गतिशील आवृत्ति स्केलिंग: Difference between revisions

From Vigyanwiki
(Created page with "{{for|the CPU design principle|Frequency scaling}} {{redirect|CPU throttling|other uses|Throttle (disambiguation)#Computing}} {{Use dmy dates|date=January 2014}} {{More citat...")
 
No edit summary
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{for|the CPU design principle|Frequency scaling}}
{{for|सीपीयू डिजाइन सिद्धांत|आवृत्ति स्केलिंग}}
{{redirect|CPU throttling|other uses|Throttle (disambiguation)#Computing}}
{{redirect|सीपीयू थ्रॉटलिंग|अन्य उपयोग|थ्रॉटल (बहुविकल्पी) कंप्यूटिंग}}
{{Use dmy dates|date=January 2014}}


{{More citations needed|date=September 2021}}
'''गतिशील आवृत्ति स्केलिंग''' (सीपीयू थ्रॉटलिंग के रूप में भी जाना जाता है) [[कंप्यूटर आर्किटेक्चर|कंप्यूटर वास्तु-कला]] में [[ऊर्जा प्रबंधन]] विधि है जिससे सूक्ष्म प्रक्रमक की [[घड़ी की दर|आवृत्ति]] को वास्तविक आवश्यकताओं के आधार पर "फ्लाई पर" स्वचालित रूप से समायोजित किया जा सकता है, जिससे [[पावर प्रबंधन एकीकृत सर्किट|ऊर्जा प्रबंधन एकीकृत परिपथ]] और उत्पन्न ऊष्मा की मात्रा को कम करता है जो टुकड़े द्वारा गतिशील आवृत्ति स्केलिंग मोबाइल उपकरणों पर बैटरी को संरक्षित करने और [[शांत पीसी|शांत कंप्यूटिंग सेटिंग्स]] पर शीतलन लागत और ध्वनि को कम करने में सहायता करती है या अधिक ताप प्रणाली (जैसे खराब [[अधिक काल संकजन]] के पश्चात्) के लिए सुरक्षा उपाय के रूप में उपयोगी हो सकती है।


डायनेमिक फ्रीक्वेंसी स्केलिंग (सीपीयू थ्रॉटलिंग के रूप में भी जाना जाता है) [[कंप्यूटर आर्किटेक्चर]] में एक [[ऊर्जा प्रबंधन]] तकनीक है जिससे माइक्रोप्रोसेसर की [[घड़ी की दर]] को वास्तविक जरूरतों के आधार पर फ्लाई पर स्वचालित रूप से समायोजित किया जा सकता है, [[पावर प्रबंधन एकीकृत सर्किट]] और उत्पन्न गर्मी की मात्रा को कम करता है। चिप द्वारा। डायनेमिक फ्रीक्वेंसी स्केलिंग मोबाइल उपकरणों पर बैटरी को संरक्षित करने और [[शांत पीसी]] पर कूलिंग लागत और शोर को कम करने में मदद करती है, या ओवरहीट सिस्टम (जैसे खराब [[ overclocking ]] के बाद) के लिए सुरक्षा उपाय के रूप में उपयोगी हो सकती है।
गतिशील आवृत्ति स्केलिंग लगभग हमेशा [[गतिशील वोल्टेज स्केलिंग]] के संयोजन में दिखाई देती है, जिससे कि उच्च आवृत्ति के लिए डिजिटल परिपथ के लिए सही परिणाम प्राप्त करने के लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होती है। इस प्रकार संयुक्त विषय को '''गतिशील वोल्टेज और आवृत्ति स्केलिंग (डीवीएफएस)''' के रूप में जाना जाता है।


डायनेमिक फ़्रीक्वेंसी स्केलिंग लगभग हमेशा [[गतिशील वोल्टेज स्केलिंग]] के संयोजन में दिखाई देती है, क्योंकि उच्च फ़्रीक्वेंसी के लिए डिजिटल सर्किट के लिए सही परिणाम प्राप्त करने के लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होती है। संयुक्त विषय को डायनेमिक वोल्टेज और फ़्रीक्वेंसी स्केलिंग (DVFS) के रूप में जाना जाता है।
प्रक्रमक थ्रॉटलिंग को "स्वचालित [[अंडरक्लॉकिंग|अंडरक्लॉकिंग"]] के रूप में भी जाना जाता है। स्वचालित अधिक काल संकजन (बूस्टिंग) भी विधिक रूप से गतिशील आवृत्ति स्केलिंग का रूप है, किन्तु यह अपेक्षाकृत नया है और सामान्यतः थ्रॉटलिंग के साथ इसकी चर्चा नहीं की जाती है।
 
प्रोसेसर थ्रॉटलिंग को स्वचालित [[अंडरक्लॉकिंग]] के रूप में भी जाना जाता है। स्वचालित ओवरक्लॉकिंग (बूस्टिंग) भी तकनीकी रूप से गतिशील आवृत्ति स्केलिंग का एक रूप है, लेकिन यह अपेक्षाकृत नया है और आमतौर पर थ्रॉटलिंग के साथ इसकी चर्चा नहीं की जाती है।


