आवधिक आरेख (ज्यामिति): Difference between revisions
(Created page with "{{Other uses|Periodic graph (disambiguation){{!}}Periodic graph}} एक ज्यामितीय ग्राफ सिद्धांत (कुछ यूक्ल...") |
m (Arti moved page आवधिक ग्राफ (ज्यामिति) to आवधिक आरेख (ज्यामिति) without leaving a redirect) |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Other uses| | {{Other uses|आवधिक आरेख (disambiguation){{!}}आवधिक आरेख}} | ||
एक [[ज्यामितीय ग्राफ सिद्धांत]] (कुछ [[यूक्लिडियन अंतरिक्ष]] में | एक [[ज्यामितीय ग्राफ सिद्धांत|यूक्लिडियन आरेख]] (कुछ [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] में अंतःस्थापित किया गया आरेख) आवधिक है यदि इस यूक्लिडियन समष्टि का एक [[आधार (रैखिक बीजगणित)]] उपस्थित है जिसका संबंधित [[अनुवाद (ज्यामिति)]] उस आरेख की [[समरूपता समूह|समरूपता]] को प्रेरित करता है (अर्थात, यूक्लिडियन समष्टि में अंतःस्थापित किए गए आरेख में ऐसे किसी भी अनुवाद के अनुप्रयोग आरेख को अपरिवर्तित छोड़ देता है)। समतुल्य रूप से, एक आवधिक यूक्लिडियन आरेख एक परिमित आरेख पर एक एबेलियन आवरण आरेख का आवधिक प्रतिफलन है।<ref>{{Citation | ||
|last = Sunada | |last = Sunada | ||
|first = T. | |first = T. | ||
Line 18: | Line 18: | ||
|publisher = Springer | |publisher = Springer | ||
|year = 2012 | |year = 2012 | ||
}}</ref> | }}</ref> यूक्लिडियन आरेख समान रूप से [[असतत स्थान|असतत]] होता है यदि किन्हीं दो शीर्षों के मध्य न्यूनतम दूरी होती है। आवधिक रेखांकन समष्टि (या मधुकोष) के टेसलेशन और उनके समरूपता समूहों की ज्यामिति से निकटता से संबंधित हैं, इसलिए [[ज्यामितीय समूह सिद्धांत]] के साथ-साथ [[असतत ज्यामिति]] और [[बहुतलीय]] सिद्धांत और इसी तरह के क्षेत्रों से संबंधित हैं। | ||
आवधिक रेखांकन में अधिकांश प्रयास प्राकृतिक विज्ञान और अभियांत्रिकी के अनुप्रयोगों से प्रेरित होता है, विशेष रूप से [[क्रिस्टल इंजीनियरिंग|क्रिस्टल अभियांत्रिकी,]] [[क्रिस्टल संरचना भविष्यवाणी|क्रिस्टल पूर्वानुमान]] (प्रारुप) और प्रतिदर्श क्रिस्टल आचरण के लिए त्रि-आयामी [[क्रिस्टल जाल|क्रिस्टल नेट]] से प्रेरित होता है। अति बृहत् एकीकरण (वीएलएसआई) परिपथ प्रतिदर्श में आवधिक आरेख का भी अध्ययन किया गया है।<ref>{{Citation|last1 = Cohen|first1 = E.|author1-link=Edith Cohen|last2 = Megiddo|first2 = N.|author2-link=Nimrod Megiddo|title = Recognizing Properties of Periodic Graphs|journal = DIMACS Series in Discrete Mathematics and Theoretical Computer Science 4: Applied Geometry and Discrete Mathematics|volume = 4|year = 1991|pages = 135–146|url = http://theory.stanford.edu/~megiddo/pdf/RecognizingX.pdf|accessdate = August 15, 2010|doi = 10.1090/dimacs/004/10|series = DIMACS Series in Discrete Mathematics and Theoretical Computer Science|isbn = 9780821865934}}</ref> | |||
== मूल सूत्रीकरण == | == मूल सूत्रीकरण == | ||
एक ज्यामितीय | एक ज्यामितीय आरेख सिद्धांत एक जोड़ी (V, E) है, जहां V बिंदुओं का एक समुच्चय है (कभी-कभी शीर्ष या नोड्स कहा जाता है) और E किनारों का एक समुच्चय होता है (कभी-कभी बांड कहा जाता है), जहां प्रत्येक किनारा दो शिखरों में सम्मलित होता है। जबकि दो शीर्षों u और v को जोड़ने वाले किनारे को सामान्यतः [[सेट (गणित)|समुच्चय (गणित)]] {u, v} के रूप में समझा जाता है, किनारों को कभी-कभी u और v को जोड़ने वाले [[रेखा खंड]] के रूप में व्याख्या किया जाता है ताकि परिणामी संरचना एक CW सम्मिश्र हो जाता है। ज्यामितीय रेखांकन को 'नेट' ([[नेट (पॉलीहेड्रॉन)|बहुतलीय नेट]] के विपरीत) के रूप में संदर्भित करने के लिए बहुतलीय और रासायनिक साहित्य में एक प्रवृत्ति है, और रासायनिक साहित्य में नामपद्धति आरेख सिद्धांत से भिन्न है।<ref>{{Citation | ||
|last = Delgado-Friedrichs | |last = Delgado-Friedrichs | ||
|first = O. | |first = O. | ||
Line 36: | Line 34: | ||
|doi = 10.1016/j.jssc.2005.06.011 | |doi = 10.1016/j.jssc.2005.06.011 | ||
|issue = 8|bibcode = 2005JSSCh.178.2480D | |issue = 8|bibcode = 2005JSSCh.178.2480D | ||
}}</ref> अधिकांश साहित्य आवधिक रेखांकन पर ध्यान केंद्रित करते हैं जो कि असतत | }}</ref> अधिकांश साहित्य आवधिक रेखांकन पर ध्यान केंद्रित करते हैं जो कि असतत समष्टि हैं जिसमें e> 0 उपस्थित होता है जैसे कि किसी भी दो अलग-अलग शीर्षों के लिए, उनकी दूरी |''u'' – ''v''| > ''e'' अलग होती है। | ||
गणितीय दृष्टिकोण से, एक यूक्लिडियन आवधिक | गणितीय दृष्टिकोण से, एक यूक्लिडियन आवधिक आरेख एक परिमित आरेख पर आरेख को आच्छद करने वाले अनंत-गुना एबेलियन का प्रतिफलन है। | ||
=== आवधिकता प्राप्त करना === | === आवधिकता प्राप्त करना === | ||
क्रिस्टल संरचनात्मक समष्टि समूहों की पहचान और वर्गीकरण ने उन्नीसवीं सदी में बहुत समय लिया, और सूची की पूर्णता की पुष्टि [[एवग्राफ फेडोरोव|एवरग्राफ फेडोरोव]] और [[स्कोएनफ्लाइज़]] के प्रमेयों द्वारा समाप्त हो गई थी।<ref>{{Citation | |||
|first = M. | |first = M. | ||
|last = Senechal | authorlink = Marjorie Senechal | |last = Senechal | authorlink = Marjorie Senechal | ||
Line 50: | Line 48: | ||
|year = 1990 | |year = 1990 | ||
|pages = 43–59 | |pages = 43–59 | ||
|publisher = Kluwer}}</ref> | |publisher = Kluwer}}</ref> डेविड हिल्बर्ट की अठारहवीं समस्या में समस्या का सामान्यीकृत किया गया था, और फेडोरोव-शॉनफ्लाइज़ प्रमेय को [[लुडविग बीबरबैक]] द्वारा उच्च आयामों के लिए सामान्यीकृत किया गया था।<ref>{{Citation | ||
|first = E. B. | |first = E. B. | ||
|last = Vinberg | |last = Vinberg | ||
Line 61: | Line 59: | ||
|year = 1993 | |year = 1993 | ||
|publisher = Springer-Verlag}}</ref> | |publisher = Springer-Verlag}}</ref> | ||
फेडोरोव-शॉनफ्लाई प्रमेय निम्नलिखित का दावा करता है। मान लीजिए कि किसी को 3-समष्टि में एक यूक्लिडियन आरेख दिया गया है जैसे कि निम्नलिखित सत्य हैं: | |||
# यह समान रूप से असतत है जिसमें e> 0 उपस्थित है जैसे कि किन्हीं दो अलग-अलग शीर्षों के लिए, उनकी दूरी |''u'' – ''v''| > ''e अलग'' है। | |||
# यह समष्टि को इस अर्थ में पूर्ण करता है कि 3-समष्टि में किसी भी सतह के लिए, सतह के दोनों किनारों पर आरेख के शीर्ष उपस्थित होते हैं। | |||
# प्रत्येक शीर्ष परिमित [[डिग्री (ग्राफ सिद्धांत)|डिग्री (आरेख सिद्धांत)]] या संयोजकता का होता है। | |||
# ज्यामितीय आरेख के समरूपता समूह के अंतर्गत शीर्षों की बहुत कक्षाएँ हैं। | |||
विज्ञान और | फिर यूक्लिडियन आरेख आवधिक है जिसमें इसके समरूपता समूह में अनुवाद के सदिश अंतर्निहित यूक्लिडियन समष्टि को विस्तृत करते हैं, और इसका समरूपता समूह एक क्रिस्टल संरचनात्मक [[अंतरिक्ष समूह|समष्टि समूह]] है। | ||
विज्ञान और अभियांत्रिकी में व्याख्या यह है कि एक यूक्लिडियन आरेख समष्टि के माध्यम से विस्तृत हुए पदार्थ का प्रतिनिधित्व करने वाला एक यूक्लिडियन आलेख प्रतिबंध (1), (2), और (3) को पूरा करता है, क्वासिक क्रिस्टल से ग्लास तक गैर-क्रिस्टलीय पदार्थ (4) का उल्लंघन करना चाहिए। हालांकि, पिछली तिमाही शताब्दी में, क्वासिक क्रिस्टल को क्रिस्टल के साथ पर्याप्त रूप से कई रासायनिक और भौतिक गुणों को साझा करने के लिए मान्यता दी गई है कि क्वासिक क्रिस्टल को <nowiki>''</nowiki>क्रिस्टल<nowiki>''</nowiki> के रूप में वर्गीकृत करने और फलस्वरूप <nowiki>''</nowiki>क्रिस्टल<nowiki>''</nowiki> की परिभाषा को समायोजित करने की प्रवृत्ति दी गई है।<ref>{{Citation | |||
|last = Senechal | |last = Senechal | ||
|first = M. | authorlink = Marjorie Senechal | |first = M. | authorlink = Marjorie Senechal | ||
Line 77: | Line 76: | ||
|year = 1995 | |year = 1995 | ||
|pages = 27}}</ref> | |pages = 27}}</ref> | ||
== गणित और संगणना == | == गणित और संगणना == | ||
आवधिक रेखांकन की अधिकांश सैद्धांतिक जांच ने उन्हें उत्पन्न करने और वर्गीकृत करने की समस्याओं पर ध्यान केंद्रित किया है। | आवधिक रेखांकन की अधिकांश सैद्धांतिक जांच ने उन्हें उत्पन्न करने और वर्गीकृत करने की समस्याओं पर ध्यान केंद्रित किया है। | ||
=== वर्गीकरण की समस्याएं === | === वर्गीकरण की समस्याएं === | ||
