एहरहार्ट बहुपद: Difference between revisions
mNo edit summary |
No edit summary |
||
(18 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, एक अभिन्न [[ polytope | | गणित में, एक अभिन्न [[ polytope |बहुस्थलिकता]] से संबंधित [[एहरहार्ट बहुपद]] होता है जो एक बहुस्थलिकता की मात्रा और बहुस्थलिकता में [[पूर्णांक बिंदु]]ओं की संख्या के बीच संबंध को कूटबद्ध करता है। एहरहार्ट बहुपदों के सिद्धांत को [[यूक्लिडियन विमान|यूक्लिडियन तल]] में पिक के प्रमेय के उच्च-आयामी सामान्यीकरण के रूप में देखा जा सकता है। | ||
इन बहुपदों का नाम [[यूजीन एहरहार्ट]] के नाम पर रखा गया है जिन्होंने 1960 के दशक में उनका अध्ययन किया था। | इन बहुपदों का नाम [[यूजीन एहरहार्ट]] के नाम पर रखा गया है जिन्होंने 1960 के दशक में उनका अध्ययन किया था। | ||
== परिभाषा == | == परिभाषा == | ||
अनौपचारिक रूप से, यदि {{math|''P''}} एक | अनौपचारिक रूप से, यदि {{math|''P''}} एक बहुस्थलिकता है, और {{math|''tP''}} प्रत्येक आयाम में {{math|''t''}} के एक गुणनखंड द्वारा P का विस्तार करके गठित बहुस्थलिकता है फिर {{math|''L''(''P'', ''t'')}} {{math|''tP''}} में [[पूर्णांक जाली|पूर्णांक जालक]] बिंदुओं की संख्या है। | ||
अधिक औपचारिक रूप से, | अधिक औपचारिक रूप से, [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्थल]] <math>\R^n</math> और जालक <math>\mathcal{L}</math> और एक d-आयामी बहुस्थलिकता <math>P</math> में <math>\R^n</math> पर विचार करें, इस विशेषता के साथ कि बहुस्थलिकता के सभी शीर्ष जालक के बिंदु हैं। (एक सामान्य उदाहरण <math>\mathcal{L} = \Z^n</math> हैं और एक बहुस्थलिकता जिसके लिए सभी शीर्षों में [[पूर्णांक]] निर्देशांक होते हैं।) मान लेते हैं कि किसी भी सकारात्मक पूर्णांक {{math|''t''}} के लिए {{math|''tP''}}, {{math|''P''}} का t-गुना फैलाव हैं (जालक के आधार पर, प्रत्येक शीर्ष समन्वय को गुणा करके गठित बहुस्थलिकता, {{math|''t''}} के गुणनखंड द्वारा), और | ||
:<math>L(P,t) = \#\left(tP \cap \mathcal{L}\right)</math> | :<math>L(P,t) = \#\left(tP \cap \mathcal{L}\right)</math> | ||
बहुस्थलिकता {{math|''tP''}} में निहित जालक बिंदुओं की संख्या को मान ले। एहरहार्ट ने 1962 में दिखाया कि {{math|''L''}}, t में डिग्री {{math|''d''}} का एक परिमेय बहुपद है, यानी वहाँ [[परिमेय संख्याएँ]] उपस्थित हैं <math>L_0(P),\dots,L_d(P)</math> ऐसा है कि: | |||
:<math>L(P, t) = L_d(P) t^d + L_{d-1}(P) t^{d-1} + \cdots + L_0(P)</math> | :<math>L(P, t) = L_d(P) t^d + L_{d-1}(P) t^{d-1} + \cdots + L_0(P)</math> | ||
सभी सकारात्मक | सभी सकारात्मक पूर्णांक {{math|''t''}} के लिए | ||
एक बंद उत्तल | एक बंद उत्तल बहुस्थलिकता {{math|''P''}} के [[इंटीरियर|भीतर]] के एहरहार्ट बहुपद की गणना इस प्रकार की जा सकती है: | ||
:<math> L(\operatorname{int}(P), t) = (-1)^d L(P, -t),</math> | :<math> L(\operatorname{int}(P), t) = (-1)^d L(P, -t),</math> | ||
Line 21: | Line 21: | ||
== उदाहरण == | == उदाहरण == | ||
[[File:Second dilate of a unit square.png|thumbnail|यह दूसरा फैलाव है, <math>t = 2</math>, एक इकाई वर्ग का। इसके नौ पूर्णांक बिंदु हैं।]]मान लेते है कि {{math|''P''}} एक {{math|''d''}}-आयामी [[ इकाई घन | इकाई घन]][[ अतिविम ]]हैं जिसके | [[File:Second dilate of a unit square.png|thumbnail|यह दूसरा फैलाव है, <math>t = 2</math>, एक इकाई वर्ग का। इसके नौ पूर्णांक बिंदु हैं।]]मान लेते है कि {{math|''P''}} एक {{math|''d''}}-आयामी [[ इकाई घन | इकाई घन]][[ अतिविम | अतिविम]] हैं, जिसके शीर्ष पूर्णांक जालक बिंदु हैं और जिनके सभी निर्देशांक 0 या 1 हैं। असमानताओं के संदर्भ में, | ||
:<math> P = \left\{x\in\R^d : 0 \le x_i \le 1; 1 \le i \le d\right\}.</math> | :<math> P = \left\{x\in\R^d : 0 \le x_i \le 1; 1 \le i \le d\right\}.</math> | ||
