विद्युत अपघट्य संधारित्र: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 1: Line 1:
'''''विद्युत् अपघटय संधारित्र''''' एक [[विद्युत ध्रुवीयता]] संधारित्र होता है जिसका [[एनोड]] या धनात्मक प्लेट एक धातु से बना होता है जो [[एनोडाइजेशन|एनोडीकरण]] के माध्यम से एक विद्युतरोधी [[ऑक्साइड]] परत बनाता है। यह ऑक्साइड परत [[संधारित्र]] के [[ढांकता हुआ|पारद्युतिक]] के रूप में कार्य करती है। एक ठोस, तरल या जेल विद्युत्-अपघट्य इस ऑक्साइड परत की सतह को आच्छादित करता है, जो संधारित्र के [[कैथोड]] या ऋणात्मक प्लेट के रूप में कार्य करता है। उनकी बहुत पतली परावैद्युत ऑक्साइड परत और बढ़ी हुई एनोड सतह के कारण, विद्युत् अपघटनी संधारित्र में [[सिरेमिक संधारित्र]] या [[फिल्म संधारित्र|परत संधारित्र]] की तुलना में प्रति इकाई मात्रा में बहुत अधिक [[समाई|संधारित्र]]-[[वोल्टेज|विद्युत्-दाब]] (सीवी) उत्पाद होता है, और इसलिए बड़े संधारिता मान हो सकते हैं। विद्युत् अपघटनी संधारित्र के तीन भाग हैं: [[एल्यूमीनियम इलेक्ट्रोलाइटिक कैपेसिटर|एल्यूमीनियम विद्युत् अपघटनी संधारित्र]], [[टैंटलम संधारित्र]] और [[नाइओबियम संधारित्र]]
'''''विद्युत् अपघटय संधारित्र''''' एक [[विद्युत ध्रुवीयता]] संधारित्र होता है जिसका [[एनोड]] या धनात्मक प्लेट एक धातु से बना होता है जो [[एनोडाइजेशन|एनोडीकरण]] के माध्यम से एक विद्युतरोधी [[ऑक्साइड]] परत बनाता है। यह ऑक्साइड परत [[संधारित्र]] के [[ढांकता हुआ|पारद्युतिक]] के रूप में कार्य करती है। एक ठोस, तरल या जेल विद्युत्-अपघट्य इस ऑक्साइड परत की सतह को आच्छादित करता है, जो संधारित्र के [[कैथोड]] या ऋणात्मक प्लेट के रूप में कार्य करता है। उनकी बहुत पतली परावैद्युत ऑक्साइड परत और बढ़ी हुई एनोड सतह के कारण, विद्युत् अपघटनी संधारित्र में [[सिरेमिक संधारित्र]] या [[फिल्म संधारित्र|परत संधारित्र]] की तुलना में प्रति इकाई मात्रा में बहुत अधिक [[समाई|संधारित्र]]-[[वोल्टेज|विद्युत्-दाब]] (सीवी) उत्पाद होता है, और इसलिए बड़े संधारिता मान हो सकते हैं। विद्युत् अपघटनी संधारित्र के तीन भाग हैं: [[एल्यूमीनियम इलेक्ट्रोलाइटिक कैपेसिटर|एल्यूमीनियम विद्युत् अपघटनी संधारित्र]], [[टैंटलम संधारित्र]] और [[नाइओबियम संधारित्र]]


Line 810: Line 808:
==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
{{DEFAULTSORT:Electrolytic Capacitor}}{{Authority control}}
{{DEFAULTSORT:Electrolytic Capacitor}}{{Authority control}}
[[Category: Machine Translated Page]]
 
[[Category:Created On 18/12/2022]]
[[Category:All articles with dead external links]]
[[Category:Vigyan Ready]]
[[Category:Articles with dead external links from August 2018]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Electrolytic Capacitor]]
[[Category:Articles with permanently dead external links]]
[[Category:CS1 Deutsch-language sources (de)]]
[[Category:CS1 français-language sources (fr)]]
[[Category:Created On 18/12/2022|Electrolytic Capacitor]]
[[Category:Machine Translated Page|Electrolytic Capacitor]]
[[Category:Pages with broken file links]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors|Electrolytic Capacitor]]
[[Category:Templates Vigyan Ready|Electrolytic Capacitor]]
[[Category:Webarchive template wayback links|Electrolytic Capacitor]]

Latest revision as of 10:39, 24 February 2023

विद्युत् अपघटय संधारित्र एक विद्युत ध्रुवीयता संधारित्र होता है जिसका एनोड या धनात्मक प्लेट एक धातु से बना होता है जो एनोडीकरण के माध्यम से एक विद्युतरोधी ऑक्साइड परत बनाता है। यह ऑक्साइड परत संधारित्र के पारद्युतिक के रूप में कार्य करती है। एक ठोस, तरल या जेल विद्युत्-अपघट्य इस ऑक्साइड परत की सतह को आच्छादित करता है, जो संधारित्र के कैथोड या ऋणात्मक प्लेट के रूप में कार्य करता है। उनकी बहुत पतली परावैद्युत ऑक्साइड परत और बढ़ी हुई एनोड सतह के कारण, विद्युत् अपघटनी संधारित्र में सिरेमिक संधारित्र या परत संधारित्र की तुलना में प्रति इकाई मात्रा में बहुत अधिक संधारित्र-विद्युत्-दाब (सीवी) उत्पाद होता है, और इसलिए बड़े संधारिता मान हो सकते हैं। विद्युत् अपघटनी संधारित्र के तीन भाग हैं: एल्यूमीनियम विद्युत् अपघटनी संधारित्र, टैंटलम संधारित्र और नाइओबियम संधारित्र

विद्युत् अपघटनी संधारित्र की बड़ी क्षमता उन्हें कम आवृत्ति संकेतों को अस्थायी करने या उपमार्गन करने और बड़ी मात्रा में ऊर्जा संग्रहित करने के लिए विशेष रूप से उपयुक्त बनाती है। वे व्यापक रूप से बिजली की आपूर्ति और दिष्ट धारा लिंक परिपथ में चर-आवृत्ति अंतर्नोद के लिए वियुग्मन या ध्वनि परिसरण के लिए उपयोग किए जाते हैं, परिवर्धक चरणों के बीच युग्मन संकेतों के लिए, और क्षण-दीप के रूप में ऊर्जा का भंडारण करते हैं।

विद्युत् अपघटनी संधारित्र उनके असममित निर्माण के कारण ध्रुवीकृत घटक हैं और प्रत्येक समय कैथोड की तुलना में एनोड पर उच्च क्षमता (अर्थात अधिक धनात्मक) के साथ संचालित होना चाहिए। इस कारण उपकरण धारक पर ध्रुवता अंकित है। एक प्रतिवर्ती ध्रुवता विद्युत्-दाब को प्रयुक्त करना, या अधिकतम निर्धारित कार्यप्रणाली विद्युत्-दाब को 1 या 1.5 वोल्ट से अधिक करने वाला विद्युत्-दाब, पारद्युतिक और इस प्रकार संधारित्र को नष्ट कर सकता है। विद्युत् अपघटनी संधारित्र की विफलता परिसंकटमय हो सकती है, जिसके परिणामस्वरूप विस्फोट या आग लग सकती है। श्रृंखला में जुड़े दो एनोड के साथ विशेष निर्माण का उपयोग करके द्विध्रुवी विद्युत् अपघटनी संधारित्र जो या तो ध्रुवीयता के साथ संचालित हो सकते हैं। द्विध्रुवी विद्युत् अपघटनी संधारित्र श्रृंखला में दो सामान्य विद्युत् अपघटनी संधारित्र, एनोड या कैथोड को जोड़कर भी बनाया जा सकता है।

सामान्य जानकारी

विद्युत् अपघटनी संधारित्र श्रेणी

विद्युत् अपघटनी संधारित्र के आधारिक निर्माण सिद्धांतों के अनुसार, तीन अलग-अलग प्रकार हैं: एल्यूमीनियम, टैंटलम और नाइओबियम संधारित्र। इन तीन संधारित्र श्रेणियों में से प्रत्येक गैर-ठोस और ठोस मैंगनीज डाइऑक्साइड या ठोस बहुलक विद्युत्-अपघट्य का उपयोग करता है, इसलिए एनोड सामग्री और ठोस या गैर-ठोस विद्युत्-अपघट्य के विभिन्न संयोजनों का एक बड़ा प्रसार उपलब्ध है।

उपयोग किए गए एनोड धातु की प्रकृति और उपयोग किए गए विद्युत्-अपघट्य के आधार पर, विद्युत् अपघटनी संधारित्र की एक विस्तृत विविधता है

आवेश सिद्धांत

अन्य पारंपरिक संधारित्र की तरह, विद्युत् अपघटनी संधारित्र दो इलेक्ट्रोड के बीच पारद्युतिक ऑक्साइड परत में एक विद्युत क्षेत्र में बिजली का आवेश पृथक्करण द्वारा विद्युत ऊर्जा स्थैतिक बिजली को संग्रहीत करते हैं। सैद्धांतिक रूप से गैर-ठोस या ठोस विद्युत्-अपघट्य कैथोड है, जो इस प्रकार संधारित्र का दूसरा इलेक्ट्रोड बनाता है। यह और भंडारण सिद्धांत उन्हें विद्युत-रसायन संधारित्र या अधि-संधारित्र से अलग करता है, जिसमें विद्युत्-अपघट्य सामान्य रूप से दो इलेक्ट्रोड के बीच आयनिक प्रवाहकीय संयोजन होता है और भंडारण स्थिर रूप से दोहरी परत संधारिता और विद्युत-रसायन छद्म धारिता के साथ होता है।

मूल सामग्री और निर्माण

एनोडिक ऑक्सीकरण (निर्माण) का मूल सिद्धांत, जिसमें धारा स्रोत के साथ विद्युत्-दाब लगाने से धातु एनोड पर ऑक्साइड परत बनती है

विद्युत् अपघटनी संधारित्र कुछ विशेष धातुओं की एक रासायनिक विशेषता का उपयोग करते हैं, जिन्हें पहले वाल्व धातु कहा जाता था, जो एक विशेष विद्युत्-अपघट्य के संपर्क में ऑक्सीकरण करके उनकी सतह पर एक बहुत पतली विद्युतरोधी ऑक्साइड परत बनाते हैं जो एक पारद्युतिक के रूप में कार्य कर सकता है। विद्युत् अपघटनी संधारित्र के लिए उपयोग में तीन अलग-अलग एनोड धातुएं हैं:

  1. एल्यूमिनियम विद्युत् अपघटनी संधारित्र पारद्युतिक के रूप में एल्यूमिनियम ऑक्साइड के साथ एक उच्च शुद्धता वाले निक्षारित ऐलुमिनियम पर्णी का उपयोग करते हैं
  2. टैंटलम संधारित्र परावैद्युत के रूप में टैंटलम पेंटोक्साइड के साथ उच्च शुद्धता वाले टैंटलम चूर्ण के निसादित पेलेट ("धातुपिण्ड") का उपयोग करता है
  3. नाइओबियम संधारित्र पारद्युतिक के रूप में नाइओबियम पेंटोक्साइड के साथ उच्च शुद्धता वाले नाइओबियम या नाइओबियम ऑक्साइड चूर्ण के एक निसादित धातुपिण्ड का उपयोग करता है।

प्रति इकाई आयतन में उनकी धारिता बढ़ाने के लिए, सभी एनोड सामग्री या तो निक्षारित या निसादित होती हैं और समान क्षेत्र या समान आयतन की चिकनी सतह की तुलना में बहुत अधिक सतह क्षेत्र के साथ कर्कश सतह संरचना होती है। विद्युत् अपघटनी प्रक्षालन में उपर्युक्त एनोड सामग्री के लिए एक धनात्मक विद्युत्-दाब लगाने से एक ऑक्साइड अवरोध परत प्रयुक्त विद्युत्-दाब के अनुरूप सघनता के साथ निर्माण करेगी। यह ऑक्साइड परत विद्युत् अपघटनी संधारित्र में पारद्युतिक के रूप में कार्य करती है। इस ऑक्साइड परतों के गुण निम्नलिखित तालिका में दिए गए हैं:

एल्यूमीनियम, टैंटलम और नाइओबियम विद्युत्-अपघट्य संधारित्र में विभिन्न ऑक्साइड परतों की विशेषताएं[1][2]
एनोड-

सामग्री

पारद्युतिक ऑक्साइड

संरचना

सापेक्ष

परावैद्युतांक

विभाजन

विद्युतदाब
(वोल्ट/माइक्रोन)

विद्युत परत की संघनता
(नैनोमीटर/वोल्ट)
एल्युमिनियम एल्युमिनियम ऑक्साइड Al2O3 आकारहीन 9.6 710 1.4
क्रिस्टलीय 11.6…14.2[3] 800...1000[4] 1.25...1.0
टैंटलम टैंटलम पेंटोक्साइड Ta2O5 आकारहीन 27 625 1.6
नाइओबियम या

नाइओबियम ऑक्साइड

नाइओबियम पेंटोक्साइड Nb2O5 आकारहीन 41 400 2.5

किसी न किसी एनोड संरचना पर एक पारद्युतिक ऑक्साइड बनाने के बाद, एक प्रतिकूल इलेक्ट्रोड को किसी न किसी विद्युतरोधी ऑक्साइड सतह से अनुरूप होता है। यह विद्युत्-अपघट्य द्वारा पूरा किया जाता है, जो विद्युत् अपघटनी संधारित्र के कैथोड इलेक्ट्रोड के रूप में कार्य करता है। उपयोग में कई अलग-अलग विद्युत्-अपघट्य हैं। सामान्य रूप से उन्हें दो प्रजातियों, "गैर-ठोस" और "ठोस" विद्युत्-अपघट्य में स्थापित किया जाता है। एक तरल माध्यम के रूप में जिसमें आयन विद्युत प्रतिरोधकता और गतिमान आयनों के कारण चालकता होती है, गैर-ठोस विद्युत्-अपघट्य किसी न किसी संरचना में आसानी से संयोजित हो सकते हैं। ठोस विद्युत्-अपघट्य जिनमें इलेक्ट्रॉन चालकता होती है, मैंगनीज डाइऑक्साइड के लिए तापीय-अपघटन या बहुलक के संचालन के लिए बहुलकीकरण जैसी विशेष रासायनिक प्रक्रियाओं की सहायता से किसी न किसी संरचना को संयोजित कर सकते हैं।

विभिन्न ऑक्साइड सामग्रियों की विद्युतशीलता की तुलना करने पर यह देखा गया है कि टैंटलम पेंटॉक्साइड में एल्यूमीनियम ऑक्साइड की तुलना में लगभग तीन गुना अधिक विद्युतशीलता है। किसी दिए गए संधारित्र-विद्युत्-दाब मूल्य के टैंटलम विद्युत् अपघटनी संधारित्र सैद्धांतिक रूप से एल्यूमीनियम विद्युत् अपघटनी संधारित्र से छोटे होते हैं। व्यवहार में विश्वसनीय घटकों तक पहुँचने के लिए विभिन्न सुरक्षा भंडार तुलना को कठिन बनाते हैं।

यदि प्रयुक्त विद्युत्-दाब की ध्रुवीयता में परिवर्तन होता है, तो ऐनोडतः उत्पन्न विद्युतरोधी ऑक्साइड परत नष्ट हो जाती है।

धारिता और आयतन दक्षता

एक पारद्युतिक पदार्थ दो संवाहक प्लेटों (इलेक्ट्रोड) के बीच रखा जाता है, प्रत्येक क्षेत्र A और पृथक्करण d के साथ।

विद्युत् अपघटनी संधारित्र एक प्लेट संधारित्र के सिद्धांत पर आधारित होते हैं जिनकी संधारिता बड़े इलेक्ट्रोड क्षेत्र A, उच्च परावैद्युत पारगम्यता ε, और परावैद्युत की विरलता (d) के साथ बढ़ती है।

मीटर प्रति वोल्ट की सीमा में विद्युत् अपघटनी संधारित्र की पारद्युतिक सघनता बहुत कम है। दूसरी ओर, इन ऑक्साइड परतों की विद्युत्-दाब शक्ति अपेक्षाकृत अधिक होती है। पर्याप्त रूप से उच्च परावैद्युत सामर्थ्य के साथ संयुक्त इस बहुत पतली परावैद्युत ऑक्साइड परत के साथ विद्युत् अपघटनी संधारित्र एक उच्च परिमामितिय संधारिता प्राप्त कर सकते हैं। पारंपरिक संधारित्र की तुलना में विद्युत् अपघटनी संधारित्र के उच्च धारिता मूल्यों का यह एक कारण है।

समान क्षेत्र या समान मात्रा की चिकनी सतह की तुलना में सभी निक्षारित या निसादित एनोड्स में बहुत अधिक सतह क्षेत्र होता है। यह गैर-ठोस एल्यूमीनियम विद्युत् अपघटनी संधारित्र के साथ-साथ ठोस टैंटलम विद्युत् अपघटनी संधारित्र के लिए 200 तक के कारक द्वारा निर्धारित विद्युत्-दाब के आधार पर संधारिता मान को बढ़ाता है।[5]Cite error: Closing </ref> missing for <ref> tag चिकनी सतह की तुलना में बड़ी सतह अन्य संधारित्र श्रेणियों की तुलना में विद्युत् अपघटनी संधारित्र के अपेक्षाकृत उच्च धारिता मूल्यों का दूसरा कारण है।

