गतिकी (यांत्रिकी): Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Branch of physics studying forces and their effect on motion}} | {{Short description|Branch of physics studying forces and their effect on motion}} | ||
{{About|| | {{About||प्रभावित बलों के परिणामस्वरूप निकायों की गति के गणितीय विश्लेषण के रूप में गतिशीलता|विश्लेषणात्मक गतिशीलता}} | ||
{{Classical mechanics}} | {{Classical mechanics}} | ||
डायनेमिक्स [[शास्त्रीय यांत्रिकी]] की शाखा (शिक्षा) या भौतिकी है जो [[बल (भौतिकी)]] के अध्ययन और गति (भौतिकी) पर उनके प्रभावों से संबंधित है। [[आइजैक न्यूटन]] शास्त्रीय गैर-सापेक्ष भौतिकी में गतिशीलता को नियंत्रित करने वाले मौलिक भौतिक नियमों को बनाने वाले पहले व्यक्ति थे, विशेष रूप से उनकी [[गति का दूसरा नियम]]। | डायनेमिक्स [[शास्त्रीय यांत्रिकी]] की शाखा (शिक्षा) या भौतिकी है जो [[बल (भौतिकी)]] के अध्ययन और गति (भौतिकी) पर उनके प्रभावों से संबंधित है। [[आइजैक न्यूटन]] शास्त्रीय गैर-सापेक्ष भौतिकी में गतिशीलता को नियंत्रित करने वाले मौलिक भौतिक नियमों को बनाने वाले पहले व्यक्ति थे, विशेष रूप से उनकी [[गति का दूसरा नियम]]। | ||
== सिद्धांत == | == सिद्धांत == | ||
सामान्यतया, गतिशीलता में सम्मिलित शोधकर्ता अध्ययन करते हैं कि समय के साथ भौतिक प्रणाली कैसे विकसित हो सकती है या बदल सकती है और उन परिवर्तनों के कारणों का अध्ययन कर सकती है। इसके अतिरिक्त, न्यूटन ने मौलिक भौतिक नियमों की स्थापना की जो भौतिकी में गतिकी को नियंत्रित करते हैं। उनकी यांत्रिकी प्रणाली का अध्ययन करके गतिकी को समझा जा सकता है। विशेष रूप से, गतिशीलता अधिकतर न्यूटन के गति के दूसरे नियम से संबंधित है। चूँकि, गति के तीनों नियमों को ध्यान में रखा जाता है क्योंकि ये किसी दिए गए अवलोकन या प्रयोग में परस्पर संबंधित होते हैं। | सामान्यतया, गतिशीलता में सम्मिलित शोधकर्ता अध्ययन करते हैं कि समय के साथ भौतिक प्रणाली कैसे विकसित हो सकती है या बदल सकती है और उन परिवर्तनों के कारणों का अध्ययन कर सकती है। इसके अतिरिक्त, न्यूटन ने मौलिक भौतिक नियमों की स्थापना की जो भौतिकी में गतिकी को नियंत्रित करते हैं। उनकी यांत्रिकी प्रणाली का अध्ययन करके गतिकी को समझा जा सकता है। विशेष रूप से, गतिशीलता अधिकतर न्यूटन के गति के दूसरे नियम से संबंधित है। चूँकि, गति के तीनों नियमों को ध्यान में रखा जाता है क्योंकि ये किसी दिए गए अवलोकन या प्रयोग में परस्पर संबंधित होते हैं। | ||
== रैखिक और घूर्णी [[गति]]की == | == रैखिक और घूर्णी [[गति]]की == | ||
गतिकी का अध्ययन दो श्रेणियों में आता है: रैखिक और घूर्णी। रेखीय गतिकी रेखा में गतिमान वस्तुओं से संबंधित है और इसमें बल, [[द्रव्यमान]]/जड़ता, [[विस्थापन (वेक्टर)]] (दूरी की इकाइयों में), [[वेग]] (प्रति इकाई समय में दूरी), [[त्वरण]] (समय की प्रति इकाई दूरी) | गतिकी का अध्ययन दो श्रेणियों में आता है: रैखिक और घूर्णी। रेखीय गतिकी रेखा में गतिमान वस्तुओं से संबंधित है और इसमें बल, [[द्रव्यमान]]/जड़ता, [[विस्थापन (वेक्टर)]] (दूरी की इकाइयों में), [[वेग]] (प्रति इकाई समय में दूरी), [[त्वरण]] (समय की प्रति इकाई दूरी) और संवेग (द्रव्यमान समय) जैसी मात्राएँ सम्मिलित हैं। वेग की इकाई। घूर्णी गतिकी उन वस्तुओं से संबंधित है जो घुमावदार रास्ते में घूम रही हैं या घूम रही हैं और इसमें टोक़, जड़ता का क्षण / घूर्णी जड़ता, [[कोणीय विस्थापन]] (रेडियन या कम अधिकांशतः, डिग्री में), [[कोणीय वेग]] (रेडियन प्रति यूनिट समय), कोणीय जैसी मात्राएँ सम्मिलित हैं। त्वरण (समय वर्ग की प्रति इकाई रेडियन) और कोणीय गति (कोणीय वेग की जड़ता समय इकाई का क्षण)। अनेक बार, वस्तुएं रैखिक और घूर्णी गति प्रदर्शित करती हैं। | ||