== ऑपरेशन ==
== ऑपरेशन ==
{{see also|Processor power dissipation#Sources}}
{{see also|प्रोसेसर ऊर्जा अपव्यय स्रोत}}
एक चिप द्वारा छितरी हुई गतिशील शक्ति ([[स्विचिंग पावर]]) C·V है<sup>2</sup>·A·f, जहां C प्रति घड़ी चक्र में स्विच की जा रही धारिता है, V [[वोल्टेज]] है, A गतिविधि कारक है<ref name="ActivityFactor">{{cite journal | title = संकेतों का समय-जागरूक शक्ति-इष्टतम क्रम| author = K. Moiseev, A. Kolodny and S. Wimer | journal = ACM Transactions on Design Automation of Electronic Systems |volume=13 |issue=4 |date=September 2008| pages = 1–17 | doi = 10.1145/1391962.1391973 | s2cid = 18895687 }}</ref> चिप में ट्रांजिस्टर द्वारा प्रति घड़ी चक्र स्विचिंग घटनाओं की औसत संख्या का संकेत (एक इकाई रहित मात्रा के रूप में) और f घड़ी की आवृत्ति है।<ref>{{Cite book|first=J. M.|last= Rabaey|title= डिजिटल इंटीग्रेटेड सर्किट|publisher= Prentice Hall|year= 1996}}</ref>
चिप द्वारा छितरी हुई गतिशील शक्ति ([[स्विचिंग पावर|स्विचिंग ऊर्जा]]) C·V<sup>2</sup>·A·f है जहां C प्रति घड़ी चक्र में स्विच की जा रही धारिता है, V [[वोल्टेज]] है, A गतिविधि कारक है<ref name="ActivityFactor">{{cite journal | title = संकेतों का समय-जागरूक शक्ति-इष्टतम क्रम| author = K. Moiseev, A. Kolodny and S. Wimer | journal = ACM Transactions on Design Automation of Electronic Systems |volume=13 |issue=4 |date=September 2008| pages = 1–17 | doi = 10.1145/1391962.1391973 | s2cid = 18895687 }}</ref> जो स्विचिंग घटनाओं की औसत संख्या दर्शाता है चिप में ट्रांजिस्टर द्वारा प्रति घड़ी चक्र (इकाई रहित मात्रा के रूप में) का संकेत और f घड़ी की आवृत्ति है।<ref>{{Cite book|first=J. M.|last= Rabaey|title= डिजिटल इंटीग्रेटेड सर्किट|publisher= Prentice Hall|year= 1996}}</ref>
वोल्टेज इसलिए बिजली के उपयोग और हीटिंग का मुख्य निर्धारक है।<ref>{{cite web|url=https://software.intel.com/en-us/blogs/2014/02/19/why-has-cpu-frequency-ceased-to-grow|author= Victoria Zhislina|date=2014-02-19|title=Why has CPU frequency ceased to grow?|publisher=Intel}}</ref> स्थिर संचालन के लिए आवश्यक वोल्टेज उस आवृत्ति द्वारा निर्धारित किया जाता है जिस पर सर्किट क्लॉक किया जाता है, और यदि आवृत्ति भी कम हो जाती है तो इसे कम किया जा सकता है।<ref>https://www.usenix.org/legacy/events/hotpower/tech/full_papers/LeSueur.pdf {{Bare URL PDF|date=March 2022}}</ref> चिप की कुल शक्ति के लिए अकेले गतिशील शक्ति का हिसाब नहीं है, हालाँकि, स्थिर शक्ति भी है, जो मुख्य रूप से विभिन्न रिसाव धाराओं के कारण है। स्थैतिक बिजली की खपत और स्पर्शोन्मुख निष्पादन समय के कारण यह दिखाया गया है कि सॉफ्टवेयर की ऊर्जा खपत उत्तल ऊर्जा व्यवहार दिखाती है, अर्थात, एक इष्टतम सीपीयू आवृत्ति मौजूद होती है जिस पर ऊर्जा की खपत कम से कम होती है।<ref>{{cite arXiv | title = The Energy/Frequency Convexity Rule: Modeling and Experimental Validation on Mobile Devices |year=2014 | eprint = 1401.4655|author1=Karel De Vogeleer |last2=Memmi |first2=Gerard |last3=Jouvelot |first3=Pierre |last4=Coelho |first4=Fabien |class=cs.OH }}</ref>
[[सबथ्रेशोल्ड रिसाव]] अधिक से अधिक महत्वपूर्ण हो गया है क्योंकि ट्रांजिस्टर का आकार छोटा हो गया है और थ्रेशोल्ड वोल्टेज का स्तर कम हो गया है। एक दशक पहले, गतिशील शक्ति कुल चिप शक्ति का लगभग दो-तिहाई थी। समकालीन सीपीयू और एसओसी में रिसाव धाराओं के कारण बिजली की कमी कुल बिजली खपत पर हावी होती है। रिसाव की शक्ति को नियंत्रित करने के प्रयास में, हाई-κ डाइइलेक्ट्रिक | हाई-के मेटल-गेट और पावर गेटिंग सामान्य तरीके रहे हैं।


डायनेमिक वोल्टेज स्केलिंग एक अन्य संबंधित ऊर्जा संरक्षण तकनीक है जिसे अक्सर फ़्रीक्वेंसी स्केलिंग के संयोजन में उपयोग किया जाता है, क्योंकि जिस आवृत्ति पर चिप चल सकती है वह ऑपरेटिंग वोल्टेज से संबंधित होती है।
सामान्यतः वोल्टेज विद्युत के उपयोग और ताप का मुख्य निर्धारक है।<ref>{{cite web|url=https://software.intel.com/en-us/blogs/2014/02/19/why-has-cpu-frequency-ceased-to-grow|author= Victoria Zhislina|date=2014-02-19|title=Why has CPU frequency ceased to grow?|publisher=Intel}}</ref> स्थिर संचालन के लिए आवश्यक वोल्टेज उस आवृत्ति द्वारा निर्धारित किया जाता है जिस पर परिपथ क्लॉक किया जाता है और यदि आवृत्ति भी कम हो जाती है तब इसे कम किया जा सकता है।<ref>https://www.usenix.org/legacy/events/hotpower/tech/full_papers/LeSueur.pdf {{Bare URL PDF|date=March 2022}}</ref> चिप की कुल शक्ति के लिए अकेले गतिशील शक्ति का हिसाब नहीं है, चूँकि स्थिर शक्ति भी है जो मुख्य रूप से विभिन्न रिसाव धाराओं के कारण है। इस प्रकार स्थैतिक विद्युत की खपत और स्पर्शोन्मुख निष्पादन समय के कारण यह दिखाया गया है कि सॉफ्टवेयर की ऊर्जा खपत उत्तल ऊर्जा व्यवहार दिखाती है अर्थात, इष्टतम सीपीयू आवृत्ति उपस्तिथ होती है जिस पर ऊर्जा की खपत कम से कम होती है।<ref>{{cite arXiv | title = The Energy/Frequency Convexity Rule: Modeling and Experimental Validation on Mobile Devices |year=2014 | eprint = 1401.4655|author1=Karel De Vogeleer |last2=Memmi |first2=Gerard |last3=Jouvelot |first3=Pierre |last4=Coelho |first4=Fabien |class=cs.OH }}</ref>