क्योंकि अभिरूपण विद्युत्-दाब ऑक्साइड परत की सघनता को परिभाषित करता है, वांछित विद्युत्-दाब दर निर्धारण को बहुत सरलता से उत्पादित किया जा सकता है। विद्युत् अपघटनी संधारित्र में उच्च परिमामितिय दक्षता होती है, तथाकथित संधारित्र-विद्युत्-दाब उत्पाद, जिसे संधारिता और आयतन द्वारा विभाजित विद्युत्-दाब के उत्पाद के रूप में परिभाषित किया जाता है।

एल्यूमीनियम विद्युत् अपघट्‍य संधारित्र डिज़ाइन का निकट परिक्षेत्र, जिसमें ऑक्साइड परत के साथ संधारित्र एनोड फ़ॉइल, विद्युत् अपघट्‍य के साथ सिक्त पेपर अंतरक और कैथोड फ़ॉइल दिखाया गया है


गैर-ठोस एल्यूमीनियम विद्युत् अपघटनी संधारित्र का मूल निर्माण

गैर-ठोस विद्युत् अपघट्‍य के साथ विशिष्ट एकल-सिरा एल्यूमीनियम विद्युत् अपघट्‍य संधारित्र का निर्माण






कई संयोजित फ़ॉइल (पर्णिका) के साथ विद्युत् अपघट्‍य संधारित्र की खुली हुई कुंडलन

ठोस टैंटलम विद्युत् अपघटनी संधारित्र का मूल निर्माण




विद्युत् अपघटनी संधारित्र के प्रकार और विशेषताएं

विद्युत् अपघटनी संधारित्र प्रकार की तुलना

विद्युत् अपघटनी संधारित्र और उपयोग किए गए विद्युत्-अपघट्य के लिए एनोड सामग्री के संयोजन ने विभिन्न गुणों वाले संधारित्र प्रकारों की विस्तृत विविधताओ को उत्पन्न किया है। विभिन्न प्रकार की मुख्य विशेषताओं की रूपरेखा नीचे दी गई तालिका में दिखाई गई है।

विद्युत्-अपघट्य संधारित्र के विभिन्न प्रकारों की प्रमुख विशेषताओं का अवलोकन
विद्युत्-अपघट्य संधारित्र वर्ग विद्युत्-अपघट्य संधारिता

श्रेणी
(माइक्रोफैरड)

अधिकतम

मूल्यांकन विद्युतदाब
(वोल्ट)

अधिकतम

तापमान

(डिग्री सेल्सियस)

एल्यूमीनियम

विद्युत - अपघटनी संधारित्र
निक्षारितित पर्णिका

गैर-ठोस, जैविक विद्युत अपघट्य,

उदाहरण- जीबीएल, डीएमएफ, डीएमए,

0.1:1,000,000 550 105/125/150
गैर-ठोस, उदाहरण- बोरेक्स, ग्लाइकॉल 0.1:2,700,000 630 85/105
गैर-ठोस, जल आधारित 1:18,000 100 85/105
ठोस, बहुलक 10:1,500 25 105
हाइब्रिड, बहुलक और गैर-ठोस 6.8:1,000 125 105/125
टैंटलम

विद्युत-अपघटनी संधारित्र,

निसादित एनोड

गैर-ठोस, सल्फ्यूरिक अम्ल 0.1:18,000 630 125/200
ठोस, मैंगनीज डाइऑक्साइड 0.1:3,300 125 125/150
ठोस, बहुलक 10:1,500 25 105
नाइओबियम ऑक्साइड-

विद्युत - अपघटनी संधारित्र

निसादित एनोड

ठोस, मैंगनीज डाइऑक्साइड 1:1,500 10 105
ठोस, बहुलक 4.7:470 16 105

गैर-ठोस या तथाकथित आर्द्र एल्यूमीनियम विद्युत् अपघटनी संधारित्र थे और अन्य सभी पारंपरिक संधारित्र में सबसे सस्ते हैं। वे न केवल वियुग्मन और रोधन उद्देश्यों के लिए उच्च धारिता या विद्युत्-दाब मूल्यों के लिए सबसे सस्ता समाधान प्रदान करते हैं, बल्कि कम ओमीय आवेशन और अनावेशन के साथ-साथ कम-ऊर्जा अस्थायी के प्रति भी असंवेदनशील हैं। सैन्य अनुप्रयोगों के अपवाद के साथ गैर-ठोस विद्युत् अपघटनी संधारित्र इलेक्ट्रॉनिक उपकरणों के लगभग सभी क्षेत्रों में पाए जा सकते हैं।

सतह-परिवर्तनीय चिप संधारित्र के रूप में ठोस विद्युत्-अपघट्य वाले टैंटलम विद्युत् अपघटनी संधारित्र मुख्य रूप से उन इलेक्ट्रॉनिक उपकरणों में उपयोग किए जाते हैं जिनमें कम स्थान उपलब्ध होती है या कम परिच्छेदिका की आवश्यकता होती है। वे बड़े पैरामीटर विचलन के बिना एक विस्तृत तापमान सीमा पर दृढ़ता से काम करते हैं। सैन्य और अंतरिक्ष अनुप्रयोगों में केवल टैंटलम विद्युत् अपघटनी संधारित्र के पास आवश्यक अनुमोदन है।

नाइओबियम विद्युत् अपघटनी संधारित्र औद्योगिक टैंटलम विद्युत् अपघटनी संधारित्र के साथ प्रत्यक्ष प्रतिस्पर्धा में हैं क्योंकि नाइओबियम अधिक आसानी से उपलब्ध है। उनके गुण तुलनीय हैं।

बहुलक विद्युत्-अपघट्य द्वारा एल्यूमीनियम, टैंटलम और नाइओबियम विद्युत् अपघटनी संधारित्र के विद्युत गुणों में अपेक्षाकृत अधिक संशोधन किया गया है।

विद्युत मापदंडों की तुलना

विभिन्न विद्युत् अपघटनी संधारित्र प्रकारों की विभिन्न विशेषताओं की तुलना करने के लिए, निम्न तालिका में समान आयामों और समान संधारिता और विद्युत्-दाब वाले संधारित्र की तुलना की जाती है। इस तरह की तुलना में आधुनिक इलेक्ट्रॉनिक उपकरणों में विद्युत् अपघटनी संधारित्र के उपयोग के लिए समतुल्य श्रृंखला प्रतिरोध और प्रवाहित धारा भार के मान सबसे महत्वपूर्ण पैरामीटर हैं। समतुल्य श्रृंखला प्रतिरोध जितना कम होगा, प्रति आयतन तरंग धारा उतनी ही अधिक होगी और परिपथ में संधारित्र की अधिकतम कार्यक्षमता होगी। हालांकि, अधिकतम विद्युत पैरामीटर उच्च कीमतों के साथ आते हैं।

विभिन्न प्रकार के विद्युत् अपघटनी संधारित्र की सबसे महत्वपूर्ण विशेषताओं की तुलना
विद्युत् अपघटनी संधारित्र वर्ग प्रकार 1) आयाम

डीएक्सएल, डब्ल्यूएक्सएचएक्सएल

(मिमी)

अधिकतम समतुल्य श्रृंखला प्रतिरोध

100 किलोहर्ट्ज़, 20 डिग्री सेल्सियस

(mΩ)

अधिकतम तरंग धारा

85/105 डिग्री सेल्सियस

(एमए)

अधिकतम रिसाव धारा

2 मिनट के बाद 2)

(µA)

"आर्द्र" Al-विद्युत्अपघटय संधारित्र 1976 3)
एथिलीन ग्लाइकोल/बोरेक्स विद्युत-अपघट्य
वाल्वो, 034,
4.7/40
5x11 15.000 17 10 (0.01CV)
"आर्द्र" Al-विद्युत्अपघटय संधारित्र,
कार्बनिक विद्युत-अपघट्य
विषय, 036 आरएसपी,
100/10
5x11 1000 160 10 (0.01CV)
"आर्द्र" Al-विद्युत्अपघटय संधारित्र,
एथिलीन ग्लाइकोल/बोरेक्स विद्युत-अपघट्य
एनसीसी, एसएमक्यू,
100/10
5x11 900 180 10 (0.01CV)
"आर्द्र" Al-विद्युत्अपघटय संधारित्र,
जल-आधारित विद्युत-अपघट्य
रूबिकॉन, जेडएल,
100/10
5x11 300 250 10 (0.01CV)
"आर्द्र" Al-विद्युत्अपघटय संधारित्र, एसएमडी
एथिलीन ग्लाइकोल/बोरेक्स विद्युत-अपघट्य
एनआईसी, नैसी,
220/10
6.3x8 300 300 10 (0.01CV)
"आर्द्र" Al-विद्युत्अपघटय संधारित्र, एसएमडी
जल-आधारित विद्युत-अपघट्य
एनआईसी, एनएजेडजे,
220/16
6.3x8 160 600 10 (0.01CV)
ठोस टैंटलम विद्युत-अपघट्य संधारित्र
MnO2 विद्युत-अपघट्य
केमेट, T494,
330/10
7,3x4.3x4.0 100 1285 10 (0.01CV)
ठोस टैंटलम विद्युत-अपघट्य संधारित्र
बहु-एनोड, MnO2 विद्युत-अपघट्य
केमेट, T510,
330/10
7.3x4.3x4.0 35 2500 10 (0.01CV)
ठोस टैंटलम विद्युत-अपघट्य संधारित्र
बहुलक विद्युत-अपघट्य
केमेट, T543,
330/10
7.3x4.3x4,0 10 4900 100 (0.1CV)
ठोस टैंटलम विद्युत-अपघट्य संधारित्र
बहु-एनोड, बहुलक
केमेट, T530,
150/10
7.3x4.3x4.0 5 4970 100 (0.1CV)
ठोस नाइओबियम विद्युत-अपघट्य संधारित्र,
MnO2 विद्युत-अपघट्य
एवीएक्स, एनओएस,
220/6,3
7.3x4.3x4.1 80 1461 20 (0.02CV)
ठोस नाइओबियम विद्युत-अपघट्य संधारित्र,
बहु-एनोड, MnO2 विद्युत-अपघट्य
एवीएक्स, एनबीएम,
220/6.3
7.3x4.3x4.1 40 2561 20 (0.02CV)
ठोस Al-विद्युत्अपघटय संधारित्र,
बहुलक विद्युत-अपघट्य
पैनासोनिक, एसपी-यूई,
180/6.3
7.3x4.3x4.2 7 3700 100 (0.1CV)
ठोस Al-विद्युत्अपघटय संधारित्र,
बहुलक विद्युत-अपघट्य
केमेट, A700,
100/10
7.3x4.3x4.0 10 4700 40 (0.04CV)
ठोस Al-विद्युत्अपघटय संधारित्र,
बहुलक विद्युत-अपघट्य
पैनासोनिक, एसवीपी,
120/6.3
6.3x6 17 2780 200 (0.2CV)
हाइब्रिड Al-विद्युत्अपघटय संधारित्र,
बहुलक + अठोस विद्युत-अपघट्य
पैनासोनिक, जेडए,
100/25
6.3x7.7 30 2000 10 (0.01CV)

1) निर्माता, श्रृंखला का नाम, धारिता/विद्युत्-दाब

2) संधारित्र 100µF/10 V के लिए परिकलित,

3) 1976 की आंकड़ा तालिका से

एल्यूमीनियम और टैंटलम विद्युत् अपघटनी संधारित्र की शैलियाँ

एल्यूमीनियम विद्युत् अपघटनी संधारित्र आकार की बड़ी विविधता और सस्ती उत्पादन के कारण इलेक्ट्रॉनिक्स में उपयोग किए जाने वाले विद्युत् अपघटनी संधारित्र का बड़ा भाग बनाते हैं। टैंटलम विद्युत् अपघटनी संधारित्र, सामान्य रूप से एसएमडी संस्करण में उपयोग किया जाता है, एल्यूमीनियम विद्युत् अपघटनी संधारित्र की तुलना में उच्च विशिष्ट क्षमता होती है और लैपटॉप जैसे सीमित स्थान या समतल डिज़ाइन वाले उपकरणों में उपयोग की जाती है। उनका उपयोग सैन्य प्रौद्योगिकी में भी किया जाता है, अधिकतम अक्षीय शैली में, पूरी तरह बंद करके सील किया जाता है। निओबियम विद्युत् अपघटनी चिप संधारित्र विक्रय में एक नया विकास है और टैंटलम विद्युत् अपघटनी चिप संधारित्र के प्रतिस्थापन के रूप में अभिप्रेत है।


इतिहास

1914 से प्रारम्भिक छोटे विद्युत् अपघटनी संधारित्र। इसमें लगभग 2 माइक्रोफ़ारड की धारिता थी।
एक आर्द्र एल्यूमीनियम विद्युत् अपघटनी संधारित्र, बेल प्रणाली तकनीक 1929 के एनोड का दृश्य

उत्पत्ति

यह घटना कि एक विद्युत रासायनिक प्रक्रिया में, एल्यूमीनियम और टैंटलम, नाइओबियम, मैंगनीज, टाइटेनियम, जस्ता, कैडमियम, आदि जैसी धातुएं एक ऑक्साइड परत बना सकती हैं जो एक विद्युत धारा को एक दिशा में प्रवाहित होने से रोकती है लेकिन जो धारा को अंदर प्रवाहित करने की स्वीकृति देती है। विपरीत दिशा, पहली बार 1857 में जर्मन भौतिक विज्ञानी और रसायनशास्त्री :डी: हेनरिक बफ (1805-1878) द्वारा देखी गई थी।[6] इसे पहली बार 1875 में फ्रांसीसी शोधकर्ता और संस्थापक यूजीन डुक्रेटेट द्वारा उपयोग में लाया गया था।[7] जिन्होंने ऐसी धातुओं के लिए वॉल्व मेटल शब्द गढ़ा।

संचायकों के एक निर्माता, चार्ल्स पोलाक (उत्पन्न करोल पोलाक), ने पाया कि एल्यूमीनियम एनोड पर ऑक्साइड की परत एक उदासीन या क्षारीय विद्युत्-अपघट्य में स्थिर रहती है, तब भी जब बिजली बंद हो जाती है। 1896 में उन्होंने एक उदासीन या अल्प क्षारीय विद्युत्-अपघट्य के संयोजन में एक ध्रुवीकृत संधारित्र में ऑक्साइड परत का उपयोग करने के अपने विचार के आधार पर एल्यूमीनियम इलेक्ट्रोड के साथ एक इलेक्ट्रिक तरल संधारित्र के लिए एक पेटेंट प्रकाशित किया।[8][9]


आर्द्र एल्यूमीनियम संधारित्र

आर्द्र संधारित्र के लिए ऐतिहासिक एनोड संरचनाओं के विभिन्न रूप। इन सभी एनोडों के लिए बाहरी धात्विक कंटेनर कैथोड के रूप में कार्य करता है

पहले औद्योगिक रूप से संपादित किए गए विद्युत् अपघटनी संधारित्र में कैथोड के रूप में उपयोग किए जाने वाले धातु के बक्से सम्मिलित थे। यह जल में घुले सोडियम बोरेट विद्युत्-अपघट्य से भरा हुआ था, जिसमें एक मुड़ा हुआ एल्यूमीनियम एनोड प्लेट डाला गया था। बाहर से दिष्ट धारा विद्युत्-दाब लगाने से एनोड की सतह पर एक ऑक्साइड परत बन गई। इन संधारित्र का लाभ यह था कि वे इस समय अन्य सभी संधारित्र की तुलना में संपादित संधारिता मान के सापेक्ष अपेक्षाकृत अधिक छोटे और सस्ते थे। एनोड निर्माण की विभिन्न शैलियों के साथ यह निर्माण लेकिन विद्युत्-अपघट्य के लिए कैथोड और कंटेनर के रूप में एक स्थिति के साथ 1930 के दशक तक उपयोग किया गया था और इसकी उच्च जल सामग्री होने के अर्थ में इसे आर्द्र विद्युत् अपघटनी संधारित्र कहा जाता था।

48 वोल्ट दिष्ट धारा बिजली की आपूर्ति पर रिले हैश (ध्वनि) को कम करने के लिए आर्द्र एल्यूमीनियम विद्युत् अपघटनी संधारित्र का पहला अधिक सामान्य अनुप्रयोग बड़े टेलीफोन विनिमय में था। 1920 के दशक के अंत में प्रत्यावर्ती धारा-संचालित घरेलू रेडियो अभिग्राही के विकास ने वाल्व परिवर्धक तकनीक के लिए बड़े-धारिता (समय के लिए) और उच्च-विद्युत्-दाब संधारित्र की मांग उत्पन्न की, सामान्य रूप से कम से कम 4 माइक्रोफ़ारड और लगभग 500 वोल्ट दिष्ट धारा पर निर्धारित किया गया। मोमयुक्त कागज और तेलयुक्त रेशम परत संधारित्र उपलब्ध थे, लेकिन संधारिता और विद्युत्-दाब दर निर्धारण के उस क्रम वाले उपकरण भारी और निषेधात्मक रूप से कीमती थे।

