भार फलन: Difference between revisions
No edit summary |
|||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Construct related to weighted sums and averages}} | {{Short description|Construct related to weighted sums and averages}} | ||
भार फलन गणितीय उपकरण है जिसका उपयोग कुछ तत्वों को एक ही समूह में अन्य तत्वों की तुलना में परिणाम पर अत्यधिक भार या प्रभाव देने के लिए योग, अभिन्न या औसत प्रदर्शन करते समय किया जाता है। भार फलन के इस अनुप्रयोग का परिणाम भारित योग या [[भारित औसत]] है। भार फलन सांख्यिकी और [[गणितीय विश्लेषण]] में अधिकांशतः होते हैं, और माप (गणित) की अवधारणा से निकटता से संबंधित होते हैं। भार फलन को असतत और निरंतर सेटिंग्स दोनों में नियोजित किया जा सकता है। वे भारित गणना नामक गणना और मेटा-कैलकुलस की प्रणालियों के निर्माण के लिए उपयोग किए जा सकते हैं।<ref>Jane Grossman, Michael Grossman, Robert Katz. [https://books.google.com/books?as_brr=0&q=%22The+First+Systems+of+Weighted+Differential+and+Integral+Calculus%E2%80%8E%22&btnG=Search+Books, ''The First Systems of Weighted Differential and Integral Calculus''], {{isbn|0-9771170-1-4}}, 1980.</ref><ref>Jane Grossman.[https://books.google.com/books?q=%22Non-Newtonian+Calculus%22&btnG=Search+Books&as_brr=0, ''Meta-Calculus: Differential and Integral''], {{isbn|0-9771170-2-2}}, 1981.</ref> | '''भार फलन''' गणितीय उपकरण है जिसका उपयोग कुछ तत्वों को एक ही समूह में अन्य तत्वों की तुलना में परिणाम पर अत्यधिक भार या प्रभाव देने के लिए योग, अभिन्न या औसत प्रदर्शन करते समय किया जाता है। भार फलन के इस अनुप्रयोग का परिणाम भारित योग या [[भारित औसत]] है। भार फलन सांख्यिकी और [[गणितीय विश्लेषण]] में अधिकांशतः होते हैं, और माप (गणित) की अवधारणा से निकटता से संबंधित होते हैं। भार फलन को असतत और निरंतर सेटिंग्स दोनों में नियोजित किया जा सकता है। वे भारित गणना नामक गणना और मेटा-कैलकुलस की प्रणालियों के निर्माण के लिए उपयोग किए जा सकते हैं।<ref>Jane Grossman, Michael Grossman, Robert Katz. [https://books.google.com/books?as_brr=0&q=%22The+First+Systems+of+Weighted+Differential+and+Integral+Calculus%E2%80%8E%22&btnG=Search+Books, ''The First Systems of Weighted Differential and Integral Calculus''], {{isbn|0-9771170-1-4}}, 1980.</ref><ref>Jane Grossman.[https://books.google.com/books?q=%22Non-Newtonian+Calculus%22&btnG=Search+Books&as_brr=0, ''Meta-Calculus: Differential and Integral''], {{isbn|0-9771170-2-2}}, 1981.</ref> | ||
Line 36: | Line 35: | ||
=== [[यांत्रिकी]] === | === [[यांत्रिकी]] === | ||
परिभाषित भार फलन यांत्रिकी से उत्पन्न होता है: यदि किसी के पास <math>n</math> संग्रह है <math>w_1, \ldots, w_n</math> भार के साथ [[उत्तोलक]] पर ओब्जेक्ट (जहाँ भार की अब भौतिक अर्थ में व्याख्या की जाती है) और स्थान {{nowrap|<math>\boldsymbol{x}_1,\dotsc,\boldsymbol{x}_n</math>,}} तो उत्तोलक संतुलन में होगा यदि उत्तोलक द्रव्यमान के केंद्र में है | |||