Line 27: | Line 27: | ||
: <math>L(P, -t) = (-1)^d (t - 1)^d = (-1)^d L(\operatorname{int}(P), t),</math> | : <math>L(P, -t) = (-1)^d (t - 1)^d = (-1)^d L(\operatorname{int}(P), t),</math> | ||
जैसा कि | जैसा कि हमें एहरहार्ट-मैकडोनाल्ड पारस्परिकता से अपेक्षा करते हैं। | ||
कई अन्य आलंकारिक संख्याओं को एहरहार्ट बहुपदों के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, [[वर्ग पिरामिड संख्या]]एँ वर्ग पिरामिड के एहरहार्ट बहुपदों द्वारा दी जाती हैं, जिसका आधार एक पूर्णांक इकाई वर्ग होता है और जिसकी ऊँचाई एक होती है; इस स्थिति में एहरहार्ट बहुपद {{math|{{sfrac|1|6}}(''t'' + 1)(''t'' + 2)(2''t'' + 3)}} है। <ref>{{harvtxt|Beck|De Loera|Develin|Pfeifle|2005}}.</ref> | कई अन्य आलंकारिक संख्याओं को एहरहार्ट बहुपदों के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, [[वर्ग पिरामिड संख्या]]एँ वर्ग पिरामिड के एहरहार्ट बहुपदों द्वारा दी जाती हैं, जिसका आधार एक पूर्णांक इकाई वर्ग होता है और जिसकी ऊँचाई एक होती है; इस स्थिति में एहरहार्ट बहुपद {{math|{{sfrac|1|6}}(''t'' + 1)(''t'' + 2)(2''t'' + 3)}} है। <ref>{{harvtxt|Beck|De Loera|Develin|Pfeifle|2005}}.</ref> | ||
== एहरहार्ट अर्ध-बहुपद == | == एहरहार्ट अर्ध-बहुपद == | ||
मान लीजिए कि {{math|''P''}} एक परिमेय | मान लीजिए कि {{math|''P''}} एक परिमेय बहुस्थलिकता है। दूसरे शब्दों में, मान लीजिए | ||
:<math>P = \left\{ x\in\R^d : Ax \le b\right\},</math> | :<math>P = \left\{ x\in\R^d : Ax \le b\right\},</math> | ||
Line 39: | Line 38: | ||
:<math>L(P, t) = \#\left(\left\{x\in\Z^n : Ax \le tb \right\} \right). </math> | :<math>L(P, t) = \#\left(\left\{x\in\Z^n : Ax \le tb \right\} \right). </math> | ||
इस स्थिति में, {{math|''L''(''P'', ''t'')}} {{math|''t''}} में एक अर्ध-बहुपद है। जिस तरह अभिन्न | इस स्थिति में, {{math|''L''(''P'', ''t'')}} {{math|''t''}} में एक अर्ध-बहुपद है। जिस तरह अभिन्न बहुतलीय के साथ, एहरहार्ट-मैकडोनाल्ड पारस्परिकता होती है, उसी तरह, | ||
: <math> L(\operatorname{int}(P), t) = (-1)^n L(P, -t). </math> | : <math> L(\operatorname{int}(P), t) = (-1)^n L(P, -t). </math> | ||
Line 49: | Line 48: | ||
== गुणांकों की व्याख्या == | == गुणांकों की व्याख्या == | ||
अगर {{math|''P''}} [[बंद सेट]] है (अर्थात सीमा के | अगर {{math|''P''}} [[बंद सेट]] है (अर्थात सीमा के छोर {{math|''P''}} से संबंधित है), {{math|''L''(''P'', ''t'')}} के कुछ गुणांको की एक आसान व्याख्या है: | ||
* अग्रणी गुणांक, <math>L_d(P)</math>, | * अग्रणी गुणांक, <math>L_d(P)</math>, {{math|''P''}} के d-आयामी [[आयतन]] के बराबर है, उसे {{math|''d''(''L'')}} से भाग करे। | ||
* दूसरा गुणांक, <math>L_{d-1}(P)</math>, की गणना इस प्रकार की जा सकती है: | * दूसरा गुणांक, <math>L_{d-1}(P)</math>, की गणना इस प्रकार की जा सकती है: जालक {{math|''L''}}, <math>P</math> के किसी भी छोर <math>F</math> पर एक जालक को प्रेरित करता है, <math>F</math> का {{math}}{{math|(''d'' − 1)}} विमीय आयतन ले, {{math|2''d''(''L<sub>F</sub>'')}} से भाग करें और उन संख्याओं को <math>P</math> के सभी छोरों के लिए जोड़ें; | ||
* स्थिर गुणांक {{math|''a''<sub>0</sub>}} की [[यूलर विशेषता]] | * स्थिर गुणांक {{math|''a''<sub>0</sub>}} की [[यूलर विशेषता]] {{math|''P''}} है। जब {{math|''P''}} एक बंद उत्तल बहुस्थलिकता है, तब <math>L_0(P)=1</math>. | ||
== बेटके-नेसर प्रमेय == | == बेटके-नेसर प्रमेय == | ||
