भौतिक विज्ञान की ठोस अवस्था: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Branch of physics of matter in the solid state}} | {{short description|Branch of physics of matter in the solid state}} | ||
{{redirect| | {{redirect|राज्य सिद्धांत|राजनीति विज्ञान में सिद्धांत|राज्य (राजनीति)}} | ||
भौतिक विज्ञान की ठोस अवस्था [[क्वांटम यांत्रिकी]], [[क्रिस्टलोग्राफी]], [[ विद्युत |विद्युत]] और धातु विज्ञान जैसी विधियों के माध्यम से कठोर पदार्थ या [[ठोस]] पदार्थों का अध्ययन है। यह [[संघनित पदार्थ भौतिकी]] की सबसे बड़ी शाखा है। भौतिक विज्ञान की ठोस अवस्था अध्ययन करता है कि कैसे ठोस पदार्थों के बड़े पैमाने के गुण उनके परमाणु-पैमाने के गुणों से उत्पन्न होते हैं। इस प्रकार, ठोस-अवस्था भौतिकी [[पदार्थ विज्ञान]] का सैद्धांतिक आधार बनाती है। इसके प्रत्यक्ष अनुप्रयोग भी हैं, उदाहरण के लिए [[ट्रांजिस्टर]] और [[अर्धचालक]] की विधि में। | भौतिक विज्ञान की ठोस अवस्था [[क्वांटम यांत्रिकी]], [[क्रिस्टलोग्राफी]], [[ विद्युत |विद्युत]] और धातु विज्ञान जैसी विधियों के माध्यम से कठोर पदार्थ या [[ठोस]] पदार्थों का अध्ययन है। यह [[संघनित पदार्थ भौतिकी]] की सबसे बड़ी शाखा है। भौतिक विज्ञान की ठोस अवस्था अध्ययन करता है कि कैसे ठोस पदार्थों के बड़े पैमाने के गुण उनके परमाणु-पैमाने के गुणों से उत्पन्न होते हैं। इस प्रकार, ठोस-अवस्था भौतिकी [[पदार्थ विज्ञान]] का सैद्धांतिक आधार बनाती है। इसके प्रत्यक्ष अनुप्रयोग भी हैं, उदाहरण के लिए [[ट्रांजिस्टर]] और [[अर्धचालक]] की विधि में। | ||
== पृष्ठभूमि == | == पृष्ठभूमि == | ||
ठोस पदार्थ सघन रूप से भरे परमाणुओं से बनते हैं, जो तीव्रता से परस्पर क्रिया करते हैं। ये अन्योन्य क्रियाएं यांत्रिक (जैसे [[कठोरता]] और [[लोच (भौतिकी)]]), ऊष्मा चालन, [[विद्युत अभियन्त्रण]], [[चुंबकत्व]] और ठोस के [[क्रिस्टल]] [[प्रकाशिकी]] गुणों का उत्पादन करती हैं। इसमें सम्मिलित सामग्री और जिन स्थितियों में [[ बर्फ़ |बर्फ़]] बनाया गया था, उसके आधार पर परमाणुओं को नियमित, ज्यामितीय पैटर्न (क्रिस्टल, जिसमें [[धातु]] और साधारण बर्फ सम्मिलित है) या अनियमित रूप से (एक [[अनाकार ठोस]] जैसे सामान्य खिड़की के शीशे) में व्यवस्थित किया जा सकता है। | ठोस पदार्थ सघन रूप से भरे परमाणुओं से बनते हैं, जो तीव्रता से परस्पर क्रिया करते हैं। ये अन्योन्य क्रियाएं यांत्रिक (जैसे [[कठोरता]] और [[लोच (भौतिकी)]]), ऊष्मा चालन, [[विद्युत अभियन्त्रण]], [[चुंबकत्व]] और ठोस के [[क्रिस्टल]] [[प्रकाशिकी]] गुणों का उत्पादन करती हैं। इसमें सम्मिलित सामग्री और जिन स्थितियों में [[ बर्फ़ |बर्फ़]] बनाया गया था, उसके आधार पर परमाणुओं को नियमित, ज्यामितीय पैटर्न (क्रिस्टल, जिसमें [[धातु]] और साधारण बर्फ सम्मिलित है) या अनियमित रूप से (एक [[अनाकार ठोस]] जैसे सामान्य खिड़की के शीशे) में व्यवस्थित किया जा सकता है। | ||