:<math>\frac{\sum_{i=1}^n w_i \boldsymbol{x}_i}{\sum_{i=1}^n w_i},</math> | :<math>\frac{\sum_{i=1}^n w_i \boldsymbol{x}_i}{\sum_{i=1}^n w_i},</math> | ||
जो | जो {{nowrap|<math>\boldsymbol{x}_i</math>}} पदों का भारित औसत भी है | ||
== निरंतर वजन == | == निरंतर वजन == | ||
निरंतर सेटिंग में, | निरंतर सेटिंग में, भार सकारात्मक उपाय (गणित) है जैसे <math>w(x) \, dx</math> कुछ अनुक्षेत्र <math>\Omega</math> पर (गणितीय विश्लेषण), जो सामान्यतौर पर [[ यूक्लिडियन अंतरिक्ष |यूक्लिडियन स्पेस <math>\R^n</math>]]का उपसमुच्चय है, उदाहरण के लिए <math>\Omega</math> अंतराल हो सकता है (गणित) <math>[a,b]</math>. यहाँ <math>dx</math> लेबेस्ग <math>w\colon \Omega \to \R^+</math>युक्ति है और अऋणात्मक मापने योग्य गणितीय फलन है। इस संदर्भ में भार फलन <math>w(x)</math> कभी-कभी [[घनत्व]] के रूप में संदर्भित किया जाता है। | ||
=== सामान्य परिभाषा === | === सामान्य परिभाषा === | ||
यदि <math>f\colon \Omega \to \R</math> वास्तविक संख्या-मूल्य गणितीय फलन है, फिर भारित समाकल है | |||
:<math>\int_\Omega f(x)\ dx</math> | :<math>\int_\Omega f(x)\ dx</math> | ||
Line 51: | Line 50: | ||
:<math>\int_\Omega f(x) w(x)\, dx</math> | :<math>\int_\Omega f(x) w(x)\, dx</math> | ||
ध्यान दें कि किसी को | ध्यान दें कि किसी को <math>f</math> आवश्यकता हो सकती है भार के संबंध में पूरी तरह से अभिन्न फलन <math>w(x) \, dx</math> इस अभिन्न को परिमित करने के लिए है। | ||
=== भारित मात्रा === | === भारित मात्रा === | ||
यदि | यदि E का उपसमुच्चय <math>\Omega</math> है, तो E के [[आयतन]] खंड (E) को भारित आयतन के लिए सामान्यीकृत किया जा सकता है | ||
:<math> \int_E w(x)\ dx,</math> | :<math> \int_E w(x)\ dx,</math> | ||
=== भारित औसत === | === भारित औसत === | ||
यदि <math>\Omega</math> परिमित शून्येतर भारित आयतन है, तो हम भारित औसत को प्रतिस्थापित कर सकते हैं | |||
:<math>\frac{1}{\mathrm{vol}(\Omega)} \int_\Omega f(x)\ dx</math> | :<math>\frac{1}{\mathrm{vol}(\Omega)} \int_\Omega f(x)\ dx</math> | ||
Line 68: | Line 67: | ||
=== द्विरेखीय रूप === | === द्विरेखीय रूप === | ||
यदि <math> f\colon \Omega \to {\mathbb R}</math> और <math> g\colon \Omega \to {\mathbb R}</math> दो फलन हैं, कोई भी भारित [[द्विरेखीय रूप]] को सामान्य कर सकता है | |||
:<math>\langle f, g \rangle := \int_\Omega f(x) g(x)\ dx</math> | :<math>\langle f, g \rangle := \int_\Omega f(x) g(x)\ dx</math> | ||
भारित द्विरेखीय रूप में | |||
:<math>\langle f, g \rangle := \int_\Omega f(x) g(x)\ w(x)\ dx.</math> | :<math>\langle f, g \rangle := \int_\Omega f(x) g(x)\ w(x)\ dx.</math> | ||
भारित | भारित आयतिय फलन के उदाहरणों के लिए आयतिय बहुपद पर प्रविष्टि देखना अनिवार्य है | ||
== यह भी देखें == | == यह भी देखें == | ||
* | * द्रवमान केंद्र | ||
* संख्यात्मक एकीकरण | * संख्यात्मक एकीकरण | ||