शुष्क एल्यूमीनियम संधारित्र

100 μF और 150 V के साथ एक शुष्क विद्युत् अपघटनी संधारित्र

आधुनिक विद्युत् अपघटनी संधारित्र के पूर्वज को 1925 में शमूएल रूबेन द्वारा पेटेंट कराया गया था,[10][11] जिन्होंने बैटरी कंपनी के संस्थापक फिलिप मैलोरी के साथ मिलकर काम किया, जिसे अब अंतरराष्ट्रीय ड्यूरासेल के नाम से जाना जाता है। रुबेन के विचार ने चांदी अभ्रक संधारित्र के समाचित निर्माण को स्वीकार किया। उन्होंने विद्युत्-अपघट्य से भरे कंटेनर को संधारित्र के कैथोड के रूप में उपयोग करने के अतिरिक्त एनोड फ़ॉइल से चिपके विद्युत्-अपघट्य से संपर्क करने के लिए एक अलग दूसरी फ़ॉइल प्रस्तुत की। समाचित दूसरी फ़ॉइल को अपना स्वयं का टर्मिनल एनोड टर्मिनल के अतिरिक्त मिला और कंटेनर में अब विद्युत कार्य नहीं था। इस प्रकार के विद्युत् अपघटनी संधारित्र को एक गैर-जलीय प्रकृति के तरल या जेल जैसे विद्युत्-अपघट्य के साथ जोड़ा जाता है, जो बहुत कम जल की मात्रा होने के अर्थ में शुष्क होता है, जिसे विद्युत् अपघटनी संधारित्र के शुष्क प्रकार के रूप में जाना जाता है।[12]

रूबेन के आविष्कार के साथ, हाइड्रा-वेर्के (जर्मनी) के ए एकेल द्वारा 1927 में एक पेपर अंतरक के साथ अलग किए गए क्षय की पर्णी के आविष्कार के साथ,[13] विद्युत् अपघटनी संधारित्र का वास्तविक विकास प्रारम्भ हुआ।[12]

विलियम डुबिलियर, जिसका विद्युत् अपघटनी संधारित्र के लिए पहला पेटेंट 1928 में दायर किया गया था,[14] विद्युत् अपघटनी संधारित्र के लिए नए विचारों का औद्योगीकरण किया और 1931 में न्यू जर्सी के समतल-क्षेत्र में कॉर्नेल-डबिलियर (सीडी) कारखाने में पहला बड़ा व्यावसायिक उत्पादन प्रारम्भ किया।[12] उसी समय बर्लिन, जर्मनी में, एक एईजी कंपनी हाइड्रा-वेर्के ने बड़ी मात्रा में विद्युत् अपघटनी संधारित्र का उत्पादन प्रारम्भ किया। एक अन्य निर्माता, राल्फ डी. मेर्शन, को विद्युत् अपघटनी संधारित्र के लिए रेडियो-विक्रय की मांग को पूरा करने में सफलता मिली।[15]

1960 से 2005 तक एल्यूमीनियम विद्युत् अपघटनी संधारित्र का लघुकरण 10x16 मिमी तक कारक दस तक

अपने 1896 के पेटेंट में पोलाक ने पहले ही मान लिया था कि एनोड पर्णी की सतह को सघनित करने पर संधारित्र की धारिता बढ़ जाती है। आज (2014), विद्युत-रसायनी निक्षारित कम विद्युत्-दाब फ़ॉइल एक चिकनी सतह की तुलना में सतह क्षेत्र में 200 गुना तक की वृद्धि प्राप्त कर सकते हैं।[5][16] निक्षारण प्रक्रिया में प्रगति हाल के दशकों में एल्यूमीनियम विद्युत् अपघटनी संधारित्र में आयाम में कमी का कारण है।

एल्यूमीनियम विद्युत् अपघटनी संधारित्र के लिए 1970 से 1990 तक के दशकों को विशेष रूप से कुछ औद्योगिक अनुप्रयोगों के अनुकूल विभिन्न नई प्रस्तुतेवर श्रृंखलाओं के विकास द्वारा चिह्नित किया गया था, उदाहरण के लिए बहुत कम रिसाव धाराओं या दीर्घकालिक विशेषताओं के साथ, या 125 डिग्री सेल्सियस तक उच्च तापमान के लिए उपयुक्त है।[17][18]


टैंटलम संधारित्र

पहले टैंटलम विद्युत् अपघटनी संधारित्र में से एक को सैन्य उद्देश्यों के लिए 1930 में टैंसिटर इलेक्ट्रॉनिक निगमित यूएसए द्वारा विकसित किया गया था।[19] एक घाव कोशिका का मूल निर्माण स्वीकार किया गया था और एक टैंटलम एनोड फ़ॉइल का उपयोग एक टैंटलम कैथोड फ़ॉइल के साथ किया गया था, जिसे एक तरल विद्युत्-अपघट्य, अधिकतम सल्फ्यूरिक अम्ल के साथ संसेचित पेपर अंतरक से अलग किया गया था, और एक चांदी के स्थिति में समझाया गया था।

ठोस विद्युत्-अपघट्य टैंटलम संधारित्र का प्रासंगिक विकास विलियम शॉक्ले, जॉन बार्डीन और वाल्टर हाउसर ब्रेटन द्वारा 1947 में ट्रांजिस्टर का आविष्कार करने के कुछ वर्षों बाद प्रारम्भ हुआ। इसका आविष्कार बेल प्रयोगशालाओं द्वारा 1950 के दशक की प्रारम्भ में एक लघु परिपथ, अधिक विश्वसनीय कम-विद्युत्-दाब सपोर्ट संधारित्र के रूप में पूरक के रूप में किया गया था। उनका नया आविष्कृत ट्रांजिस्टर 1950 की प्रारम्भ में बेल लैब्स में आर एल टेलर और एच ई हारिंग द्वारा पाया गया समाधान सिरेमिक के अनुभव पर आधारित था। वे टैंटलम को एक चूर्ण में पीसते हैं, जिसे उन्होंने एक बेलनाकार रूप में दबाया और फिर 1500 और 2000 डिग्री सेल्सियस के बीच उच्च तापमान पर निर्वात स्थितियों के अंतर्गत एक गोली (धातुपिण्ड) का उत्पादन करने के लिए निसादन किया।[20][21]

ये पहले निसादित टैंटलम संधारित्र एक गैर-ठोस विद्युत्-अपघट्य का उपयोग करते थे, जो ठोस इलेक्ट्रॉनिक्स की अवधारणा के अनुरूप नहीं है। 1952 में एक ठोस विद्युत्-अपघट्य के लिए डीए मैकलीन और एफ एस शक्ति द्वारा बेल लैब्स में एक लक्षित खोज ने मैंगनीज डाइऑक्साइड को एक निसादित टैंटलम संधारित्र के लिए एक ठोस विद्युत्-अपघट्य के रूप में आविष्कार किया।[22]

हालांकि मौलिक आविष्कार बेल लैब्स से आए, व्यावसायिक रूप से व्यवहार्य टैंटलम विद्युत् अपघटनी संधारित्र के निर्माण के लिए आविष्कार स्प्रेग इलेक्ट्रिक कंपनी के शोधकर्ताओं से आए प्रेस्टन रॉबिन्सन, स्प्रैग के अनुसंधान निदेशक, को 1954 में टैंटलम संधारित्र का वास्तविक आविष्कारक माना जाता है।[23][24] उनके आविष्कार का समर्थन आर जे मिलार्ड ने किया, जिन्होंने 1955 में चरण संशोधन की प्रारम्भ की,[25][26] एक महत्वपूर्ण संशोधन जिसमें MnO2 के प्रत्येक अवगाह और रूपांतरण चक्र के बाद संधारित्र के परावैद्युत को पुनर्निर्माण किया गया निक्षेपण, जिसने समाप्त संधारित्र के क्षरण धारा को प्रभावशाली रूप से कम कर दिया।

हालांकि ठोस टैंटलम संधारित्र एल्यूमीनियम विद्युत् अपघटनी संधारित्र की तुलना में कम समतुल्य श्रृंखला प्रतिरोध और रिसाव धारा मूल्यों के साथ संधारित्र की नियुक्ति करते हैं, टैंटलम के लिए 1980 की कीमत के आघात ने विशेष रूप से मनोरंजन उद्योग में टैंटलम विद्युत् अपघटनी संधारित्र के अनुप्रयोगों को प्रभावशाली रूप से कम कर दिया।[27][28] उद्योग एल्यूमीनियम विद्युत् अपघटनी संधारित्र का उपयोग करने के लिए वापस आ गया।

ठोस विद्युत्-अपघट्य

गैर-ठोस और ठोस विद्युत्-अपघट्य की चालकता

टैंटलम संधारित्र के लिए 1952 में विकसित मैंगनीज डाइऑक्साइड का पहला ठोस विद्युत्-अपघट्य अन्य सभी प्रकार के गैर-ठोस विद्युत्-अपघट्य की तुलना में 10 गुना अधिकतम था। इसने एल्यूमीनियम विद्युत् अपघटनी संधारित्र के विकास को भी प्रभावित किया। 1964 में फिलिप्स द्वारा विकसित ठोस विद्युत्-अपघट्य एसएएल विद्युत् अपघटनी संधारित्र के साथ पहला एल्यूमीनियम विद्युत् अपघटनी संधारित्र विक्रय में आया।[29]

डिजिटलीकरण की प्रारम्भ के साथ, इंटेल ने अपना पहला माइक्रो कंप्यूटर, एमसीएस 4, 1971 में लॉन्च किया। 1972 में हेवलेट पैकर्ड ने पहला पॉकेट परिकलन-यंत्र, एचपी 35 लॉन्च किया।[30][31] उपथन और वियुग्मन संधारित्र के लिए समतुल्य श्रृंखला प्रतिरोध (ईएसआर) को कम करने के स्थिति में संधारित्र की आवश्यकताएं बढ़ गईं।[32] यह 1983 तक नहीं था जब सैन्यो ने अपने ओएस-कॉन एल्यूमीनियम विद्युत् अपघटनी संधारित्र के साथ समतुल्य श्रृंखला प्रतिरोध लघुकरण की दिशा में एक नया चरण था। इन संधारित्र ने एक ठोस कार्बनिक परिचालक, आवेश स्थानांतरण नमक टीटीएफ-टीसीएनक्यू (टेट्रासायनोक्विनोडिमिथेन) का उपयोग किया, जो मैंगनीज डाइऑक्साइड विद्युत्-अपघट्य की तुलना में 10 के कारक द्वारा चालकता में संशोधन प्रदान करता है।[33][34][35]

समतुल्य श्रृंखला प्रतिरोध लघुकरण में अगला चरण 1975 में एलन जे हीगर, एलन मैकडिआर्मिड और हिदेकी शिराकावा द्वारा बहुलक का संचालन का विकास था।[36] पॉलीपीरोल (पीपीवाई) [37] या पेडॉट[38] जैसे प्रवाहकीय बहुलक की चालकता टीसीएनक्यू की तुलना में 100 से 500 के कारक से अधिकतम है, और धातुओं की चालकता के समीप है।

1991 में पैनासोनिक ने अपना एसपी-कैप,[39] बहुलक संधारित्र की श्रृंखला को प्रकाशित किया। बहुलक विद्युत्-अपघट्य वाले ये एल्यूमीनियम विद्युत् अपघटनी संधारित्र प्रत्यक्ष सिरेमिक संधारित्र (एमएलसीसी) की तुलना में बहुत कम समतुल्य श्रृंखला प्रतिरोध मूल्यों तक पहुंच गए। वे अभी भी टैंटलम संधारित्र की तुलना में कम कीमती थे और लैपटॉप और सेल फोन के लिए उनके समान डिजाइन के साथ-साथ टैंटलम चिप संधारित्र के साथ भी प्रतिस्पर्धा करते थे।

पीपीवाई बहुलक विद्युत्-अपघट्य कैथोड के साथ टैंटलम विद्युत् अपघटनी संधारित्र तीन साल बाद आए। 1993 में एनईसी ने अपना एसएमडी बहुलक टैंटलम विद्युत् अपघटनी संधारित्र प्रस्तुत किया, जिसे ''नियोकैप'' कहा जाता है। 1997 में सान्यो ने "पोस्कैप" बहुलक टैंटलम चिप्स का अनुसरण किया।

टैंटलम बहुलक संधारित्र के लिए एक नया प्रवाहकीय बहुलक केमेट द्वारा 1999 कार्ट्स सम्मेलन में प्रस्तुत किया गया था।[40] इस संधारित्र ने नए विकसित कार्बनिक प्रवाहकीय बहुलक पीईडीटी पॉली (3,4-एथिलीनडाइऑक्साइथियोफेन) का उपयोग किया, जिसे पेडॉट (व्यापार नाम बायट्रॉन®) के नाम से भी जाना जाता है।[41]


नायोबियम संधारित्र

2000/2001 में टैंटलम के लिए एक और मूल्य विस्फोट ने मैंगनीज डाइऑक्साइड विद्युत्-अपघट्य के साथ नाइओबियम विद्युत् अपघटनी संधारित्र के विकास को प्रणोदित किया, जो 2002 से उपलब्ध है।[42][43] नाइओबियम टैंटलम के लिए एक बहन धातु है और एनोडिक ऑक्सीकरण के समय ऑक्साइड परत उत्पन्न करने वाले वाल्व धातु के रूप में कार्य करता है। टैंटलम की तुलना में नाइओबियम कच्चे माल के रूप में प्रकृति में बहुत अधिक प्रचुर मात्रा में है और कम कीमती है। यह 1960 के दशक के अंत में आधार धातु की उपलब्धता का सवाल था, जिसके कारण पश्चिम की तरह टैंटलम संधारित्र के अतिरिक्त पूर्व सोवियत संघ में नाइओबियम विद्युत् अपघटनी संधारित्र का विकास और कार्यान्वयन हुआ। नाइओबियम-डाइलेक्ट्रिक संधारित्र का उत्पादन करने के लिए उपयोग की जाने वाली सामग्री और प्रक्रियाएं अनिवार्य रूप से सम्मिलित टैंटलम- परावैद्युत संधारित्र के समान हैं। नाइओबियम विद्युत् अपघटनी संधारित्र और टैंटलम विद्युत् अपघटनी संधारित्र की विशेषताएं लगभग तुलनीय हैं।[44]


जल आधारित विद्युत्-अपघट्य

जापान में 1980 के दशक के मध्य से सस्ती गैर-ठोस विद्युत् अपघटनी संधारित्र के लिए समतुल्य श्रृंखला प्रतिरोध को कम करने के लक्ष्य के साथ, एल्यूमीनियम विद्युत् अपघटनी संधारित्र के लिए नए जल-आधारित विद्युत्-अपघट्य विकसित किए गए थे। जल सस्ता है, विद्युत्-अपघट्य के लिए एक प्रभावी विलायक है, और विद्युत्-अपघट्य की चालकता में अपेक्षाकृत अधिक संशोधन करता है। जल निर्माता रूबिकॉन निगम1990 के दशक के अंत में बढ़ी हुई चालकता के साथ नए जल-आधारित विद्युत्-अपघट्य प्रणाली के विकास में अग्रणी था।[45] जल आधारित विद्युत्-अपघट्य के साथ गैर-ठोस विद्युत् अपघटनी संधारित्र की नई श्रृंखला को आंकड़ा तालिका में कम समतुल्य श्रृंखला प्रतिरोध, कम प्रतिबाधा, अति कम प्रतिबाधा या उच्च तरंग धारा के रूप में वर्णित किया गया था।

1999 से कम से कम 2010 तक, ऐसे जल-आधारित विद्युत्-अपघट्य के लिए एक चोरी नुस्खा, जिसमें महत्वपूर्ण स्टेबलाइजर्स[46][47] अनुपस्थित थे,[48] कंप्यूटर, बिजली की आपूर्ति, और अन्य इलेक्ट्रॉनिक उपकरणों में अनुपयुक्त कैप (विद्युत् अपघटनी संधारित्र की विफलता), रिसाव या कभी-कभी फटने की व्यापक समस्या के कारण, जिसे संधारित्र व्यसन के रूप में जाना जाता है। इन विद्युत् अपघटनी संधारित्र में जल एल्युमिनियम के साथ अपेक्षाकृत अधिक आक्रामक रूप से प्रतिक्रिया करता है, साथ ही संधारित्र में तेज ऊष्मा और गैस का विकास होता है, जिसके परिणामस्वरूप उपकरण समय से पहले अनुपयुक्त हो जाते हैं, और एक कुटीर उद्योग पुनर्निर्माण उद्योग का विकास होता है।

विद्युत विशेषताएँ

श्रृंखला-समतुल्य परिपथ

विद्युत् अपघटनी संधारित्र का श्रृंखला-समतुल्य परिपथ मॉडल

संधारित्र की विद्युत विशेषताओं को अंतर्राष्ट्रीय सामान्य विनिर्देश अंतर्राष्ट्रीय विद्युत तकनीकी आयोग 60384-1 द्वारा सुसंगत बनाया गया है। इस मानक में, संधारित्र की विद्युत विशेषताओं को विद्युत घटकों के साथ एक आदर्श श्रृंखला-समतुल्य परिपथ द्वारा वर्णित किया जाता है जो विद्युत् अपघटनी संधारित्र के सभी ओमीय हानि , संधारित्र और प्रेरक पैरामीटर को मॉडल करता है:

  • C, संधारित्र की धारिता
  • RESR, समतुल्य श्रृंखला प्रतिरोध जो संधारित्र के सभी ओमीय हानि को सारांशित करता है, सामान्य रूप से समतुल्य श्रृंखला प्रतिरोध के रूप में संक्षिप्त किया जाता है
  • LESL, समतुल्य श्रृंखला प्रेरकत्व जो संधारित्र का प्रभावी स्व-प्रेरकत्व है, जिसे सामान्य रूप से इलेक्ट्रॉनिक प्रणाली का स्तर के रूप में संक्षिप्त किया जाता है।
  • Rleak, संधारित्र के रिसाव (इलेक्ट्रॉनिक्स) का प्रतिनिधित्व करने वाला प्रतिरोध