वर्गीकरण की समस्याओं पर अधिकांश कार्य तीन आयामों पर केंद्रित है, विशेष रूप से | वर्गीकरण की समस्याओं पर अधिकांश कार्य तीन आयामों पर केंद्रित है, विशेष रूप से क्रिस्टल मूल्य के वर्गीकरण पर, अर्थात्, आवधिक रेखांकन जो एक क्रिस्टल में किनारों द्वारा इंगित बांड के साथ परमाणुओं या आणविक वस्तुओं के स्थान के लिए विवरण या प्रारुप के रूप में काम कर सकता हैं। अधिक लोकप्रिय वर्गीकरण मानदंडों में से एक आरेख समाकृतिकता है, जिसे क्रिस्टल संरचनात्मक[[ समरूपता (क्रिस्टलोग्राफी) | समाकृतिकता]] के साथ अस्पष्ट नहीं होना चाहिए। दो आवधिक रेखांकन को प्रायः समसामयिक रूप से समतुल्य कहा जाता है यदि वे समरूपीय हैं, हालांकि जरूरी नहीं कि [[होमोटोपिक|समस्थानी]] होता है। यद्यपि आरेख़ समाकृतिकता समस्या क्रिस्टल नेट सांस्थितिक समतुल्यता के लिए बहुपद-समय कम करने योग्य है (सांस्थितिक समतुल्यता को बहुपद समय गणना योग्य नहीं होने के अर्थ में <nowiki>''</nowiki>अभिकलनीयतः रूप से अट्रैक्टिव<nowiki>''</nowiki> होने के लिए एक अभ्यर्थी बनाते हुए), एक क्रिस्टल नेट को सामान्यतः उपन्यास के रूप में माना जाता है अगर और केवल अगर कोई सांस्थितिक रूप से समतुल्य नेट ज्ञात नहीं है। इसने सांस्थितिक निश्चर पर ध्यान केंद्रित किया है। | ||
एक अपरिवर्तनीय न्यूनतम | एक अपरिवर्तनीय न्यूनतम चक्रों की सरणी है (प्रायः रसायन विज्ञान साहित्य में वलय कहा जाता है) सामान्य शीर्षों के बारे में सरणी और श्लाफली प्रतीक में प्रतिनिधित्व किया जाता है। एक क्रिस्टल नेट का चक्र एक अन्य अपरिवर्तनीय से संबंधित <ref>{{Citation | ||
|last = Eon | |last = Eon | ||
|first = J. G. | |first = J. G. | ||
Line 97: | Line 94: | ||
|doi=10.1107/s0108767303022037|pmid = 14691323 | |doi=10.1107/s0108767303022037|pmid = 14691323 | ||
|bibcode = 2004AcCrA..60....7E | |bibcode = 2004AcCrA..60....7E | ||
}}</ref> | }}</ref> हैं, जो कि समन्वय अनुक्रम (या टोपोलॉजी में शेल मानचित्र<ref>{{Citation | ||
|first = T. | |first = T. | ||
|last = Aste | |last = Aste | ||
Line 112: | Line 109: | ||
|bibcode = 1998cond.mat..3183A | |bibcode = 1998cond.mat..3183A | ||
|title = THE SHELL MAP: The structure of froths through a dynamical map | |title = THE SHELL MAP: The structure of froths through a dynamical map | ||
}}</ref>), जिसे | }}</ref>), जिसे निम्नानुसार परिभाषित किया गया है। सबसे पहले, एक आरेख में एक शीर्ष ''v'' से एक दूरी अनुक्रम ''n''<sub>1</sub>, ''n''<sub>2</sub>, ''n''<sub>3</sub>, ... है, जहां ''n<sub>i</sub>'' ''v'' से दूरी ''i'' के शीर्षों की संख्या है। समन्वय अनुक्रम ''s''<sub>1</sub>, ''s''<sub>2</sub>, ''s''<sub>3</sub>, ...है, जहां ''s<sub>i</sub>'' क्रिस्टल नेट (कक्षाओं) के शीर्षों के दूरी अनुक्रमों की i-वें प्रविष्टियों का भारित माध्य है, जहाँ भार प्रत्येक कक्षा के शीर्षों का स्पर्शोन्मुख अनुपात है। समन्वय अनुक्रम के संचयी योग को सांस्थितिक घनत्व के रूप में दर्शाया गया है, और पहले दस शब्दों का योग (शून्य-वें पद के लिए धन 1) - जिसे प्रायः TD10 को निरूपित किया जाता है - क्रिस्टल नेट डेटाबेस में एक मानक अन्वेषण शब्द है। सांस्थितिक घनत्व के गणितीय स्वरूप के लिए देखें<ref>M. Kotani and [[Toshikazu Sunada|T. Sunada]] "Geometric aspects of large deviations for random walks on crystal lattices" In: ''Microlocal Analysis and Complex Fourier Analysis'' (T. Kawai and K. Fujita, Ed.), World Scientific, 2002, pp. 215–237.</ref> जो सरल यादृच्छिक चलने की बड़ी विचलन गुण से निकटता से संबंधित है। | ||
टेसलेशन और यूक्लिडियन | टेसलेशन और यूक्लिडियन आरेख के मध्य संबंध से एक और अपरिवर्तनीय उत्पन्न होता है। यदि हम एक टेसलेशन को (संभवतः बहुतलीय) ठोस क्षेत्रों, (संभवतः बहुभुज) विष्ठा, (संभवतः रैखिक) घटता, और शीर्ष-अर्थात, सीडब्ल्यू सम्मिश्र के रूप में मानते हैं - तो वक्र और शीर्ष टेसलेशन के यूक्लिडियन आरेख (या 1[[एन-कंकाल|-रूपरेखा]]) बनाते हैं। (इसके अलावा, टाइल्स का आसन्न आरेख एक अन्य यूक्लिडियन आरेख को प्रेरित करता है।) यदि टेसलेशन में बहुत[[ प्रोटोटाइप के लिए | प्रोटोटाइप]] हैं, तो परिणामी यूक्लिडियन आरेख आवधिक होते है। विपरीत दिशा में जाने पर, एक टेसलेशन का प्रोटोटाइल जिसकी 1-[[एन-कंकाल|रूपरेखा]] दिए गए आवधिक आरेख (सांस्थितिक रूप से समतुल्य) है, एक के पास एक और निश्चर है, और यह निश्चर है जिसकी गणना कंप्यूटर क्रमादेश TOPOS द्वारा की जाती है।<ref>{{Citation | ||
|last = Blatov | |last = Blatov | ||
|first = V. A. | |first = V. A. | ||
Line 135: | Line 119: | ||
|url = http://www.topos.ssu.samara.ru/ | |url = http://www.topos.ssu.samara.ru/ | ||
|accessdate = August 15, 2010}}</ref> | |accessdate = August 15, 2010}}</ref> | ||
=== आवधिक रेखांकन उत्पन्न करना === | |||
कई उपस्थित आवधिक आरेख़ गणना कलनविधि हैं, जिनमें उपस्थित नेट को नए बनाने के लिए संशोधित करना सम्मलित है,<ref>{{Citation | |||
=== आवधिक रेखांकन | |||
कई | |||
|last = Earl | |last = Earl | ||
|first = D. J. | |first = D. J. | ||
Line 152: | Line 134: | ||
}}</ref> लेकिन प्रगणकों के दो प्रमुख वर्ग प्रतीत होते हैं। | }}</ref> लेकिन प्रगणकों के दो प्रमुख वर्ग प्रतीत होते हैं। | ||
प्रमुख व्यवस्थित क्रिस्टल नेट | प्रमुख व्यवस्थित क्रिस्टल नेट गणना कलनविधि में से <ref>{{ Citation | ||
|last = Delgado Friedrichs | |last = Delgado Friedrichs | ||
|first = O. | |first = O. | ||
Line 171: | Line 153: | ||
|doi=10.1038/23210 | |doi=10.1038/23210 | ||
|postscript = .|bibcode = 1999Natur.400..644D | |postscript = .|bibcode = 1999Natur.400..644D | ||
}}</ref> [[बोरिस डेलौने]] और एंड्रियास ड्रेस द्वारा श्लाफली प्रतीक के सामान्यीकरण द्वारा | }}</ref> [[बोरिस डेलौने]] और एंड्रियास ड्रेस द्वारा श्लाफली प्रतीक के सामान्यीकरण द्वारा टेसलेशन के प्रतिनिधित्व पर आधारित है, जिसके द्वारा किसी भी टेसलेशन (किसी भी आयाम) को एक परिमित संरचना द्वारा दर्शाया जा सकता है,<ref>{{Citation | ||
|last = Dress | |last = Dress | ||
|first = A. | |first = A. | ||
Line 188: | Line 170: | ||
|pages = 111–119 | |pages = 111–119 | ||
|publisher = Kluwer | |publisher = Kluwer | ||
|year = 1995}}</ref> जिसे हम ड्रेस- | |year = 1995}}</ref> जिसे हम ड्रेस-डेलानी का प्रतीक कह सकते हैं। ड्रेस-डेलानी प्रतीकों का कोई भी प्रभावी प्रगणक प्रभावी रूप से उन आवधिक नेट की गणना कर सकता है जो टेसलेशन के अनुरूप हैं। डेलगाडो-फ्रेडरिक्स ''एट अल'' के त्रि-आयामी ड्रेस-डेलानी प्रतीक प्रगणक ने कई उपन्यास क्रिस्टल नेट की भविष्यवाणी की है जो बाद में संश्लेषित किए गए थे।<ref>{{Citation | ||
|last = Nouar | |last = Nouar | ||
|last2 = Eubank | |last2 = Eubank | ||
Line 208: | Line 190: | ||
|first4 = Lukasz | |first4 = Lukasz | ||
|first5 = Michael J. | |first5 = Michael J. | ||
|first6 = Mohamed}}</ref> इस | |first6 = Mohamed}}</ref> इस मध्य, एक द्वि-आयामी ड्रेस-डेलानी प्रगणक द्वि-आयामी अतिपरवलयिक समष्टि के रेटिक्यूलेशन उत्पन्न करता है जो शल्यक्रिया चिकित्सा से विच्छेदित होते है और [[गायरॉइड]], डायमंड या अभाज्य जैसे तीन गुना आवधिक न्यूनतम सतह के चारों ओर आच्छादित किया जाता है, जिसने कई उपन्यास क्रिस्टल नेट उत्पन्न किए जाते हैं।<ref>{{Citation | ||
<ref>{{Citation | |||
|title = EPINET: Euclidean Patterns in Non-Euclidean Tilings | |title = EPINET: Euclidean Patterns in Non-Euclidean Tilings | ||
|url = http://epinet.anu.edu.au/ | |url = http://epinet.anu.edu.au/ | ||
|accessdate = January 30, 2013}} | |accessdate = January 30, 2013}} | ||
</ref> | </ref> | ||
एक अन्य | |||
एक अन्य उपस्थित प्रगणक वर्तमान में जिओलाइट्स के प्रशंसनीय क्रिस्टल नेट बनाने पर केंद्रित है। 3-समष्टि में समरूपता समूह का विस्तार 3-समष्टि के एक [[मौलिक डोमेन|मौलिक प्रक्षेत्र]] (या क्षेत्र) के लक्षण वर्णन की अनुमति देता है, जिसका नेट के साथ प्रतिच्छेदन एक उपआरेख को प्रेरित करता है, जो सामान्य स्थिति में, शीर्ष की प्रत्येक कक्षा से एक शीर्ष होता है। यह उपआरेख संबद्ध हो सकता है, और यदि एक शीर्ष घूर्णन की धुरी या नेट के समरूपता के किसी अन्य निश्चित बिंदु पर स्थित है, तो शीर्ष किसी भी मौलिक क्षेत्र की सीमा पर अनिवार्य रूप से स्थित हो सकता है। इस प्रकरण में, समरूपता समूह को मौलिक क्षेत्र में उपआरेख पर उपयोजित करके नेट उत्पन्न किया जा सकता है।<ref>{{Citation | |||
|last = Treacy | |last = Treacy | ||
|first = M.M. J. | |first = M.M. J. | ||
Line 251: | Line 216: | ||
|accessdate = August 15, 2010 | |accessdate = August 15, 2010 | ||
|doi = 10.1016/j.micromeso.2004.06.013 | |doi = 10.1016/j.micromeso.2004.06.013 | ||
|postscript = .}}</ref> | |postscript = .}}</ref> अन्य क्रमादेश विकसित किए गए हैं जो इसी तरह एक प्रारंभिक खंड की प्रतियां उत्पन्न करते हैं और उन्हें आवधिक आरेख में सरेस करते हैं।<ref>{{Citation | ||
अन्य | |||
|last = LeBail | |last = LeBail | ||
|first = A. | |first = A. | ||
Line 263: | Line 227: | ||
|issue = 2|doi-access = free | |issue = 2|doi-access = free | ||
}}</ref> | }}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* | * प्रारूप के लिए क्रिस्टल के प्रतिरूप के रूप में आवधिक रेखांकन। | ||
==संदर्भ== | ==संदर्भ== | ||
Line 274: | Line 236: | ||
==अग्रिम पठन== | ==अग्रिम पठन== | ||
*{{Citation | *{{Citation | ||
|last = | |last = कोनवे | ||
|first = J. H. | |first = J. H. | ||
|authorlink = | |authorlink = जॉन हॉर्टन कॉनवे | ||
|last2 = | |last2 = बर्गिल | ||
|first2 = H. | |first2 = H. | ||
|last3 = | |last3 = गुडमैन-स्ट्रॉस | ||
|first3 = C. | |first3 = C. | ||
|title = | |title = चीजों की समरूपता | ||
|publisher = | |publisher = ए के पीटर्स | ||
|year = 2008}} | |year = 2008}} | ||
*{{Citation | *{{Citation | ||
|last = | |last = कोटानी | ||
|first = M. | |first = M. | ||
|last2 = | |last2 = सुनदा | ||
|first2 = T. | |first2 = T. | ||
|title = | |title = अल्बनीज मैप्स और एक ऑफ डायगोनल लॉन्ग टाइम एसिम्प्टोटिक हीट कर्नेल के लिए | ||
|journal = | |journal = कॉम. गणित भौतिक | ||
|volume = 209 | |volume = 209 | ||
|issue = 3 | |issue = 3 | ||
Line 298: | Line 260: | ||
}} | }} | ||
*{{Citation | *{{Citation | ||
|last = | |last = कोटानी | ||
|first = M. | |first = M. | ||
|last2 = | |last2 = सुनदा | ||
|first2 = T. | |first2 = T. | ||
|title = | |title = क्रिस्टल लैटिस की स्पेक्ट्रल ज्यामिति | ||
|journal = | |journal = समकालीन गणित | ||
|volume = 338 | |volume = 338 | ||
|pages = 271–305 | |pages = 271–305 | ||
|year = 2003 | |year = 2003 | ||
|doi=10.1090/conm/338/06077|series = | |doi=10.1090/conm/338/06077|series = समकालीन गणित | ||
|isbn = 9780821833834 | |isbn = 9780821833834 | ||
}} | }} | ||
Line 316: | Line 278: | ||
|last2 = Uchiyama | |last2 = Uchiyama | ||
|first2 = K. | |first2 = K. | ||
|title = | |title = यादृच्छिक आवधिक रेखांकन पर चलता है | ||
|journal = | |journal = अमेरिकन मैथमेटिकल सोसायटी के लेन-देन | ||
|volume = 360 | |volume = 360 | ||
|pages = 6065–6087 | |pages = 6065–6087 | ||
Line 323: | Line 285: | ||
|doi = 10.1090/S0002-9947-08-04451-6 | |doi = 10.1090/S0002-9947-08-04451-6 | ||
|issue = 11 | |issue = 11 | ||
|postscript = .|doi-access = | |postscript = .|doi-access = नि: शुल्क | ||
}} | }} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:CS1 errors]] | |||
[[Category:Created On 01/05/2023]] | [[Category:Created On 01/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:ज्यामितीय रेखांकन]] |
Latest revision as of 17:00, 17 October 2023
एक यूक्लिडियन आरेख (कुछ यूक्लिडियन समष्टि में अंतःस्थापित किया गया आरेख) आवधिक है यदि इस यूक्लिडियन समष्टि का एक आधार (रैखिक बीजगणित) उपस्थित है जिसका संबंधित अनुवाद (ज्यामिति) उस आरेख की समरूपता को प्रेरित करता है (अर्थात, यूक्लिडियन समष्टि में अंतःस्थापित किए गए आरेख में ऐसे किसी भी अनुवाद के अनुप्रयोग आरेख को अपरिवर्तित छोड़ देता है)। समतुल्य रूप से, एक आवधिक यूक्लिडियन आरेख एक परिमित आरेख पर एक एबेलियन आवरण आरेख का आवधिक प्रतिफलन है।[1][2] यूक्लिडियन आरेख समान रूप से असतत होता है यदि किन्हीं दो शीर्षों के मध्य न्यूनतम दूरी होती है। आवधिक रेखांकन समष्टि (या मधुकोष) के टेसलेशन और उनके समरूपता समूहों की ज्यामिति से निकटता से संबंधित हैं, इसलिए ज्यामितीय समूह सिद्धांत के साथ-साथ असतत ज्यामिति और बहुतलीय सिद्धांत और इसी तरह के क्षेत्रों से संबंधित हैं।
आवधिक रेखांकन में अधिकांश प्रयास प्राकृतिक विज्ञान और अभियांत्रिकी के अनुप्रयोगों से प्रेरित होता है, विशेष रूप से क्रिस्टल अभियांत्रिकी, क्रिस्टल पूर्वानुमान (प्रारुप) और प्रतिदर्श क्रिस्टल आचरण के लिए त्रि-आयामी क्रिस्टल नेट से प्रेरित होता है। अति बृहत् एकीकरण (वीएलएसआई) परिपथ प्रतिदर्श में आवधिक आरेख का भी अध्ययन किया गया है।[3]
मूल सूत्रीकरण
एक ज्यामितीय आरेख सिद्धांत एक जोड़ी (V, E) है, जहां V बिंदुओं का एक समुच्चय है (कभी-कभी शीर्ष या नोड्स कहा जाता है) और E किनारों का एक समुच्चय होता है (कभी-कभी बांड कहा जाता है), जहां प्रत्येक किनारा दो शिखरों में सम्मलित होता है। जबकि दो शीर्षों u और v को जोड़ने वाले किनारे को सामान्यतः समुच्चय (गणित) {u, v} के रूप में समझा जाता है, किनारों को कभी-कभी u और v को जोड़ने वाले रेखा खंड के रूप में व्याख्या किया जाता है ताकि परिणामी संरचना एक CW सम्मिश्र हो जाता है। ज्यामितीय रेखांकन को 'नेट' (बहुतलीय नेट के विपरीत) के रूप में संदर्भित करने के लिए बहुतलीय और रासायनिक साहित्य में एक प्रवृत्ति है, और रासायनिक साहित्य में नामपद्धति आरेख सिद्धांत से भिन्न है।[4] अधिकांश साहित्य आवधिक रेखांकन पर ध्यान केंद्रित करते हैं जो कि असतत समष्टि हैं जिसमें e> 0 उपस्थित होता है जैसे कि किसी भी दो अलग-अलग शीर्षों के लिए, उनकी दूरी |u – v| > e अलग होती है।
गणितीय दृष्टिकोण से, एक यूक्लिडियन आवधिक आरेख एक परिमित आरेख पर आरेख को आच्छद करने वाले अनंत-गुना एबेलियन का प्रतिफलन है।
आवधिकता प्राप्त करना
क्रिस्टल संरचनात्मक समष्टि समूहों की पहचान और वर्गीकरण ने उन्नीसवीं सदी में बहुत समय लिया, और सूची की पूर्णता की पुष्टि एवरग्राफ फेडोरोव और स्कोएनफ्लाइज़ के प्रमेयों द्वारा समाप्त हो गई थी।[5] डेविड हिल्बर्ट की अठारहवीं समस्या में समस्या का सामान्यीकृत किया गया था, और फेडोरोव-शॉनफ्लाइज़ प्रमेय को लुडविग बीबरबैक द्वारा उच्च आयामों के लिए सामान्यीकृत किया गया था।[6]
फेडोरोव-शॉनफ्लाई प्रमेय निम्नलिखित का दावा करता है। मान लीजिए कि किसी को 3-समष्टि में एक यूक्लिडियन आरेख दिया गया है जैसे कि निम्नलिखित सत्य हैं:
- यह समान रूप से असतत है जिसमें e> 0 उपस्थित है जैसे कि किन्हीं दो अलग-अलग शीर्षों के लिए, उनकी दूरी |u – v| > e अलग है।
- यह समष्टि को इस अर्थ में पूर्ण करता है कि 3-समष्टि में किसी भी सतह के लिए, सतह के दोनों किनारों पर आरेख के शीर्ष उपस्थित होते हैं।
- प्रत्येक शीर्ष परिमित डिग्री (आरेख सिद्धांत) या संयोजकता का होता है।
- ज्यामितीय आरेख के समरूपता समूह के अंतर्गत शीर्षों की बहुत कक्षाएँ हैं।
फिर यूक्लिडियन आरेख आवधिक है जिसमें इसके समरूपता समूह में अनुवाद के सदिश अंतर्निहित यूक्लिडियन समष्टि को विस्तृत करते हैं, और इसका समरूपता समूह एक क्रिस्टल संरचनात्मक समष्टि समूह है।
विज्ञान और अभियांत्रिकी में व्याख्या यह है कि एक यूक्लिडियन आरेख समष्टि के माध्यम से विस्तृत हुए पदार्थ का प्रतिनिधित्व करने वाला एक यूक्लिडियन आलेख प्रतिबंध (1), (2), और (3) को पूरा करता है, क्वासिक क्रिस्टल से ग्लास तक गैर-क्रिस्टलीय पदार्थ (4) का उल्लंघन करना चाहिए। हालांकि, पिछली तिमाही शताब्दी में, क्वासिक क्रिस्टल को क्रिस्टल के साथ पर्याप्त रूप से कई रासायनिक और भौतिक गुणों को साझा करने के लिए मान्यता दी गई है कि क्वासिक क्रिस्टल को ''क्रिस्टल'' के रूप में वर्गीकृत करने और फलस्वरूप ''क्रिस्टल'' की परिभाषा को समायोजित करने की प्रवृत्ति दी गई है।[7]
गणित और संगणना
आवधिक रेखांकन की अधिकांश सैद्धांतिक जांच ने उन्हें उत्पन्न करने और वर्गीकृत करने की समस्याओं पर ध्यान केंद्रित किया है।
वर्गीकरण की समस्याएं
वर्गीकरण की समस्याओं पर अधिकांश कार्य तीन आयामों पर केंद्रित है, विशेष रूप से क्रिस्टल मूल्य के वर्गीकरण पर, अर्थात्, आवधिक रेखांकन जो एक क्रिस्टल में किनारों द्वारा इंगित बांड के साथ परमाणुओं या आणविक वस्तुओं के स्थान के लिए विवरण या प्रारुप के रूप में काम कर सकता हैं। अधिक लोकप्रिय वर्गीकरण मानदंडों में से एक आरेख समाकृतिकता है, जिसे क्रिस्टल संरचनात्मक समाकृतिकता के साथ अस्पष्ट नहीं होना चाहिए। दो आवधिक रेखांकन को प्रायः समसामयिक रूप से समतुल्य कहा जाता है यदि वे समरूपीय हैं, हालांकि जरूरी नहीं कि समस्थानी होता है। यद्यपि आरेख़ समाकृतिकता समस्या क्रिस्टल नेट सांस्थितिक समतुल्यता के लिए बहुपद-समय कम करने योग्य है (सांस्थितिक समतुल्यता को बहुपद समय गणना योग्य नहीं होने के अर्थ में ''अभिकलनीयतः रूप से अट्रैक्टिव'' होने के लिए एक अभ्यर्थी बनाते हुए), एक क्रिस्टल नेट को सामान्यतः उपन्यास के रूप में माना जाता है अगर और केवल अगर कोई सांस्थितिक रूप से समतुल्य नेट ज्ञात नहीं है। इसने सांस्थितिक निश्चर पर ध्यान केंद्रित किया है।