शास्त्रीय [[विद्युत]] चुंबकत्व के लिए, मैक्सवेल के समीकरण कीनेमेटीक्स का वर्णन करते हैं। न्यूटन के नियमों, मैक्सवेल के समीकरणों और [[लोरेंत्ज़ बल]] के संयोजन द्वारा यांत्रिकी और विद्युत चुंबकत्व दोनों को सम्मिलित करने वाली शास्त्रीय प्रणालियों की गतिशीलता का वर्णन किया गया है। | शास्त्रीय [[विद्युत]] चुंबकत्व के लिए, मैक्सवेल के समीकरण कीनेमेटीक्स का वर्णन करते हैं। न्यूटन के नियमों, मैक्सवेल के समीकरणों और [[लोरेंत्ज़ बल]] के संयोजन द्वारा यांत्रिकी और विद्युत चुंबकत्व दोनों को सम्मिलित करने वाली शास्त्रीय प्रणालियों की गतिशीलता का वर्णन किया गया है। | ||
Line 19: | Line 16: | ||
न्यूटन के अनुसार, बल को परिश्रम या [[दबाव]] के रूप में परिभाषित किया जा सकता है जो किसी वस्तु को गति प्रदान कर सकता है। बल की अवधारणा का उपयोग एक ऐसे प्रभाव का वर्णन करने के लिए किया जाता है जो मुक्त शरीर (वस्तु) को गति प्रदान करता है। यह धक्का या खिंचाव हो सकता है, जिसके कारण कोई वस्तु दिशा बदल सकती है, नया वेग हो सकता है, या [[विरूपण (यांत्रिकी)]] अस्थायी या स्थायी रूप से हो सकता है। सामान्यतया, बल किसी वस्तु की गति (भौतिकी) को बदलने का कारण बनता है।<ref name=Phys-tut-force>{{cite web| vauthors=Goc R| title = भौतिकी में बल| date = 2005 | url=http://www.staff.amu.edu.pl/~romangoc/M3-1-force-physics.html| format = Physics tutorial | access-date = 2010-02-18| archive-url=https://web.archive.org/web/20100222050455/http://www.staff.amu.edu.pl/~romangoc/M3-1-force-physics.html| archive-date =2010-02-22| url-status =dead}}</ref> | न्यूटन के अनुसार, बल को परिश्रम या [[दबाव]] के रूप में परिभाषित किया जा सकता है जो किसी वस्तु को गति प्रदान कर सकता है। बल की अवधारणा का उपयोग एक ऐसे प्रभाव का वर्णन करने के लिए किया जाता है जो मुक्त शरीर (वस्तु) को गति प्रदान करता है। यह धक्का या खिंचाव हो सकता है, जिसके कारण कोई वस्तु दिशा बदल सकती है, नया वेग हो सकता है, या [[विरूपण (यांत्रिकी)]] अस्थायी या स्थायी रूप से हो सकता है। सामान्यतया, बल किसी वस्तु की गति (भौतिकी) को बदलने का कारण बनता है।<ref name=Phys-tut-force>{{cite web| vauthors=Goc R| title = भौतिकी में बल| date = 2005 | url=http://www.staff.amu.edu.pl/~romangoc/M3-1-force-physics.html| format = Physics tutorial | access-date = 2010-02-18| archive-url=https://web.archive.org/web/20100222050455/http://www.staff.amu.edu.pl/~romangoc/M3-1-force-physics.html| archive-date =2010-02-22| url-status =dead}}</ref> | ||
==न्यूटन के नियम== | ==न्यूटन के नियम== | ||
{{Main| | {{Main|न्यूटन की गति के नियम}} | ||
न्यूटन ने बल को द्रव्यमान को गति देने की क्षमता के रूप में वर्णित किया। उनके तीन कानूनों को संक्षेप में निम्नानुसार किया जा सकता है: | न्यूटन ने बल को द्रव्यमान को गति देने की क्षमता के रूप में वर्णित किया। उनके तीन कानूनों को संक्षेप में निम्नानुसार किया जा सकता है: | ||