सामान्य सिद्धांत के रूप में ठोस-अवस्था भौतिकी का बड़ा भाग क्रिस्टल पर केंद्रित है। मुख्य रूप से, यह इसलिए है क्योंकि क्रिस्टल में परमाणुओं की आवधिकता - इसकी परिभाषित विशेषता - गणितीय मॉडलिंग की सुविधा प्रदान करती है। इसी तरह, क्रिस्टलीय सामग्री में अधिकांशतः इलेक्ट्रिकल [[ अभियांत्रिकी |अभियांत्रिकी]] , चुंबकत्व, प्रकाशिकी या [[मैकेनिकल इंजीनियरिंग]] गुण होते हैं जिनका इंजीनियरिंग उद्देश्यों के लिए उपयोग किया जा सकता है। | |||
क्रिस्टल में परमाणुओं के बीच बल विभिन्न प्रकार के रूप ले सकते हैं। उदाहरण के लिए, [[[[सोडियम]] क्लोराइड]] (सामान्य नमक) के क्रिस्टल में, क्रिस्टल [[आयन]] सोडियम और [[क्लोरीन]] से बना होता है, और आयनिक बंधों के साथ जुड़ा होता है। दूसरों में, परमाणु [[इलेक्ट्रॉन]] को साझा करते हैं और [[सहसंयोजक बंधन]] बनाते हैं। धातुओं में, [[धात्विक बंधन]] में इलेक्ट्रॉनों को पूरे क्रिस्टल के बीच साझा किया जाता है। अंत में, उत्कृष्ट गैसें इनमें से किसी भी प्रकार के बंधन से नहीं निकलती हैं। ठोस रूप में, प्रत्येक परमाणु पर इलेक्ट्रॉनिक चार्ज क्लाउड के ध्रुवीकरण के परिणामस्वरूप [[वैन डेर वाल्स बल]] के साथ महान गैसों को एक साथ रखा जाता है। ठोस प्रकार के बीच के अंतर उनके संबंध के बीच के अंतर से उत्पन्न होते हैं। | |||
== इतिहास == | == इतिहास == | ||
Line 62: | Line 59: | ||
{{Physics-footer}} | {{Physics-footer}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Collapse templates]] | |||
[[Category:Commons category link is locally defined]] | |||
[[Category: | |||
[[Category:Created On 09/03/2023]] | [[Category:Created On 09/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Missing redirects]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Portal templates with redlinked portals]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:धातुकर्म]] | |||
[[Category:संघनित पदार्थ भौतिकी]] |
Latest revision as of 21:19, 17 April 2023
भौतिक विज्ञान की ठोस अवस्था क्वांटम यांत्रिकी, क्रिस्टलोग्राफी, विद्युत और धातु विज्ञान जैसी विधियों के माध्यम से कठोर पदार्थ या ठोस पदार्थों का अध्ययन है। यह संघनित पदार्थ भौतिकी की सबसे बड़ी शाखा है। भौतिक विज्ञान की ठोस अवस्था अध्ययन करता है कि कैसे ठोस पदार्थों के बड़े पैमाने के गुण उनके परमाणु-पैमाने के गुणों से उत्पन्न होते हैं। इस प्रकार, ठोस-अवस्था भौतिकी पदार्थ विज्ञान का सैद्धांतिक आधार बनाती है। इसके प्रत्यक्ष अनुप्रयोग भी हैं, उदाहरण के लिए ट्रांजिस्टर और अर्धचालक की विधि में।