* | * लंबकोणीयता | ||
* | * भारित माध्य | ||
* [[रैखिक संयोजन]] | * [[रैखिक संयोजन]] | ||
* [[कर्नेल (सांख्यिकी)]] | * [[कर्नेल (सांख्यिकी)]] | ||
* उपाय (गणित) | * उपाय (गणित) | ||
* रिमेंन-स्टील्टजेस | * रिमेंन-स्टील्टजेस अनुरूप | ||
* | * भारांकन | ||
* [[विंडो फंक्शन]] | * [[विंडो फंक्शन|विंडो फलन]] | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
{{DEFAULTSORT:Weight Function}} | {{DEFAULTSORT:Weight Function}} | ||
[[Category: Machine Translated Page]] | [[Category:Created On 17/03/2023|Weight Function]] | ||
[[Category: | [[Category:Lua-based templates|Weight Function]] | ||
[[Category:Machine Translated Page|Weight Function]] | |||
[[Category:Pages with script errors|Weight Function]] | |||
[[Category:Short description with empty Wikidata description|Weight Function]] | |||
[[Category:Templates Vigyan Ready|Weight Function]] | |||
[[Category:Templates that add a tracking category|Weight Function]] | |||
[[Category:Templates that generate short descriptions|Weight Function]] | |||
[[Category:Templates using TemplateData|Weight Function]] | |||
[[Category:कार्यात्मक विश्लेषण|Weight Function]] | |||
[[Category:कार्यों के प्रकार|Weight Function]] | |||
[[Category:गणितीय विश्लेषण|Weight Function]] | |||
[[Category:माप सिद्धांत|Weight Function]] | |||
[[Category:संयुक्त अनुकूलन|Weight Function]] |
Latest revision as of 17:16, 29 August 2023
भार फलन गणितीय उपकरण है जिसका उपयोग कुछ तत्वों को एक ही समूह में अन्य तत्वों की तुलना में परिणाम पर अत्यधिक भार या प्रभाव देने के लिए योग, अभिन्न या औसत प्रदर्शन करते समय किया जाता है। भार फलन के इस अनुप्रयोग का परिणाम भारित योग या भारित औसत है। भार फलन सांख्यिकी और गणितीय विश्लेषण में अधिकांशतः होते हैं, और माप (गणित) की अवधारणा से निकटता से संबंधित होते हैं। भार फलन को असतत और निरंतर सेटिंग्स दोनों में नियोजित किया जा सकता है। वे भारित गणना नामक गणना और मेटा-कैलकुलस की प्रणालियों के निर्माण के लिए उपयोग किए जा सकते हैं।[1][2]
असतत वजन
सामान्य परिभाषा
असतत सेटिंग में, भारित फलन असतत गणित समूह (गणित) पर परिभाषित सकारात्मक फलन है, जो सामान्यतौर पर परिमित समुच्चय या गणनीय होता है। भारित फलन अभारित स्थिति से उपयुक्त होता है जिसमें सभी तत्वों का भार समान होता है। फिर इस भार को विभिन्न अवधारणाओं पर क्रियान्वित किया जा सकता है।
यदि फलन वास्तविक संख्या-मूल्यवान गणितीय फलन है, फिर का भारित योग पर परिभाषित किया जाता है
परन्तु भारित फलन दिया भारित योग या शंक्वाकार संयोजन के रूप में परिभाषित किया गया है
संख्यात्मक एकीकरण में भारित योग का सामान्य अनुप्रयोग उत्पन्न होता है।
यदि B, A का परिमित समूह उपसमुच्चय है, तो कोई अभारित संख्या |B| अभारित संख्या को B द्वारा प्रतिस्थापित कर सकता है
यदि A एक परिमित समूह अरिक्त समूह है, तो कोई भारित औसत या औसत को प्रतिस्थापित कर सकता है
भारित माध्य या भारित औसत द्वारा
