मुक्त समूह: Difference between revisions

From Vigyanwiki
(TEXT)
(TEXT)
Line 1: Line 1:
{{Short description|Mathematics concept}}
{{Short description|Mathematics concept}}
{{Group theory sidebar |Discrete}}
{{Group theory sidebar |Discrete}}
[[Image:F2 Cayley Graph.png|right|thumb|आरेख दो जनरेटर पर मुक्त समूह के लिए [[केली ग्राफ]] दिखा रहा है। प्रत्येक शीर्ष मुक्त समूह के एक तत्व का प्रतिनिधित्व करता है, और प्रत्येक किनारा a या b द्वारा गुणा का प्रतिनिधित्व करता है।]]गणित में, किसी दिए गए समुच्चय S पर मुक्त समूह  ''F<sub>S</sub>'' में वे सभी शब्द होते हैं जो S के सदस्यों से बनाए जा सकते हैं, दो शब्दों को अलग मानते हुए जब तक कि उनकी समानता समूह स्वयंसिद्धों (उदा. ''st'' = ''suu''<sup>−1</sup>''t'', लेकिन''s'' ≠ ''t''<sup>−1</sup>,''s'',''t'',''u'' ∈ ''S'' के लिए) हैं। S के सदस्यों को ''F<sub>S</sub>'' का 'जनित्र' कहा जाता है, और जनित्र की संख्या मुक्त समूह की क्रम होती है। एक स्वेच्छाचारी [[समूह (गणित)|समूह]] ''G'' को मुक्त कहा जाता है यदि यह ''G'' के कुछ उपसमुच्चय ''S'' के लिए ''F<sub>S</sub>'' के लिए समरूप है, अर्थात, यदि ''G'' का एक उपसमुच्च ''S'' है, जैसे कि ''G'' के प्रत्येक तत्व को यथार्थत: से लिखा जा सकता है जैसे कि बहुत से गुणनफल के रूप में ''S'' के तत्व और उनके व्युत्क्रम (तुच्छ भिन्नता की उपेक्षा करना जैसे कि ''st'' = ''suu''<sup>−1</sup>''t'') है।
[[Image:F2 Cayley Graph.png|right|thumb|आरेख दो जनित्र पर मुक्त समूह के लिए [[केली ग्राफ|केली आरेख]] दिखा रहा है। प्रत्येक शीर्ष मुक्त समूह के एक तत्व का प्रतिनिधित्व करता है, और प्रत्येक किनारा a या b द्वारा गुणा का प्रतिनिधित्व करता है।]]गणित में, किसी दिए गए समुच्चय S पर मुक्त समूह  ''F<sub>S</sub>'' में वे सभी शब्द होते हैं जो S के सदस्यों से बनाए जा सकते हैं, दो शब्दों को अलग मानते हुए जब तक कि उनकी समानता समूह स्वयंसिद्धों (उदा. ''st'' = ''suu''<sup>−1</sup>''t'', लेकिन''s'' ≠ ''t''<sup>−1</sup>,''s'',''t'',''u'' ∈ ''S'' के लिए) हैं। S के सदस्यों को ''F<sub>S</sub>'' का 'जनित्र' कहा जाता है, और जनित्र की संख्या मुक्त समूह की क्रम होती है। एक स्वेच्छाचारी [[समूह (गणित)|समूह]] ''G'' को मुक्त कहा जाता है यदि यह ''G'' के कुछ उपसमुच्चय ''S'' के लिए ''F<sub>S</sub>'' के लिए समरूप है, अर्थात, यदि ''G'' का एक उपसमुच्च ''S'' है, जैसे कि ''G'' के प्रत्येक तत्व को यथार्थत: से लिखा जा सकता है जैसे कि बहुत से गुणनफल के रूप में ''S'' के तत्व और उनके व्युत्क्रम (तुच्छ भिन्नता की उपेक्षा करना जैसे कि ''st'' = ''suu''<sup>−1</sup>''t'') है।


