis, Charalambos D.; Burkinshaw, Owen (1998), Principles of Real Analysis (3rd ed.), San Diego, CA: Academic Press, Inc., p. 29, ISBN 978-0-12-050257-8, MR 1669668, archived from the original on 2015-05-15
- ↑ Gemignani 1990, p. 177
- ↑ Beutelspacher, Albrecht; Rosenbaum, Ute (1998), Projective Geometry / from foundations to applications, Cambridge University Press, p. 27, ISBN 978-0-521-48364-3
- ↑ Weisstein, Eric W. "Extended Complex Plane". mathworld.wolfram.com (in English). Retrieved 2019-11-15.
- ↑ "अनंतता". math.dartmouth.edu. Retrieved 2019-11-16.
- ↑ Moore, A.W. (1991). The Infinite. Routledge.
- ↑ Dauben, Joseph (1993). "Georg Cantor and the Battle for Transfinite Set Theory" (PDF). 9th ACMS Conference Proceedings: 4.
- ↑ Cohen 1963, p. 1143
- ↑ Sagan 1994, pp. 10–12
- ↑ Kline 1972, pp. 1197–1198
- ↑ Doric Lenses Archived 2013-01-24 at the Wayback Machine – Application Note – Axicons – 2. Intensity Distribution. Retrieved 7 April 2014.
- ↑ John Gribbin (2009), In Search of the Multiverse: Parallel Worlds, Hidden Dimensions, and the Ultimate Quest for the Frontiers of Reality, ISBN 978-0-470-61352-8. p. 88
- ↑ Brake, Mark (2013). Alien Life Imagined: Communicating the Science and Culture of Astrobiology. p. 63. Bibcode:2014PhT....67f..49S. doi:10.1063/PT.3.2420. ISBN 978-0-521-49129-7.
{{cite book}}
:|journal=
ignored (help) Extract of p. 63 - ↑ Koupelis, Theo; Kuhn, Karl F. (2007). In Quest of the Universe (illustrated ed.). Jones & Bartlett Learning. p. 553. ISBN 978-0-7637-4387-1. Extract of p. 553
- ↑ Weeks, Jeffrey (2001). The Shape of Space. CRC Press. ISBN 978-0-8247-0709-5.
- ↑ Kaku, M. (2006). Parallel worlds. Knopf Doubleday Publishing Group.
- ↑ McKee, Maggie (25 September 2014). "Ingenious: Paul J. Steinhardt – The Princeton physicist on what's wrong with inflation theory and his view of the Big Bang". Nautilus. No. 17. NautilusThink Inc. Retrieved 31 March 2017.
- ↑ Cambridge Dictionary of Philosophy, Second Edition, p. 429
- ↑ "Infinity and NaN (The GNU C Library)". www.gnu.org. Retrieved 2021-03-15.
- ↑ Gosling, James; et al. (27 July 2012). "4.2.3.". The Java Language Specification (Java SE 7 ed.). California: Oracle America, Inc. Archived from the original on 9 June 2012. Retrieved 6 September 2012.
- ↑ Stokes, Roger (July 2012). "19.2.1". Learning J. Archived from the original on 25 March 2012. Retrieved 6 September 2012.
- ↑ Kline, Morris (1985). Mathematics for the nonmathematician. Courier Dover Publications. p. 229. ISBN 978-0-486-24823-3., Section 10-7, p. 229 Archived 2016-05-16 at the Wayback Machine
- ↑ Infinite chess at the Chess Variant Pages Archived 2017-04-02 at the Wayback Machine An infinite chess scheme.
- ↑ "Infinite Chess, PBS Infinite Series" Archived 2017-04-07 at the Wayback Machine PBS Infinite Series,with academic sources by J. Hamkins (infinite chess: Evans, C.D.A; Joel David Hamkins (2013). "Transfinite game values in infinite chess". arXiv:1302.4377 [math.LO]. and Evans, C.D.A; Joel David Hamkins; Norman Lewis Perlmutter (2015). "A position in infinite chess with game value $ω^4$". arXiv:1510.08155 [math.LO].).
- ↑ "Archived copy" (PDF). Archived from the original (PDF) on 2020-02-26. Retrieved 2021-03-25.
{{cite web}}
: CS1 maint: archived copy as title (link)
ग्रन्थसूची
- Cajori, Florian (1993) [1928 & 1929], A History of Mathematical Notations (Two Volumes Bound as One), Dover, ISBN 978-0-486-67766-8
- Gemignani, Michael C. (1990), Elementary Topology (2nd ed.), Dover, ISBN 978-0-486-66522-1
- Keisler, H. Jerome (1986), Elementary Calculus: An Approach Using Infinitesimals (2nd ed.)