उलरिच बेटके और [[मार्टिन केनेसर]]<ref>{{citation|last1=Betke|first1= Ulrich|last2= Kneser|first2=Martin|authorlink2=Martin Kneser| year=1985 | title=Zerlegungen und Bewertungen von Gitterpolytopen|journal= [[Crelle's Journal|Journal für die reine und angewandte Mathematik]] |volume=358|pages= 202–208|mr=0797683}}</ref> एहरहार्ट गुणांकों के निम्नलिखित | उलरिच बेटके और [[मार्टिन केनेसर]]<ref>{{citation|last1=Betke|first1= Ulrich|last2= Kneser|first2=Martin|authorlink2=Martin Kneser| year=1985 | title=Zerlegungen und Bewertungen von Gitterpolytopen|journal= [[Crelle's Journal|Journal für die reine und angewandte Mathematik]] |volume=358|pages= 202–208|mr=0797683}}</ref> ने एहरहार्ट गुणांकों के निम्नलिखित विशेषताओं की स्थापना की। एक अभिन्न बहुतलीय पर परिभाषित कार्यात्मक <math>Z</math> एक <math>\operatorname{SL}(n,\Z)</math> है और अनुवाद अपरिवर्तनीय [[मूल्यांकन (माप सिद्धांत)]] यदि और केवल वास्तविक संख्याएं <math>c_0,\ldots, c_n</math> है, जैसे कि | ||
:<math> Z= c_0 L_0+\cdots +c_n L_n.</math> | :<math> Z= c_0 L_0+\cdots +c_n L_n.</math> | ||
Line 64: | Line 63: | ||
== एहरहार्ट श्रृंखला == | == एहरहार्ट श्रृंखला == | ||
हम | हम एक अभिन्न {{math|''d''}}-आयामी बहुस्थलिकता {{math|''P''}} के एहरहार्ट बहुपद के लिए एक [[फलन उत्पन्न|जनक फलन]] को परिभाषित कर सकते हैं | ||
: <math> \operatorname{Ehr}_P(z) = \sum_{t\ge 0} L(P, t)z^t. </math> | : <math> \operatorname{Ehr}_P(z) = \sum_{t\ge 0} L(P, t)z^t. </math> | ||
इस श्रृंखला को एक [[तर्कसंगत कार्य]] के रूप में व्यक्त किया जा सकता है। विशेष रूप से, एहरहार्ट ने सिद्ध किया (1962){{cn|date=February 2017}} कि जटिल संख्याएँ | इस श्रृंखला को एक [[तर्कसंगत कार्य|परिमेय फलन]] के रूप में व्यक्त किया जा सकता है। विशेष रूप से, एहरहार्ट ने सिद्ध किया (1962){{cn|date=February 2017}} कि जटिल संख्याएँ उपस्थित हैं <math>h_j^*</math>, <math>0 \le j \le d</math>, जैसे कि {{math|''P''}} की एहरहार्ट श्रृंखला है | ||
:<math>\operatorname{Ehr}_P(z) = \frac{\sum_{j=0}^d h_j^\ast(P) z^j}{(1 - z)^{d + 1}}, \qquad \sum_{j=0}^d h_j^\ast(P) \neq 0.</math> | :<math>\operatorname{Ehr}_P(z) = \frac{\sum_{j=0}^d h_j^\ast(P) z^j}{(1 - z)^{d + 1}}, \qquad \sum_{j=0}^d h_j^\ast(P) \neq 0.</math> | ||
इसके अतिरिक्त, रिचर्ड पी. स्टेनली का गैर-नकारात्मकता प्रमेय बताता है कि दी गई परिकल्पनाओं के | इसके अतिरिक्त, रिचर्ड पी. स्टेनली का गैर-नकारात्मकता प्रमेय बताता है कि दी गई परिकल्पनाओं के निम्न, <math>h_j^*</math> के लिए गैर-ऋणात्मक पूर्णां<math>0 \le j \le d</math> होंगे | ||
स्टेनली द्वारा एक अन्य परिणाम से पता चलता है कि अगर {{math|''P''}} | स्टेनली द्वारा एक अन्य परिणाम से पता चलता है कि अगर {{math|''P''}}, {{math|''Q''}} में निहित एक जालक बहुस्थलिकता है तब <math>h_j^*(P) \le h_j^*(Q)</math> सभी {{math|''j''}} के लिए<ref>{{cite journal|last1=Stanley|first1=Richard|title=A monotonicity property of <math>h</math>-vectors and <math>h^*</math>-vectors|journal=[[European Journal of Combinatorics]]|year=1993|volume=14|issue=3 |pages=251–258 |doi=10.1006/eujc.1993.1028|doi-access=free}}</ref> <math>h^*</math> सदिश सामान्य रूप से एकरूप नहीं है, लेकिन जब भी यह सममित होता है, और बहुस्थलिकता में एक नियमित एकमापांकि त्रिभुज होता है।<ref>{{cite journal|last1=Athanasiadis|first1=Christos A.|title=''h''*-सदिश, यूलेरियन बहुपद और रेखांकन के स्थिर बहुशीर्ष| journal= [[Electronic Journal of Combinatorics]]| year=2004| volume=11| issue=2|doi=10.37236/1863| url= http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i2r6| doi-access=free}}</ref> | ||
=== परिमेय बहुतलीय के लिए एहरहार्ट श्रृंखला === | |||