एक संबंधित लेकिन भिन्न धारणा एक [[मुक्त एबेलियन समूह]] है; दोनों धारणाएं [[सार्वभौमिक बीजगणित]] से [[मुक्त वस्तु]] के विशेष उदाहरण हैं। जैसे, मुक्त समूहों को उनकी सार्वभौमिक संपत्ति द्वारा परिभाषित किया जाता है।
एक संबंधित लेकिन भिन्न धारणा एक [[मुक्त एबेलियन समूह]] है; दोनों धारणाएं [[सार्वभौमिक बीजगणित]] से [[मुक्त वस्तु]] के विशेष उदाहरण हैं। जैसे, मुक्त समूहों को उनकी सार्वभौमिक संपत्ति द्वारा परिभाषित किया जाता है।
Line 33: Line 33:
== सार्वभौमिक संपत्ति ==
== सार्वभौमिक संपत्ति ==
मुक्त समूह ''F<sub>S</sub>'' समुच्चय ''S'' द्वारा उत्पन्न सार्वभौमिक समूह है। इसे निम्नलिखित [[सार्वभौमिक संपत्ति]] द्वारा औपचारिक रूप दिया जा सकता है: ''S'' से समूह ''G तक कोई भी फलन f'' दिया गया है, तो एक अद्वितीय समरूपता ''φ'' अस्तित्व है: ''F<sub>S</sub>'' → ''G'' निम्नलिखित [[क्रमविनिमेय आरेख|आरेख]] आवागमन कर रहा है (जहां अज्ञात मानचित्रण S से F में समावेश होने को दर्शाता है):
मुक्त समूह ''F<sub>S</sub>'' समुच्चय ''S'' द्वारा उत्पन्न सार्वभौमिक समूह है। इसे निम्नलिखित [[सार्वभौमिक संपत्ति]] द्वारा औपचारिक रूप दिया जा सकता है: ''S'' से समूह ''G तक कोई भी फलन f'' दिया गया है, तो एक अद्वितीय समरूपता ''φ'' अस्तित्व है: ''F<sub>S</sub>'' → ''G'' निम्नलिखित [[क्रमविनिमेय आरेख|आरेख]] आवागमन कर रहा है (जहां अज्ञात मानचित्रण S से F में समावेश होने को दर्शाता है):
[[Image:Free Group Universal.svg|center|100px]]अर्थात्, समरूपता ''F<sub>S</sub>'' → ''G'' कार्यों ''S'' → ''G'' के साथ एक-से-एक पत्राचार में हैं। एक गैर-मुक्त समूह के लिए, समूह प्रस्तुति की उपस्थिति एक समरूपता के तहत जनरेटर की संभावित छवियों को प्रतिबंधित करेगी।
[[Image:Free Group Universal.svg|center|100px]]अर्थात्, समरूपता ''F<sub>S</sub>'' → ''G'' फलन ''S'' → ''G'' के साथ एक-से-एक पत्राचार में हैं। एक गैर-मुक्त समूह के लिए, संबंधों की उपस्थिति जनित्र की संभावित छवियों को समरूपता के अंतर्गत सीमित कर देगी।


यह देखने के लिए कि यह रचनात्मक परिभाषा से कैसे संबंधित है, एस से एफ तक मैपिंग के बारे में सोचें<sub>S</sub>प्रत्येक प्रतीक को उस प्रतीक से युक्त शब्द में भेजने के रूप में। दिए गए के लिए φ की रचना करना {{mvar|f}}, पहले ध्यान दें कि φ खाली शब्द को G की पहचान के लिए भेजता है और इससे सहमत होना है {{mvar|f}} एस के तत्वों पर। शेष शब्दों के लिए (एक से अधिक प्रतीकों से मिलकर), φ को विशिष्ट रूप से विस्तारित किया जा सकता है, क्योंकि यह एक समरूपता है, अर्थात, φ(ab) = φ(a) φ(b)।
यह देखने के लिए कि यह रचनात्मक परिभाषा से कैसे संबंधित है, ''S'' से ''F<sub>S</sub>'' तक मानचित्रण के बारे में सोचें जैसे प्रत्येक प्रतीक से युक्त शब्द में भेजना। दिए गए f के लिए φ का निर्माण करने के लिए, पहले ध्यान दें कि φ प्रकार्य शब्द को G की पहचान के लिए भेजता है और इसे S के तत्वों पर {{mvar|f}} से सहमत होना है। शेष शब्दों के लिए (एक से अधिक प्रतीकों से मिलकर), φ को विशिष्ट रूप से विस्तारित किया जा सकता है, क्योंकि यह एक समरूपता है, अर्थात, φ(ab) = φ(a) φ(b)।