कुछ विद्युत घटकों की दक्षता, जैसे वोल्टेज नियामक, बढ़ते तापमान के साथ घट जाती है, इसलिए बिजली का उपयोग तापमान के साथ बढ़ सकता है। चूंकि बिजली के बढ़ते उपयोग से तापमान में वृद्धि हो सकती है, वोल्टेज या आवृत्ति में वृद्धि से सिस्टम की बिजली की मांग सीएमओएस सूत्र के संकेत से भी अधिक बढ़ सकती है, और इसके विपरीत।<ref>{{cite web | url = http://www.silentpcreview.com/article821-page5.html | title = Asus EN9600GT Silent Edition Graphics Card | author = Mike Chin | page = 5 | work = Silent PC Review | access-date = 21 April 2008}}</ref><ref name="SPCRNewLevels">{{cite web | url = http://www.silentpcreview.com/article814-page1.html | title = 80 Plus expands podium for Bronze, Silver & Gold | author = Mike Chin | work = Silent PC Review | access-date = 21 April 2008 }}</ref>
[[सबथ्रेशोल्ड रिसाव]] अधिक से अधिक महत्वपूर्ण हो गया है जिससे कि ट्रांजिस्टर का आकार छोटा हो गया है और थ्रेशोल्ड वोल्टेज का स्तर कम हो गया है। दशक पहले गतिशील शक्ति कुल चिप शक्ति का लगभग दो-तिहाई थी। चूँकि समकालीन सीपीयू और एसओसी में रिसाव धाराओं के कारण विद्युत की कमी कुल विद्युत खपत पर हावी होती है। अतः रिसाव की शक्ति को नियंत्रित करने के प्रयास में, हाई-κ मेटल-गेट और ऊर्जा गेटिंग सामान्य विधि होती हैं।


गतिशील वोल्टेज स्केलिंग अन्य संबंधित ऊर्जा संरक्षण विधि है जिसे अधिकांशतः आवृत्ति स्केलिंग के संयोजन में उपयोग किया जाता है जिससे कि जिस आवृत्ति पर चिप चल सकती है वह ऑपरेटिंग वोल्टेज से संबंधित होती है।


सामान्यतः कुछ विद्युत घटकों की दक्षता, जैसे वोल्टेज नियामक, बढ़ते तापमान के साथ घट जाती है, अतः विद्युत का उपयोग तापमान के साथ बढ़ सकता है। चूंकि विद्युत के बढ़ते उपयोग से तापमान में वृद्धि हो सकती है। इस प्रकार वोल्टेज या आवृत्ति में वृद्धि से प्रणाली की विद्युत की मांग सीएमओएस सूत्र के संकेत से भी अधिक बढ़ सकती है और इसके विपरीत भी हो सकती है।<ref>{{cite web | url = http://www.silentpcreview.com/article821-page5.html | title = Asus EN9600GT Silent Edition Graphics Card | author = Mike Chin | page = 5 | work = Silent PC Review | access-date = 21 April 2008}}</ref><ref name="SPCRNewLevels">{{cite web | url = http://www.silentpcreview.com/article814-page1.html | title = 80 Plus expands podium for Bronze, Silver & Gold | author = Mike Chin | work = Silent PC Review | access-date = 21 April 2008 }}</ref>
== प्रदर्शन प्रभाव ==
== प्रदर्शन प्रभाव ==
डायनेमिक फ़्रीक्वेंसी स्केलिंग एक निश्चित समय में प्रोसेसर द्वारा जारी किए जा सकने वाले निर्देशों की संख्या को कम कर देता है, जिससे प्रदर्शन कम हो जाता है। इसलिए, यह आमतौर पर तब उपयोग किया जाता है जब वर्कलोड सीपीयू-बाउंड नहीं होता है।
गतिशील आवृत्ति स्केलिंग निश्चित समय में प्रक्रमक द्वारा जारी किए जा सकने वाले निर्देशों की संख्या को कम कर देता है, जिससे प्रदर्शन कम हो जाता है। अतः यह सामान्यतः तब उपयोग किया जाता है जब कार्यभार सीपीयू-बाउंड नहीं होता है।