धारिता, मानक मूल्य और सहनशीलता

तापमान के एक कार्य के रूप में विशिष्ट धारिता

विद्युत् अपघटनी संधारित्र की विद्युत विशेषताएं एनोड की संरचना और उपयोग किए गए विद्युत्-अपघट्य पर निर्भर करती हैं। यह विद्युत् अपघटनी संधारित्र के धारिता मूल्य को प्रभावित करता है, जो आवृत्ति और तापमान को मापने पर निर्भर करता है। ठोस विद्युत्-अपघट्य वाले संधारित्र की तुलना में गैर-ठोस विद्युत्-अपघट्य वाले विद्युत् अपघटनी संधारित्र आवृत्ति और तापमान सीमा पर व्यापक विचलन दिखाते हैं।

विद्युत् अपघटनी संधारित्र की संधारिता की मूल इकाई फैराड (μF) है। निर्माताओं की आंकड़ा तालिका में निर्दिष्ट संधारिता मान को निर्धारित संधारिता CR कहा जाता है या नाममात्र धारिता CN और वह मान है जिसके लिए संधारित्र को डिज़ाइन किया गया है।

विद्युत् अपघटनी संधारित्र के लिए मानकीकृत मापने की स्थिति 20 डिग्री सेल्सियस के तापमान पर 100/120 हर्ट्ज की आवृत्ति पर 0.5 वोल्ट के साथ एक प्रत्यावर्ती धारा मापने की विधि है। टैंटलम संधारित्र के लिए निर्धारित विद्युत्-दाब ≤2.5 V वाले प्रकारों के लिए 1.1 से 1.5 V का दिष्ट धारा अभिनति विद्युत्-दाब, या >2.5 V के निर्धारित विद्युत्-दाब वाले प्रकारों के लिए 2.1 से 2.5 V, प्रतिवर्ती विद्युत्-दाब से बचने के लिए माप के समय प्रयुक्त किया जा सकता है।

1 किलोहर्ट्‍ज की आवृत्ति पर मापा गया धारिता मान 100/120 हर्ट्‍ज मान से लगभग 10% कम है। इसलिए, विद्युत् अपघटनी संधारित्र के संधारिता मान प्रत्यक्ष तुलनीय नहीं होते हैं और परत संधारित्र या सिरेमिक संधारित्र से भिन्न होते हैं, जिनकी संधारिता 1 किलोहर्ट्‍ज या अधिक पर मापी जाती है।

100/120 हर्ट्ज पर प्रत्यावर्ती धारा मापने की विधि से मापा जाता है, संधारिता मान ई-कैप्स में संग्रहीत विद्युत आवेश का निकटतम मूल्य है। संग्रहीत आवेश को एक विशेष ऋणशोधन विधि से मापा जाता है और इसे एकदिश धारा संधारिता कहा जाता है। दिष्ट धारा धारिता 100/120 हर्ट्‍ज प्रत्यावर्ती धारा धारिता से लगभग 10% अधिक है। फोटोफ्लैश जैसे ऋणशोधन अनुप्रयोगों के लिए दिष्ट धारा संधारिता दिलचस्प है।

निर्धारित मूल्य से मापा धारिता के अनुमानितदेता विचलन के प्रतिशत को धारिता सहिष्णुता कहा जाता है। विद्युत् अपघटनी संधारित्र विभिन्न सहिष्णुता श्रृंखला में उपलब्ध हैं, जिनके मान अंतर्राष्ट्रीय विद्युत तकनीकी आयोग 60063 में निर्दिष्ट पसंदीदा संख्या E श्रृंखला में निर्दिष्ट हैं। दृढ़ स्थानों में संक्षिप्त अंकन के लिए, प्रत्येक सहिष्णुता के लिए एक अक्षर कोड अंतर्राष्ट्रीय विद्युत तकनीकी आयोग 60062 में निर्दिष्ट है।

  • निर्धारित संधारिता, श्रृंखला़ E3,सहिष्णुता ±20%, अक्षर कोड M
  • निर्धारित संधारिता, श्रृंखला़ E6,सहिष्णुता ±20%, अक्षर कोड M
  • निर्धारित संधारिता, श्रृंखला़ E12,सहिष्णुता ±10%, अक्षर कोड K

आवश्यक धारिता सहिष्णुता विशेष अनुप्रयोग द्वारा निर्धारित की जाती है। विद्युत् अपघटनी संधारित्र, जो प्रायः इलेक्ट्रॉनिक निस्यंदन और युग्मक संधारित्र के लिए उपयोग किए जाते हैं, उन्हें संकीर्ण सहनशीलता की आवश्यकता नहीं होती है क्योंकि वे अधिकतम परिशुद्ध आवृत्ति अनुप्रयोगों के लिए उपयोग नहीं किए जाते हैं।

निर्धारित और श्रेणी विद्युत्-दाब

निर्धारित और श्रेणी विद्युत्-दाब और निर्धारित और श्रेणी तापमान के बीच संबंध

अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-1 मानक के संदर्भ में, विद्युत् अपघटनी संधारित्र के लिए अनुमत परिचालन निर्धारण विद्युत्-दाब को निर्धारित विद्युत्-दाब UR कहा जाता है या नाममात्र विद्युत्-दाब UN. निर्धारित विद्युत्-दाब UR अधिकतम दिष्ट धारा विद्युत्-दाब या श्रंग स्पंदन विद्युत्-दाब है जिसे निर्धारित तापमान सीमा TR के अंदर किसी भी तापमान पर निरंतर प्रयुक्त किया जा सकता है।

बढ़ते तापमान के साथ विद्युत् अपघटनी संधारित्र का विद्युत्-दाब प्रमाण घटता है। कुछ अनुप्रयोगों के लिए उच्च तापमान सीमा का उपयोग करना महत्वपूर्ण है। उच्च तापमान पर लगाए गए विद्युत्-दाब को कम करने से सुरक्षा भंडार बना रहता है। कुछ संधारित्र प्रकारों के लिए इसलिए आईईसी मानक उच्च तापमान के लिए तापमान व्युत्पन्न विद्युत्-दाब निर्दिष्ट करता है, श्रेणी विद्युत्-दाब यूC. श्रेणी विद्युत्-दाब अधिकतम दिष्ट धारा विद्युत्-दाब या श्रंग स्पंदन विद्युत्-दाब है जिसे श्रेणी तापमान सीमा TC के अंदर किसी भी तापमान पर संधारित्र पर निरंतर प्रयुक्त किया जा सकता है। चित्र में विद्युत्-दाब और तापमान दोनों के बीच संबंध दाईं ओर दिया गया है।

निर्दिष्ट से अधिक विद्युत्-दाब लगाने से विद्युत् अपघटनी संधारित्र नष्ट हो सकते हैं।

कम विद्युत्-दाब लगाने से विद्युत् अपघटनी संधारित्र पर धनात्मक प्रभाव पड़ सकता है। एल्यूमीनियम विद्युत् अपघटनी संधारित्र के लिए एक कम प्रयुक्त विद्युत्-दाब कुछ स्थितियो में जीवनकाल बढ़ा सकता है।[5]टैंटलम विद्युत् अपघटनी संधारित्र के लिए प्रयुक्त विद्युत्-दाब को कम करने से विश्वसनीयता बढ़ जाती है और अपेक्षित विफलता दर कम हो जाती है।[49] मैं

प्रोत्कर्ष विद्युत्-दाब

प्रोत्कर्ष विद्युत्-दाब अधिकतम श्रंग विद्युत्-दाब मान को इंगित करता है जिसे सीमित संख्या में चक्रों के लिए विद्युत् अपघटनी संधारित्र पर उनके अनुप्रयोग के समय प्रयुक्त किया जा सकता है।[5] प्रोत्कर्ष विद्युत्-दाब अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-1 में मानकीकृत है। 315 वोल्ट तक के निर्धारित विद्युत्-दाब वाले एल्यूमीनियम विद्युत् अपघटनी संधारित्र के लिए, प्रोत्कर्ष विद्युत्-दाब निर्धारित विद्युत्-दाब का 1.15 गुना है, और निर्धारित विद्युत्-दाब 315 वोल्ट से अधिक वाले संधारित्र के लिए, प्रोत्कर्ष विद्युत्-दाब निर्धारित विद्युत्-दाब का 1.10 गुना है।

टैंटलम विद्युत् अपघटनी संधारित्र के लिए प्रोत्कर्ष विद्युत्-दाब निर्धारित विद्युत्-दाब का 1.3 गुना हो सकता है, जिसे निकटतम वोल्ट तक पूर्णांकित किया जा सकता है। टैंटलम संधारित्र पर लगाया गया प्रोत्कर्ष विद्युत्-दाब संधारित्र की विफलता दर को प्रभावित कर सकता है।[50][51]


क्षणिक विद्युत्-दाब

गैर-ठोस विद्युत्-अपघट्य के साथ एल्यूमीनियम विद्युत् अपघटनी संधारित्र प्रोत्कर्ष विद्युत्-दाब की तुलना में उच्च और अल्पकालिक क्षणिक विद्युत्-दाब के प्रति अपेक्षाकृत असंवेदनशील होते हैं, यदि आवृत्ति और ग्राहकों की ऊर्जा सामग्री कम होती है। यह क्षमता निर्धारित विद्युत्-दाब और घटक आकार पर निर्भर करती है। कम ऊर्जा क्षणिक विद्युत्-दाब ज़ेनर डायोड के समान विद्युत्-दाब सीमा की ओर ले जाते हैं।[52] सहने योग्य क्षणिक या श्रंग विद्युत्-दाब का एक स्पष्ट और सामान्य विनिर्देश संभव नहीं है। प्रत्येक स्थिति में क्षणिक उत्पन्न होते हैं, अनुप्रयोग को बहुत सावधानी से अनुमोदित किया जाना चाहिए।

ठोस मैंगनीज ऑक्साइड या बहुलक विद्युत्-अपघट्य के साथ विद्युत् अपघटनी संधारित्र, और एल्यूमीनियम के साथ-साथ टैंटलम विद्युत् अपघटनी संधारित्र, प्रोत्कर्ष विद्युत्-दाब से अधिक क्षणिक या श्रंग विद्युत्-दाब का सामना नहीं कर सकते हैं। क्षणिक इस प्रकार के विद्युत् अपघटनी संधारित्र को नष्ट कर सकते हैं।[50][51]


प्रतिवर्ती विद्युत्-दाब

एक पीसीबी पर एक विस्फोटित एल्यूमीनियम विद्युत् अपघटनी संधारित्र
विद्युत् अपघटनी संधारित्र जो शीर्ष पर वेंट पोर्ट के माध्यम से फट गया है, आंतरिक पारद्युतिक सामग्री दिखा रहा है जिसे बाहर निकाला गया था।

मानक विद्युत् अपघटनी संधारित्र, और एल्यूमीनियम के साथ-साथ टैंटलम और नाइओबियम विद्युत् अपघटनी संधारित्र ध्रुवीकृत होते हैं और सामान्य रूप से एनोड इलेक्ट्रोड विद्युत्-दाब को कैथोड विद्युत्-दाब के सापेक्ष धनात्मक होने की आवश्यकता होती है।

हालांकि, विद्युत् अपघटनी संधारित्र सीमित संख्या में चक्रों के लिए थोड़े समय के लिए प्रतिवर्ती विद्युत्-दाब का सामना कर सकते हैं। विशेष रूप से, गैर-ठोस विद्युत्-अपघट्य वाले एल्यूमीनियम विद्युत् अपघटनी संधारित्र लगभग 1 वॉल्ट से 1.5 वोल्ट के प्रतिवर्ती विद्युत्-दाब का सामना कर सकते हैं। इस प्रतिवर्ती विद्युत्-दाब का उपयोग कभी भी अधिकतम प्रतिवर्ती विद्युत्-दाब निर्धारित करने के लिए नहीं किया जाना चाहिए जिसके अंतर्गत संधारित्र को स्थायी रूप से उपयोग किया जा सकता है।[53][54][55]

ठोस टैंटलम संधारित्र भी छोटी अवधि के लिए प्रतिवर्ती विद्युत्-दाब का सामना कर सकते हैं। टैंटलम प्रतिवर्ती विद्युत्-दाब के लिए सबसे सामान्य दिशानिर्देश हैं:

  • निर्धारित विद्युत्-दाब का 10% 25 डिग्री सेल्सियस पर अधिकतम 1 वोल्ट तक,
  • निर्धारित विद्युत्-दाब का 3% अधिकतम 0.5 V 85 डिग्री सेल्सियस पर,
  • निर्धारित विद्युत्-दाब का 1% 125 डिग्री सेल्सियस पर अधिकतम 0.1 वोल्ट।

ये दिशानिर्देश लघु बहिर्गमन के लिए प्रयुक्त होते हैं और अधिकतम प्रतिवर्ती विद्युत्-दाब निर्धारित करने के लिए इसका उपयोग कभी नहीं किया जाना चाहिए जिसके अंतर्गत एक संधारित्र स्थायी रूप से उपयोग किया जा सकता है।[56][57]

लेकिन किसी भी स्थिति में, एल्यूमीनियम के साथ-साथ टैंटलम और नाइओबियम विद्युत् अपघटनी संधारित्र के लिए, स्थायी प्रत्यावर्ती धारा अनुप्रयोग के लिए प्रतिवर्ती विद्युत्-दाब का उपयोग नहीं किया जा सकता है।

एक ध्रुवीकृत विद्युत् अपघटय को परिपथ में गलत तरीके से डाले जाने की संभावना को कम करने के लिए, ध्रुवीयता को स्थिति पर बहुत स्पष्ट रूप से इंगित किया जाना चाहिए, नीचे दिए गए ध्रुवीकरण चिह्नों पर अनुभाग देखें।

द्विध्रुवी संचालन के लिए डिज़ाइन किए गए विशेष द्विध्रुवी एल्यूमीनियम विद्युत् अपघटनी संधारित्र उपलब्ध हैं, और सामान्य रूप से गैर-ध्रुवीकृत या द्विध्रुवी प्रकार के रूप में संदर्भित होते हैं। इनमें, संधारित्र में दो एनोड फ़ॉइल होते हैं जिनमें प्रतिवर्ती ध्रुवता में पूरी सघनता वाली ऑक्साइड परतें जुड़ी होती हैं। प्रत्यावर्ती धारा चक्रों के वैकल्पिक भागों में, पर्णी पर ऑक्साइड में से एक अवरोधक पारद्युतिक के रूप में कार्य करता है, प्रतिवर्ती धारा को दूसरे के विद्युत्-अपघट्य को हानि पहुंचाने से रोकता है। लेकिन ये द्विध्रुवीय विद्युत् अपघटनी संधारित्र धातुकृत बहुलक परत या पेपर परावैद्युत के साथ शक्ति संधारित्र के अतिरिक्त मुख्य प्रत्यावर्ती धारा अनुप्रयोगों के लिए उपयुक्त नहीं हैं।

प्रतिबाधा

उच्च आवृत्तियों (ऊपर) के लिए एक संधारित्र की सरलीकृत श्रृंखला-समतुल्य परिपथ; विद्युत प्रतिघात Xइलेक्ट्रॉनिक प्रणाली का स्तर और XC और प्रतिरोध ईएसआर के साथ सदिश आरेख और प्रतिबाधा Z और अपव्यय कारक tan δ के उदाहरण के लिए

सामान्य तौर पर, एक संधारित्र को विद्युत ऊर्जा के भंडारण घटक के रूप में देखा जाता है। लेकिन यह केवल एक संधारित्र अनुप्रयोग है। एक संधारित्र एक प्रत्यावर्ती धारा अवरोधक के रूप में भी कार्य कर सकता है। एल्यूमीनियम विद्युत् अपघटनी संधारित्र विशेष रूप से प्रायः जमीन पर या ऑडियो प्रत्यावर्ती धारा संकेत के संधारित्र युग्मन के लिए अवांछित प्रत्यावर्ती धारा आवृत्तियों को निस्यंदन या उपथन करने के लिए प्रचक्रण वियुग्मन संधारित्र के रूप में उपयोग किया जाता है। तब पारद्युतिक का उपयोग केवल दिष्ट धारा को अवरुद्ध करने के लिए किया जाता है। ऐसे अनुप्रयोगों के लिए, विद्युत प्रतिबाधा (प्रत्यावर्ती धारा विद्युत प्रतिरोध) उतना ही महत्वपूर्ण है जितना कि धारिता मान है।

आवृत्ति पर विभिन्न धारिता मूल्यों के लिए विशिष्ट प्रतिबाधा घटता है। धारिता जितनी अधिक होगी, अनुनादन आवृत्ति उतनी ही कम होगी।

प्रतिबाधा Z विद्युत प्रतिक्रिया और विद्युत प्रतिरोध का सदिश योग है; यह चरण अंतर और किसी दिए गए आवृत्ति पर साइनसॉइड रूप से भिन्न विद्युत्-दाब और साइनसॉयड भिन्न धारा के बीच आयाम के अनुपात का वर्णन करता है। इस अर्थ में प्रतिबाधा संधारित्र की वैकल्पिक धाराओं को अस्थायी करने की क्षमता का एक उपाय है और इसे ओम के नियम की तरह उपयोग किया जा सकता है।

दूसरे शब्दों में, प्रतिबाधा एक आवृत्ति-निर्भर प्रत्यावर्ती धारा प्रतिरोध है और एक विशेष आवृत्ति पर परिमाण और चरण दोनों के पास है।

विद्युत् अपघटनी संधारित्र की आंकड़ा तालिका में केवल प्रतिबाधा परिमाण |Z| निर्दिष्ट है, और केवल Z के रूप में लिखा गया है। अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-1 मानक के संबंध में, विद्युत् अपघटनी संधारित्र के प्रतिबाधा मान को संधारित्र की धारिता और विद्युत्-दाब के आधार पर 10 किलोहर्ट्‍ज या 100 किलोहर्ट्‍ज पर मापा और निर्दिष्ट किया जाता है।

मापने के अतिरिक्त, प्रतिबाधा की गणना संधारित्र की श्रृंखला-समतुल्य परिपथ के आदर्श घटकों का उपयोग करके की जा सकती है, जिसमें एक आदर्श संधारित्र C, एक प्रतिरोधक समतुल्य श्रृंखला प्रतिरोध और एक प्रेरक इलेक्ट्रॉनिक प्रणाली का स्तर सम्मिलित है। इस स्थिति में कोणीय आवृत्ति ω पर प्रतिबाधा समतुल्य श्रृंखला प्रतिरोध के ज्यामितीय (जटिल) जोड़ द्वारा दी जाती है, एक संधारित्र प्रतिक्रिया XC द्वारा

:

और आगमनात्मक प्रतिघात XL द्वारा (प्रेरकत्व)

.