उपरोक्त संपत्ति समरूपता तक मुक्त समूहों की विशेषता है, और कभी-कभी इसे वैकल्पिक परिभाषा के रूप में प्रयोग किया जाता है। इसे मुक्त समूहों की सार्वभौमिक संपत्ति के रूप में जाना जाता है, और उत्पन्न समुच्चय एस को एफ के लिए 'आधार' कहा जाता है<sub>S</sub>. मुक्त समूह का आधार विशिष्ट रूप से निर्धारित नहीं है।
उपरोक्त संपत्ति समरूपता तक मुक्त समूहों की विशेषता है, और कभी-कभी इसे वैकल्पिक परिभाषा के रूप में प्रयोग किया जाता है। इसे मुक्त समूहों की सार्वभौमिक संपत्ति के रूप में जाना जाता है, और जनक समुच्चय ''S'' को ''F<sub>S</sub>'' के लिए 'आधार' कहा जाता है। मुक्त समूह का आधार विशिष्ट रूप से निर्धारित नहीं है।


एक सार्वभौमिक संपत्ति की विशेषता होना सार्वभौमिक बीजगणित में मुक्त वस्तुओं की मानक विशेषता है। [[श्रेणी सिद्धांत|क्रम सिद्धांत]] की भाषा में, मुक्त समूह का निर्माण (मुक्त वस्तुओं के अधिकांश निर्माणों के समान) [[सेट की श्रेणी|समुच्चय की क्रम]] से [[समूहों की श्रेणी|समूहों की क्रम]] का एक [[ऑपरेटर]] है। यह फ़ंक्टर समूह से समुच्चय तक भुलक्कड़ फ़ंक्टर के बगल में छोड़ दिया जाता है।
एक सार्वभौमिक संपत्ति की विशेषता होना सार्वभौमिक बीजगणित में मुक्त वस्तुओं की मानक विशेषता है। [[श्रेणी सिद्धांत|क्रम सिद्धांत]] की भाषा में, मुक्त समूह का निर्माण (मुक्त वस्तुओं के अधिकांश निर्माणों के समान) [[सेट की श्रेणी|समुच्चय की श्रेणी]] से [[समूहों की श्रेणी]] का एक [[ऑपरेटर|प्रकार्यक]] है। यह प्रकार्यक समूह से समुच्चय तक अनवहित प्रकार्यक के अभिसम्युक्त छोड़ दिया जाता है।


== तथ्य और प्रमेय ==
== तथ्य और प्रमेय ==
परिभाषा से मुक्त समूहों के कुछ गुण आसानी से अनुसरण करते हैं:
परिभाषा से मुक्त समूहों के कुछ गुण सरलता से अनुसरण करते हैं:


#कोई भी समूह G किसी मुक्त समूह F(S) का समरूपी प्रतिबिम्ब है। बता दें कि S, G के एक समूह के जनरेटिंग समुच्चय का एक समुच्चय है। प्राकृतिक मानचित्र f: F(S) → G एक [[अधिरूपता]] है, जो दावे को साबित करता है। समतुल्य रूप से, G कुछ मुक्त समूह F(S) के [[भागफल समूह]] के लिए तुल्याकारी है। φ का कर्नेल G के [[एक समूह की प्रस्तुति]] में संबंधों का एक समुच्चय है। यदि S को यहाँ परिमित चुना जा सकता है, तो G को 'परिमित रूप से उत्पन्न' कहा जाता है।
#कोई भी समूह G किसी मुक्त समूह F(S) का समरूपी प्रतिबिम्ब है। बता दें कि S, G के जनित्र का एक समुच्चय है। प्राकृतिक मानचित्र f: F(S) → G एक [[अधिरूपता]] है, जो दावे को सिद्ध करता है। समतुल्य रूप से, G कुछ मुक्त समूह F(S) के [[भागफल समूह]] के लिए तुल्याकारी है। G की प्रस्तुति में φ का कर्नेल संबंधों का एक समुच्चय है। यदि S को यहाँ परिमित चुना जा सकता है, तो G को 'परिमित रूप से जनित' कहा जाता है।
#यदि S में एक से अधिक तत्व हैं, तो F(S) [[एबेलियन समूह]] नहीं है, और वास्तव में F(S) के समूह का केंद्र तुच्छ है (अर्थात, इसमें केवल पहचान तत्व सम्मिलित हैं)।
#यदि S में एक से अधिक तत्व हैं, तो F(S) [[एबेलियन समूह|एबेलियन]] नहीं है, और वास्तव में F(S) का केंद्र तुच्छ है (अर्थात, इसमें केवल सर्वसमिका तत्व सम्मिलित हैं)।
# दो मुक्त समूह एफ (एस) और एफ (टी) आइसोमॉर्फिक हैं यदि और केवल अगर एस और टी में समान [[प्रमुखता]] है। इस कार्डिनैलिटी को मुक्त समूह F का 'रैंक' कहा जाता है। इस प्रकार प्रत्येक कार्डिनल संख्या k के लिए, समरूपता [[तक]], रैंक k का ठीक एक मुक्त समूह होता है।
# दो मुक्त समूह F(''S'') और F(''T'') आइसोमॉर्फिक हैं यदि और केवल अगर ''S'' और ''T'' में समान [[प्रमुखता]] है। इस प्रमुखता को मुक्त समूह F का श्रेणी कहा जाता है। इस प्रकार प्रत्येक गणन संख्या k के लिए, समाकृतिकता [[तक]], श्रेणी k का यथार्थत: एक मुक्त समूह होता है।
# परिमित रैंक n> 1 के एक मुक्त समूह में क्रम 2n - 1 की एक [[घातीय वृद्धि]] वृद्धि दर (समूह सिद्धांत) है।
# परिमित श्रेणी n> 1 के एक मुक्त समूह में क्रम 2n - 1 की एक [[घातीय वृद्धि]] दर है।


कुछ अन्य संबंधित परिणाम हैं:
कुछ अन्य संबंधित परिणाम हैं:

Revision as of 23:01, 20 February 2023

आरेख दो जनित्र पर मुक्त समूह के लिए केली आरेख दिखा रहा है। प्रत्येक शीर्ष मुक्त समूह के एक तत्व का प्रतिनिधित्व करता है, और प्रत्येक किनारा a या b द्वारा गुणा का प्रतिनिधित्व करता है।

गणित में, किसी दिए गए समुच्चय S पर मुक्त समूह FS में वे सभी शब्द होते हैं जो S के सदस्यों से बनाए जा सकते हैं, दो शब्दों को अलग मानते हुए जब तक कि उनकी समानता समूह स्वयंसिद्धों (उदा. st = suu−1t, लेकिनst−1,s,t,uS के लिए) हैं। S के सदस्यों को FS का 'जनित्र' कहा जाता है, और जनित्र की संख्या मुक्त समूह की क्रम होती है। एक स्वेच्छाचारी समूह G को मुक्त कहा जाता है यदि यह G के कुछ उपसमुच्चय S के लिए FS के लिए समरूप है, अर्थात, यदि G का एक उपसमुच्च S है, जैसे कि G के प्रत्येक तत्व को यथार्थत: से लिखा जा सकता है जैसे कि बहुत से गुणनफल के रूप में S के तत्व और उनके व्युत्क्रम (तुच्छ भिन्नता की उपेक्षा करना जैसे कि st = suu−1t) है।

एक संबंधित लेकिन भिन्न धारणा एक मुक्त एबेलियन समूह है; दोनों धारणाएं सार्वभौमिक बीजगणित से मुक्त वस्तु के विशेष उदाहरण हैं। जैसे, मुक्त समूहों को उनकी सार्वभौमिक संपत्ति द्वारा परिभाषित किया जाता है।