# पहला नियम: यदि किसी वस्तु पर कोई शुद्ध बल नहीं है, तो उसका वेग स्थिर है: या तो वस्तु | # पहला नियम: यदि किसी वस्तु पर कोई शुद्ध बल नहीं है, तो उसका वेग स्थिर है: या तो वस्तु स्थिरता पर है (यदि इसका वेग शून्य के बराबर है), या यह एक ही दिशा में निरंतर गति से चलती है।<ref name=first-law-shaums>{{Cite book| vauthors = Browne ME | title = शाउम की सिद्धांत की रूपरेखा और इंजीनियरिंग और विज्ञान के लिए भौतिकी की समस्याएं| publisher = McGraw-Hill | location=New York | year = 1999| format = Series: Schaum's Outline Series| pages =[https://archive.org/details/schaumsoutlineof00brow/page/58 58]| url =https://archive.org/details/schaumsoutlineof00brow| url-access = registration| quote = न्यूटन की गति का पहला नियम।| isbn =978-0-07-008498-8}}</ref><ref name=first-law-dmmy>{{Cite book| vauthors=Holzner S | title = डमियों के लिए भौतिकी| publisher = Wiley | location=Hoboken | year = 2005| pages =[https://archive.org/details/physicsfordummie00holz/page/64 64]| url = https://archive.org/details/physicsfordummie00holz| url-access = registration| quote = न्यूटन के गति के नियम| isbn = 978-0-7645-5433-9}}</ref> | ||
# दूसरा नियम: किसी वस्तु के रैखिक संवेग P के परिवर्तन की दर शुद्ध बल F | # दूसरा नियम: किसी वस्तु के रैखिक संवेग P के परिवर्तन की दर शुद्ध बल F<sub>net</sub> के बराबर होती है, अर्थात, डी'पी'/डीटी = 'F<sub>net</sub>'.<!-- Note #1: Object do not necessarily move in the direction of the net force....e.g. objects moving in a circle. Note #2: Beware! Both the acceleration and momentum formulations of Newton's second law are valid ''only'' for constant-mass systems. This is covered in the discussion below and in multiple references given. --> | ||
# तीसरा नियम: जब पहला पिंड | # तीसरा नियम: जब पहला पिंड दूसरे पिंड पर F<sub>1</sub> बल लगाता है, तो दूसरा पिंड एक साथ पहले पिंड पर F<sub>2</sub> = -F<sub>1</sub> बल लगाता है। इसका अर्थ है कि F<sub>1</sub> और F<sub>2</sub> परिमाण में समान और दिशा में विपरीत हैं। | ||
न्यूटन के गति के नियम केवल जड़त्वीय निर्देश तंत्र में मान्य होते हैं। | न्यूटन के गति के नियम केवल जड़त्वीय निर्देश तंत्र में मान्य होते हैं। | ||
Line 45: | Line 42: | ||
{{Isaac Newton}} | {{Isaac Newton}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 23/03/2023]] | [[Category:Created On 23/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Mechanics templates]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with empty portal template]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Physics sidebar templates]] | |||
[[Category:Portal-inline template with redlinked portals]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:गतिकी (यांत्रिकी)| गतिकी (यांत्रिकी) ]] |
Latest revision as of 18:15, 15 April 2023
Part of a series on |
चिरसम्मत यांत्रिकी |
---|
डायनेमिक्स शास्त्रीय यांत्रिकी की शाखा (शिक्षा) या भौतिकी है जो बल (भौतिकी) के अध्ययन और गति (भौतिकी) पर उनके प्रभावों से संबंधित है। आइजैक न्यूटन शास्त्रीय गैर-सापेक्ष भौतिकी में गतिशीलता को नियंत्रित करने वाले मौलिक भौतिक नियमों को बनाने वाले पहले व्यक्ति थे, विशेष रूप से उनकी गति का दूसरा नियम।
सिद्धांत
सामान्यतया, गतिशीलता में सम्मिलित शोधकर्ता अध्ययन करते हैं कि समय के साथ भौतिक प्रणाली कैसे विकसित हो सकती है या बदल सकती है और उन परिवर्तनों के कारणों का अध्ययन कर सकती है। इसके अतिरिक्त, न्यूटन ने मौलिक भौतिक नियमों की स्थापना की जो भौतिकी में गतिकी को नियंत्रित करते हैं। उनकी यांत्रिकी प्रणाली का अध्ययन करके गतिकी को समझा जा सकता है। विशेष रूप से, गतिशीलता अधिकतर न्यूटन के गति के दूसरे नियम से संबंधित है। चूँकि, गति के तीनों नियमों को ध्यान में रखा जाता है क्योंकि ये किसी दिए गए अवलोकन या प्रयोग में परस्पर संबंधित होते हैं।
रैखिक और घूर्णी गतिकी