तब Z द्वारा दिया जाता है

.

प्रतिध्वनि के विशेष स्थिति में, जिसमें दोनों प्रतिक्रियाशील प्रतिरोध XCऔर (XC= XL), तो प्रतिबाधा केवल समतुल्य श्रृंखला प्रतिरोध द्वारा निर्धारित की जाएगी। प्रतिध्वनि के ऊपर आवृत्तियों के साथ संधारित्र के इलेक्ट्रॉनिक प्रणाली का स्तर के कारण प्रतिबाधा पुनः बढ़ जाती है। संधारित्र एक प्रेरित्र बन जाता है।

समतुल्य श्रृंखला प्रतिरोध और अपव्यय कारक tan δ

समतुल्य श्रृंखला प्रतिरोध (ईएसआर) संधारित्र के सभी प्रतिरोधक हानि ों को सारांशित करता है। ये टर्मिनल प्रतिरोध हैं, इलेक्ट्रोड संपर्क का संपर्क प्रतिरोध, इलेक्ट्रोड की लाइन प्रतिरोध, विद्युत्-अपघट्य प्रतिरोध, और पारद्युतिक ऑक्साइड परत में पारद्युतिक हानि है।[58]

विद्युत् अपघटनी संधारित्र के लिए, समतुल्य श्रृंखला प्रतिरोध सामान्य रूप से बढ़ती आवृत्ति और तापमान के साथ घट जाती है।[59]

समतुल्य श्रृंखला प्रतिरोध समकरण के बाद आरोपित प्रत्यावर्ती धारा तरंग (विद्युत) को प्रभावित करता है और परिपथ की कार्यक्षमता को प्रभावित कर सकता है। संधारित्र के अंदर, समतुल्य श्रृंखला प्रतिरोध आंतरिक ताप उत्पादन के लिए समरूप है यदि संधारित्र में एक तरंग धारा प्रवाहित होती है। यह आंतरिक ऊष्मा गैर-ठोस एल्यूमीनियम विद्युत् अपघटनी संधारित्र के जीवनकाल को कम करती है और ठोस टैंटलम विद्युत् अपघटनी संधारित्र की विश्वसनीयता को प्रभावित करती है।

विद्युत् अपघटनी संधारित्र के लिए, ऐतिहासिक कारणों से अपव्यय कारक tan δ कभी-कभी समतुल्य श्रृंखला प्रतिरोध के अतिरिक्त आंकड़ा तालिका में निर्दिष्ट किया जाएगा। अपव्यय कारक संधारित्र अभिक्रिया XC ऋणात्मक प्रेरण-प्रतिघात XLऔर समतुल्य श्रृंखला प्रतिरोध के बीच चरण कोण के स्पर्शरेखा द्वारा निर्धारित किया जाता है। यदि प्रेरकत्व इलेक्ट्रॉनिक प्रणाली का स्तर छोटा है, तो अपव्यय कारक को अनुमानित रूप से अनुमानित किया जा सकता है::

अपव्यय कारक का उपयोग संधारित्र के लिए आवृत्ति-निर्धारण परिपथ में बहुत कम हानि के साथ किया जाता है जहां अपव्यय कारक के पारस्परिक मूल्य को गुणवत्ता कारक (Q) कहा जाता है, जो अनुनादक की बैंडविड्थ का प्रतिनिधित्व करता है।

तरंग धारा

अर्ध-तरंग शोधन के साथ बिजली की आपूर्ति में स्मूथिंग संधारित्र C1 में उच्च तरंग धारा संधारित्र के समतुल्य श्रृंखला प्रतिरोध के अनुरूप महत्वपूर्ण आंतरिक ताप उत्पादन का कारण बनती है।

ऊर्मिका धारा निर्दिष्ट तापमान सीमा के अंदर निरंतर संचालन के लिए किसी भी आवृत्ति और धारा वक्र के किसी भी तरंग के आरोपित प्रत्यावर्ती धारा का आरएमएस मान है। यह प्रत्यावर्ती धारा विद्युत्-दाब को संशोधनने के बाद मुख्य रूप से बिजली की आपूर्ति (स्विच्ड-मोड बिजली की आपूर्ति सहित) में उत्पन्न होता है और किसी भी वियुग्मन और समकरण संधारित्र के माध्यम से आवेश और ऋणशोधन धारा के रूप में प्रवाहित होता है।

तरंग धाराएँ संधारित्र निकाय के अंदर ऊष्मा उत्पन्न करती हैं। यह अपव्यय शक्ति हानि PLसमतुल्य श्रृंखला प्रतिरोध के कारण होता है और प्रभावी (वर्गमूल औसत का वर्ग) तरंग धारा IRका वर्ग मान है।

यह आंतरिक रूप से उत्पन्न ऊष्मा, परिवेश के तापमान और संभवतः अन्य बाहरी ताप स्रोतों के अतिरिक्त, एक संधारित्र पिंड के तापमान की ओर जाता है जिसमें परिवेश के सापेक्ष Δ T का तापमान अंतर होता है। इस ऊष्मा को संधारित्र की सतह A पर तापीय हानि Pth के रूप में और परिवेश के लिए तापीय प्रतिरोध β के रूप में वितरित किया जाना है।

आंतरिक रूप से उत्पन्न ऊष्मा को तापीय विकिरण, संवहन और तापीय चालन द्वारा परिवेश में वितरित किया जाना है। संधारित्र का तापमान, जो उत्पादित ऊष्मा और क्षयित ऊष्मा के बीच का शुद्ध अंतर है, संधारित्र के अधिकतम निर्दिष्ट तापमान से अधिक नहीं होना चाहिए।

प्रवाहित धारा को 100 या 120 हर्ट्ज पर या ऊपरी श्रेणी के तापमान पर 10 किलोहर्ट्‍ज पर एक प्रभावी (वर्गमूल औसत का वर्ग) मान के रूप में निर्दिष्ट किया जाता है। गैर-साइनसॉइडल तरंग धाराओं का विश्लेषण किया जाना चाहिए और फूरियर विश्लेषण के माध्यम से उनके एकल ज्यावक्रीय आवृत्तियों में अलग किया जाना चाहिए और एकल धाराओं को जोड़कर वर्गबद्ध किया जाना चाहिए।[60]

गैर-ठोस विद्युत् अपघटनी संधारित्र में प्रवाहित धारा द्वारा उत्पन्न ऊष्मा विद्युत्-अपघट्य के वाष्पीकरण का कारण बनती है, जिससे संधारित्र का जीवनकाल छोटा हो जाता है।[61][62][63][64][65] सीमा से अधिक होने पर विस्फोटक विफलता होती है।

मैंगनीज डाइऑक्साइड विद्युत्-अपघट्य के साथ ठोस टैंटलम विद्युत् अपघटनी संधारित्र में प्रवाहित धारा द्वारा उत्पन्न ऊष्मा संधारित्र की विश्वसनीयता को प्रभावित करती है।[66][67][68][69] अतः सीमा से अधिक होने पर विनाशकारी विफलता, लघु-परिपथ विफल होने का परिणाम होता है।

प्रवाहित धारा द्वारा उत्पन्न ऊष्मा ठोस बहुलक विद्युत्-अपघट्य के साथ एल्यूमीनियम और टैंटलम विद्युत् अपघटनी संधारित्र के जीवनकाल को भी प्रभावित करती है।[70] अतः सीमा से अधिक होने पर विनाशकारी विफलता, लघु-परिपथ विफल होने का परिणाम होता है।

धारा प्रोत्कर्ष, श्रंग या स्पंदन धारा

गैर-ठोस विद्युत्-अपघट्य वाले एल्यूमीनियम विद्युत् अपघटनी संधारित्र को सामान्य रूप से निर्धारित विद्युत्-दाब तक बिना किसी धारा प्रोत्कर्ष, श्रंग या स्पंदन सीमित के आवेशित किया जा सकता है। यह गुण तरल विद्युत्-अपघट्य में सीमित आयन गतिशीलता का परिणाम है, जो पारद्युतिक विद्युत्-दाब प्रवण और संधारित्र के समतुल्य श्रृंखला प्रतिरोध को मंद कर देती है। केवल समय के साथ एकीकृत श्रंग की आवृत्ति अधिकतम निर्दिष्ट तरंग धारा से अधिक नहीं होनी चाहिए।

मैंगनीज डाइऑक्साइड विद्युत्-अपघट्य या बहुलक विद्युत्-अपघट्य के साथ ठोस टैंटलम विद्युत् अपघटनी संधारित्र श्रंग या स्पंदन धारा से क्षतिग्रस्त हो जाते हैं।[50][51] ठोस टैंटलम संधारित्र जो प्रोत्कर्ष, श्रंग या स्पंदन धाराओं के संपर्क में हैं, उदाहरण के लिए, अत्यधिक आगमनात्मक परिपथ में, विद्युत्-दाब व्युत्पन्न के साथ उपयोग किया जाना चाहिए। यदि संभव हो तो, विद्युत्-दाब परिच्छेदिका एक प्रवण उत्तेजक होना चाहिए, क्योंकि यह संधारित्र द्वारा अनुभव किए जाने वाले श्रंग धारा को कम करता है।

क्षरण धारा

विद्युत् अपघटनी संधारित्र का सामान्य रिसाव व्यवहार: क्षरण धारा समय के कार्य के रूप में विभिन्न प्रकार के विद्युत्-अपघट्य के लिए
  गैर ठोस, उच्च जल सामग्री
  नम्य, कार्बनिक
  ठोस, बहुलक

विद्युत-अपघटनी संधारित्र के लिए, डीसी रिसाव धारा (डीसीएल) एक विशेष विशेषता है जो अन्य पारंपरिक संधारित्र में नहीं होती है। विद्युत अपघटनी संधारित्र के श्रृंखला-समतुल्य परिपथ में संधारित्र के समानांतर में इस धारा को प्रतिरोध Rरिसाव द्वारा दर्शाया गया है।

क्षरण धारा के कारण विद्युत् अपघटनी संधारित्र के बीच गैर-ठोस और ठोस विद्युत्-अपघट्य के साथ या आर्द्र एल्यूमीनियम के लिए अधिक सामान्य और मैंगनीज डाइऑक्साइड विद्युत्-अपघट्य के साथ-साथ बहुलक विद्युत्-अपघट्य के साथ विद्युत् अपघटनी संधारित्र के लिए ठोस टैंटलम विद्युत् अपघटनी संधारित्र के बीच भिन्न होते हैं। गैर-ठोस एल्युमीनियम विद्युत् अपघटनी संधारित्र के लिए क्षरण धारा में परिचालन निर्धारण चक्रों के बीच बिना प्रयुक्त विद्युत्-दाब (भंडारण समय) के समय के समय होने वाली अवांछित रासायनिक प्रक्रियाओं के कारण होने वाली परावैद्युत की सभी दुर्बल दोष सम्मिलित हैं। ये अवांछित रासायनिक प्रक्रियाएं विद्युत्-अपघट्य के प्रकार पर निर्भर करती हैं। कार्बनिक तरल पदार्थों पर आधारित विद्युत्-अपघट्य की तुलना में जल आधारित विद्युत्-अपघट्य एल्यूमीनियम ऑक्साइड परत के प्रति अधिक आक्रामक हैं। यही कारण है कि विभिन्न विद्युत् अपघटनी संधारित्र श्रृंखला संशोधन के बिना अलग-अलग भंडारण समय निर्दिष्ट करते हैं।[71] एक आर्द्र संधारित्र में एक धनात्मक विद्युत्-दाब लगाने से एक संशोधन (स्व-उपचार) प्रक्रिया होती है जो सभी दुर्बल पारद्युतिक परतों की पुनर्निर्माण करती है, और रिसाव का स्तर निम्न स्तर पर रहता है।[72]

यद्यपि गैर-ठोस विद्युत् अपघटनी संधारित्र का रिसाव धारा सिरेमिक या परत संधारित्र में पारद्युतिक धारा प्रवाह से अधिक है, कार्बनिक विद्युत्-अपघट्य के साथ आधुनिक गैर-ठोस विद्युत् अपघटनी संधारित्र का स्व-निर्वहन मे कई सप्ताह लगते हैं।

ठोस टैंटलम संधारित्र के लिए डीसीएल के मुख्य कारणों में परावैद्युत का विद्युत विघटन सम्मिलित है; अशुद्धियों या अनुपयुक्त एनोडीकरण के कारण प्रवाहकीय पथ; और मैंगनीज डाइऑक्साइड की अधिकता के कारण, नमी के रास्तों या कैथोड परिचालकों (कार्बन, सिल्वर) के कारण परावैद्युत को उपमार्गन कर दिया जाता है।[73] ठोस विद्युत्-अपघट्य संधारित्र में यह सामान्य क्षरण धारा स्वरोपी द्वारा कम नहीं किया जा सकता है, क्योंकि सामान्य परिस्थितियों में ठोस विद्युत्-अपघट्य प्रक्रियाओं को बनाने के लिए ऑक्सीजन प्रदान नहीं कर सकते हैं। इस कथन को क्षेत्र क्रिस्टलीकरण के समय स्व-उपचार प्रक्रिया के साथ भ्रमित नहीं होना चाहिए, नीचे देखें, विश्वसनीयता (विफलता दर)।

आंकड़ा तालिका में क्षरण धारा की विशिष्टता को प्रायः निर्धारित संधारिता मान CR के गुणन के रूप में दिया जाता है निर्धारित विद्युत्-दाब UR के मूल्य के साथ एक परिशिष्ट आकृति के साथ, 2 या 5 मिनट के मापने के समय के बाद मापा जाता है, उदाहरण के लिए:

रिसाव धारा मूल्य प्रयुक्त विद्युत्-दाब पर, संधारित्र के तापमान पर और मापने के समय पर निर्भर करता है। ठोस MnO2 में क्षरण धारा टैंटलम विद्युत् अपघटनी संधारित्र सामान्य रूप से गैर-ठोस विद्युत् अपघटनी संधारित्र की तुलना में बहुत तीव्रता से गिरते हैं लेकिन स्तर पर पहुंच जाते हैं।

पारद्युतिक अवशोषण

पारद्युतिक अवशोषण तब होता है जब एक संधारित्र जो लंबे समय तक आवेशित रहता है, केवल संक्षेप में निर्वहन होने पर अपूर्ण रूप से निर्वहन करता है। हालांकि एक आदर्श संधारित्र निर्वहन के बाद शून्य वोल्ट तक पहुंच जाएगा, वास्तविक संधारित्र समय-विलंबित द्विध्रुवीय निर्वहन से एक छोटा विद्युत्-दाब विकसित करते हैं, एक घटना जिसे पारद्युतिक अवशोषण, या बैटरी क्रिया भी कहा जाता है।

कुछ प्रायः उपयोग किए जाने वाले संधारित्र के लिए परावैद्युत अवशोषण के मान
संधारित्र का प्रकार परावैद्युत अवशोषण
टैंटलम विद्युत-अपघट्य संधारित्र के साथ ठोस विद्युत-अपघट्य 2 to 3%,[74] 10%[75]
एल्यूमीनियम विद्युत-अपघट्य संधारित्र के साथ गैर-ठोस विद्युत-अपघट्य 10 to 15%[76]

परावैद्युत अवशोषण परिपथ में एक समस्या हो सकती है जहां इलेक्ट्रॉनिक परिपथ के कार्य में बहुत कम धाराओं का उपयोग किया जाता है, जैसे कि लंबे समय तक स्थिर समाकलक घटक या प्रतिदर्श और बंधन परिपथ।[77] बिजली आपूर्ति लाइनों का समर्थन करने वाले अधिकांश विद्युत् अपघटनी संधारित्र अनुप्रयोगों में, पारद्युतिक अवशोषण कोई समस्या नहीं है।

लेकिन विशेष रूप से उच्च निर्धारित विद्युत्-दाब वाले विद्युत् अपघटनी संधारित्र के लिए, पारद्युतिक अवशोषण द्वारा उत्पन्न टर्मिनलों पर विद्युत्-दाब कर्मियों या परिपथों के लिए सुरक्षा जोखिम उत्पन्न कर सकता है। प्रघात को रोकने के लिए, अधिकांश बहुत बड़े संधारित्र लघुपथक तारों के साथ भेजे जाते हैं जिन्हें संधारित्र का उपयोग करने से पहले हटाने की आवश्यकता होती है।[78]


परिचालन विशेषताएँ

विश्वसनीयता (विफलता दर)

"प्रारम्भिक विफलताओं", "यादृच्छिक विफलताओं", और जीर्णता की विफलताओं के समय के साथ प्रक्षालन वक्र। यादृच्छिक विफलताओं का समय निरंतर विफलता दर का समय होता है और गैर-ठोस ई-कैप्स के जीवनकाल के अनुरूप होता है।