इतिहास

फ़्यूचियन समूहों के उदाहरण के रूप में अतिशयोक्तिपूर्ण ज्यामिति के अध्ययन में सबसे पहले मुक्त समूह उत्पन्न हुए (हाइपरबोलिक समतल पर आइसोमेट्री द्वारा अभिनय करने वाले असतत समूह)। 1882 के एक लेख में, वाल्थर वॉन डाइक ने बताया कि इन समूहों में सबसे सरल संभव प्रस्तुतियाँ है।[1] मुक्त समूहों का बीजगणितीय अध्ययन 1924 में जैकब नीलसन द्वारा आरम्भ किया गया था, जिन्होंने उन्हें अपना नाम दिया और उनके कई मूल गुण स्थापित किए।[2][3][4] मैक्स डेहन ने संस्थितिविज्ञान के साथ संबंध को सिद्ध किया, और पूर्ण नीलसन-श्रेयर प्रमेय का पहला प्रमाण प्राप्त किया।[5] ओटो श्रेयर ने 1927 में इस परिणाम का एक बीजगणितीय प्रमाण प्रकाशित किया,[6] और कर्ट रिडेमिस्टर ने मिश्रित संस्थितिविज्ञान पर अपनी 1932 की पुस्तक में मुक्त समूहों के व्यापक उपचार को सम्मिलित किया।[7] बाद में 1930 के दशक में, विल्हेम मैग्नस ने मुक्त समूहों की निचली केंद्रीय श्रृंखला और मुक्त लाई बीजगणित के मध्य संबंध की खोज की।

उदाहरण

पूर्णांकों का समूह (Z,+) क्रम 1 से मुक्त है; एक जनक समुच्चय S = {1} है। पूर्णांक भी एक मुक्त एबेलियन समूह हैं, यद्यपि क्रम के सभी मुक्त समूह गैर-अबेलियन हैं। दो-तत्व समुच्चय S पर एक मुक्त समूह दो तत्व विरोधाभास के प्रमाण में होता है और वहां इसका वर्णन किया गया है।

दूसरी ओर, कोई भी गैर-तुच्छ परिमित समूह मुक्त नहीं हो सकता है, क्योंकि एक मुक्त समूह के मुक्त जनक समुच्चय के तत्वों में अनंत क्रम होता है।

बीजगणितीय संस्थितिविज्ञान में, k वृत्त का गुच्छा का मूलभूत समूह (k परिपथ का एक समुच्चय जिसमें केवल एक बिंदु समान होता है) k तत्वों के समुच्चय पर मुक्त समूह होता है।

निर्माण

मुक्त जनक समुच्चय S के साथ मुक्त समूह FS का निर्माण अनुसरण किया जा सकता है। S प्रतीकों का एक समुच्चय है, और हम मानते हैं कि s में प्रत्येक S के लिए एक समुच्चय s−1 में एक संबंधित ''प्रतिलोम '' प्रतीक, S−1है। मान लीजिए कि T = S ∪ S−1, और S में एक शब्द (समूह सिद्धांत) को T के तत्वों का कोई लिखित गुणनफल परिभाषित करें। अर्थात्, 'S' में एक शब्द 'T' द्वारा जनित एकाभ का एक तत्व है। प्रकार्य शब्द वह शब्द है जिसमें कोई प्रतीक नहीं है। उदाहरण के लिए, यदि S = {a, b, c}, तो

T = {a, a−1, b, b−1, c, c−1}, और

S में एक शब्द है।

यदि S का एक तत्व इसके व्युत्क्रम के ठीक सामने में स्थित है, तो c, c−1 जोड़ी को लोपन शब्द को सरल बनाया जा सकता है:

एक शब्द जिसे और अधिक सरल नहीं किया जा सकता है, उसे न्यूनीकृत कहा जाता है।

समूह संचालन के रूप में शब्दों के संयोजन ((इसके बाद यदि आवश्यक हो तो समानयनके बाद) के साथ मुक्त समूह FS को S में सभी कम किए गए शब्दों के समूह के रूप में परिभाषित किया गया है। सर्वसमिका प्रकार्य शब्द है।