स्विचिंग पावर को बचाने के तरीके के रूप में गतिशील आवृत्ति स्केलिंग शायद ही कभी सार्थक है। बिजली की उच्चतम संभावित मात्रा को बचाने के लिए डायनेमिक वोल्टेज स्केलिंग की भी आवश्यकता होती है, क्योंकि वी<sup>2</sup> घटक और तथ्य यह है कि आधुनिक सीपीयू कम पावर निष्क्रिय अवस्थाओं के लिए दृढ़ता से अनुकूलित हैं। अधिकांश स्थिर-वोल्टेज मामलों में, लंबे समय तक कम क्लॉक रेट पर चलने की तुलना में, चरम गति पर संक्षिप्त रूप से दौड़ना और अधिक समय तक गहरी निष्क्रिय अवस्था में रहना (जिसे [[सोने की दौड़]] या कम्प्यूटेशनल स्प्रिंटिंग कहा जाता है) अधिक कुशल होता है। समय और केवल थोड़ी देर के लिए एक हल्की निष्क्रिय अवस्था में रहें। हालांकि, क्लॉक रेट के साथ-साथ वोल्टेज कम करना उन ट्रेड-ऑफ को बदल सकता है।
स्विचिंग ऊर्जा को बचाने की विधि के रूप में गतिशील आवृत्ति स्केलिंग संभवतः ही कभी सार्थक होती है। विद्युत की उच्चतम संभावित मात्रा को बचाने के लिए गतिशील वोल्टेज स्केलिंग की भी आवश्यकता होती है जिससे कि V<sup>2</sup> घटक और तथ्य यह है कि आधुनिक सीपीयू कम ऊर्जा निष्क्रिय अवस्थाओं के लिए दृढ़ता से अनुकूलित हैं। अधिकांश स्थिर-वोल्टेज स्थितियों में, लंबे समय तक कम घड़ी की दर पर चलने की तुलना में, चरम गति पर संक्षिप्त रूप से दौड़ना और अधिक समय तक गहरी निष्क्रिय अवस्था में रहना (जिसे "[[सोने की दौड़|रेस टू आइडल"]] या कम्प्यूटेशनल स्प्रिंटिंग कहा जाता है) अधिक कुशल होता है। इस प्रकार लम्बे समय तक और केवल थोड़ी देर के लिए हल्की निष्क्रिय अवस्था में रहता है। चूंकि, घड़ी की दर के साथ-साथ वोल्टेज कम करना उन ट्रेड-ऑफ को परिवर्तित कर सकता है।


एक संबंधित-लेकिन-विपरीत तकनीक ओवरक्लॉकिंग है, जिससे प्रोसेसर के प्रदर्शन को निर्माता के डिजाइन विनिर्देशों से परे प्रोसेसर की (गतिशील) आवृत्ति को बढ़ाकर बढ़ाया जाता है।
इस प्रकार संबंधित-किन्तु-विपरीत विधि अधिक काल संकजन है, जिससे प्रक्रमक के प्रदर्शन को निर्माता के डिजाइन विनिर्देशों से ऊपर प्रक्रमक की (गतिशील) आवृत्ति को बढ़ाकर बढ़ाया जाता है।


दोनों के बीच एक बड़ा अंतर यह है कि आधुनिक पीसी सिस्टम में ओवरक्लॉकिंग ज्यादातर [[ सामने की ओर बस ]] पर किया जाता है (मुख्यतः क्योंकि गुणक सामान्य रूप से लॉक होता है), लेकिन गतिशील आवृत्ति स्केलिंग [[सीपीयू गुणक]] के साथ की जाती है। इसके अलावा, ओवरक्लॉकिंग अक्सर स्थिर होती है, जबकि गतिशील आवृत्ति स्केलिंग हमेशा गतिशील होती है। यदि चिप गिरावट जोखिम स्वीकार्य हैं, तो सॉफ्टवेयर अक्सर आवृत्ति स्केलिंग एल्गोरिदम में ओवरक्लॉक आवृत्तियों को शामिल कर सकता है।
सामान्यतः दोनों के मध्य बड़ा अंतर यह है कि आधुनिक पीसी प्रणाली में अधिक काल संकजन अधिकांशतः [[ सामने की ओर बस |सामने की ओर]] पर किया जाता है (मुख्यतः जिससे कि गुणक सामान्य रूप से लॉक होता है), किन्तु गतिशील आवृत्ति स्केलिंग [[सीपीयू गुणक]] के साथ की जाती है। इसके अतिरिक्त अधिक काल संकजन अधिकांशतः स्थिर होती है, जबकि गतिशील आवृत्ति स्केलिंग हमेशा गतिशील होती है। यदि चिप गिरावट जोखिम स्वीकार्य हैं, तब सॉफ्टवेयर अधिकांशतः आवृत्ति स्केलिंग एल्गोरिदम में ओवरक्लॉक आवृत्तियों को सम्मिलित कर सकता है।


== विक्रेताओं भर में समर्थन ==
== विक्रेताओं भर में समर्थन ==


=== [[इंटेल]] ===
=== [[इंटेल]] ===
इंटेल की सीपीयू थ्रॉटलिंग तकनीक, [[स्पीडस्टेप]] का उपयोग इसके मोबाइल और डेस्कटॉप सीपीयू लाइनों में किया जाता है।
[[इंटेल]] की सीपीयू थ्रॉटलिंग विधि, [[स्पीडस्टेप]] का उपयोग इसके मोबाइल और डेस्कटॉप सीपीयू रेखाओ में किया जाता है।


=== [[एएमडी]] ===
=== [[एएमडी]] ===
एएमडी दो अलग-अलग सीपीयू थ्रॉटलिंग तकनीकों को नियोजित करता है। AMD की Cool'n'Quiet तकनीक का उपयोग उसके डेस्कटॉप और सर्वर प्रोसेसर लाइनों पर किया जाता है। Cool'n'Quiet का उद्देश्य बैटरी जीवन को बचाना नहीं है, क्योंकि इसका उपयोग AMD के मोबाइल प्रोसेसर लाइन में नहीं किया जाता है, बल्कि इसके बजाय कम गर्मी पैदा करने के उद्देश्य से किया जाता है, जो बदले में सिस्टम पंखे को धीमी गति से स्पिन करने की अनुमति देता है, परिणामस्वरूप कूलर और शांत संचालन होता है, इसलिए प्रौद्योगिकी का नाम। एएमडी का पावरनाउ! सीपीयू थ्रॉटलिंग तकनीक का उपयोग इसके मोबाइल प्रोसेसर लाइन में किया जाता है, हालांकि [[एएमडी K6-2]] जैसे कुछ सहायक सीपीयू डेस्कटॉप में भी पाए जा सकते हैं।
एएमडी दो भिन्न-भिन्न सीपीयू थ्रॉटलिंग विधियों को नियोजित करता है। एएमडी की शीतलन और शांत विधि का उपयोग उसके डेस्कटॉप और सर्वर प्रक्रमक रेखाओ पर किया जाता है। शीतलन और शांत का उद्देश्य बैटरी जीवन को बचाना नहीं है, जिससे कि इसका उपयोग एएमडी के मोबाइल प्रक्रमक रेखा में नहीं किया जाता है, बल्कि इसके अतिरिक्त कम ऊष्मा उत्पन्न करने के उद्देश्य से किया जाता है जो परिवर्तन में प्रणाली पंखे को धीमी गति से चक्रण करने की अनुमति देता है, परिणामस्वरूप शीतलन और शांत संचालन होता है, इसलिए प्रौद्योगिकी का नाम एएमडी का ऊर्जा युक्त सीपीयू थ्रॉटलिंग विधि का उपयोग इसके मोबाइल प्रक्रमक रेखा में किया जाता है, चूंकि [[एएमडी K6-2]] जैसे कुछ सहायक सीपीयू डेस्कटॉप में भी पाए जा सकते हैं।


[[AMD PowerTune]] और [[AMD ZeroCore Power]] [[ ग्राफ़िक्स प्रोसेसिंग युनिट ]] के लिए डायनेमिक फ्रीक्वेंसी स्केलिंग तकनीकें हैं।
[[AMD PowerTune|एएमडी पावरट्यून]] और [[AMD ZeroCore Power|एएमडी ज़ीरोकोर पावर]] [[ ग्राफ़िक्स प्रोसेसिंग युनिट |ग्राफ़िक्स प्रोसेसिंग युनिट (जीपीयू]]) के लिए गतिशील आवृत्ति स्केलिंग प्रौद्योगिकियां हैं।


=== [[वीआईए टेक्नोलॉजीज]] ===
=== [[वीआईए टेक्नोलॉजीज|वीआईए प्रौद्योगिकी]] ===
VIA Technologies के प्रोसेसर [[LongHaul]] (PowerSaver) नामक तकनीक का उपयोग करते हैं, जबकि [[Transmeta]] के संस्करण को [[LongRun]] कहा जाता था।
वीआईए प्रौद्योगिकियों के प्रक्रमक [[LongHaul|लंबी दौड़]] (विद्युत बचाने वाला) नामक विधि का उपयोग करते हैं, जबकि [[Transmeta|ट्रांसमेटा]] के संस्करण को [[LongRun|अन्ततोगत्वा]] कहा जाता था।


साधारण प्रोसेसर चिप का 36-प्रोसेसर एसिंक्रोनस ऐरे फ्रीक्वेंसी, स्टार्ट और स्टॉप में मनमाना परिवर्तन सहित पूरी तरह से अप्रतिबंधित क्लॉक ऑपरेशन (केवल उस फ्रीक्वेंसी की आवश्यकता होती है जो अधिकतम अनुमत से कम हो) का समर्थन करने वाले पहले मल्टी-कोर प्रोसेसर चिप्स में से एक है। सिंपल प्रोसेसर चिप का 167-प्रोसेसर एसिंक्रोनस ऐरे पहला मल्टी-कोर प्रोसेसर चिप है जो अलग-अलग प्रोसेसर को अपनी घड़ी की फ्रीक्वेंसी में पूरी तरह से अप्रतिबंधित बदलाव करने में सक्षम बनाता है।
साधारण प्रक्रमक चिप का 36-प्रक्रमक एएसएपी 1 प्रथम मल्टी-कोर प्रक्रमक चिप्स में से है जो पूर्ण प्रकार से अप्रतिबंधित क्लॉक ऑपरेशन का समर्थन करता है (केवल यह आवश्यक है कि आवृत्ति अधिकतम अनुमत से कम होती है) जिसमें आवृत्ति, स्टार्ट और स्टॉप में मनमाना परिवर्तन सम्मिलित है। 167-प्रक्रमक एएसएपी 2 चिप प्रथम मल्टी-कोर प्रक्रमक चिप है जो व्यक्तिगत प्रक्रमक को अपनी घड़ी की आवृत्ति में पूर्ण प्रकार से अप्रतिबंधित परिवर्तन करने में सक्षम बनाती है।


[[उन्नत कॉन्फ़िगरेशन और पावर इंटरफ़ेस]] स्पेक्स के अनुसार, आधुनिक समय के CPU की C0 कार्यशील स्थिति को तथाकथित P-स्टेट्स (प्रदर्शन स्टेट्स) में विभाजित किया जा सकता है, जो क्लॉक रेट में कमी और T-स्टेट्स (थ्रॉटलिंग स्टेट्स) की अनुमति देता है, जो STPCLK (स्टॉप क्लॉक) सिग्नल डालकर और इस तरह ड्यूटी साइकिल को छोड़ कर एक CPU (लेकिन वास्तविक क्लॉक रेट नहीं) को और नीचे थ्रॉटल करें।
[[उन्नत कॉन्फ़िगरेशन और पावर इंटरफ़ेस|उन्नत कॉन्फ़िगरेशन और ऊर्जा इंटरफ़ेस]] स्पेक्स के अनुसार, आधुनिक समय के सीपीयू की सीओ कार्यशील स्थिति को तथाकथित 'पी"-स्टेट्स (प्रदर्शन स्टेट्स) में विभाजित किया जा सकता है जो घड़ी की दर में कमी और "टी"-स्टेट्स (थ्रॉटलिंग स्टेट्स) की अनुमति देता है, जो STPCLK (स्टॉप क्लॉक) सिग्नल डालकर और इस प्रकार ड्यूटी साइकिल को छोड़ कर सीपीयू (किन्तु वास्तविक घड़ी की दर नहीं) को और नीचे थ्रॉटल करता है।


=== एआरएम ===
=== एआरएम ===
चिप पर विभिन्न एआरएम-आधारित सिस्टम सीपीयू और जीपीयू थ्रॉटलिंग प्रदान करते हैं।
चिप पर विभिन्न एआरएम-आधारित प्रणाली सीपीयू और जीपीयू थ्रॉटलिंग प्रदान करते हैं।


== यह भी देखें ==
== यह भी देखें ==
* गतिशील वोल्टेज स्केलिंग
* गतिशील वोल्टेज स्केलिंग
* [[क्लॉक गेटिंग]]
* [[क्लॉक गेटिंग]]
* [[एचएलटी (x86 निर्देश)]]
* [[एचएलटी (x86 निर्देश)|एचएलटी (एक्स86 निर्देश)]]
पावर सेविंग टेक्नोलॉजीज:
ऊर्जा बचत प्रौद्योगिकियां:
* कूल'एन'क्विट|एएमडी कूल'एन'क्विट (डेस्कटॉप सीपीयू)
* एएमडी शीतलन और शांत (डेस्कटॉप सीपीयू)
* पॉवरनाउ!|एएमडी पॉवरनाउ! (लैपटॉप सीपीयू)
* एएमडी पॉवरनाउ! (लैपटॉप सीपीयू)
* एएमडी पावरट्यून/[[एएमडी पावरप्ले]] (ग्राफिक्स)
* एएमडी ऊर्जाट्यून/[[एएमडी पावरप्ले]] (ग्राफिक्स)
* स्पीडस्टेप (सीपीयू)
* स्पीडस्टेप (सीपीयू)
प्रदर्शन बढ़ाने वाली तकनीकें:
प्रदर्शन बढ़ाने वाली विधि:
* [[एएमडी टर्बो कोर]] (सीपीयू)
* [[एएमडी टर्बो कोर]] (सीपीयू)
* [[इंटेल टर्बो बूस्ट]] (सीपीयू)
* [[इंटेल टर्बो बूस्ट]] (सीपीयू)
Line 70: Line 67:
{{CPU technologies}}
{{CPU technologies}}


{{DEFAULTSORT:Dynamic Frequency Scaling}}[[Category: घड़ी का संकेत]] [[Category: उर्जा संरक्षण]] [[Category: सेंट्रल प्रोसेसिंग यूनिट]] [[Category: कंप्यूटर हार्डवेयर ट्यूनिंग]]
{{DEFAULTSORT:Dynamic Frequency Scaling}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles with bare URLs for citations]]
[[Category:Created On 24/04/2023]]
[[Category:Articles with PDF format bare URLs for citations]]
[[Category:Articles with bare URLs for citations from March 2022]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Dynamic Frequency Scaling]]
[[Category:Collapse templates|Dynamic Frequency Scaling]]
[[Category:Created On 24/04/2023|Dynamic Frequency Scaling]]
[[Category:Machine Translated Page|Dynamic Frequency Scaling]]
[[Category:Missing redirects|Dynamic Frequency Scaling]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Dynamic Frequency Scaling]]
[[Category:Pages with script errors|Dynamic Frequency Scaling]]
[[Category:Sidebars with styles needing conversion|Dynamic Frequency Scaling]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats|Dynamic Frequency Scaling]]
[[Category:Templates that are not mobile friendly|Dynamic Frequency Scaling]]
[[Category:Templates using TemplateData|Dynamic Frequency Scaling]]
[[Category:Wikipedia metatemplates|Dynamic Frequency Scaling]]
[[Category:उर्जा संरक्षण|Dynamic Frequency Scaling]]
[[Category:कंप्यूटर हार्डवेयर ट्यूनिंग|Dynamic Frequency Scaling]]
[[Category:घड़ी का संकेत|Dynamic Frequency Scaling]]
[[Category:सेंट्रल प्रोसेसिंग यूनिट|Dynamic Frequency Scaling]]

Latest revision as of 12:11, 5 May 2023

गतिशील आवृत्ति स्केलिंग (सीपीयू थ्रॉटलिंग के रूप में भी जाना जाता है) कंप्यूटर वास्तु-कला में ऊर्जा प्रबंधन विधि है जिससे सूक्ष्म प्रक्रमक की आवृत्ति को वास्तविक आवश्यकताओं के आधार पर "फ्लाई पर" स्वचालित रूप से समायोजित किया जा सकता है, जिससे ऊर्जा प्रबंधन एकीकृत परिपथ और उत्पन्न ऊष्मा की मात्रा को कम करता है जो टुकड़े द्वारा गतिशील आवृत्ति स्केलिंग मोबाइल उपकरणों पर बैटरी को संरक्षित करने और शांत कंप्यूटिंग सेटिंग्स पर शीतलन लागत और ध्वनि को कम करने में सहायता करती है या अधिक ताप प्रणाली (जैसे खराब अधिक काल संकजन के पश्चात्) के लिए सुरक्षा उपाय के रूप में उपयोगी हो सकती है।

गतिशील आवृत्ति स्केलिंग लगभग हमेशा गतिशील वोल्टेज स्केलिंग के संयोजन में दिखाई देती है, जिससे कि उच्च आवृत्ति के लिए डिजिटल परिपथ के लिए सही परिणाम प्राप्त करने के लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होती है। इस प्रकार संयुक्त विषय को गतिशील वोल्टेज और आवृत्ति स्केलिंग (डीवीएफएस) के रूप में जाना जाता है।

प्रक्रमक थ्रॉटलिंग को "स्वचालित अंडरक्लॉकिंग" के रूप में भी जाना जाता है। स्वचालित अधिक काल संकजन (बूस्टिंग) भी विधिक रूप से गतिशील आवृत्ति स्केलिंग का रूप है, किन्तु यह अपेक्षाकृत नया है और सामान्यतः थ्रॉटलिंग के साथ इसकी चर्चा नहीं की जाती है।

ऑपरेशन

चिप द्वारा छितरी हुई गतिशील शक्ति (स्विचिंग ऊर्जा) C·V2·A·f है जहां C प्रति घड़ी चक्र में स्विच की जा रही धारिता है, V वोल्टेज है, A गतिविधि कारक है[1] जो स्विचिंग घटनाओं की औसत संख्या दर्शाता है चिप में ट्रांजिस्टर द्वारा प्रति घड़ी चक्र (इकाई रहित मात्रा के रूप में) का संकेत और f घड़ी की आवृत्ति है।[2]

सामान्यतः वोल्टेज विद्युत के उपयोग और ताप का मुख्य निर्धारक है।[3] स्थिर संचालन के लिए आवश्यक वोल्टेज उस आवृत्ति द्वारा निर्धारित किया जाता है जिस पर परिपथ क्लॉक किया जाता है और यदि आवृत्ति भी कम हो जाती है तब इसे कम किया जा सकता है।[4] चिप की कुल शक्ति के लिए अकेले गतिशील शक्ति का हिसाब नहीं है, चूँकि स्थिर शक्ति भी है जो मुख्य रूप से विभिन्न रिसाव धाराओं के कारण है। इस प्रकार स्थैतिक विद्युत की खपत और स्पर्शोन्मुख निष्पादन समय के कारण यह दिखाया गया है कि सॉफ्टवेयर की ऊर्जा खपत उत्तल ऊर्जा व्यवहार दिखाती है अर्थात, इष्टतम सीपीयू आवृत्ति उपस्तिथ होती है जिस पर ऊर्जा की खपत कम से कम होती है।[5]

सबथ्रेशोल्ड रिसाव अधिक से अधिक महत्वपूर्ण हो गया है जिससे कि ट्रांजिस्टर का आकार छोटा हो गया है और थ्रेशोल्ड वोल्टेज का स्तर कम हो गया है। दशक पहले गतिशील शक्ति कुल चिप शक्ति का लगभग दो-तिहाई थी। चूँकि समकालीन सीपीयू और एसओसी में रिसाव धाराओं के कारण विद्युत की कमी कुल विद्युत खपत पर हावी होती है। अतः रिसाव की शक्ति को नियंत्रित करने के प्रयास में, हाई-κ मेटल-गेट और ऊर्जा गेटिंग सामान्य विधि होती हैं।

गतिशील वोल्टेज स्केलिंग अन्य संबंधित ऊर्जा संरक्षण विधि है जिसे अधिकांशतः आवृत्ति स्केलिंग के संयोजन में उपयोग किया जाता है जिससे कि जिस आवृत्ति पर चिप चल सकती है वह ऑपरेटिंग वोल्टेज से संबंधित होती है।

सामान्यतः कुछ विद्युत घटकों की दक्षता, जैसे वोल्टेज नियामक, बढ़ते तापमान के साथ घट जाती है, अतः विद्युत का उपयोग तापमान के साथ बढ़ सकता है। चूंकि विद्युत के बढ़ते उपयोग से तापमान में वृद्धि हो सकती है। इस प्रकार वोल्टेज या आवृत्ति में वृद्धि से प्रणाली की विद्युत की मांग सीएमओएस सूत्र के संकेत से भी अधिक बढ़ सकती है और इसके विपरीत भी हो सकती है।[6][7]

प्रदर्शन प्रभाव

गतिशील आवृत्ति स्केलिंग निश्चित समय में प्रक्रमक द्वारा जारी किए जा सकने वाले निर्देशों की संख्या को कम कर देता है, जिससे प्रदर्शन कम हो जाता है। अतः यह सामान्यतः तब उपयोग किया जाता है जब कार्यभार सीपीयू-बाउंड नहीं होता है।

स्विचिंग ऊर्जा को बचाने की विधि के रूप में गतिशील आवृत्ति स्केलिंग संभवतः ही कभी सार्थक होती है। विद्युत की उच्चतम संभावित मात्रा को बचाने के लिए गतिशील वोल्टेज स्केलिंग की भी आवश्यकता होती है जिससे कि V2 घटक और तथ्य यह है कि आधुनिक सीपीयू कम ऊर्जा निष्क्रिय अवस्थाओं के लिए दृढ़ता से अनुकूलित हैं। अधिकांश स्थिर-वोल्टेज स्थितियों में, लंबे समय तक कम घड़ी की दर पर चलने की तुलना में, चरम गति पर संक्षिप्त रूप से दौड़ना और अधिक समय तक गहरी निष्क्रिय अवस्था में रहना (जिसे "रेस टू आइडल" या कम्प्यूटेशनल स्प्रिंटिंग कहा जाता है) अधिक कुशल होता है। इस प्रकार लम्बे समय तक और केवल थोड़ी देर के लिए हल्की निष्क्रिय अवस्था में रहता है। चूंकि, घड़ी की दर के साथ-साथ वोल्टेज कम करना उन ट्रेड-ऑफ को परिवर्तित कर सकता है।

इस प्रकार संबंधित-किन्तु-विपरीत विधि अधिक काल संकजन है, जिससे प्रक्रमक के प्रदर्शन को निर्माता के डिजाइन विनिर्देशों से ऊपर प्रक्रमक की (गतिशील) आवृत्ति को बढ़ाकर बढ़ाया जाता है।

सामान्यतः दोनों के मध्य बड़ा अंतर यह है कि आधुनिक पीसी प्रणाली में अधिक काल संकजन अधिकांशतः सामने की ओर पर किया जाता है (मुख्यतः जिससे कि गुणक सामान्य रूप से लॉक होता है), किन्तु गतिशील आवृत्ति स्केलिंग सीपीयू गुणक के साथ की जाती है। इसके अतिरिक्त अधिक काल संकजन अधिकांशतः स्थिर होती है, जबकि गतिशील आवृत्ति स्केलिंग हमेशा गतिशील होती है। यदि चिप गिरावट जोखिम स्वीकार्य हैं, तब सॉफ्टवेयर अधिकांशतः आवृत्ति स्केलिंग एल्गोरिदम में ओवरक्लॉक आवृत्तियों को सम्मिलित कर सकता है।

विक्रेताओं भर में समर्थन

इंटेल

इंटेल की सीपीयू थ्रॉटलिंग विधि, स्पीडस्टेप का उपयोग इसके मोबाइल और डेस्कटॉप सीपीयू रेखाओ में किया जाता है।

एएमडी

एएमडी दो भिन्न-भिन्न सीपीयू थ्रॉटलिंग विधियों को नियोजित करता है। एएमडी की शीतलन और शांत विधि का उपयोग उसके डेस्कटॉप और सर्वर प्रक्रमक रेखाओ पर किया जाता है। शीतलन और शांत का उद्देश्य बैटरी जीवन को बचाना नहीं है, जिससे कि इसका उपयोग एएमडी के मोबाइल प्रक्रमक रेखा में नहीं किया जाता है, बल्कि इसके अतिरिक्त कम ऊष्मा उत्पन्न करने के उद्देश्य से किया जाता है जो परिवर्तन में प्रणाली पंखे को धीमी गति से चक्रण करने की अनुमति देता है, परिणामस्वरूप शीतलन और शांत संचालन होता है, इसलिए प्रौद्योगिकी का नाम एएमडी का ऊर्जा युक्त सीपीयू थ्रॉटलिंग विधि का उपयोग इसके मोबाइल प्रक्रमक रेखा में किया जाता है, चूंकि एएमडी K6-2 जैसे कुछ सहायक सीपीयू डेस्कटॉप में भी पाए जा सकते हैं।

एएमडी पावरट्यून और एएमडी ज़ीरोकोर पावर ग्राफ़िक्स प्रोसेसिंग युनिट (जीपीयू) के लिए गतिशील आवृत्ति स्केलिंग प्रौद्योगिकियां हैं।

वीआईए प्रौद्योगिकी

वीआईए प्रौद्योगिकियों के प्रक्रमक लंबी दौड़ (विद्युत बचाने वाला) नामक विधि का उपयोग करते हैं, जबकि ट्रांसमेटा के संस्करण को अन्ततोगत्वा कहा जाता था।

साधारण प्रक्रमक चिप का 36-प्रक्रमक एएसएपी 1 प्रथम मल्टी-कोर प्रक्रमक चिप्स में से है जो पूर्ण प्रकार से अप्रतिबंधित क्लॉक ऑपरेशन का समर्थन करता है (केवल यह आवश्यक है कि आवृत्ति अधिकतम अनुमत से कम होती है) जिसमें आवृत्ति, स्टार्ट और स्टॉप में मनमाना परिवर्तन सम्मिलित है। 167-प्रक्रमक एएसएपी 2 चिप प्रथम मल्टी-कोर प्रक्रमक चिप है जो व्यक्तिगत प्रक्रमक को अपनी घड़ी की आवृत्ति में पूर्ण प्रकार से अप्रतिबंधित परिवर्तन करने में सक्षम बनाती है।

उन्नत कॉन्फ़िगरेशन और ऊर्जा इंटरफ़ेस स्पेक्स के अनुसार, आधुनिक समय के सीपीयू की सीओ कार्यशील स्थिति को तथाकथित 'पी"-स्टेट्स (प्रदर्शन स्टेट्स) में विभाजित किया जा सकता है जो घड़ी की दर में कमी और "टी"-स्टेट्स (थ्रॉटलिंग स्टेट्स) की अनुमति देता है, जो STPCLK (स्टॉप क्लॉक) सिग्नल डालकर और इस प्रकार ड्यूटी साइकिल को छोड़ कर सीपीयू (किन्तु वास्तविक घड़ी की दर नहीं) को और नीचे थ्रॉटल करता है।

एआरएम

चिप पर विभिन्न एआरएम-आधारित प्रणाली सीपीयू और जीपीयू थ्रॉटलिंग प्रदान करते हैं।

यह भी देखें

ऊर्जा बचत प्रौद्योगिकियां:

  • एएमडी शीतलन और शांत (डेस्कटॉप सीपीयू)
  • एएमडी पॉवरनाउ! (लैपटॉप सीपीयू)
  • एएमडी ऊर्जाट्यून/एएमडी पावरप्ले (ग्राफिक्स)
  • स्पीडस्टेप (सीपीयू)

प्रदर्शन बढ़ाने वाली विधि:

संदर्भ

  1. K. Moiseev, A. Kolodny and S. Wimer (September 2008). "संकेतों का समय-जागरूक शक्ति-इष्टतम क्रम". ACM Transactions on Design Automation of Electronic Systems. 13 (4): 1–17. doi:10.1145/1391962.1391973. S2CID 18895687.
  2. Rabaey, J. M. (1996). डिजिटल इंटीग्रेटेड सर्किट. Prentice Hall.
  3. Victoria Zhislina (2014-02-19). "Why has CPU frequency ceased to grow?". Intel.
  4. https://www.usenix.org/legacy/events/hotpower/tech/full_papers/LeSueur.pdf[bare URL PDF]
  5. Karel De Vogeleer; Memmi, Gerard; Jouvelot, Pierre; Coelho, Fabien (2014). "The Energy/Frequency Convexity Rule: Modeling and Experimental Validation on Mobile Devices". arXiv:1401.4655 [cs.OH].
  6. Mike Chin. "Asus EN9600GT Silent Edition Graphics Card". Silent PC Review. p. 5. Retrieved 21 April 2008.
  7. Mike Chin. "80 Plus expands podium for Bronze, Silver & Gold". Silent PC Review. Retrieved 21 April 2008.