पृष्ठभूमि
ठोस पदार्थ सघन रूप से भरे परमाणुओं से बनते हैं, जो तीव्रता से परस्पर क्रिया करते हैं। ये अन्योन्य क्रियाएं यांत्रिक (जैसे कठोरता और लोच (भौतिकी)), ऊष्मा चालन, विद्युत अभियन्त्रण, चुंबकत्व और ठोस के क्रिस्टल प्रकाशिकी गुणों का उत्पादन करती हैं। इसमें सम्मिलित सामग्री और जिन स्थितियों में बर्फ़ बनाया गया था, उसके आधार पर परमाणुओं को नियमित, ज्यामितीय पैटर्न (क्रिस्टल, जिसमें धातु और साधारण बर्फ सम्मिलित है) या अनियमित रूप से (एक अनाकार ठोस जैसे सामान्य खिड़की के शीशे) में व्यवस्थित किया जा सकता है।
सामान्य सिद्धांत के रूप में ठोस-अवस्था भौतिकी का बड़ा भाग क्रिस्टल पर केंद्रित है। मुख्य रूप से, यह इसलिए है क्योंकि क्रिस्टल में परमाणुओं की आवधिकता - इसकी परिभाषित विशेषता - गणितीय मॉडलिंग की सुविधा प्रदान करती है। इसी तरह, क्रिस्टलीय सामग्री में अधिकांशतः इलेक्ट्रिकल अभियांत्रिकी , चुंबकत्व, प्रकाशिकी या मैकेनिकल इंजीनियरिंग गुण होते हैं जिनका इंजीनियरिंग उद्देश्यों के लिए उपयोग किया जा सकता है।
क्रिस्टल में परमाणुओं के बीच बल विभिन्न प्रकार के रूप ले सकते हैं। उदाहरण के लिए, [[सोडियम क्लोराइड]] (सामान्य नमक) के क्रिस्टल में, क्रिस्टल आयन सोडियम और क्लोरीन से बना होता है, और आयनिक बंधों के साथ जुड़ा होता है। दूसरों में, परमाणु इलेक्ट्रॉन को साझा करते हैं और सहसंयोजक बंधन बनाते हैं। धातुओं में, धात्विक बंधन में इलेक्ट्रॉनों को पूरे क्रिस्टल के बीच साझा किया जाता है। अंत में, उत्कृष्ट गैसें इनमें से किसी भी प्रकार के बंधन से नहीं निकलती हैं। ठोस रूप में, प्रत्येक परमाणु पर इलेक्ट्रॉनिक चार्ज क्लाउड के ध्रुवीकरण के परिणामस्वरूप वैन डेर वाल्स बल के साथ महान गैसों को एक साथ रखा जाता है। ठोस प्रकार के बीच के अंतर उनके संबंध के बीच के अंतर से उत्पन्न होते हैं।
इतिहास
ठोस पदार्थों के भौतिक गुण सदियों से वैज्ञानिक जांच के सामान्य विषय रहे हैं, किंतु ठोस-अवस्था भौतिकी के नाम से जाना जाने वाला अलग क्षेत्र 1940 के दशक तक उभरा नहीं था, विशेष रूप से ठोस अवस्था भौतिकी (डीएसएसपी) की स्थापना के साथ। अमेरिकन फिजिकल सोसायटी के अन्दर। डीएसएसपी ने औद्योगिक भौतिकविदों की सेवा की, और ठोस-अवस्था भौतिकी ठोस पदार्थों पर शोध द्वारा संभव किए गए तकनीकी अनुप्रयोगों से जुड़ी। 1960 के दशक के प्रारंभ तक, डीएसएसपी अमेरिकन फिजिकल सोसाइटी का सबसे बड़ा प्रभाग था।[1][2]