एक घटक की विश्वसनीयता अभियांत्रिकी एक गुण है जो इंगित करती है कि यह घटक एक समय अंतराल में अपने कार्य को कितनी दृढ़ता से करता है। यह एक प्रसंभाव्यता प्रक्रिया के अधीन है और इसे गुणात्मक और मात्रात्मक रूप से वर्णित किया जा सकता है; यह प्रत्यक्ष मापने योग्य नहीं है। विद्युत् अपघटनी संधारित्र की विश्वसनीयता अनुभवजन्य रूप से सहनशक्ति परीक्षण के साथ उत्पादन में विफलता दर की पहचान करके निर्धारित की जाती है, विश्वसनीयता अभियांत्रिकी देखें।

विश्वसनीयता को सामान्य रूप से एक प्रक्षालन टब वक्र के रूप में दिखाया जाता है और इसे तीन क्षेत्रों में विभाजित किया जाता है: प्रारंभिक विफलताएँ या शिशु मृत्यु दर विफलताएँ, निरंतर यादृच्छिक विफलताएँ और जीर्णता की विफलताएँ। विफलता दर में कुल विफलताएं लघु परिपथ, विविक्त परिपथ और अवक्रमण विफलताएं (विद्युत मापदंडों से अधिक) हैं।

विश्वसनीयता अभियांत्रिकी भविष्यवाणी सामान्य रूप से एक विफलता दर λ, संक्षिप्त एफआईटी (समय में विफलता) में व्यक्त की जाती है। यह विफलताओं की संख्या है जो (उदाहरण के लिए, 1 मिलियन घंटे के लिए 1000 घटक, या 1000 घंटों के लिए 1 मिलियन घटक जो 1 पीपीएम/1000 घंटे हैं) परिस्थितियों में एक अरब (109) घटक-घंटे के संचालन में अपेक्षित हो सकती है। यह विफलता दर मॉडल स्पष्ट रूप से "यादृच्छिक विफलता" के विचार को मानता है। व्यक्तिगत घटक यादृच्छिक समय पर लेकिन अनुमानित दर पर विफल होते हैं।

बहुत कम स्तर की सीमा में विफलता दर स्थापित करने के लिए अरबों परीक्षण किए गए संधारित्र यूनिट-घंटे की आवश्यकता होगी जो आज आवश्यक हैं ताकि विफलताओं के बिना बड़ी मात्रा में घटकों का उत्पादन सुनिश्चित किया जा सके। इसके लिए लंबी अवधि में लगभग दस लाख इकाइयों की आवश्यकता होती है, जिसका अर्थ है एक बड़ा कर्मचारी और अपेक्षाकृत अधिक वित्तपोषण[79] परीक्षण की विफलता दर प्रायः प्रमुख ग्राहकों (क्षेत्र विफलता दर) से क्षेत्र से प्रतिक्रिया के परिणामस्वरूप होने वाले आंकड़ों के साथ पूरक होती है, जिसके परिणामस्वरूप परीक्षण की तुलना में कम विफलता दर होती है।

एफआईटी का पारस्परिक मूल्य विफलताओं के बीच की अवधि (एमटीबीएफ) है।

एफआईटी परीक्षण के लिए मानक परिचालन स्थितियाँ 40 °C और 0.5 UR हैं। प्रयुक्त विद्युत्-दाब, धारा भार, तापमान, धारिता मूल्य, परिपथ प्रतिरोध (टैंटलम संधारित्र के लिए), यांत्रिक प्रभाव और आर्द्रता की अन्य स्थितियों के लिए, एफआईटी आंकड़ा औद्योगिक[80] या सैन्य[81] अनुप्रयोग के लिए मानकीकृत त्वरण कारकों के साथ परिवर्तित किया जा सकता है। उदाहरण के लिए, तापमान और प्रयुक्त विद्युत्-दाब जितना अधिक होगा, विफलता दर उतनी ही अधिक होगी।

विफलता दर रूपांतरण के लिए सबसे अधिक उद्धृत स्रोत एमआईएल-एचडीबीके-217F है, जो इलेक्ट्रॉनिक घटकों के लिए विफलता दर गणनाओं की "बाइबिल" है। एसक्यूसी ऑनलाइन, स्वीकृति नमूने और गुणवत्ता नियंत्रण के लिए ऑनलाइन सांख्यिकीय परिकलन-यंत्र, दी गई अनुप्रयोग शर्तों के लिए विफलता दर मूल्यों की गणना करने के लिए लघु परीक्षण के लिए एक ऑनलाइन उपकरण प्रदान करता है।[82]

टैंटलम संधारित्र या एल्यूमीनियम संधारित्र के लिए कुछ निर्माताओं की अपनी एफआईटी गणना तालिका हो सकती है।[83][84][85]

टैंटलम संधारित्र के लिए विफलता दर प्रायः 85 डिग्री सेल्सियस और निर्धारित विद्युत दाब UR पर संदर्भ स्थितियों के रूप में निर्दिष्ट होती है और प्रति हजार घंटे (एन% / 1000 एच) में विफल घटकों के प्रतिशत के रूप में व्यक्त की जाती है। यह प्रति 105 घंटे में असफल घटकों की "एन" संख्या है या एफआईटी में प्रति 109 घंटे में दस हजार गुना मूल्य है।

टैंटलम संधारित्र बहुत विश्वसनीय घटक हैं। टैंटलम पाउडर और संधारित्र प्रौद्योगिकियों में निरंतर संशोधन के परिणामस्वरूप उन अशुद्धियों की मात्रा में उल्लेखनीय कमी आई है जो पहले अधिकांश क्षेत्र क्रिस्टलीकरण विफलताओं का कारण बनती थीं। व्यावसायिक रूप से उपलब्ध औद्योगिक रूप से उत्पादित टैंटलम संधारित्र अब मानक उत्पादों के रूप में उच्च एमआईएल मानक "C" स्तर तक पहुंच गए हैं, जो 85 डिग्री सेल्सियस पर 0.01% / 1000 H और 85 डिग्री सेल्सियस और UR या 107 घंटे प्रति 1 विफलता है।[86] एमआईएल एचडीकेबी 217F से 40 °C और 0.5 पर आने वाले त्वरण कारकों के साथ एफआईटी में में परिवर्तित, UR विफलता दर है। 0.1 Ω की श्रृंखला प्रतिरोध के साथ उपयोग किए जाने वाले 100 µF/25 V टैंटलम चिप संधारित्र के लिए विफलता दर 0.02 एफआईटी है।

एल्यूमीनियम विद्युत् अपघटनी संधारित्र 85 डिग्री सेल्सियस और UR पर प्रति 1000 घंटे में एक विनिर्देश का उपयोग नहीं करते हैं। वे 40 °C और 0.5 UR के साथ एफआईटी विनिर्देशन का उपयोग करते हैं संदर्भ शर्तों के रूप में। एल्यूमीनियम विद्युत् अपघटनी संधारित्र बहुत विश्वसनीय घटक हैं। प्रकाशित आंकड़े निम्न विद्युत्-दाब प्रकार (6.3…160 वोल्ट) एफआईटी दरों के लिए 1 से 20 एफआईटी की सीमा में दिखाते हैं[87] और उच्च विद्युत्-दाब प्रकारों के लिए (>160 …550 वोल्ट) एफआईटी दर 20 से 200 एफआईटी की सीमा में[85] एल्युमीनियम ई-कैप्स के लिए क्षेत्र विफलता दर 0.5 से 20 एफआईटी की सीमा में है।[85][87][88]

प्रकाशित आंकड़े बताते हैं कि टैंटलम और एल्यूमीनियम संधारित्र दोनों प्रकार के विश्वसनीय घटक हैं, जो अन्य इलेक्ट्रॉनिक घटकों के साथ तुलनीय हैं और सामान्य परिस्थितियों में दशकों तक सुरक्षित संचालन प्राप्त करते हैं। लेकिन अनुपयुक्त हो जाने के कारण विफलताओं के स्थिति में एक बड़ा अंतर सम्मिलित है। गैर-ठोस विद्युत्-अपघट्य वाले विद्युत् अपघटनी संधारित्र में निरंतर यादृच्छिक विफलताओं की एक सीमित अवधि होती है, जब तक कि जीर्णता की विफलता प्रारम्भ नहीं हो जाती है। निरंतर यादृच्छिक विफलता दर अवधि "आर्द्र" एल्यूमीनियम विद्युत् अपघटनी संधारित्र के सेवा काल या सेवा जीवन से अनुरूप है।

जीवनकाल

विद्युत्-अपघट्य के वाष्पीकरण के कारण गैर-ठोस विद्युत्-अपघट्य वाले एल्यूमीनियम विद्युत् अपघटनी संधारित्र के विद्युत मूल्य समय के साथ बदलते हैं। विद्युत मापदंडों की निर्दिष्ट सीमा तक पहुंचने पर, निरंतर विफलता दर की अवधि समाप्त हो जाती है, जो संधारित्र के जीवनकाल के अंत को दर्शाता है। ग्राफ़ इस व्यवहार को 2000 घंटे के सहनशक्ति परीक्षण में 105 डिग्री सेल्सियस पर दिखाता है।

विद्युत-अपघटनी संधारित्र का जीवनकाल, सेवा अवधि, भार अवधि या उपयोगी अवधि गैर-ठोस एल्यूमीनियम विद्युत-अपघटनी संधारित्र की एक विशेष विशेषता है, जिसका तरल विद्युतअपघट्य समय के साथ वाष्पित हो सकता है। विद्युत्-अपघट्य स्तर कम होने से संधारित्र के विद्युत पैरामीटर प्रभावित होते हैं। धारिता कम हो जाती है और प्रतिबाधा और समतुल्य श्रृंखला प्रतिरोध विद्युत्-अपघट्य की घटती मात्रा के साथ बढ़ जाती है। यह बहुत धीमी गति से विद्युत्-अपघट्य का शुष्क तापमान, प्रयुक्त तरंग धारा भार और प्रयुक्त विद्युत्-दाब पर निर्भर करता है। ये पैरामीटर उनके अधिकतम मूल्यों की तुलना में जितने कम होंगे, संधारित्र का "जीवन" उतना ही लंबा होगा। "जीवन का अंत" बिंदु जीर्णता की विफलताओं या अवक्रमण की विफलताओं की उपस्थिति से परिभाषित किया गया है जब या तो धारिता, प्रतिबाधा, समतुल्य श्रृंखला प्रतिरोध या रिसाव धारा उनकी निर्दिष्ट परिवर्तन सीमा से अधिक है।

जीवनकाल परीक्षण किए गए संधारित्र के संग्रह का एक विनिर्देश है और समान प्रकार के व्यवहार की अपेक्षा प्रदान करता है। यह आजीवन परिभाषा प्रक्षालनटब वक्र में निरंतर यादृच्छिक विफलता दर के समय से अनुरूप है।

लेकिन निर्दिष्ट सीमाओं को पार करने और संधारित्र के "जीवन के अंत" तक पहुंचने के बाद भी, इलेक्ट्रॉनिक परिपथ तत्काल जोखिम में नहीं है; केवल संधारित्र की कार्यक्षमता कम हो जाती है। विद्युत् अपघटनी संधारित्र के निर्माण में आज के उच्च स्तर की शुद्धता के साथ यह उपेक्षा नहीं की जानी चाहिए कि संक्षिप्त परिपथ पैरामीटर अवक्रमण के साथ संयुक्त प्रगतिशील वाष्पीकरण के साथ जीवन-बिंदु के अंत के बाद होता है।

गैर-ठोस एल्यूमीनियम विद्युत् अपघटनी संधारित्र का जीवनकाल "घंटे प्रति तापमान, जैसे 2,000h/105 डिग्री सेल्सियस" के संदर्भ में निर्दिष्ट किया गया है। इस विनिर्देशन के साथ, गंभीर निर्माताओं की आंकड़ा तालिका में निर्दिष्ट विशेष फ़ार्मुलों या ग्राफ़ द्वारा परिचालन स्थितियों पर जीवनकाल का अनुमान लगाया जा सकता है। वे विनिर्देशन के लिए विभिन्न तरीकों का उपयोग करते हैं, कुछ विशेष सूत्र देते हैं,[89][90] दूसरों ने प्रयुक्त विद्युत्-दाब के प्रभाव पर विचार करने वाले ग्राफ़ के साथ अपने ई-कैप्स आजीवन गणना को निर्दिष्ट किया है।[87][91][92][93] परिचालन परिस्थितियों में समय की गणना के लिए मूल सिद्धांत तथाकथित "10-डिग्री-नियम" है।[94][95][96]

इस नियम को आरेनियस समीकरण भी कहते हैं। यह ऊष्मीय प्रतिक्रिया गति में बदलाव की विशेषता है। प्रत्येक 10 °C कम तापमान के लिए वाष्पीकरण आधा हो जाता है। इसका तात्पर्य है कि तापमान में प्रत्येक 10 डिग्री सेल्सियस की कमी से संधारित्र का जीवनकाल दोगुना हो जाता है। उदाहरण के लिए, यदि विद्युत् अपघटनी संधारित्र का आजीवन विनिर्देश 2000 एच/105 डिग्री सेल्सियस है, तो 45 डिग्री सेल्सियस पर संधारित्र के जीवनकाल की गणना" 128,000 घंटों के रूप में की जा सकती है, जो कि 10-डिग्री-नियम का उपयोग करके लगभग 15 वर्ष है।

हालाँकि, ठोस बहुलक विद्युत् अपघटनी संधारित्र, और एल्यूमीनियम, टैंटलम, और नाइओबियम विद्युत् अपघटनी संधारित्र भी आजीवन विनिर्देश हैं। बहुलक विद्युत्-अपघट्य प्रवाहकीय बहुलक के ऊष्मा क्षरण के कारण चालकता की एक छोटी अवक्रमण को प्रदर्शित करता है। विद्युत चालकता समय के एक कार्य के रूप में घट जाती है, एक कणयुक्त धातु प्रकार की संरचना के साथ, जिसमें प्रवाहकीय बहुलक वृद्धि के संकुचित होने के कारण अवधि बढ़ने लगती है।[97] बहुलक विद्युत् अपघटनी संधारित्र का जीवनकाल गैर-ठोस विद्युत् अपघटनी संधारित्र के समान शब्दों में निर्दिष्ट किया गया है, लेकिन इसकी आजीवन गणना अन्य नियमों का अनुसरण करती है, जिससे परिचालन जीवनकाल बहुत अधिक हो जाता है।[98][99][100]

ठोस मैंगनीज डाइऑक्साइड विद्युत्-अपघट्य के साथ टैंटलम विद्युत् अपघटनी संधारित्र में जीर्णता की विफलता नहीं होती है, इसलिए उनके पास गैर-ठोस एल्यूमीनियम विद्युत् अपघटनी संधारित्र के अर्थ में आजीवन विनिर्देश नहीं होता है। इसके अतिरिक्त, गैर-ठोस विद्युत्-अपघट्य वाले टैंटलम संधारित्र, आर्द्र टैंटलम, में आजीवन विनिर्देश नहीं होते हैं क्योंकि वे पूरी तरह बंद करके सील किए जाते हैं।

विफलता मोड, स्व-संशोधन तंत्र और अनुप्रयोग नियम

कई अलग-अलग प्रकार के विद्युत् अपघटनी संधारित्र विभिन्न विद्युत दीर्घकालिक व्यवहार, आंतरिक विफलता मोड और स्व-संशोधन तंत्र प्रदर्शित करते हैं। उच्च विश्वसनीयता और लंबे अवधि के साथ संधारित्र सुनिश्चित करने के लिए आंतरिक विफलता मोड वाले प्रकारों के लिए अनुप्रयोग नियम निर्दिष्ट किए गए हैं।

लंबे समय तक विद्युत व्यवहार, विफलता मोड, स्व-उपचार तंत्र, और विभिन्न प्रकार के विद्युत-अपघट्य संधारित्र के अनुप्रयोग नियम

विद्युत-अपघट्य संधारित्र के प्रकार
दीर्घकालिक विद्युत व्यवहार विफलता के तरीके स्वदोषारोहण तंत्र अनुप्रयोग के नियम
एल्यूमीनियम विद्युत-अपघट्य संधारित्र,
गैर-ठोस विद्युत-अपघट्य
समय के साथ शुष्कन,
संधारिता मे कमी,
समतुल्य श्रृंखला प्रतिरोध वृद्धि
कोई अद्वितीय निर्धारित करने योग्य नहीं वोल्टेज लगाने से नया उत्पन्न ऑक्साइड (गठन)। आजीवन गणना
एल्यूमीनियम विद्युत-अपघट्य संधारित्र,
ठोस बहुलक विद्युत-अपघट्य
चालकता में कमी,
समतुल्य श्रृंखला प्रतिरोध वृद्धि
कोई अद्वितीय निर्धारित करने योग्य नहीं बहुलक विद्युत-अपघट्य के ऑक्सीकरण या

वाष्पीकरण द्वारा परावैद्युत मे दोषों का रोधक

आजीवन गणना
टैंटलम विद्युत-अपघट्य संधारित्र,
ठोस MnO2 विद्युत-अपघट्य
स्थायी क्षेत्र क्रिस्टलीकरण
[86][101]
विद्युत-अपघट्य MnO2
के ऑक्सीकरण MnO2O3 में ऑक्सीकरण द्वारा

परावैद्युत दोषों के तापीय रूप से

प्रेरित रोधक MnO2O3 यदि धारा उपलब्धता

सीमित है

Voltage derating 50%
Series resistance 3 Ω/V
[102][103]
टैंटलम विद्युत-अपघट्य संधारित्र,
ठोस बहुलक विद्युत-अपघट्य
चालकता में कमी,
समतुल्य श्रृंखला प्रतिरोध वृद्धि
क्षेत्र क्रिस्टलीकरण
[86][101]
बहुलक विद्युत-अपघट्य के ऑक्सीकरण या