जैसा कि पूर्णांक शीर्षो वाले बहुतलीय के स्थिति में, एक परिमेय बहुस्थलिकता के लिए एहरहार्ट श्रृंखला को परिभाषित करता है। एक d-आयामी परिमेय बहुस्थलिकता {{math|''P''}} के लिए, जहाँ {{math|''D''}} सबसे छोटा पूर्णांक है, जैसे कि {{math|''DP''}} एक पूर्णांक बहुस्थलिकता है ({{math|''D''}} को {{math|''P''}} का हर कहा जाता है), तो किसी के पास है | |||
जैसा कि पूर्णांक | |||
:<math>\operatorname{Ehr}_P(z) = \sum_{t\ge 0} L(P, t)z^t = \frac{\sum_{j=0}^{D(d+1)} h_j^\ast(P) z^j}{\left(1 - z^D\right)^{d + 1}},</math> | :<math>\operatorname{Ehr}_P(z) = \sum_{t\ge 0} L(P, t)z^t = \frac{\sum_{j=0}^{D(d+1)} h_j^\ast(P) z^j}{\left(1 - z^D\right)^{d + 1}},</math> | ||
जहां <math>h_j^*</math> अभी भी गैर-ऋणात्मक पूर्णांक हैं।<ref>{{cite journal|last=Stanley|first=Richard P.|authorlink=Richard P. Stanley|title=तर्कसंगत उत्तल पॉलीटोप्स का अपघटन|journal=Annals of Discrete Mathematics|date=1980|volume=6|pages=333–342| doi=10.1016/s0167-5060(08)70717-9|isbn=9780444860484}}</ref><ref>{{cite journal| last1=Beck| first1=Matthias| last2=Sottile| first2= Frank|title=स्टेनली के तीन प्रमेयों के लिए अपरिमेय प्रमाण|journal=[[European Journal of Combinatorics]]|date=January 2007| volume =28|issue=1|pages=403–409|doi=10.1016/j.ejc.2005.06.003|arxiv=math/0501359| s2cid=7801569}}</ref> | जहां <math>h_j^*</math> अभी भी गैर-ऋणात्मक पूर्णांक हैं।<ref>{{cite journal|last=Stanley|first=Richard P.|authorlink=Richard P. Stanley|title=तर्कसंगत उत्तल पॉलीटोप्स का अपघटन|journal=Annals of Discrete Mathematics|date=1980|volume=6|pages=333–342| doi=10.1016/s0167-5060(08)70717-9|isbn=9780444860484}}</ref><ref>{{cite journal| last1=Beck| first1=Matthias| last2=Sottile| first2= Frank|title=स्टेनली के तीन प्रमेयों के लिए अपरिमेय प्रमाण|journal=[[European Journal of Combinatorics]]|date=January 2007| volume =28|issue=1|pages=403–409|doi=10.1016/j.ejc.2005.06.003|arxiv=math/0501359| s2cid=7801569}}</ref> | ||
== गैर-अग्रणी गुणांक सीमा == | == गैर-अग्रणी गुणांक सीमा == | ||
बहुपद के गैर-अग्रणी गुणांक <math>c_0,\dots,c_{d-1}</math> | प्रतिनिधित्व में बहुपद के गैर-अग्रणी गुणांक <math>c_0,\dots,c_{d-1}</math> | ||
:<math>L(P,t) = \sum_{r=0}^d c_r t^r</math> ऊपरी सीमा हो सकती है:<ref>{{Cite journal|last1=Betke|first1=Ulrich |last2=McMullen|first2=Peter|author2-link=Peter McMullen|date=1985-12-01|title=जाली पॉलीटोप्स में जाली बिंदु| journal=[[Monatshefte für Mathematik]]| language=en|volume=99|issue=4|pages=253–265|doi=10.1007/BF01312545|s2cid=119545615 |issn=1436-5081}}</ref> | :<math>L(P,t) = \sum_{r=0}^d c_r t^r</math> | ||
:ऊपरी सीमा हो सकती है:<ref>{{Cite journal|last1=Betke|first1=Ulrich |last2=McMullen|first2=Peter|author2-link=Peter McMullen|date=1985-12-01|title=जाली पॉलीटोप्स में जाली बिंदु| journal=[[Monatshefte für Mathematik]]| language=en|volume=99|issue=4|pages=253–265|doi=10.1007/BF01312545|s2cid=119545615 |issn=1436-5081}}</ref> | |||
:<math>c_r \leq (-1)^{d-r}\begin{bmatrix}d \\ r \end{bmatrix} c_d +\frac{(-1)^{d-r-1}}{(d-1)!}\begin{bmatrix}d\\ r+1\end{bmatrix}</math> | :<math>c_r \leq (-1)^{d-r}\begin{bmatrix}d \\ r \end{bmatrix} c_d +\frac{(-1)^{d-r-1}}{(d-1)!}\begin{bmatrix}d\\ r+1\end{bmatrix}</math> | ||
जहाँ <math>\left [\begin{smallmatrix}n\\ k\end{smallmatrix} \right ]</math> [[पहली तरह की स्टर्लिंग संख्या]] है। निचली सीमाएं भी उपस्थित हैं।<ref>{{Cite journal|last1=Henk|first1=Martin|last2=Tagami|first2=Makoto|date=2009-01-01|title=एहरहार्ट बहुपदों के गुणांकों पर निचली सीमाएं|journal=[[European Journal of Combinatorics]]|volume=30|issue=1|pages=70–83|doi=10.1016/j.ejc.2008.02.009|issn=0195-6698| arxiv=0710.2665|s2cid=3026293}}</ref> | |||
== टोरिक किस्म == | == टोरिक किस्म == | ||
स्थिति <math>n=d=2</math> और <math>t = 1</math> इन कथनों से पिक की प्रमेय प्राप्त होती है। अन्य गुणांकों के लिए सूत्र प्राप्त करना बहुत कठिन है; इस उद्देश्य के लिए [[टॉरिक किस्म|टॉरिक प्रकार]] के [[टोड वर्ग]], रीमैन-रोच प्रमेय और साथ ही [[फूरियर विश्लेषण]] का उपयोग किया गया है। | |||
अगर {{math|''X''}} | अगर {{math|''X''}}, <math>P</math> के अनुरूप टोरिक प्रकार है {{math|}}, तब {{math|''P''}}, {{math|''X''}} पर एक पर्याप्त लाइन बंडल को परिभाषित करता है, और {{math|''P''}} का एहरहार्ट बहुपद इस लाइन बंडल के [[हिल्बर्ट बहुपद]] के साथ मेल खाता है। | ||
एहरहार्ट बहुपदों का उनके स्वयं के लिए अध्ययन किया जा सकता है। उदाहरण के लिए, कोई एहरहार्ट बहुपद की जड़ों से संबंधित प्रश्न पूछ सकता है।<ref>{{cite book|last1=Braun|first1=Benjamin|last2=Develin|first2=Mike|authorlink2=Mike Develin| title=एहरहार्ट बहुपद जड़ें और स्टेनली की गैर-नकारात्मकता प्रमेय|publisher=[[American Mathematical Society]] |year=2008|volume=452|series=Contemporary Mathematics|pages=67–78| doi= 10.1090/conm/452/08773 |arxiv=math/0610399|isbn=9780821841730|s2cid=118496291}}</ref> इसके | एहरहार्ट बहुपदों का उनके स्वयं के लिए अध्ययन किया जा सकता है। उदाहरण के लिए, कोई एहरहार्ट बहुपद की जड़ों से संबंधित प्रश्न पूछ सकता है।<ref>{{cite book|last1=Braun|first1=Benjamin|last2=Develin|first2=Mike|authorlink2=Mike Develin| title=एहरहार्ट बहुपद जड़ें और स्टेनली की गैर-नकारात्मकता प्रमेय|publisher=[[American Mathematical Society]] |year=2008|volume=452|series=Contemporary Mathematics|pages=67–78| doi= 10.1090/conm/452/08773 |arxiv=math/0610399|isbn=9780821841730|s2cid=118496291}}</ref> इसके अतिरिक्त, कुछ लेखकों ने यह सवाल किया है कि इन बहुपदों को कैसे वर्गीकृत किया जा सकता है।<ref>{{cite journal| last=Higashitani |first=Akihiro| title= समाकलन सरलताओं के एहरहार्ट बहुपदों का वर्गीकरण|journal=DMTCS Proceedings| year=2012| pages=587–594| url= http://www.math.nagoya-u.ac.jp/fpsac12/download/contributed/dmAR0152.pdf}}</ref> | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
अगर हम <math>P</math> के कुछ पहलुओं को फैलाते है, तो बहुस्थलिकता <math>P</math> में पूर्णांक बिंदुओं की संख्या का अध्ययन करना संभव होगा। दूसरे शब्दों में, कोई अर्ध-फैली बहुस्थलिकता में पूर्णांक बिंदुओं की संख्या जानना चाहेगा। यह पता चला है कि इस तरह की गिनती का फलन एक बहुभिन्नरूपी अर्ध-बहुपद कहलाता है। एहरहार्ट-प्रकार की पारस्परिकता प्रमेय भी इस तरह की गिनती के फलन में मान्य होगी। | |||
बहुतलीय के अर्ध-विस्तारण में पूर्णांक बिंदुओं की संख्या की गणना के अनुप्रयोग <ref>{{cite journal| last=Lisonek| first=Petr| title= अर्ध-बहुपदों द्वारा परिगणित संयोजी परिवार|journal=[[Journal of Combinatorial Theory]]| year=2007| volume=114| series=Series A|issue=4|pages=619–630| doi=10.1016/j.jcta.2006.06.013| doi-access=free}}</ref> नियमित बहुभुजों के विभिन्न विच्छेदन की संख्या और गैर-समरूपी अप्रतिबंधित कोड की संख्या की गणना करने में है, [[कोडिंग सिद्धांत]] के क्षेत्र में एक विशेष प्रकार का कोड। | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 171: | Line 172: | ||
| title = Lecture notes on toric varieties | | title = Lecture notes on toric varieties | ||
| url = http://www.math.lsa.umich.edu/~mmustata/toric_var.html}}. | | url = http://www.math.lsa.umich.edu/~mmustata/toric_var.html}}. | ||