इस प्रयोग में सिर्फ सापेक्ष भार प्रासंगिक हैं।
सांख्यिकी
संगठन (सांख्यिकी) की उपस्थिति को पूर्ण करने के लिए सामान्यतौर पर आँकड़ों में भारित साधनों का उपयोग किया जाता है। मात्रा के लिए कई स्वतंत्र समय मापा विचरण के साथ , भार के साथ सभी मापों का औसत करके संकेत का सबसे अच्छा अनुमान प्राप्त किया जाता है और परिणामी विचरण प्रत्येक स्वतंत्र माप से छोटा है अधिकतम संभावना पद्धति जोड़ और समान भार का उपयोग कर डेटा के बीच अंतर को भारित करती है।
एक यादृच्छिक चर का अपेक्षित मान संभावित मानों का भारित औसत होता है, जिसमें भार संबंधित संभावना होती है। सामान्यतौर पर, यादृच्छिक चर के फल अपेक्षित मान उन मानों की संभाव्यता-भारित औसत है जो फलन यादृच्छिक चर के प्रत्येक संभावित मान के लिए लेता है।
रैखिक प्रतिगमन में जिसमें आश्रित चर को स्वतंत्र चर के वर्तमान और पश्चगामी (अतीत) दोनों मूल्यों से प्रभावित माना जाता है, वितरित अंतराल फलन का अनुमान लगाया जाता है, यह फलन वर्तमान और विभिन्न अंतराल स्वतंत्र चर मूल्यों का भारित औसत होता है। इसी प्रकार, मूविंग औसत मॉडल विकसित चर को वर्तमान के भारित औसत और यादृच्छिक चर के विभिन्न मध्यम मानों के रूप में निर्दिष्ट करता है।
यांत्रिकी
परिभाषित भार फलन यांत्रिकी से उत्पन्न होता है: यदि किसी के पास संग्रह है भार के साथ उत्तोलक पर ओब्जेक्ट (जहाँ भार की अब भौतिक अर्थ में व्याख्या की जाती है) और स्थान , तो उत्तोलक संतुलन में होगा यदि उत्तोलक द्रव्यमान के केंद्र में है
जो पदों का भारित औसत भी है
निरंतर वजन
निरंतर सेटिंग में, भार सकारात्मक उपाय (गणित) है जैसे कुछ अनुक्षेत्र पर (गणितीय विश्लेषण), जो सामान्यतौर पर यूक्लिडियन स्पेस का उपसमुच्चय है, उदाहरण के लिए अंतराल हो सकता है (गणित) . यहाँ लेबेस्ग युक्ति है और अऋणात्मक मापने योग्य गणितीय फलन है। इस संदर्भ में भार फलन कभी-कभी घनत्व के रूप में संदर्भित किया जाता है।
सामान्य परिभाषा
यदि वास्तविक संख्या-मूल्य गणितीय फलन है, फिर भारित समाकल है
भारित अभिन्न के लिए सामान्यीकृत किया जा सकता है
ध्यान दें कि किसी को आवश्यकता हो सकती है भार के संबंध में पूरी तरह से अभिन्न फलन इस अभिन्न को परिमित करने के लिए है।
भारित मात्रा
यदि E का उपसमुच्चय है, तो E के आयतन खंड (E) को भारित आयतन के लिए सामान्यीकृत किया जा सकता है
भारित औसत
यदि परिमित शून्येतर भारित आयतन है, तो हम भारित औसत को प्रतिस्थापित कर सकते हैं
भारित औसत द्वारा
द्विरेखीय रूप
यदि और दो फलन हैं, कोई भी भारित द्विरेखीय रूप को सामान्य कर सकता है
भारित द्विरेखीय रूप में
भारित आयतिय फलन के उदाहरणों के लिए आयतिय बहुपद पर प्रविष्टि देखना अनिवार्य है
यह भी देखें
- द्रवमान केंद्र
- संख्यात्मक एकीकरण
- लंबकोणीयता
- भारित माध्य
- रैखिक संयोजन
- कर्नेल (सांख्यिकी)
- उपाय (गणित)
- रिमेंन-स्टील्टजेस अनुरूप
- भारांकन
- विंडो फलन
संदर्भ
- ↑ Jane Grossman, Michael Grossman, Robert Katz. The First Systems of Weighted Differential and Integral Calculus, ISBN 0-9771170-1-4, 1980.
- ↑ Jane Grossman.Meta-Calculus: Differential and Integral, ISBN 0-9771170-2-2, 1981.