वाष्पीकरण द्वारा परावैद्युत मे दोषों का रोधक

Voltage derating 20 %
[102][103]
नायोबियम विद्युत-अपघट्य संधारित्र,
ठोस MnO2 विद्युत-अपघट्य
स्थायी
कोई अद्वितीय निर्धारित करने योग्य नहीं
रोधक Nb2O5 मे NbO2के ऑक्सीकरण द्वारा परावैद्युत दोषों का

ऊष्मीय प्रेरित रोधन

नायोबियम एनोड:
voltage derating 50%
नायोबियमऑक्साइड एनोड:
voltage derating 20 %
[102][103]
नायोबियम विद्युत-अपघट्य संधारित्र,
ठोस बहुलक विद्युत-अपघट्य
चालकता में कमी,
समतुल्य श्रृंखला प्रतिरोध वृद्धि
कोई अद्वितीय निर्धारित करने योग्य नहीं बहुलक विद्युत-अपघट्य के ऑक्सीकरण या

वाष्पीकरण द्वारा परावैद्युत मे दोषों का रोधक

नायोबियम एनोड:
voltage derating 50%
नायोबियमऑक्साइड एनोड:
voltage derating 20 %
[102][103]
हाइब्रिड एल्यूमीनियम विद्युत-अपघट्य संधारित्र,
ठोस बहुलक + गैर-ठोस विद्युत-अपघट्य
चालकता में कमी,
समय के साथ शुष्कन,
संधारिता मे कमी,
समतुल्य श्रृंखला प्रतिरोध वृद्धि
कोई अद्वितीय निर्धारित करने योग्य नहीं विद्युतदाब लगाने से नया उत्पन्न ऑक्साइड (निर्माण) आजीवन गणना


भंडारण के बाद प्रदर्शन

सभी विद्युत् अपघटनी संधारित्र उत्पादन के समय होने वाली सभी दरारों और दुर्बलता को ठीक करने के लिए पर्याप्त समय के लिए उच्च तापमान पर निर्धारित विद्युत्-दाब लगाने से निर्माण के समय वयोवृद्ध हो जाते हैं। हालाँकि, गैर-ठोस एल्यूमीनियम मॉडल के साथ एक विशेष समस्या भंडारण या शक्तिहीन अवधि के बाद हो सकती है। रासायनिक प्रक्रियाएं (जंग) ऑक्साइड परत को दुर्बल कर सकती हैं, जिससे उच्च रिसाव धारा हो सकती है। अधिकांश आधुनिक विद्युत् अपघटनी प्रणाली रासायनिक रूप से निष्क्रिय हैं और दो साल या उससे अधिक समय के भंडारण के बाद भी जंग की समस्या नहीं दिखाते हैं। विद्युत्-अपघट्य के रूप में गामा-ब्यूटायरोलैक्टोन जैसे कार्बनिक विलायक का उपयोग करने वाले गैर-ठोस विद्युत् अपघटनी संधारित्र में लंबे समय तक भंडारण के बाद उच्च क्षरण धारा की समस्या नहीं होती है।[72] उन्हें बिना किसी समस्या के 10 साल तक संग्रहीत किया जा सकता है।[60]

त्वरित जीवनावधि परीक्षण का उपयोग करके भंडारण समय का परीक्षण किया जा सकता है, जिसके लिए एक निश्चित अवधि, सामान्य रूप से 1000 घंटे के लिए ऊपरी श्रेणी के तापमान पर प्रयुक्त विद्युत्-दाब के बिना भंडारण की आवश्यकता होती है। यह जीवनावधि परीक्षण रासायनिक स्थिरता और ऑक्साइड परत के लिए एक अच्छा संकेतक है, क्योंकि उच्च तापमान से सभी रासायनिक प्रतिक्रियाएं तेज होती हैं। गैर-ठोस विद्युत् अपघटनी संधारित्र की लगभग सभी व्यावसायिक श्रृंखलाएं 1000 घंटे की जीवनावधि परीक्षण को पूरा करती हैं। हालाँकि, कई श्रृंखलाएँ केवल दो वर्षों के भंडारण के लिए निर्दिष्ट हैं। यह टर्मिनलों की सोल्डरनीयता भी सुनिश्चित करता है।

प्राचीन रेडियो उपकरण या 1970 के दशक या उससे पहले निर्मित विद्युत् अपघटनी संधारित्र के लिए, पूर्वानुकूलन उपयुक्त हो सकता है। यह एक घंटे के लिए लगभग 1 kΩ के श्रृंखला प्रतिरोधक के माध्यम से संधारित्र पर निर्धारित विद्युत्-दाब लगाकर किया जाता है, जिससे ऑक्साइड परत स्वरोपी के माध्यम से स्वयं को ठीक कर लेती है। संधारित्र जो पूर्वप्रतिबंध के बाद क्षरण धारा आवश्यकताओं को विफल करते हैं, उन्हें यांत्रिक क्षति का अनुभव हो सकता है।[93]

ठोस विद्युत्-अपघट्य वाले विद्युत् अपघटनी संधारित्र में पूर्वप्रतिबंध आवश्यकताएं नहीं होती हैं।

अतिरिक्त जानकारी

संधारित्र प्रतीक

विद्युत् अपघटनी संधारित्र प्रतीक


समानांतर संयोजन

यदि समानांतर संधारित्र के एक बैंक के अंदर एक व्यक्तिगत संधारित्र एक लघु परिपथ विकसित करता है, तो संधारित्र बैंक की पूरी ऊर्जा उस संक्षिप्त के माध्यम से ऋणशोधन होती है। इस प्रकार, बड़े संधारित्र, विशेष रूप से उच्च विद्युत्-दाब प्रकार, को शीघ्र निर्वहन के विपरीत व्यक्तिगत रूप से संरक्षित किया जाना चाहिए।

श्रृंखला संयोजन

उन अनुप्रयोगों में जहां उच्च सहनशील विद्युत्-दाब की आवश्यकता होती है, विद्युत् अपघटनी संधारित्र को श्रृंखला में जोड़ा जा सकता है। रोधक प्रतिरोध में अलग-अलग भिन्नता के कारण, और इस प्रकार विद्युत्-दाब प्रयुक्त होने पर क्षरण धारा, प्रत्येक श्रृंखला संधारित्र में विद्युत्-दाब समान रूप से वितरित नहीं किया जाता है। इसके परिणामस्वरूप एक व्यक्तिगत संधारित्र की विद्युत्-दाब दर अधिक हो सकती है। प्रत्येक अलग-अलग संधारित्र में विद्युत्-दाब को समान करने के लिए एक निष्क्रिय या सक्रिय सन्तुलक परिपथ प्रदान किया जाना चाहिए।[60][93]


ध्रुवीयता अंकन

बहुलक विद्युत् अपघटनी संधारित्र के लिए ध्रुवीयता अंकन

Polymer-Quader-Polarität.jpg
V-Chip.jpg
आयताकार बहुलक संधारित्र,

टैंटलम और साथ ही एल्यूमीनियम,

एक ध्रुवीयता अंकन है

एनोड (धनात्मक) की ओर

बेलनाकार बहुलक संधारित्र

एक ध्रुवीयता का अंकन है

कैथोड (ऋण) पक्ष पर


अंकित चिह्न

विद्युत् अपघटनी संधारित्र, अधिकांश अन्य इलेक्ट्रॉनिक घटकों की तरह, चिह्नित हैं, स्थान की स्वीकृति के साथ

  • निर्माता का नाम या ट्रेडमार्क;
  • निर्माता का प्रकार पदनाम;
  • समाप्ति की ध्रुवीयता (ध्रुवीकृत संधारित्र के लिए)
  • निर्धारित धारिता;
  • निर्धारित धारिता पर सहिष्णुता
  • निर्धारित विद्युत्-दाब और आपूर्ति की प्रकृति (प्रत्यावर्ती धारा या दिष्ट धारा)
  • जलवायु श्रेणी या निर्धारित तापमान;
  • निर्माण का वर्ष और महीना (या सप्ताह);
  • सुरक्षा मानकों के प्रमाणन चिह्न (सुरक्षा विद्युत चुम्बकीय व्यतिकरण और रेडियो आवृत्ति व्यतिकरण दमन संधारित्र के लिए)

छोटे संधारित्र आशुलिपि संकेतन का उपयोग करते हैं। सबसे अधिक उपयोग किया जाने वाला प्रारूप है: XYZ J/K/M "V", जहां XYZ धारिता का प्रतिनिधित्व करता है (XY × 10Z के रूप में गणना की जाती है) pF), अक्षर K या M सहिष्णुता (क्रमशः ±10% और ±20%) को इंगित करते हैं और "V" कार्यशील विद्युत्-दाब का प्रतिनिधित्व करते हैं।

उदाहरण:

  • 105K 330V का अर्थ है 10 × 105 की धारिता pF = 1 µF (K = ±10%) 330 V के निर्धारित विद्युत्-दाब के साथ।
  • 476M 100V का अर्थ है 47 × 106 की धारिता pF = 47 µF (M = ±20%) 100 V के निर्धारित विद्युत्-दाब के साथ।

संधारिता, सहनशीलता और निर्माण की दिनांक को अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60062 में निर्दिष्ट संक्षिप्त कोड के साथ दर्शाया जा सकता है। निर्धारित संधारिता (माइक्रोफ़ारड्स) के संक्षिप्त-चिह्नन के उदाहरण: µ47 = 0,47 µF, 4µ7 = 4,7 µF, 47µ = 47 µF

निर्माण की दिनांक प्रायः अंतरराष्ट्रीय मानकों के अनुसार मुद्रित की जाती है।

  • संस्करण 1: वर्ष/सप्ताह अंक कोड के साथ कोडिंग, 1208 2012, सप्ताह संख्या 8 है।
  • संस्करण 2: वर्ष कोड / माह कोड के साथ कोडिंग, वर्ष कोड हैं: "R" = 2003, S = 2004, "T" = 2005, U = 2006, V = 2007, W = 2008, X = 2009, A = 2010, B = 2011, C = 2012, D = 2013, " E” = 2014 आदि महीने के कोड हैं: 1 से 9 = जनवरी से सितंबर, O = अक्टूबर, N = नवंबर, D = दिसंबर X5 तो 2009, मई है

बहुत छोटे संधारित्र के लिए कोई चिह्नन संभव नहीं है। यहां केवल निर्माताओं की पता लगाने की क्षमता ही एक प्रकार की पहचान सुनिश्चित कर सकती है।

मानकीकरण

सभी विद्युतीय, इलेक्ट्रॉनिक घटकों और संबंधित प्रौद्योगिकियों के लिए मानकीकरण अंतर्राष्ट्रीय विद्युत तकनीकी आयोग (आईईसी) द्वारा दिए गए नियमों को स्वीकार करता है।[104] जो एक गैर-लाभकारी गैर-सरकारी अंतरराष्ट्रीय मानक संगठन है।[105][106]

इलेक्ट्रॉनिक उपकरणों में उपयोग के लिए संधारित्र के लिए परीक्षण विधियों की विशेषताओं और प्रक्रिया की परिभाषा सामान्य विनिर्देश में निर्धारित की गई है:

  • अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-1 - इलेक्ट्रॉनिक उपकरणों में उपयोग के लिए निर्धारित संधारित्र मानकीकृत प्रकार के रूप में अनुमोदन के लिए इलेक्ट्रॉनिक उपकरणों में उपयोग के लिए एल्यूमीनियम और टैंटलम विद्युत् अपघटनी संधारित्र द्वारा मिलने वाले परीक्षण और आवश्यकताएं निम्नलिखित अनुभागीय विनिर्देशों में स्थिर की गई हैं:
  • अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-3—मैंगनीज डाइऑक्साइड ठोस विद्युत्-अपघट्य के साथ सतह आरोहित स्थिर टैंटलम विद्युत् अपघटनी संधारित्र
  • अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-4—एल्युमिनियम विद्युत् अपघटनी संधारित्र ठोस (MnO2) के साथ) और गैर-ठोस विद्युत्-अपघट्य
  • अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-15—नम्य और ठोस विद्युत्-अपघट्य के साथ स्थिर टैंटलम संधारित्र
  • अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-18—ठोस (MnO2) के साथ स्थिर एल्युमिनियम विद्युत् अपघटनी सतह आरोहित संधारित्र) और गैर-ठोस विद्युत्-अपघट्य
  • अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-24—प्रवाहकीय बहुलक ठोस विद्युत्-अपघट्य के साथ सतह आरोहित स्थिर टैंटलम विद्युत् अपघटनी संधारित्र
  • अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-25—प्रवाहकीय बहुलक ठोस विद्युत्-अपघट्य के साथ सतह आरोहित स्थिर एल्यूमीनियम विद्युत् अपघटनी संधारित्र
  • अंतर्राष्ट्रीय विद्युत तकनीकी आयोग/यूरोपीय मानदंड 60384-26—प्रवाहकीय बहुलक ठोस विद्युत्-अपघट्य के साथ स्थिर एल्यूमीनियम विद्युत् अपघटनी संधारित्र

विक्रय

2008 में विद्युत् अपघटनी संधारित्र का विक्रय मूल्य में कुल विक्रय का लगभग 30% था

  • एल्युमीनियम विद्युत् अपघटनी संधारित्र—US$3.9 अरब (22%);
  • टैंटलम विद्युत् अपघटनी संधारित्र - यूएस $ 2.2 अरब (12%);

भागों की संख्या में, ये संधारित्र कुल संधारित्र विक्रय का लगभग 10%, या लगभग 100 से 120 अरब भाग आच्छादित करते हैं।[107]


निर्माता और उत्पाद

विश्वव्यापी परिचालन निर्माता और उनके विद्युत-अपघट्य संधारित्र उत्पाद कार्यक्रम
विनिर्माता एल्यूमीनियम
विद्युत-अपघट्य संधारित्र
टैंटलम
विद्युत-अपघट्य संधारित्र
नायोबियम
विद्युत-अपघट्य संधारित्र
एसएमडी
रेडियल
शक्ति
SI, ST
बहुलक
एसएमडी
रेडियल
बहुलक
हाइब्रिड
एसएमडी
MnO2
एसएमडी
बहुलक
नम
विद्युत-अपघट्य
एसएमडी
MnO2
बहुलक
एवीएक्स - - - - X X X X
कैपक्सॉन X X X X - - - -
सीडीई कॉर्नेल डुबिलियर X X X X X X - -
संधारित्र उद्योग - X - - - - - -
चिनसन, (एलीट) X X X - - - - -
देवू, (पार्ट्सनिक) Archived 2018-06-12 at the Wayback Machine X X - - - - - -
एल्ना Archived 2015-03-14 at the Wayback Machine X X X - - - - -
एक्सेलिया समूह - X - - X X - -
फ़्रोलीट X X - - - - - -
हितैची - X - - - - - -
हिटानो X X X - X - - -
इटेलकॉन्ड - X - - - - - -
जैककॉन X X - - - - - -
जियांग भी X X X X - - - -
कैमेई इलेक्ट्रॉनिक कॉर्प, (जेमिकॉन) X X - - - - - -
Archived 2013-12-12 at the Wayback Machine X X X - X X X -
लेलन X X X - - - - -
मैन्यू, (सैमक्सन) X X - - - - - -
एनईसी टोकन - - - - X - X -
निप्पॉन चेमी-कॉन X X X X - - - -
एनआईसी X X X X X - X -
निचिकॉन Archived 2018-06-12 at the Wayback Machine X X X - - - - -
पैनासोनिक, मात्सुशिता X X X X - - X -
रिचे X X - - - - - -
आरओएचएम - - - - X - X -
रूबिकॉन X X X - - - - -
साम्हा X X X - - - - -
सन इलेक्ट्रॉनिक उद्योग X - - X - - - -
टीडीके ईपीसीओएस X X - - - - - -
टीपो (लक्सन) Archived 2016-03-04 at the Wayback Machine X X X - - - - -
विशय X X X - X X X X
याजियो X X X - - - - -

