हिल्बर्ट स्पेस पर कॉम्पैक्ट ऑपरेटर: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 185: Line 185:
{{Functional analysis}}
{{Functional analysis}}
{{Hilbert space}}
{{Hilbert space}}
[[Category: हिल्बर्ट रिक्त स्थान]] [[Category: प्रमाण युक्त लेख]] [[Category: ऑपरेटर सिद्धांत]] [[Category: रैखिक संचालक]]


 
[[Category:Collapse templates]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 13/05/2023]]
[[Category:Created On 13/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:ऑपरेटर सिद्धांत]]
[[Category:प्रमाण युक्त लेख]]
[[Category:रैखिक संचालक]]
[[Category:हिल्बर्ट रिक्त स्थान]]

Latest revision as of 17:06, 24 May 2023

कार्यात्मक विश्लेषण के गणितीय अनुशासन में, हिल्बर्ट अंतरिक्ष पर एक कॉम्पैक्ट ऑपरेटर की अवधारणा परिमित-आयामी वेक्टर स्पेस पर अभिनय करने वाले मैट्रिक्स की अवधारणा का विस्तार है; हिल्बर्ट स्पेस में, कॉम्पैक्ट ऑपरेटर ऑपरेटर मानदंड से प्रेरित टोपोलॉजी में परिमित-रैंक ऑपरेटर (परिमित-आयामी मैट्रिसेस द्वारा प्रतिनिधित्व योग्य) के ठीक से बंद होते हैं। जैसे, मैट्रिक्स सिद्धांत के परिणाम कभी-कभी समान तर्कों का उपयोग करके कॉम्पैक्ट ऑपरेटरों तक बढ़ाए जा सकते हैं। इसके विपरीत, अनंत-आयामी स्थानों पर सामान्य संचालकों के अध्ययन के लिए अधिकांशतः वास्तव में अलग दृष्टिकोण की आवश्यकता होती है।

उदाहरण के लिए, बनच रिक्त स्थान पर कॉम्पैक्ट ऑपरेटरों के वर्णक्रमीय सिद्धांत एक ऐसा रूप लेता है जो मैट्रिसेस के जॉर्डन विहित रूप के समान है। हिल्बर्ट रिक्त स्थान के संदर्भ में, एक वर्ग मैट्रिक्स एकात्मक रूप से विकर्णीय है यदि और एकमात्र यदि यह सामान्य ऑपरेटर है। हिल्बर्ट रिक्त स्थान पर सामान्य कॉम्पैक्ट ऑपरेटरों के लिए एक समान परिणाम होता है। अधिक सामान्यतः, कॉम्पैक्टनेस धारणा को छोड़ा जा सकता है। जैसा कि ऊपर कहा गया है, परिणामों को सिद्ध करने के लिए उपयोग की जाने वाली तकनीकें, उदाहरण के लिए, गैर-कॉम्पैक्ट स्थितियों में वर्णक्रमीय प्रमेय, सामान्यतः भिन्न होती हैं, जिसमें स्पेक्ट्रम (कार्यात्मक विश्लेषण) पर ऑपरेटर-मूल्यवान माप (गणित) सम्मलित होते हैं।

हिल्बर्ट स्पेस पर कॉम्पैक्ट ऑपरेटरों के कुछ परिणामों पर चर्चा की जाएगी, कॉम्पैक्ट ऑपरेटरों के उपवर्गों पर विचार करने से पहले सामान्य गुणों के साथ प्रारंभ करना होता है।

परिभाषा

होने देना हिल्बर्ट स्पेस बनें और बंधे हुए ऑपरेटरों का सेट हो. फिर, एक ऑपरेटर एक कॉम्पैक्ट ऑपरेटर कहा जाता है यदि प्रत्येक बाउंड की छवि के अनुसार सेट किया गया हो अपेक्षाकृत कॉम्पैक्ट सबस्पेस है।

कुछ सामान्य गुण

हम इस खंड में कॉम्पैक्ट ