हैमिल्टनियन सदिश क्षेत्र: Difference between revisions
No edit summary |
|||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
गणित और भौतिकी में, [[सिंपलेक्टिक मैनिफोल्ड]] पर हैमिल्टनियन [[वेक्टर क्षेत्र|सदिश क्षेत्र]] किसी भी ऊर्जा फलन या हैमिल्टनियन के लिए परिभाषित सदिश क्षेत्र है। [[भौतिक विज्ञान]] और गणितज्ञ [[विलियम रोवन हैमिल्टन]] के नाम पर, हैमिल्टनियन सदिश क्षेत्र | गणित और भौतिकी में, [[सिंपलेक्टिक मैनिफोल्ड]] पर '''हैमिल्टनियन [[वेक्टर क्षेत्र|सदिश क्षेत्र]]''' किसी भी ऊर्जा फलन या हैमिल्टनियन के लिए परिभाषित सदिश क्षेत्र है। [[भौतिक विज्ञान]] और गणितज्ञ [[विलियम रोवन हैमिल्टन]] के नाम पर, हैमिल्टनियन सदिश क्षेत्र [[शास्त्रीय यांत्रिकी|यांत्रिकी]] में हैमिल्टन के समीकरणों की ज्यामितीय अभिव्यक्ति है। हैमिल्टनियन सदिश क्षेत्र के [[अभिन्न वक्र]] हैमिल्टनियन रूप में गति के समीकरणों के हल का प्रतिनिधित्व करते हैं। हेमिल्टनियन सदिश क्षेत्र के [[प्रवाह (गणित)]] से उत्पन्न होने वाले सिम्प्लेक्टिक मैनिफोल्ड की भिन्नता को भौतिकी में [[ विहित परिवर्तन |विहित परिवर्तन]] और गणित में (हैमिल्टनियन) [[sympletomorphism|सिम्प्लेक्टमॉर्फिसंस]] के रूप में जाना जाता है।{{sfn|Lee|2003|loc=Chapter 18}} | ||
हैमिल्टनियन सदिश क्षेत्रों को सामान्यतः स्वेच्छ [[जहर कई गुना|पॉइसन मैनिफोल्ड]] पर परिभाषित किया जा सकता है। मैनिफोल्ड f और g के कार्यों के अनुरूप दो हैमिल्टनियन सदिश क्षेत्र का लाई ब्रैकेट स्वयं हैमिल्टनियन सदिश क्षेत्र है, जिसमें f और g [[पॉइसन ब्रैकेट]] द्वारा प्रदान किये गए हैमिल्टनियन हैं। | हैमिल्टनियन सदिश क्षेत्रों को सामान्यतः स्वेच्छ [[जहर कई गुना|पॉइसन मैनिफोल्ड]] पर परिभाषित किया जा सकता है। मैनिफोल्ड f और g के कार्यों के अनुरूप दो हैमिल्टनियन सदिश क्षेत्र का लाई ब्रैकेट स्वयं हैमिल्टनियन सदिश क्षेत्र है, जिसमें f और g [[पॉइसन ब्रैकेट]] द्वारा प्रदान किये गए हैमिल्टनियन हैं। | ||
Line 21: | Line 21: | ||
- \frac{\partial H}{\partial q^i} \right) = \Omega\,\mathrm{d}H,</math> का रूप ले लेता है।{{sfn|Lee|2003|loc=Chapter 18}} | - \frac{\partial H}{\partial q^i} \right) = \Omega\,\mathrm{d}H,</math> का रूप ले लेता है।{{sfn|Lee|2003|loc=Chapter 18}} | ||
जहाँ {{math|Ω}}, 2n × 2n वर्ग | जहाँ {{math|Ω}}, 2n × 2n वर्ग आव्यूह है- | ||
:<math>\Omega = | :<math>\Omega = | ||
Line 33: | Line 33: | ||
\frac{\partial H}{\partial p_i} \end{bmatrix}.</math> | \frac{\partial H}{\partial p_i} \end{bmatrix}.</math> | ||
आव्यूह {{math|Ω}} को अधिकांशतः {{math|'''J'''}} से निरूपित किया जाता है। | |||
मान लीजिए कि ''M'' = '''R'''<sup>2''n''</sup> विहित निर्देशांकों वाला 2n-आयामी सिम्पलेक्टिक सदिश | मान लीजिए कि ''M'' = '''R'''<sup>2''n''</sup> विहित निर्देशांकों वाला 2n-आयामी सिम्पलेक्टिक सदिश समष्टि है। | ||
* यदि <math>H = p_i</math> तब <math>X_H=\partial/\partial q^i; </math> | * यदि <math>H = p_i</math> तब <math>X_H=\partial/\partial q^i; </math> | ||
Line 60: | Line 60: | ||
जहाँ, दाहिने हाथ की ओर हैमिल्टनियन सदिश क्षेत्रों के लाइ ब्रैकेट को हैमिल्टनियन f और g के साथ दर्शाता है। परिणामस्वरूप (पॉइसन ब्रैकेट में प्रमाण), पॉइसन ब्रैकेट [[जैकोबी पहचान]] को संतुष्ट करता है-{{sfn|Lee|2003|loc=Chapter 18}} <math> \{\{f,g\},h\}+\{\{g,h\},f\}+\{\{h,f\},g\}=0, </math> | जहाँ, दाहिने हाथ की ओर हैमिल्टनियन सदिश क्षेत्रों के लाइ ब्रैकेट को हैमिल्टनियन f और g के साथ दर्शाता है। परिणामस्वरूप (पॉइसन ब्रैकेट में प्रमाण), पॉइसन ब्रैकेट [[जैकोबी पहचान]] को संतुष्ट करता है-{{sfn|Lee|2003|loc=Chapter 18}} <math> \{\{f,g\},h\}+\{\{g,h\},f\}+\{\{h,f\},g\}=0, </math> | ||
जिसका अर्थ है कि {{math|''M''}} पर भिन्न-भिन्न कार्यों का सदिश | जिसका अर्थ है कि {{math|''M''}} पर भिन्न-भिन्न कार्यों का सदिश समष्टि, पॉइसन ब्रैकेट के साथ संपन्न होता है, {{math|'''R'''}} पर [[झूठ बीजगणित|लाइ बीजगणित]] की संरचना है और असाइनमेंट {{math|''f'' ↦ ''X<sub>f</sub>''}} लाइ बीजगणित समरूपता है, जिसके कर्नेल (रैखिक बीजगणित) में स्थानीय रूप से स्थिर कार्य होते हैं। | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
Line 104: | Line 104: | ||
{{refend}} | {{refend}} | ||
[[Category:Created On 25/04/2023]] | [[Category:Created On 25/04/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] |
Latest revision as of 15:04, 30 October 2023
गणित और भौतिकी में, सिंपलेक्टिक मैनिफोल्ड पर हैमिल्टनियन सदिश क्षेत्र किसी भी ऊर्जा फलन या हैमिल्टनियन के लिए परिभाषित सदिश क्षेत्र है। भौतिक विज्ञान और गणितज्ञ विलियम रोवन हैमिल्टन के नाम पर, हैमिल्टनियन सदिश क्षेत्र यांत्रिकी में हैमिल्टन के समीकरणों की ज्यामितीय अभिव्यक्ति है। हैमिल्टनियन सदिश क्षेत्र के अभिन्न वक्र हैमिल्टनियन रूप में गति के समीकरणों के हल का प्रतिनिधित्व करते हैं। हेमिल्टनियन सदिश क्षेत्र के प्रवाह (गणित) से उत्पन्न होने वाले सिम्प्लेक्टिक मैनिफोल्ड की भिन्नता को भौतिकी में विहित परिवर्तन और गणित में (हैमिल्टनियन) सिम्प्लेक्टमॉर्फिसंस के रूप में जाना जाता है।[1]
हैमिल्टनियन सदिश क्षेत्रों को सामान्यतः स्वेच्छ पॉइसन मैनिफोल्ड पर परिभाषित किया जा सकता है। मैनिफोल्ड f और g के कार्यों के अनुरूप दो हैमिल्टनियन सदिश क्षेत्र का लाई ब्रैकेट स्वयं हैमिल्टनियन सदिश क्षेत्र है, जिसमें f और g पॉइसन ब्रैकेट द्वारा प्रदान किये गए हैमिल्टनियन हैं।
परिभाषा
मान लीजिए कि (M, ω) सिंपलेक्टिक मैनिफोल्ड है। चूंकि सिंपलेक्टिक रूप ω अविकृत है,
स्पर्शरेखा बंडल TM और कॉटैंजेंट बंडल T*M के मध्य, व्युत्क्रम के साथ फाइबरवाइज-रैखिक समरूपता स्थापित करता है।
इसलिए, सिंपलेक्टिक मैनिफोल्ड M पर रूप को सदिश क्षेत्रों और प्रत्येक भिन्न-भिन्न कार्य के साथ प्रमाणित किया जा सकता है, H: M → R अद्वितीय सदिश क्षेत्र XH निर्धारित करता है। M पर प्रत्येक सदिश क्षेत्र Y को परिभाषित करके हैमिल्टनियन सदिश क्षेत्र को हैमिल्टनियन H से अंकित किया जाता है,
टिप्पणी- लेखक हैमिल्टनियन सदिश क्षेत्र को विपरीत चिह्न के साथ परिभाषित करते हैं। भौतिक और गणितीय साहित्य में भिन्न-भिन्न परिपाटियों के प्रति सचेत रहना चाहिए।
उदाहरण
मान लीजिए कि M, 2n-आयामी सिम्प्लेक्टिक मैनिफोल्ड है। स्थानीय रूप से, M पर विहित निर्देशांक (q1, ..., qn, p1, ..., pn) का चयन कर सकते हैं, जिसमें का सिम्प्लेक्टिक रूप व्यक्त किया गया है|[2]
जहाँ, d बाह्य व्युत्पन्न को दर्शाता है और ∧ बाह्य उत्पाद को दर्शाता है। हैमिल्टनियन सदिश क्षेत्र हैमिल्टनियन H के साथ का रूप ले लेता है।[1]
जहाँ Ω, 2n × 2n वर्ग आव्यूह है-
और
आव्यूह Ω को अधिकांशतः J से निरूपित किया जाता है।
मान लीजिए कि M = R2n विहित निर्देशांकों वाला 2n-आयामी सिम्पलेक्टिक सदिश समष्टि है।
- यदि तब
- यदि तब
- यदि तब
- यदि तब
गुण
- f ↦ Xf रैखिक है, जिससे कि दो हैमिल्टनियन कार्यों का योग संगत हैमिल्टनियन सदिश क्षेत्रों के योग में परिवर्तित हो जाता है।
- मान लीजिए कि (q1, ..., qn, p1, ..., pn), M पर विहित निर्देशांक हैं। वक्र γ(t) = (q(t),p(t)) हैमिल्टनियन सदिश क्षेत्र XH का अभिन्न वक्र है यदि हैमिल्टन के समीकरणों का हल है-[1]
- हैमिल्टनियन H अभिन्न वक्रों के साथ स्थिर है, क्योंकि , अर्थात्, H(γ(t)) वास्तव में t से स्वतंत्र है। यह गुण हैमिल्टनियन यांत्रिकी में ऊर्जा के संरक्षण के समरूप है।
- सामान्यतः, यदि दो फलन F और H में शून्य पॉइसन ब्रैकेट है (cf. नीचे), तो F, H के अभिन्न वक्रों के साथ स्थिर रहता है और इसी प्रकार, H, F के अभिन्न वक्रों के साथ स्थिर रहता है। यह तथ्य नोएदर के प्रमेय का गणितीय सिद्धांत है।[nb 1]
- सिम्प्लेक्टिक रूप ω हैमिल्टनियन प्रवाह द्वारा संरक्षित होता है। समान रूप से, लाई व्युत्पन्न
पॉइसन ब्रैकेट
हेमिल्टनियन सदिश क्षेत्र की धारणा सिम्प्लेक्टिक मैनिफोल्ड M, पॉइसन ब्रैकेट पर भिन्न-भिन्न कार्यों पर विषमतलीय-सममित द्विरेखीय रूप है-
जहाँ, सदिश क्षेत्र X के साथ लाइ व्युत्पन्न को दर्शाता है। इसके अतिरिक्त, को प्रमाणित करता है। [1]
जहाँ, दाहिने हाथ की ओर हैमिल्टनियन सदिश क्षेत्रों के लाइ ब्रैकेट को हैमिल्टनियन f और g के साथ दर्शाता है। परिणामस्वरूप (पॉइसन ब्रैकेट में प्रमाण), पॉइसन ब्रैकेट जैकोबी पहचान को संतुष्ट करता है-[1]
जिसका अर्थ है कि M पर भिन्न-भिन्न कार्यों का सदिश समष्टि, पॉइसन ब्रैकेट के साथ संपन्न होता है, R पर लाइ बीजगणित की संरचना है और असाइनमेंट f ↦ Xf लाइ बीजगणित समरूपता है, जिसके कर्नेल (रैखिक बीजगणित) में स्थानीय रूप से स्थिर कार्य होते हैं।
टिप्पणियाँ
टिप्पणियाँ
कार्य उद्धृत
- Abraham, Ralph; Marsden, Jerrold E. (1978). यांत्रिकी की नींव. London: Benjamin-Cummings. ISBN 978-080530102-1.अनुभाग 3.2 देखें।
- Arnol'd, V.I. (1997). शास्त्रीय यांत्रिकी के गणितीय तरीके. Berlin etc: Springer. ISBN 0-387-96890-3.
- Frankel, Theodore (1997). भौतिकी की ज्यामिति. Cambridge University Press. ISBN 0-521-38753-1.
- Lee, J. M. (2003), Introduction to Smooth manifolds, Springer Graduate Texts in Mathematics, vol. 218, ISBN 0-387-95448-1
- McDuff, Dusa; Salamon, D. (1998). सिम्प्लेक्टिक टोपोलॉजी का परिचय. Oxford Mathematical Monographs. ISBN 0-19-850451-9.