[[Category: | [[Category:All articles with unsourced statements]] | ||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with unsourced statements from February 2017]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:Created On 03/03/2023]] | [[Category:Created On 03/03/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:जाली अंक]] | |||
[[Category:पॉलीटोप्स]] | |||
[[Category:बहुपदों]] |
Latest revision as of 10:54, 20 March 2023
गणित में, एक अभिन्न बहुस्थलिकता से संबंधित एहरहार्ट बहुपद होता है जो एक बहुस्थलिकता की मात्रा और बहुस्थलिकता में पूर्णांक बिंदुओं की संख्या के बीच संबंध को कूटबद्ध करता है। एहरहार्ट बहुपदों के सिद्धांत को यूक्लिडियन तल में पिक के प्रमेय के उच्च-आयामी सामान्यीकरण के रूप में देखा जा सकता है।
इन बहुपदों का नाम यूजीन एहरहार्ट के नाम पर रखा गया है जिन्होंने 1960 के दशक में उनका अध्ययन किया था।
परिभाषा
अनौपचारिक रूप से, यदि P एक बहुस्थलिकता है, और tP प्रत्येक आयाम में t के एक गुणनखंड द्वारा P का विस्तार करके गठित बहुस्थलिकता है फिर L(P, t) tP में पूर्णांक जालक बिंदुओं की संख्या है।
अधिक औपचारिक रूप से, यूक्लिडियन स्थल और जालक और एक d-आयामी बहुस्थलिकता में पर विचार करें, इस विशेषता के साथ कि बहुस्थलिकता के सभी शीर्ष जालक के बिंदु हैं। (एक सामान्य उदाहरण हैं और एक बहुस्थलिकता जिसके लिए सभी शीर्षों में पूर्णांक निर्देशांक होते हैं।) मान लेते हैं कि किसी भी सकारात्मक पूर्णांक t के लिए tP, P का t-गुना फैलाव हैं (जालक के आधार पर, प्रत्येक शीर्ष समन्वय को गुणा करके गठित बहुस्थलिकता, t के गुणनखंड द्वारा), और
बहुस्थलिकता tP में निहित जालक बिंदुओं की संख्या को मान ले। एहरहार्ट ने 1962 में दिखाया कि L, t में डिग्री d का एक परिमेय बहुपद है, यानी वहाँ परिमेय संख्याएँ उपस्थित हैं ऐसा है कि:
सभी सकारात्मक पूर्णांक t के लिए
एक बंद उत्तल बहुस्थलिकता P के भीतर के एहरहार्ट बहुपद की गणना इस प्रकार की जा सकती है:
जहाँ d, P का आयाम है इस परिणाम को एहरहार्ट-मैकडोनाल्ड पारस्परिकता के रूप में जाना जाता है।[1]
उदाहरण
मान लेते है कि P एक d-आयामी इकाई घन अतिविम हैं, जिसके शीर्ष पूर्णांक जालक बिंदु हैं और जिनके सभी निर्देशांक 0 या 1 हैं। असमानताओं के संदर्भ में,
फिर का t-गुना फैलाव एक घन है जिसकी भुजा की लंबाई t है, जिसमें (t + 1)d पूर्णांक बिंदु हैं। अर्थात्, अतिविम का एहरहार्ट बहुपद L(P,t) = (t + 1)d हैं।.[2][3] इसके अतिरिक्त, यदि हम ऋणात्मक पूर्णांकों पर L(P, t) का मूल्यांकन करते हैं तब
जैसा कि हमें एहरहार्ट-मैकडोनाल्ड पारस्परिकता से अपेक्षा करते हैं।
कई अन्य आलंकारिक संख्याओं को एहरहार्ट बहुपदों के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, वर्ग पिरामिड संख्याएँ वर्ग पिरामिड के एहरहार्ट बहुपदों द्वारा दी जाती हैं, जिसका आधार एक पूर्णांक इकाई वर्ग होता है और जिसकी ऊँचाई एक होती है; इस स्थिति में एहरहार्ट बहुपद 1/6(t + 1)(t + 2)(2t + 3) है। [4]
एहरहार्ट अर्ध-बहुपद
मान लीजिए कि P एक परिमेय बहुस्थलिकता है। दूसरे शब्दों में, मान लीजिए
जहाँ और (समान रूप से P, में बहुत से बिंदुओं का अवमुख समावरक है) फिर परिभाषित करें
इस स्थिति में, L(P, t) t में एक अर्ध-बहुपद है। जिस तरह अभिन्न बहुतलीय के साथ, एहरहार्ट-मैकडोनाल्ड पारस्परिकता होती है, उसी तरह,
एहरहार्ट अर्ध-बहुपदों के उदाहरण
मान लीजिए P एक बहुभुज है जिसके शीर्ष (0,0), (0,2), (1,1) और (3/2, 0) हैं। tP में पूर्णांक बिंदुओं की संख्या को अर्ध-बहुपद द्वारा गिना जाएगा [5]
गुणांकों की व्याख्या
अगर P बंद सेट है (अर्थात सीमा के छोर P से संबंधित है), L(P, t) के कुछ गुणांको की एक आसान व्याख्या है:
- अग्रणी गुणांक, , P के d-आयामी आयतन के बराबर है, उसे d(L) से भाग करे।
- दूसरा गुणांक, , की गणना इस प्रकार की जा सकती है: जालक L, के किसी भी छोर पर एक जालक को प्रेरित करता है, का {{{1}}}(d − 1) विमीय आयतन ले, 2d(LF) से भाग करें और उन संख्याओं को के सभी छोरों के लिए जोड़ें;
- स्थिर गुणांक a0 की यूलर विशेषता P है। जब P एक बंद उत्तल बहुस्थलिकता है, तब .