- Maddox, Randall B. (2002), Mathematical Thinking and Writing: A Transition to Abstract Mathematics, Academic Press, ISBN 978-0-12-464976-7
- Kline, Morris (1972), Mathematical Thought from Ancient to Modern Times, New York: Oxford University Press, pp. 1197–1198, ISBN 978-0-19-506135-2
- Russell, Bertrand (1996) [1903], The Principles of Mathematics, New York: Norton, ISBN 978-0-393-31404-5, OCLC 247299160
- Sagan, Hans (1994), Space-Filling Curves, Springer, ISBN 978-1-4612-0871-6
- Swokowski, Earl W. (1983), Calculus with Analytic Geometry (Alternate ed.), Prindle, Weber & Schmidt, ISBN 978-0-87150-341-1
- Taylor, Angus E. (1955), Advanced Calculus, Blaisdell Publishing Company
- Wallace, David Foster (2004), Everything and More: A Compact History of Infinity, Norton, W.W. & Company, Inc., ISBN 978-0-393-32629-1
स्रोत
- Aczel, Amir D. (2001). एलेफ का रहस्य: गणित, कबला, और अनंत की खोज. New York: Pocket Books. ISBN 978-0-7434-2299-4.
- डी.पी. अग्रवाल (2000)। प्राचीन जैन गणित: एक परिचय, Infinity Foundation।
- बेल, जे.एल.: कंटीन्यूटी एंड इनफिनिटिमल्स। स्टैनफोर्ड एनसाइक्लोपीडिया ऑफ फिलॉसफी। संशोधित 2009।
- Cohen, Paul (1963), "The Independence of the Continuum Hypothesis", Proceedings of the National Academy of Sciences of the United States of America, 50 (6): 1143–1148, Bibcode:1963PNAS...50.1143C, doi:10.1073/pnas.50.6.1143, PMC 221287, PMID 16578557.
- Jain, L.C. (1982). जैन स्रोतों से सटीक विज्ञान.
- जैन, एल.सी. (1973)। जैन स्कूल ऑफ मैथेमेटिक्स, इंडियन जर्नल ऑफ हिस्ट्री ऑफ साइंस में सेट थ्योरी।
- Joseph, George G. (2000). द क्रेस्ट ऑफ़ द पीकॉक: नॉन-यूरोपियन रूट्स ऑफ़ मैथेमेटिक्स (2nd ed.). Penguin Books. ISBN 978-0-14-027778-4.
- एच. जेरोम कीस्लर: एलीमेंट्री कैलकुलस: एन एप्रोच यूजिंग इनफिनिटिमल्स। पहला संस्करण 1976; दूसरा संस्करण 1986। यह पुस्तक अब प्रिंट से बाहर है। प्रकाशक ने लेखक के कॉपीराइट को वापस कर दिया है, जिसने दूसरा संस्करण .पीडीएफ प्रारूप में उपलब्ध कराया है जो http://www.math.wisc.edu/~keisler/calc.html पर डाउनलोड करने के लिए उपलब्ध है।
- Eli Maor (1991). अनंत की ओर और उससे परे. Princeton University Press. ISBN 978-0-691-02511-7.
- ओ'कॉनर, जॉन जे. और एडमंड एफ. रॉबर्टसन (1998)। 'जॉर्ज फर्डिनेंड लुडविग फिलिप कैंटर' Archived 2006-09-16 at the Wayback Machine, गणित संग्रह का मैकट्यूटर इतिहास।
- ओ'कॉनर, जॉन जे. और एडमंड एफ. रॉबर्टसन (2000)। 'जैन गणित' Archived 2008-12-20 at the Wayback Machine, गणित संग्रह का मैकट्यूटर इतिहास।
- पियर्स, इयान। (2002)। 'जैनवाद', मैकट्यूटर हिस्ट्री ऑफ मैथेमैटिक्स आर्काइव।
- Rucker, Rudy (1995). इन्फिनिटी एंड द माइंड: द साइंस एंड फिलॉसफी ऑफ द इनफिनिट. Princeton University Press. ISBN 978-0-691-00172-2.
- Singh, Navjyoti (1988). "जैन थ्योरी ऑफ एक्चुअल इन्फिनिटी एंड ट्रांसफिनिट नंबर्स". Journal of the Asiatic Society. 30.
बाहरी संबंध
- "The Infinite". Internet Encyclopedia of Philosophy.
- Infinity on In Our Time at the BBC
- A Crash Course in the Mathematics of Infinite Sets Archived 2010-02-27 at the Wayback Machine, by Peter Suber. From the St. John's Review, XLIV, 2 (1998) 1–59. The stand-alone appendix to Infinite Reflections, below. A concise introduction to Cantor's mathematics of infinite sets.
- Infinite Reflections Archived 2009-11-05 at the Wayback Machine, by Peter Suber. How Cantor's mathematics of the infinite solves a handful of ancient philosophical problems of the infinite. From the St. John's Review, XLIV, 2 (1998) 1–59.
- Grime, James. "Infinity is bigger than you think". Numberphile. Brady Haran. Archived from the original on 2017-10-22. Retrieved 2013-04-06.
- Hotel Infinity
- John J. O'Connor and Edmund F. Robertson (1998). 'Georg Ferdinand Ludwig Philipp Cantor' Archived 2006-09-16 at the Wayback Machine, MacTutor History of Mathematics archive.
- John J. O'Connor and Edmund F. Robertson (2000). 'Jaina mathematics' Archived 2008-12-20 at the Wayback Machine, MacTutor History of Mathematics archive.
- Ian Pearce (2002). 'Jainism', MacTutor History of Mathematics archive.
- The Mystery Of The Aleph: Mathematics, the Kabbalah, and the Search for Infinity
- Dictionary of the Infinite (compilation of articles about infinity in physics, mathematics, and philosophy)