एक अपरिवर्तनीय न्यूनतम चक्रों की सरणी है (प्रायः रसायन विज्ञान साहित्य में वलय कहा जाता है) सामान्य शीर्षों के बारे में सरणी और श्लाफली प्रतीक में प्रतिनिधित्व किया जाता है। एक क्रिस्टल नेट का चक्र एक अन्य अपरिवर्तनीय से संबंधित [8] हैं, जो कि समन्वय अनुक्रम (या टोपोलॉजी में शेल मानचित्र[9]), जिसे निम्नानुसार परिभाषित किया गया है। सबसे पहले, एक आरेख में एक शीर्ष v से एक दूरी अनुक्रम n1, n2, n3, ... है, जहां ni v से दूरी i के शीर्षों की संख्या है। समन्वय अनुक्रम s1, s2, s3, ...है, जहां si क्रिस्टल नेट (कक्षाओं) के शीर्षों के दूरी अनुक्रमों की i-वें प्रविष्टियों का भारित माध्य है, जहाँ भार प्रत्येक कक्षा के शीर्षों का स्पर्शोन्मुख अनुपात है। समन्वय अनुक्रम के संचयी योग को सांस्थितिक घनत्व के रूप में दर्शाया गया है, और पहले दस शब्दों का योग (शून्य-वें पद के लिए धन 1) - जिसे प्रायः TD10 को निरूपित किया जाता है - क्रिस्टल नेट डेटाबेस में एक मानक अन्वेषण शब्द है। सांस्थितिक घनत्व के गणितीय स्वरूप के लिए देखें[10] जो सरल यादृच्छिक चलने की बड़ी विचलन गुण से निकटता से संबंधित है।
टेसलेशन और यूक्लिडियन आरेख के मध्य संबंध से एक और अपरिवर्तनीय उत्पन्न होता है। यदि हम एक टेसलेशन को (संभवतः बहुतलीय) ठोस क्षेत्रों, (संभवतः बहुभुज) विष्ठा, (संभवतः रैखिक) घटता, और शीर्ष-अर्थात, सीडब्ल्यू सम्मिश्र के रूप में मानते हैं - तो वक्र और शीर्ष टेसलेशन के यूक्लिडियन आरेख (या 1-रूपरेखा) बनाते हैं। (इसके अलावा, टाइल्स का आसन्न आरेख एक अन्य यूक्लिडियन आरेख को प्रेरित करता है।) यदि टेसलेशन में बहुत प्रोटोटाइप हैं, तो परिणामी यूक्लिडियन आरेख आवधिक होते है। विपरीत दिशा में जाने पर, एक टेसलेशन का प्रोटोटाइल जिसकी 1-रूपरेखा दिए गए आवधिक आरेख (सांस्थितिक रूप से समतुल्य) है, एक के पास एक और निश्चर है, और यह निश्चर है जिसकी गणना कंप्यूटर क्रमादेश TOPOS द्वारा की जाती है।[11]
आवधिक रेखांकन उत्पन्न करना
कई उपस्थित आवधिक आरेख़ गणना कलनविधि हैं, जिनमें उपस्थित नेट को नए बनाने के लिए संशोधित करना सम्मलित है,[12] लेकिन प्रगणकों के दो प्रमुख वर्ग प्रतीत होते हैं।
प्रमुख व्यवस्थित क्रिस्टल नेट गणना कलनविधि में से [13] बोरिस डेलौने और एंड्रियास ड्रेस द्वारा श्लाफली प्रतीक के सामान्यीकरण द्वारा टेसलेशन के प्रतिनिधित्व पर आधारित है, जिसके द्वारा किसी भी टेसलेशन (किसी भी आयाम) को एक परिमित संरचना द्वारा दर्शाया जा सकता है,[14] जिसे हम ड्रेस-डेलानी का प्रतीक कह सकते हैं। ड्रेस-डेलानी प्रतीकों का कोई भी प्रभावी प्रगणक प्रभावी रूप से उन आवधिक नेट की गणना कर सकता है जो टेसलेशन के अनुरूप हैं। डेलगाडो-फ्रेडरिक्स एट अल के त्रि-आयामी ड्रेस-डेलानी प्रतीक प्रगणक ने कई उपन्यास क्रिस्टल नेट की भविष्यवाणी की है जो बाद में संश्लेषित किए गए थे।[15] इस मध्य, एक द्वि-आयामी ड्रेस-डेलानी प्रगणक द्वि-आयामी अतिपरवलयिक समष्टि के रेटिक्यूलेशन उत्पन्न करता है जो शल्यक्रिया चिकित्सा से विच्छेदित होते है और गायरॉइड, डायमंड या अभाज्य जैसे तीन गुना आवधिक न्यूनतम सतह के चारों ओर आच्छादित किया जाता है, जिसने कई उपन्यास क्रिस्टल नेट उत्पन्न किए जाते हैं।[16]
एक अन्य उपस्थित प्रगणक वर्तमान में जिओलाइट्स के प्रशंसनीय क्रिस्टल नेट बनाने पर केंद्रित है। 3-समष्टि में समरूपता समूह का विस्तार 3-समष्टि के एक मौलिक प्रक्षेत्र (या क्षेत्र) के लक्षण वर्णन की अनुमति देता है, जिसका नेट के साथ प्रतिच्छेदन एक उपआरेख को प्रेरित करता है, जो सामान्य स्थिति में, शीर्ष की प्रत्येक कक्षा से एक शीर्ष होता है। यह उपआरेख संबद्ध हो सकता है, और यदि एक शीर्ष घूर्णन की धुरी या नेट के समरूपता के किसी अन्य निश्चित बिंदु पर स्थित है, तो शीर्ष किसी भी मौलिक क्षेत्र की सीमा पर अनिवार्य रूप से स्थित हो सकता है। इस प्रकरण में, समरूपता समूह को मौलिक क्षेत्र में उपआरेख पर उपयोजित करके नेट उत्पन्न किया जा सकता है।[17] अन्य क्रमादेश विकसित किए गए हैं जो इसी तरह एक प्रारंभिक खंड की प्रतियां उत्पन्न करते हैं और उन्हें आवधिक आरेख में सरेस करते हैं।[18]
यह भी देखें
- प्रारूप के लिए क्रिस्टल के प्रतिरूप के रूप में आवधिक रेखांकन।
संदर्भ
- ↑ Sunada, T. (2012), "Lecture on topological crystallography", Japan. J. Math., 7: 1–39, doi:10.1007/s11537-012-1144-4
- ↑ Sunada, T. (2012), Topological Crystallography With a View Towards Discrete Geometric Analysis, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 6, Springer
- ↑ Cohen, E.; Megiddo, N. (1991), "Recognizing Properties of Periodic Graphs" (PDF), DIMACS Series in Discrete Mathematics and Theoretical Computer Science 4: Applied Geometry and Discrete Mathematics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 4: 135–146, doi:10.1090/dimacs/004/10, ISBN 9780821865934, retrieved August 15, 2010