तालिका की तिथि: मार्च 2015

यह भी देखें

संदर्भ

  1. J.L. Stevens, A.C. Geiculescu, T.F. Strange, Dielectric Aluminum Oxides: Nano-Structural Features and Composites PDF Archived 2014-12-29 at the Wayback Machine
  2. T. Kárník, AVX, NIOBIUM OXIDE FOR CAPACITOR MANUFACTURING , METAL 2008, 13. –15. 5. 2008, PDF
  3. Jeng-Kuei Chang, Chia-Mei Lin, Chi-Min Liao, Chih-Hsiung Chen, Wen-Ta Tsai, Journal of the Electrochemical Society, 2004. Effect of Heat-Treatment on Characteristics of Anodized Aluminum Oxide Formed in Ammonium Adipate Solution [1] DOI: 10.1149/1.1646140
  4. Th. F. Strange, T. R. Marshall, Very high volt oxide formation of aluminum for electrolytic capacitors, US Patent 6299752 B1, 9. Okt. 2001, [2]
  5. 5.0 5.1 5.2 5.3 A. Albertsen, Jianghai Europe, Keep your distance – Voltage Proof of Electrolytic Capacitors, PDF Archived 2013-01-08 at the Wayback Machine
  6. See:
    • Runge, Jude Mary (2018). The Metallurgy of Anodizing Aluminum: Connecting Science to Practice. Cham Switzerland: Springer International Publishing AG. p. 196. ISBN 9783319721774.
    • Wilson, E. (1898). "Aluminium as an electrode in cells for direct and alternate currents". Proceedings of the Royal Society of London. 63 (389–400): 329–347. Bibcode:1898RSPS...63..329W. doi:10.1098/rspl.1898.0040. S2CID 98508421. ; see p. 329.
    • Buff, H. (1857). "Ueber das electrische Verhalten des Aluminiums" [On the electrical behaviour of aluminium]. Annalen der Chemie und Pharmacie (in Deutsch). 102 (3): 265–284. doi:10.1002/jlac.18571020302.
  7. See:
  8. Pollack, Charles. "Elektrischer Flüssigkeitskondesator mit Aluminiumelektroden" [Electrical liquid condenser [i.e., capacitor] with aluminium electrodes]. D.R.P. 92564, filed: 14. January 1896, granted: 19. May 1897.
  9. Both, Jens (January–February 2015). "इलेक्ट्रोलाइटिक कैपेसिटर, 1890 से 1925: प्रारंभिक इतिहास और मूल सिद्धांत". IEEE Electrical Insulation Magazine. 31 (1): 22–29. doi:10.1109/MEI.2015.6996675. S2CID 24224453.
  10. US Patent Nr. 1774455, Electric condenser, filed October 19, 1925, granted August 26, 1930
  11. Samuel Ruben: Inventor, Scholar, and Benefactor by Kathryn R. Bullock PDF www.electrochem.org
  12. 12.0 12.1 12.2 P. McK. Deeley, Electrolytic Capacitors, The Cornell-Dubilier Electric Corp. South Plainfield New Jersey, 1938
  13. Elektrolytischer Kondensator mit aufgerollten Metallbändern als Belegungen, Alfred Eckel Hydra-Werke, Berlin-Charlottenburg, DRP 498 794, filed May 12, 1927, granted May 8, 1930
  14. William Dubilier, Electric Condenser, US Patent 468787
  15. Henry B.O. Davis (1983) Electrical and Electronic Technologies: A Chronology of Events and Inventors from 1900 to 1940, p 111: "The Mershon Company put electrolytic capacitors on the market. The capacitors packed a high capacitance in a very small space compared to existing paper capacitors.
  16. Cite error: Invalid <ref> tag; no text was provided for refs named KDK
  17. Philips Data Handbook PA01, 1986, the first 125 °C series "118 AHT"
  18. J. Both, The modern era of aluminum electrolytic capacitors, Electrical Insulation Magazine, IEEE, Volume:31, Issue: 4, July–August 2015, ieeexplore.ieee.org
  19. D. F. Tailor, Tantalum and Tantalum Compounds, Fansteel Inc., Encyclopedia of Chemical Technology, Vol. 19, 2nd ed. 1969 John Wiley & sons, Inc.
  20. R. L. Taylor and H. E. Haring, "A metal semi-conductor capacitor", J. Electrochem. Soc., vol. 103, p. 611, November, 1956.
  21. E. K. Reed, Jet Propulsion Laboratory, Characterization of Tantalum Polymer Capacitors, NEPP Task 1.21.5, Phase 1, FY05
  22. D. A. McLean, F. S. Power, Proc. Inst. Radio Engrs. 44 (1956) 872
  23. Preston Robinson, Sprague, US Patent 3066247, 25. Aug. 1954 - 27. Nov. 1962
  24. Sprague, Dr. Preston Robinson Granted 103rd Patent Since Joining Company In 1929 [3][permanent dead link]
  25. A. Fraioli, Recent Advances in the Solid-State Electrolytic Capacitor, IRE Transactions on Component Parts, June 1958
  26. R. J. Millard, Sprague, US Patent 2936514, October 24, 1955 - May 17, 1960
  27. W. Serjak, H. Seyeda, Ch. Cymorek, Tantalum Availability: 2000 and Beyond, PCI,March/April 2002, [4] Archived 2014-08-08 at the Wayback Machine
  28. "टैंटलम आपूर्ति श्रृंखला: एक विस्तृत विश्लेषण, पीसीआई, मार्च/अप्रैल 2002" (PDF). Archived from the original (PDF) on 2014-08-08. Retrieved 2015-01-02.
  29. J.Both, Valvo, SAL contra Tantal, Zuverlässige Technologien im Wettstreit, nachrichten elektronik 35, 1981
  30. "होमपेज". www.computerposter.ch.
  31. K. Lischka, Spiegel 27.09.2007, 40 Jahre Elektro-Addierer: Der erste Taschenrechner wog 1,5 Kilo, [5]
  32. Larry E. Mosley, Intel Corporation, Capacitor Impedance Needs For Future Microprocessors, CARTS USA 2006, ecadigitallibrary.com Archived 2014-12-14 at the Wayback Machine
  33. Niwa, Shinichi; Taketani, Yutaka (1996). "ऑर्गेनिक सेमीकंडक्टर इलेक्ट्रोलाइट (OS-CON) के साथ एल्यूमीनियम ठोस कैपेसिटर की नई श्रृंखला का विकास". Journal of Power Sources. 60 (2): 165–171. Bibcode:1996JPS....60..165N. doi:10.1016/S0378-7753(96)80006-1.
  34. Kuch, Investigation of charge transfer complexes:TCNQ-TTF
  35. "सान्यो, ओएस-कॉन, टेक्निकल बुक वेर। 15, 2007" (PDF). Archived from the original (PDF) on 2014-12-14. Retrieved 2014-12-14.
  36. About the Nobel Prize in Chemistry 2000, Advanced Information, October 10, 2000,[6]
  37. Y. K. ZHANG, J. LIN,Y. CHEN, Polymer Aluminum Electrolytic Capacitors with Chemically-Polymerized Polypyrrole (PPy) as Cathode Materials Part I. Effect of Monomer Concentration and Oxidant on Electrical Properties of the Capacitors, PDF Archived 2014-12-14 at the Wayback Machine
  38. U. Merker, K. Wussow, W. Lövenich, H. C. Starck GmbH, New Conducting Polymer Dispersions for Solid Electrolyte Capacitors, ecadigitallibrary.com Archived 2016-03-04 at the Wayback Machine
  39. "इलेक्ट्रॉनिक अवयव - पैनासोनिक औद्योगिक उपकरण". www.panasonic.com.
  40. John Prymak, Kemet, Replacing MnO2 with Polymers, 1999 CARTS
  41. F. Jonas, H.C.Starck, Baytron, Basic chemical and physical properties, Präsentation 2003, [www.hcstarck.de]
  42. Ch. Schnitter, A. Michaelis, U. Merker, H.C. Starck, Bayer, New Niobium Based Materials for Solid Electrolyte Capacitors, Carts 2002
  43. T. Zednicek, S. Sita, C. McCracken, W. A. Millman, J. Gill, AVX, Niobium Oxide Technology Roadmap, CARTS 2002 [7] Archived 2014-02-24 at the Wayback Machine
  44. Y. Pozdeev-Freeman, P. Maden, Vishay, Solid-Electrolyte Niobium Capacitors Exhibit Similar Performance to Tantalum, Feb 1, 2002, [8]
  45. Shigeru Uzawa, Akihiko Komat-u, Tetsushi Ogawara, Rubycon Corporation, Ultra Low Impedance Aluminum Electrolytic Capacitor with Water based Electrolyte or "Science Links Japan | Ultra Low Impedance Aluminum Electrolytic Capacitor with Water based Electrolyte". Archived from the original on 2012-05-24. Retrieved 2016-02-05.
  46. J. L. Stevens, T. R. Marshall, A. C. Geiculescu m, C. R. Feger, T. F. Strange, Carts USA 2006, The Effects of Electrolyte Composition on the Deformation Characteristics of Wet Aluminum ICD Capacitors, [9] Archived 2014-11-26 at the Wayback Machine
  47. Alfonso Berduque, Zongli Dou, Rong Xu, KEMET, Electrochemical Studies for Aluminium Electrolytic Capacitor Applications: Corrosion Analysis of Aluminium in Ethylene Glycol-Based Electrolytes PDF
  48. Hillman; Helmold (2004), Identification of Missing or Insufficient Electrolyte Constituents in Failed Aluminum Electrolytic Capacitors (PDF), DFR solutions
  49. Ch. Reynolds, AVX, Technical Information, Reliability Management of Tantalum Capacitors, PDF Archived 2013-08-06 at the Wayback Machine
  50. 50.0 50.1 50.2 "जे. गिल, एवीएक्स, सर्ज इन सॉलिड टैंटलम कैपेसिटर्स" (PDF). Archived from the original (PDF) on 2014-12-14. Retrieved 2015-01-02.
  51. 51.0 51.1 51.2 A. Teverovsky, Perot Systems Code 562, NASA GSFCE, Effect of Surge Current Testing on Reliability of Solid Tantalum Capacitors ecadigitallibrary.com Archived 2014-12-14 at the Wayback Machine
  52. Imam, A.M., Condition Monitoring of Electrolytic Capacitors for Power Electronics Applications, Dissertation, Georgia Institute of Technology (2007) smartech.gatech.edu
  53. Nichicon. "General Description of Aluminum Electrolytic Capacitors" PDF Archived 2018-02-05 at the Wayback Machine section "2-3-2 Reverse Voltage".
  54. Rubycon. "Aluminum Electrolytic Capacitors FAQ"
  55. CDM Cornell Dubilier. "Aluminum Electrolytic Capacitor Application Guide" p. 4 and p. 6 and p. 9
  56. I. Bishop, J. Gill, AVX Ltd., Reverse Voltage Behavior of Solid Tantalum Capacitors PDF
  57. P. Vasina, T. Zednicek, Z. Sita, J. Sikula, J. Pavelka, AVX, Thermal and Electrical Breakdown Versus Reliability of Ta2O5 Under Both – Bipolar Biasing Conditions PDF Archived 2013-08-06 at the Wayback Machine
  58. A. Berduque, Kemet, Low ESR Aluminium Electrolytic Capacitors for Medium to High Voltage Applications, kemet.com[permanent dead link]
  59. Solutions, DfR. "संसाधन - डीएफआर समाधान" (PDF). www.dfrsolutions.com.
  60. 60.0 60.1 60.2 Vishay BCcomponents, Introduction Aluminum Capacitors, Revision: 10-Sep-13 1 Document Number: 28356, PDF Archived 2016-01-26 at the Wayback Machine
  61. "Vishay, इंजीनियरिंग समाधान, विद्युत आपूर्ति में एल्युमिनियम कैपेसिटर" (PDF).
  62. "पैनासोनिक, एल्युमिनियम इलेक्ट्रोलाइटिक कैपेसिटर की तकनीक का उपयोग करें" (PDF). Archived from the original (PDF) on 2014-12-14. Retrieved 2015-01-02.
  63. "सीडीई, एल्युमिनियम इलेक्ट्रोलाइटिक कैपेसिटर एप्लिकेशन गाइड" (PDF).
  64. "Nichicon, एल्युमिनियम इलेक्ट्रोलिटिक कैपेसिटर के लिए अनुप्रयोग दिशानिर्देश" (PDF).
  65. "Evox Rifa, इलेक्ट्रोलाइटिक कैपेसिटर एप्लीकेशन गाइड" (PDF). Archived from the original (PDF) on 2017-01-12. Retrieved 2015-01-02.
  66. I. Salisbury, AVX, Thermal Management of Surface Mounted Tantalum Capacitors [10] Archived 2013-08-06 at the Wayback Machine
  67. "आरडब्ल्यू फ्रैंकलिन, एवीएक्स, टैंटलम चिप कैपेसिटर की रिपल रेटिंग" (PDF). Archived from the original (PDF) on 2012-07-25. Retrieved 2015-01-02.
  68. Vishay, Application Notes, AC Ripple Current, Calculations Solid Tantalum Capacitors [11]
  69. KEMET, Ripple Current Capabilities, Technical Update 2004
  70. Vitoratos, E.; Sakkopoulos, S.; Dalas, E.; Paliatsas, N.; Karageorgopoulos, D.; Petraki, F.; Kennou, S.; Choulis, S. (2009). "PEDOT का थर्मल क्षरण तंत्र: PSS". Organic Electronics. 10: 61–66. doi:10.1016/j.orgel.2008.10.008.
  71. Vishay, Aluminium capacitors, Introduction, Revision: 10-Sep-13 1 Document Number: 28356, Chapter Storage, page 7 vishay.com Archived 2016-01-26 at the Wayback Machine
  72. 72.0 72.1 Ch. Baur, N. Will, Epcos, Long-term stability of aluminum electrolytic capacitors Built to last Archived 2015-01-28 at the Wayback Machine
  73. "आर.डब्ल्यू. फ्रैंकलिन, एवीएक्स, लीकेज करंट का अन्वेषण" (PDF). Archived from the original (PDF) on 2020-07-25. Retrieved 2014-12-14.
  74. "Kemet, Polymer Tantalum Chip Capacitors" (PDF). Archived from the original (PDF) on 2014-11-23. Retrieved 2015-01-02.
  75. AVX, ANALYSIS OF SOLID TANTALUM CAPACITOR LEAKAGE CURRENT PDF
  76. CDE, Aluminum Electrolytic Capacitor Application Guide, PDF
  77. "Understand Capacitor Soakage to Optimize Analog Systems" by Bob Pease 1982 [12] Archived 2010-01-23 at the Wayback Machine
  78. * "Modeling Dielectric Absorption in Capacitors", by Ken Kundert
  79. "एनआईसी अवयव कार्पोरेशन - निष्क्रिय अवयव" (PDF). www.niccomp.com.
  80. IEC/EN 61709, Electric components. Reliability. Reference conditions for failure rates and stress models for conversion
  81. "MIL-HDBK-217 F सूचना-2 विश्वसनीयता पूर्वानुमान इलेक्ट्रॉनिक". www.everyspec.com.
  82. SQC online table calculator, Capacitor Failure Rate Model, MIL-HDBK-217, Rev. F - Notice 2 [13]
  83. Vishay. "विषय - कैपेसिटर - विषय - सिलिकॉन कैपेसिटेंस कैलकुलेटर". www.vishay.com.
  84. Hitachi, Precautions in using Tantalum Capacitors, 4.2 Failure Rate Calculation Formula [14] Archived 2014-12-14 at the Wayback Machine
  85. 85.0 85.1 85.2 Sam G. Parler, Cornell Dubilier, Reliability of CDE Aluminum Electrolytic Capacitors (PDF Archived 2014-06-10 at the Wayback Machine)
  86. 86.0 86.1 86.2 T.Zednicek, AVX, A Study of Field Crystallization in Tantalum Capacitors and its effect on DCL and Reliability, [15]
  87. 87.0 87.1 87.2 A. Albertsen, Jianghai Europe, Reliability of Electrolytic Capacitors, PDF Archived 2020-03-13 at the Wayback Machine
  88. Hitachi aic-europe, Explanations to the useful life, PDF Archived 2016-02-05 at the Wayback Machine
  89. NCC, Technical Note Judicious Use of Aluminum Electrolytic Capacitors PDF Archived 2014-12-14 at the Wayback Machine
  90. Rubycon, LIFE OF ALUMINUM ELECTROLYTIC CAPACITORS, S. 9 (PDF Archived 2015-08-07 at the Wayback Machine)
  91. A. Albertsen, Jianghai, Electrolytic Capacitor Lifetime Estimation PDF Archived 2013-01-08 at the Wayback Machine
  92. "स्नैप-इन एचयू". aic-europe.com. Archived from the original on 2016-03-04.
  93. 93.0 93.1 93.2 Epcos, Aluminum electrolytic capacitors, General technical informationPDF
  94. Panasonic (10-degree-rule; PDF Archived 2014-12-14 at the Wayback Machine)
  95. NIC Life expectancy of aluminum electrolytic capacitors (rev.1) (PDF Archived 2015-08-24 at the Wayback Machine)
  96. Gregory Mirsky, Determining end-of-life, ESR, and lifetime calculations for electrolytic capacitors at higher temperatures, EDN, August 20, 2008, edn.com
  97. E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S.A. Choulis, Thermal degradation mechanisms of PEDOT:PSS, Organic Electronics, Volume 10, Issue 1, February 2009, Pages 61–66, [16]
  98. Nichicon, Technical Guide, Calculation Formula of Lifetime PDF
  99. Estimating of Lifetime FUJITSU MEDIA DEVICES LIMITED PDF Archived 2013-12-24 at the Wayback Machine
  100. "एनआईसी टेक्निकल गाइड, लाइफटाइम का कैलकुलेशन फॉर्मूला". Archived from the original on 2013-09-15. Retrieved 2013-10-02.
  101. 101.0 101.1 VISHAY, DC LEAKAGE FAILURE MODE, PDF
  102. 102.0 102.1 102.2 102.3 J.Gill, T. Zednicek, AVX, VOLTAGE DERATING RULES FOR SOLID TANTALUM AND NIOBIUM CAPACITORS, [17] Archived 2013-08-06 at the Wayback Machine
  103. 103.0 103.1 103.2 103.3 R. Faltus, AVX, Advanced capacitors ensure long-term control-circuit stability, 7/2/2012, EDT [18]
  104. Commission, IEC - International Electrotechnical. "IEC - अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन में आपका स्वागत है". www.iec.ch.
  105. "आईईसी वेबस्टोर में आपका स्वागत है". webstore.iec.ch.
  106. "बेउथ वेरलाग - 1924 से मानक और विशेषज्ञ साहित्य". www.beuth.de.
  107. Electronic Capacitors, SIC 3675, NAICS 334414: Electronic Capacitor Manufacturing, Industry report: [19]


आगे की पढाई

  • The Electrolytic Capacitor; 1st Ed; Alexander Georgiev; Murray Hill Books; 191 pages; 1945. (archive)

बाहरी कड़ियाँ