द्वितीय विश्व युद्ध के बाद यूरोप में, विशेष रूप से इंगलैंड , जर्मनी और सोवियत संघ में ठोस अवस्था भौतिकविदों के बड़े समुदाय भी उभरे।[3] संयुक्त राज्य अमेरिका और यूरोप में, अर्धचालक, अतिचालकता, परमाणु चुंबकीय अनुनाद, और विविध अन्य घटनाओं में अपनी जांच के माध्यम से ठोस अवस्था प्रमुख क्षेत्र बन गया। प्रारंभिक शीत युद्ध के समय, ठोस अवस्था भौतिकी में अनुसंधान अधिकांशतः ठोस पदार्थों तक ही सीमित नहीं था, जिसके कारण 1970 और 1980 के दशक में कुछ भौतिकविदों ने संघनित पदार्थ भौतिकी के क्षेत्र की खोज की, जो ठोस, तरल पदार्थ, प्लास्मा, और अन्य जटिल पदार्थ।[1]आज, ठोस-अवस्था भौतिकी को सामान्यतः संघनित पदार्थ भौतिकी का उपक्षेत्र माना जाता है, जिसे अधिकांशतः कठोर संघनित पदार्थ के रूप में संदर्भित किया जाता है, जो नियमित क्रिस्टल लैटिस के साथ ठोस पदार्थों के गुणों पर केंद्रित होता है।
क्रिस्टल संरचना और गुण
सामग्रियों के कई गुण उनके क्रिस्टल संरचना से प्रभावित होते हैं। एक्स - रे क्रिस्टलोग्राफी, न्यूट्रॉन विवर्तन और इलेक्ट्रॉन विवर्तन सहित क्रिस्टलोग्राफी विधियों की श्रृंखला का उपयोग करके इस संरचना की जांच की जा सकती है।
एक क्रिस्टलीय ठोस सामग्री में अलग-अलग क्रिस्टल के आकार सम्मिलित सामग्री और इसके बनने की स्थितियों के आधार पर भिन्न होते हैं। रोजमर्रा की जिंदगी में आने वाली अधिकांश क्रिस्टलीय सामग्री पॉलीक्रिस्टल होती है, जिसमें व्यक्तिगत क्रिस्टल पैमाने में सूक्ष्म होते हैं, किंतु मैक्रोस्कोपिक एकल क्रिस्टल को प्राकृतिक रूप से (जैसे हीरे) या कृत्रिम रूप से उत्पादित किया जा सकता है।
वास्तविक क्रिस्टल में क्रिस्टलोग्राफिक दोष या आदर्श व्यवस्था में अनियमितताएं होती हैं, और यह ये दोष हैं जो वास्तविक सामग्री के कई विद्युत और यांत्रिक गुणों को गंभीर रूप से निर्धारित करते हैं।
इलेक्ट्रॉनिक गुण
विद्युत चालन और ताप क्षमता जैसे पदार्थों के गुणों की जांच ठोस अवस्था भौतिकी द्वारा की जाती है। विद्युत चालन का प्रारंभिक मॉडल ड्रूड मॉडल था, जिसने ठोस में इलेक्ट्रॉनों के लिए गैसों के गतिज सिद्धांत को लागू किया। यह मानते हुए कि सामग्री में स्थिर सकारात्मक आयन और शास्त्रीय, गैर-अंतःक्रियात्मक इलेक्ट्रॉनों की इलेक्ट्रॉन गैस होती है, ड्रूड मॉडल विद्युत और तापीय चालकता और धातुओं में हॉल प्रभाव की व्याख्या करने में सक्षम था, चूँकि इसने इलेक्ट्रॉनिक ताप क्षमता को बहुत कम कर दिया।
अर्नोल्ड सोमरफेल्ड ने क्लासिकल ड्रूड मॉडल को मुक्त इलेक्ट्रॉन मॉडल (या ड्रूड-सोमरफेल्ड मॉडल) में क्वांटम यांत्रिकी के साथ जोड़ा। यहां, इलेक्ट्रॉनों को फर्मी गैस के रूप में तैयार किया जाता है, कणों की गैस जो क्वांटम मैकेनिकल फर्मी-डिराक सांख्यिकी का पालन करती है। मुक्त इलेक्ट्रॉन मॉडल ने धातुओं की ताप क्षमता के लिए उत्तम भविष्यवाणियां कीं, चूँकि, यह इन्सुलेटर (बिजली) के अस्तित्व की व्याख्या करने में असमर्थ था।