बेटके-नेसर प्रमेय
उलरिच बेटके और मार्टिन केनेसर[6] ने एहरहार्ट गुणांकों के निम्नलिखित विशेषताओं की स्थापना की। एक अभिन्न बहुतलीय पर परिभाषित कार्यात्मक एक है और अनुवाद अपरिवर्तनीय मूल्यांकन (माप सिद्धांत) यदि और केवल वास्तविक संख्याएं है, जैसे कि
एहरहार्ट श्रृंखला
हम एक अभिन्न d-आयामी बहुस्थलिकता P के एहरहार्ट बहुपद के लिए एक जनक फलन को परिभाषित कर सकते हैं
इस श्रृंखला को एक परिमेय फलन के रूप में व्यक्त किया जा सकता है। विशेष रूप से, एहरहार्ट ने सिद्ध किया (1962)[citation needed] कि जटिल संख्याएँ उपस्थित हैं , , जैसे कि P की एहरहार्ट श्रृंखला है
इसके अतिरिक्त, रिचर्ड पी. स्टेनली का गैर-नकारात्मकता प्रमेय बताता है कि दी गई परिकल्पनाओं के निम्न, के लिए गैर-ऋणात्मक पूर्णां होंगे
स्टेनली द्वारा एक अन्य परिणाम से पता चलता है कि अगर P, Q में निहित एक जालक बहुस्थलिकता है तब सभी j के लिए[7] सदिश सामान्य रूप से एकरूप नहीं है, लेकिन जब भी यह सममित होता है, और बहुस्थलिकता में एक नियमित एकमापांकि त्रिभुज होता है।[8]
परिमेय बहुतलीय के लिए एहरहार्ट श्रृंखला
जैसा कि पूर्णांक शीर्षो वाले बहुतलीय के स्थिति में, एक परिमेय बहुस्थलिकता के लिए एहरहार्ट श्रृंखला को परिभाषित करता है। एक d-आयामी परिमेय बहुस्थलिकता P के लिए, जहाँ D सबसे छोटा पूर्णांक है, जैसे कि DP एक पूर्णांक बहुस्थलिकता है (D को P का हर कहा जाता है), तो किसी के पास है
जहां अभी भी गैर-ऋणात्मक पूर्णांक हैं।[9][10]
गैर-अग्रणी गुणांक सीमा
प्रतिनिधित्व में बहुपद के गैर-अग्रणी गुणांक
- ऊपरी सीमा हो सकती है:[11]
जहाँ पहली तरह की स्टर्लिंग संख्या है। निचली सीमाएं भी उपस्थित हैं।[12]
टोरिक किस्म
स्थिति और इन कथनों से पिक की प्रमेय प्राप्त होती है। अन्य गुणांकों के लिए सूत्र प्राप्त करना बहुत कठिन है; इस उद्देश्य के लिए टॉरिक प्रकार के टोड वर्ग, रीमैन-रोच प्रमेय और साथ ही फूरियर विश्लेषण का उपयोग किया गया है।
अगर X, के अनुरूप टोरिक प्रकार है , तब P, X पर एक पर्याप्त लाइन बंडल को परिभाषित करता है, और P का एहरहार्ट बहुपद इस लाइन बंडल के हिल्बर्ट बहुपद के साथ मेल खाता है।
एहरहार्ट बहुपदों का उनके स्वयं के लिए अध्ययन किया जा सकता है। उदाहरण के लिए, कोई एहरहार्ट बहुपद की जड़ों से संबंधित प्रश्न पूछ सकता है।[13] इसके अतिरिक्त, कुछ लेखकों ने यह सवाल किया है कि इन बहुपदों को कैसे वर्गीकृत किया जा सकता है।[14]
सामान्यीकरण
अगर हम के कुछ पहलुओं को फैलाते है, तो बहुस्थलिकता में पूर्णांक बिंदुओं की संख्या का अध्ययन करना संभव होगा। दूसरे शब्दों में, कोई अर्ध-फैली बहुस्थलिकता में पूर्णांक बिंदुओं की संख्या जानना चाहेगा। यह पता चला है कि इस तरह की गिनती का फलन एक बहुभिन्नरूपी अर्ध-बहुपद कहलाता है। एहरहार्ट-प्रकार की पारस्परिकता प्रमेय भी इस तरह की गिनती के फलन में मान्य होगी।
बहुतलीय के अर्ध-विस्तारण में पूर्णांक बिंदुओं की संख्या की गणना के अनुप्रयोग [15] नियमित बहुभुजों के विभिन्न विच्छेदन की संख्या और गैर-समरूपी अप्रतिबंधित कोड की संख्या की गणना करने में है, कोडिंग सिद्धांत के क्षेत्र में एक विशेष प्रकार का कोड।
यह भी देखें
- अर्ध-बहुपद
- स्टेनली की पारस्परिकता प्रमेय
टिप्पणियाँ
- ↑ Macdonald, Ian G. (1971). "परिमित सेल-कॉम्प्लेक्स से जुड़े बहुपद". Journal of the London Mathematical Society. 2 (1): 181–192. doi:10.1112/jlms/s2-4.1.181.