- ↑ Delgado-Friedrichs, O.; O’Keeffe, M. (2005), "Crystal nets as graphs: Terminology and definitions", Journal of Solid State Chemistry, 178 (8): 2480–2485, Bibcode:2005JSSCh.178.2480D, doi:10.1016/j.jssc.2005.06.011
- ↑ Senechal, M. (1990), "A brief history of geometrical crystallography", in Lima-de-Faria, J. (ed.), Historical Atlas of Crystallography, Kluwer, pp. 43–59
- ↑ Vinberg, E. B.; Shvartsman, O. V. (1993), "Discrete Groups of Motions of Spaces of Constant Curvature", in Vinberg, E. B. (ed.), Geometry II: Spaces of Constant Curvature, Springer-Verlag
- ↑ Senechal, M. (1995), Quasicrystals and Geometry, Cambridge U. Pr., p. 27
- ↑ Eon, J. G. (2004), "Topological density of nets: a direct calculation", Acta Crystallogr. A, 60 (Pt 1): 7–18, Bibcode:2004AcCrA..60....7E, doi:10.1107/s0108767303022037, PMID 14691323.
- ↑ Aste, T. (1999), "The Shell Map", in Sadoc, J. F.; Rivier, N. (eds.), THE SHELL MAP: The structure of froths through a dynamical map, Foams and Emulsions, Kluwer, pp. 497–510, arXiv:cond-mat/9803183, Bibcode:1998cond.mat..3183A
- ↑ M. Kotani and T. Sunada "Geometric aspects of large deviations for random walks on crystal lattices" In: Microlocal Analysis and Complex Fourier Analysis (T. Kawai and K. Fujita, Ed.), World Scientific, 2002, pp. 215–237.
- ↑ Blatov, V. A.; Proserpio, D. M., TOPOS Program package for topological analysis of crystal structures, retrieved August 15, 2010
- ↑ Earl, D. J.; Deem, M. W. (2006), "Toward a Database of Hypothetical Zeolite Structures", Ind. Eng. Chem. Res., 45 (16): 5449–5454, doi:10.1021/ie0510728
- ↑ Delgado Friedrichs, O.; Dress, A. W. M.; Huson, D. H.; Klinowski, J.; Mackay, A. L. (12 Aug 1999), "Systematic enumeration of crystalline networks", Nature, 400 (6745): 644–647, Bibcode:1999Natur.400..644D, doi:10.1038/23210.
- ↑ Dress, A.; Delgado Friedrichs, O.; Huson, D. (1995), "An algorithmic approach to tilings", in Charles J., Colbourn; Ebadollah S., Mahmoodian (eds.), Combinatorics Advances: Papers from the Twenty-fifth Annual Iranian Mathematics Conference (AIMC25) held at Sharif University of Technology, Tehran, March 28–31, 1994, Mathematics and its Applications, vol. 329, Kluwer, pp. 111–119, doi:10.1007/978-1-4613-3554-2_7
- ↑ Nouar, Farid; Eubank, Jarrod F.; Bousquet, Till; Wojtas, Lukasz; Zaworotko, Michael J.; Eddaoudi, Mohamed (2008), "Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks", Journal of the American Chemical Society, 130 (6): 1833–1835, doi:10.1021/ja710123s, PMID 18205363
- ↑ EPINET: Euclidean Patterns in Non-Euclidean Tilings, retrieved January 30, 2013
- ↑ Treacy, M.M. J.; Rivin, I.; Balkovsky, E.; Randall, K. H.; Foster, M. D. (2004), "Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs" (PDF), Microporous and Mesoporous Materials, 74 (1–3): 121–132, doi:10.1016/j.micromeso.2004.06.013, retrieved August 15, 2010.
- ↑ LeBail, A. (2005), "Inorganic structure prediction with GRINSP", J. Appl. Crystallogr., 38 (2): 389–395, doi:10.1107/S0021889805002384
अग्रिम पठन
- कोनवे, J. H.; बर्गिल, H.; गुडमैन-स्ट्रॉस, C. (2008), चीजों की समरूपता, ए के पीटर्स
- कोटानी, M.; सुनदा, T. (2000), "अल्बनीज मैप्स और एक ऑफ डायगोनल लॉन्ग टाइम एसिम्प्टोटिक हीट कर्नेल के लिए", कॉम. गणित भौतिक, 209 (3): 633–670, Bibcode:2000CMaPh.209..633K, doi:10.1007/s002200050033
- कोटानी, M.; सुनदा, T. (2003), "क्रिस्टल लैटिस की स्पेक्ट्रल ज्यामिति", समकालीन गणित, समकालीन गणित, 338: 271–305, doi:10.1090/conm/338/06077, ISBN 9780821833834
- Kazami, T.; Uchiyama, K. (2008), "यादृच्छिक आवधिक रेखांकन पर चलता है", अमेरिकन मैथमेटिकल सोसायटी के लेन-देन, 360 (11): 6065–6087, doi:10.1090/S0002-9947-08-04451-6.
{{citation}}
: Invalid|doi-access=नि: शुल्क
(help)