लगभग मुक्त इलेक्ट्रॉन मॉडल मुक्त इलेक्ट्रॉन मॉडल का संशोधन है जिसमें कमजोर आवधिक क्षोभ सिद्धांत (क्वांटम यांत्रिकी) सम्मिलित है, जिसका उद्देश्य क्रिस्टलीय ठोस में चालन इलेक्ट्रॉनों और आयनों के बीच की वार्तालाप को मॉडल करना है। इलेक्ट्रॉनिक बैंड संरचना के विचार को प्रस्तुत करके, सिद्धांत विद्युत कंडक्टर, अर्धचालक और इन्सुलेटर के अस्तित्व की व्याख्या करता है।
आवधिक क्षमता की स्थिति में लगभग मुक्त इलेक्ट्रॉन मॉडल श्रोडिंगर समीकरण को फिर से लिखता है। इस स्थिति में समाधानों को बलोच अवस्था के रूप में जाना जाता है। चूंकि बलोच की प्रमेय केवल आवधिक क्षमता पर लागू होती है, और चूंकि क्रिस्टल में परमाणुओं की निरंतर यादृच्छिक गति आवधिकता को बाधित करती है, बलोच के प्रमेय का यह उपयोग केवल सन्निकटन है, किंतु यह अत्यधिक मूल्यवान सन्निकटन साबित हुआ है, जिसके बिना अधिकांश ठोस-अवस्था भौतिकी विश्लेषण दुरूह होगा। आवधिकता से विचलन का इलाज क्वांटम यांत्रिक गड़बड़ी सिद्धांत (क्वांटम यांत्रिकी) द्वारा किया जाता है।
आधुनिक अनुसंधान
ठोस अवस्था भौतिकी में आधुनिक अनुसंधान विषयों में सम्मिलित हैं:
- उच्च तापमान अतिचालकता
- क्वासिक क्रिस्टल
- स्पिन ग्लास
- जटिल सहसंबद्ध सामग्री
- द्वि-आयामी सामग्री
- नैनो सामग्री
यह भी देखें
- संघनित पदार्थ भौतिकी
- क्रिस्टलोग्राफी
- परमाणु स्पेक्ट्रोस्कोपी
संदर्भ
- ↑ 1.0 1.1 Martin, Joseph D. (2015). "What's in a Name Change? Solid State Physics, Condensed Matter Physics, and Materials Science" (PDF). Physics in Perspective. 17 (1): 3–32. Bibcode:2015PhP....17....3M. doi:10.1007/s00016-014-0151-7. S2CID 117809375.
- ↑ Hoddeson, Lillian; et al. (1992). Out of the Crystal Maze: Chapters from The History of Solid State Physics. Oxford University Press. ISBN 9780195053296.
- ↑ Hoffmann, Dieter (2013). "ऐतिहासिक परिप्रेक्ष्य में फिजिका स्टेटस सॉलिडी के पचास वर्ष". Physica Status Solidi B. 250 (4): 871–887. Bibcode:2013PSSBR.250..871H. doi:10.1002/pssb.201340126. S2CID 122917133.
अग्रिम पठन
- Neil W. Ashcroft and N. David Mermin, Solid State Physics (Harcourt: Orlando, 1976).
- Charles Kittel, Introduction to Solid State Physics (Wiley: New York, 2004).
- H. M. Rosenberg, The Solid State (Oxford University Press: Oxford, 1995).
- Steven H. Simon, The Oxford Solid State Basics (Oxford University Press: Oxford, 2013).
- Out of the Crystal Maze. Chapters from the History of Solid State Physics, ed. Lillian Hoddeson, Ernest Braun, Jürgen Teichmann, Spencer Weart (Oxford: Oxford University Press, 1992).
- M. A. Omar, Elementary Solid State Physics (Revised Printing, Addison-Wesley, 1993).
- Hofmann, Philip (2015-05-26). Solid State Physics (2 ed.). Wiley-VCH. ISBN 978-3527412822.