एक न्यूनीकृत हुआ शब्द चक्रीय रूप से न्यूनीकृत कहा जाता है यदि उसका पहला और अंतिम अक्षर एक दूसरे के व्युत्क्रम नहीं होते हैं। प्रत्येक शब्द चक्रीय रूप से न्यूनीकृत किए गए शब्द के लिए संयुग्मन वर्ग है, और चक्रीय रूप से न्यूनीकृत किए गए शब्द का एक चक्रीय रूप से न्यूनीकृत संयुग्म शब्द में अक्षरों का एक चक्रीय क्रमपरिवर्तन है। उदाहरण के लिए b−1abcb चक्रीय रूप से न्यूनीकृत नहीं होता है, लेकिन abc से संयुग्मित होता है, जो चक्रीय रूप से न्यूनीकृत होता है। abc के केवल चक्रीय रूप से न्यूनीकृत संयुग्म abc, bca और cab हैं।

सार्वभौमिक संपत्ति

मुक्त समूह FS समुच्चय S द्वारा उत्पन्न सार्वभौमिक समूह है। इसे निम्नलिखित सार्वभौमिक संपत्ति द्वारा औपचारिक रूप दिया जा सकता है: S से समूह G तक कोई भी फलन f दिया गया है, तो एक अद्वितीय समरूपता φ अस्तित्व है: FSG निम्नलिखित आरेख आवागमन कर रहा है (जहां अज्ञात मानचित्रण S से F में समावेश होने को दर्शाता है):

Free Group Universal.svg

अर्थात्, समरूपता FSG फलन SG के साथ एक-से-एक पत्राचार में हैं। एक गैर-मुक्त समूह के लिए, संबंधों की उपस्थिति जनित्र की संभावित छवियों को समरूपता के अंतर्गत सीमित कर देगी।

यह देखने के लिए कि यह रचनात्मक परिभाषा से कैसे संबंधित है, S से FS तक मानचित्रण के बारे में सोचें जैसे प्रत्येक प्रतीक से युक्त शब्द में भेजना। दिए गए f के लिए φ का निर्माण करने के लिए, पहले ध्यान दें कि φ प्रकार्य शब्द को G की पहचान के लिए भेजता है और इसे S के तत्वों पर f से सहमत होना है। शेष शब्दों के लिए (एक से अधिक प्रतीकों से मिलकर), φ को विशिष्ट रूप से विस्तारित किया जा सकता है, क्योंकि यह एक समरूपता है, अर्थात, φ(ab) = φ(a) φ(b)।

उपरोक्त संपत्ति समरूपता तक मुक्त समूहों की विशेषता है, और कभी-कभी इसे वैकल्पिक परिभाषा के रूप में प्रयोग किया जाता है। इसे मुक्त समूहों की सार्वभौमिक संपत्ति के रूप में जाना जाता है, और जनक समुच्चय S को FS के लिए 'आधार' कहा जाता है। मुक्त समूह का आधार विशिष्ट रूप से निर्धारित नहीं है।

एक सार्वभौमिक संपत्ति की विशेषता होना सार्वभौमिक बीजगणित में मुक्त वस्तुओं की मानक विशेषता है। क्रम सिद्धांत की भाषा में, मुक्त समूह का निर्माण (मुक्त वस्तुओं के अधिकांश निर्माणों के समान) समुच्चय की श्रेणी से समूहों की श्रेणी का एक प्रकार्यक है। यह प्रकार्यक समूह से समुच्चय तक अनवहित प्रकार्यक के अभिसम्युक्त छोड़ दिया जाता है।

तथ्य और प्रमेय

परिभाषा से मुक्त समूहों के कुछ गुण सरलता से अनुसरण करते हैं:

  1. कोई भी समूह G किसी मुक्त समूह F(S) का समरूपी प्रतिबिम्ब है। बता दें कि S, G के जनित्र का एक समुच्चय है। प्राकृतिक मानचित्र f: F(S) → G एक अधिरूपता है, जो दावे को सिद्ध करता है। समतुल्य रूप से, G कुछ मुक्त समूह F(S) के भागफल समूह के लिए तुल्याकारी है। G की प्रस्तुति में φ का कर्नेल संबंधों का एक समुच्चय है। यदि S को यहाँ परिमित चुना जा सकता है, तो G को 'परिमित रूप से जनित' कहा जाता है।
  2. यदि S में एक से अधिक तत्व हैं, तो F(S) एबेलियन नहीं है, और वास्तव में F(S) का केंद्र तुच्छ है (अर्थात, इसमें केवल सर्वसमिका तत्व सम्मिलित हैं)।
  3. दो मुक्त समूह F(S) और F(T) आइसोमॉर्फिक हैं यदि और केवल अगर S और T में समान प्रमुखता है। इस प्रमुखता को मुक्त समूह F का श्रेणी कहा जाता है। इस प्रकार प्रत्येक गणन संख्या k के लिए, समाकृतिकता तक, श्रेणी k का यथार्थत: एक मुक्त समूह होता है।
  4. परिमित श्रेणी n> 1 के एक मुक्त समूह में क्रम 2n - 1 की एक घातीय वृद्धि दर है।

कुछ अन्य संबंधित परिणाम हैं:

  1. नीलसन-श्रेयर प्रमेय: एक मुक्त समूह का प्रत्येक उपसमूह स्वतंत्र है।
  2. रैंक k के एक मुक्त समूह में स्पष्ट रूप से k से कम प्रत्येक रैंक के उपसमूह होते हैं। कम स्पष्ट रूप से, कम से कम 2 रैंक के एक (नॉनबेलियन!) मुक्त समूह में सभी गणनीय समुच्चय रैंकों के उपसमूह हैं।
  3. रैंक k> 1 के मुक्त समूह के कम्यूटेटर उपसमूह में अनंत रैंक है; उदाहरण के लिए एफ (ए, बी) के लिए, यह कम्यूटेटर [ए द्वारा स्वतंत्र रूप से उत्पन्न होता हैमी, बीn] गैर-शून्य m और n के लिए।
  4. दो तत्वों में मुक्त समूह SQ सार्वभौमिक है; उपरोक्त इस प्रकार है क्योंकि किसी भी SQ सार्वभौमिक समूह में सभी गणनीय रैंकों के उपसमूह होते हैं।
  5. कोई भी समूह जो एक पेड़ पर समूह क्रिया (गणित), मुक्त क्रिया और उन्मुख ग्राफ को संरक्षित करता है, गणनीय रैंक का एक मुक्त समूह है (1 प्लस समूह क्रिया (गणित) ग्राफ सिद्धांत की यूलर विशेषता द्वारा दिया गया)।
  6. फ्री जनरेटिंग समुच्चय के संबंध में परिमित रैंक के एक मुक्त समूह का केली ग्राफ एक ट्री (ग्राफ थ्योरी) है, जिस पर समूह स्वतंत्र रूप से कार्य करता है, अभिविन्यास को संरक्षित करता है।
  7. पीजे हिगिंस द्वारा नीचे दिए गए काम में दिए गए इन परिणामों के लिए groupoid दृष्टिकोण, अंतरिक्ष को कवर करना का उपयोग करके एक दृष्टिकोण से निकाला गया है। यह अधिक शक्तिशाली परिणामों की अनुमति देता है, उदाहरण के लिए ग्रुस्को के प्रमेय पर, और समूहों के ग्राफ के मौलिक समूह के लिए एक सामान्य रूप। इस दृष्टिकोण में एक निर्देशित ग्राफ़ पर मुफ्त ग्रुपोइड्स का काफी उपयोग होता है।
  8. ग्रुस्को के प्रमेय का परिणाम यह है कि यदि n तत्वों पर मुक्त समूह F का एक उपसमुच्चय B, F उत्पन्न करता है और इसमें n तत्व हैं, तो B स्वतंत्र रूप से F उत्पन्न करता है।