गतिकी का अध्ययन दो श्रेणियों में आता है: रैखिक और घूर्णी। रेखीय गतिकी रेखा में गतिमान वस्तुओं से संबंधित है और इसमें बल, द्रव्यमान/जड़ता, विस्थापन (वेक्टर) (दूरी की इकाइयों में), वेग (प्रति इकाई समय में दूरी), त्वरण (समय की प्रति इकाई दूरी) और संवेग (द्रव्यमान समय) जैसी मात्राएँ सम्मिलित हैं। वेग की इकाई। घूर्णी गतिकी उन वस्तुओं से संबंधित है जो घुमावदार रास्ते में घूम रही हैं या घूम रही हैं और इसमें टोक़, जड़ता का क्षण / घूर्णी जड़ता, कोणीय विस्थापन (रेडियन या कम अधिकांशतः, डिग्री में), कोणीय वेग (रेडियन प्रति यूनिट समय), कोणीय जैसी मात्राएँ सम्मिलित हैं। त्वरण (समय वर्ग की प्रति इकाई रेडियन) और कोणीय गति (कोणीय वेग की जड़ता समय इकाई का क्षण)। अनेक बार, वस्तुएं रैखिक और घूर्णी गति प्रदर्शित करती हैं।
शास्त्रीय विद्युत चुंबकत्व के लिए, मैक्सवेल के समीकरण कीनेमेटीक्स का वर्णन करते हैं। न्यूटन के नियमों, मैक्सवेल के समीकरणों और लोरेंत्ज़ बल के संयोजन द्वारा यांत्रिकी और विद्युत चुंबकत्व दोनों को सम्मिलित करने वाली शास्त्रीय प्रणालियों की गतिशीलता का वर्णन किया गया है।
बल
न्यूटन के अनुसार, बल को परिश्रम या दबाव के रूप में परिभाषित किया जा सकता है जो किसी वस्तु को गति प्रदान कर सकता है। बल की अवधारणा का उपयोग एक ऐसे प्रभाव का वर्णन करने के लिए किया जाता है जो मुक्त शरीर (वस्तु) को गति प्रदान करता है। यह धक्का या खिंचाव हो सकता है, जिसके कारण कोई वस्तु दिशा बदल सकती है, नया वेग हो सकता है, या विरूपण (यांत्रिकी) अस्थायी या स्थायी रूप से हो सकता है। सामान्यतया, बल किसी वस्तु की गति (भौतिकी) को बदलने का कारण बनता है।[1]
न्यूटन के नियम
न्यूटन ने बल को द्रव्यमान को गति देने की क्षमता के रूप में वर्णित किया। उनके तीन कानूनों को संक्षेप में निम्नानुसार किया जा सकता है:
- पहला नियम: यदि किसी वस्तु पर कोई शुद्ध बल नहीं है, तो उसका वेग स्थिर है: या तो वस्तु स्थिरता पर है (यदि इसका वेग शून्य के बराबर है), या यह एक ही दिशा में निरंतर गति से चलती है।[2][3]
- दूसरा नियम: किसी वस्तु के रैखिक संवेग P के परिवर्तन की दर शुद्ध बल Fnet के बराबर होती है, अर्थात, डी'पी'/डीटी = 'Fnet'.
- तीसरा नियम: जब पहला पिंड दूसरे पिंड पर F1 बल लगाता है, तो दूसरा पिंड एक साथ पहले पिंड पर F2 = -F1 बल लगाता है। इसका अर्थ है कि F1 और F2 परिमाण में समान और दिशा में विपरीत हैं।
न्यूटन के गति के नियम केवल जड़त्वीय निर्देश तंत्र में मान्य होते हैं।
यह भी देखें
संदर्भ
- ↑ Goc R (2005). "भौतिकी में बल". Archived from the original (Physics tutorial) on 2010-02-22. Retrieved 2010-02-18.
- ↑ Browne ME (1999). शाउम की सिद्धांत की रूपरेखा और इंजीनियरिंग और विज्ञान के लिए भौतिकी की समस्याएं (Series: Schaum's Outline Series). New York: McGraw-Hill. pp. 58. ISBN 978-0-07-008498-8.
न्यूटन की गति का पहला नियम।
- ↑ Holzner S (2005). डमियों के लिए भौतिकी. Hoboken: Wiley. pp. 64. ISBN 978-0-7645-5433-9.
न्यूटन के गति के नियम
अग्रिम पठन
- Attenborough K, Postema M (2008). A pocket-sized introduction to dynamics. Kingston upon Hull: University of Hull. doi:10.5281/zenodo.7504154. ISBN 978-90-812588-3-8.
- Swagatam (25 March 2010). "Calculating Engineering Dynamics Using Newton's Laws". Bright Hub. Archived from the original on April 12, 2011. Retrieved 2010-04-10.
- Wilson CE (2003). Kinematics and dynamics of machinery. London: Pearson. ISBN 978-0-201-35099-9.
- Dresig HD, Holzweißig F (2010). Dynamics of Machinery: Theory and Applications. Heidelberg: Springer. ISBN 978-3-540-89939-6.