- ↑ De Loera, Rambau & Santos (2010)
- ↑ Mathar (2010)
- ↑ Beck et al. (2005).
- ↑ Beck, Matthias; Robins, Sinai (2007). सतत रूप से कम्प्यूटिंग. New York: Springer. pp. 46–47. MR 2271992.
- ↑ Betke, Ulrich; Kneser, Martin (1985), "Zerlegungen und Bewertungen von Gitterpolytopen", Journal für die reine und angewandte Mathematik, 358: 202–208, MR 0797683
- ↑ Stanley, Richard (1993). "A monotonicity property of -vectors and -vectors". European Journal of Combinatorics. 14 (3): 251–258. doi:10.1006/eujc.1993.1028.
- ↑ Athanasiadis, Christos A. (2004). "h*-सदिश, यूलेरियन बहुपद और रेखांकन के स्थिर बहुशीर्ष". Electronic Journal of Combinatorics. 11 (2). doi:10.37236/1863.
- ↑ Stanley, Richard P. (1980). "तर्कसंगत उत्तल पॉलीटोप्स का अपघटन". Annals of Discrete Mathematics. 6: 333–342. doi:10.1016/s0167-5060(08)70717-9. ISBN 9780444860484.
- ↑ Beck, Matthias; Sottile, Frank (January 2007). "स्टेनली के तीन प्रमेयों के लिए अपरिमेय प्रमाण". European Journal of Combinatorics. 28 (1): 403–409. arXiv:math/0501359. doi:10.1016/j.ejc.2005.06.003. S2CID 7801569.
- ↑ Betke, Ulrich; McMullen, Peter (1985-12-01). "जाली पॉलीटोप्स में जाली बिंदु". Monatshefte für Mathematik (in English). 99 (4): 253–265. doi:10.1007/BF01312545. ISSN 1436-5081. S2CID 119545615.
- ↑ Henk, Martin; Tagami, Makoto (2009-01-01). "एहरहार्ट बहुपदों के गुणांकों पर निचली सीमाएं". European Journal of Combinatorics. 30 (1): 70–83. arXiv:0710.2665. doi:10.1016/j.ejc.2008.02.009. ISSN 0195-6698. S2CID 3026293.
- ↑ Braun, Benjamin; Develin, Mike (2008). एहरहार्ट बहुपद जड़ें और स्टेनली की गैर-नकारात्मकता प्रमेय. Contemporary Mathematics. Vol. 452. American Mathematical Society. pp. 67–78. arXiv:math/0610399. doi:10.1090/conm/452/08773. ISBN 9780821841730. S2CID 118496291.
- ↑ Higashitani, Akihiro (2012). "समाकलन सरलताओं के एहरहार्ट बहुपदों का वर्गीकरण" (PDF). DMTCS Proceedings: 587–594.
- ↑ Lisonek, Petr (2007). "अर्ध-बहुपदों द्वारा परिगणित संयोजी परिवार". Journal of Combinatorial Theory. Series A. 114 (4): 619–630. doi:10.1016/j.jcta.2006.06.013.
संदर्भ
- Beck, Matthias; De Loera, Jesús A.; Develin, Mike; Pfeifle, Julian; Stanley, Richard P. (2005), "Coefficients and roots of Ehrhart polynomials", Integer Points in Polyhedra—Geometry, Number Theory, Algebra, Optimization, Contemporary Mathematics, vol. 374, Providence, RI: American Mathematical Society, pp. 15–36, MR 2134759.
- Beck, Matthias; Robins, Sinai (2007), Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra, Undergraduate Texts in Mathematics, New York: Springer-Verlag, ISBN 978-0-387-29139-0, MR 2271992.
- De Loera, Jesús A.; Rambau, Jörg; Santos, Francisco (2010), "Ehrhart polynomials and unimodular triangulations", Triangulations: Structures for Algorithms and Applications, Algorithms and Computation in Mathematics, vol. 25, Springer, p. 475, ISBN 978-3-642-12970-4.
- Diaz, Ricardo; Robins, Sinai (1996), "The Ehrhart polynomial of a lattice n-simplex", Electronic Research Announcements of the American Mathematical Society, 2: 1–6, doi:10.1090/S1079-6762-96-00001-7, MR 1405963. Introduces the Fourier analysis approach and gives references to other related articles.
- Ehrhart, Eugène (1962), "Sur les polyèdres rationnels homothétiques à n dimensions", Comptes rendus de l'Académie des Sciences, 254: 616–618, MR 0130860. Definition and first properties.
- Mathar, Richard J. (2010), Point counts of and some and integer lattices inside hypercubes, arXiv:1002.3844, Bibcode:2010arXiv1002.3844M
- Mustață, Mircea (February 2005), "Ehrhart polynomials", Lecture notes on toric varieties.