मुक्त एबेलियन समूह

समुच्चय S पर मुक्त एबेलियन समूह को इसकी सार्वभौमिक संपत्ति के माध्यम से समान रूप से स्पष्ट संशोधनों के साथ परिभाषित किया गया है: एक युग्म (F, φ) पर विचार करें, जहाँ F एक एबेलियन समूह है और φ: S → F एक फलन है। φ के संबंध में F को S पर मुक्त एबेलियन समूह' कहा जाता है, यदि किसी एबेलियन समूह G और किसी फलन ψ के लिए: S → G, एक अद्वितीय समरूपता f: F → G अस्तित्व में है, जैसे कि

f(φ(s)) = ψ(s), S में सभी s के लिए।

S पर मुक्त एबेलियन समूह को स्पष्ट रूप से मुक्त समूह F(S) मॉड्यूलो के रूप में निर्धारित किया जा सकता है, जो इसके दिक्परिवर्तक, [F(S), F(S)] द्वारा उत्पन्न उपसमूह है। दूसरे शब्दों में, S पर मुक्त एबेलियन समूह शब्दों का समूह है जो केवल अक्षरों के क्रम तक ही प्रतिष्ठित हैं। इसलिए एक मुक्त समूह की श्रेणी को एक मुक्त एबेलियन समूह के रूप में इसके एबेलियनाइजेशन की श्रेणी के रूप में भी परिभाषित किया जा सकता है।

तर्स्की की समस्याएं

1945 के आसपास, अल्फ्रेड टार्स्की ने पूछा कि क्या दो या दो से अधिक जनित्र पर मुक्त समूहों का एक ही प्रथम-क्रम सिद्धांत है, और क्या यह सिद्धांत निर्णायकता है। सेला (2006) ने यह दिखाते हुए पहले प्रश्न का उत्तर दिया कि किन्हीं भी दो गैर-अबेलियन मुक्त समूहों में एक ही प्रथम-क्रम सिद्धांत है, और खरलमपोविच & मायसनिकोव (2006) ने दोनों प्रश्नों का उत्तर दिया, यह दिखाते हुए कि यह सिद्धांत निर्णायक है।

नि: शुल्क संभाव्यता सिद्धांत में एक समान न सुलझा हुआ (2011 तक) प्रश्न पूछता है कि क्या किसी भी दो गैर-अबेलियन के वॉन न्यूमैन समूह बीजगणित अंतिम रूप से उत्पन्न मुक्त समूह समाकृतिक हैं।

यह भी देखें

टिप्पणियाँ

  1. von Dyck, Walther (1882). "Gruppentheoretische Studien (Group-theoretical Studies)". Mathematische Annalen. 20 (1): 1–44. doi:10.1007/BF01443322. S2CID 179178038. Archived from the original on 2016-03-04. Retrieved 2015-09-01.
  2. Nielsen, Jakob (1917). "Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden". Mathematische Annalen. 78 (1): 385–397. doi:10.1007/BF01457113. JFM 46.0175.01. MR 1511907. S2CID 119726936. Archived from the original on 2016-03-05. Retrieved 2015-09-01.
  3. Nielsen, Jakob (1921). "On calculation with noncommutative factors and its application to group theory. (Translated from Danish)". The Mathematical Scientist. 6 (1981) (2): 73–85.
  4. Nielsen, Jakob (1924). "Die Isomorphismengruppe der freien Gruppen". Mathematische Annalen. 91 (3): 169–209. doi:10.1007/BF01556078. S2CID 122577302. Archived from the original on 2016-03-05. Retrieved 2015-09-01.
  5. See Magnus, Wilhelm; Moufang, Ruth (1954). "Max Dehn zum Gedächtnis". Mathematische Annalen. 127 (1): 215–227. doi:10.1007/BF01361121. S2CID 119917209. Archived from the original on 2016-03-05. Retrieved 2015-09-01.
  6. Schreier, Otto (1928). "Die Untergruppen der freien Gruppen". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 5: 161–183. doi:10.1007/BF02952517. S2CID 121888949.
  7. Reidemeister, Kurt (1972) [1932]. Einführung in die kombinatorische Topologie. Darmstadt: Wissenschaftliche Buchgesellschaft.


संदर्भ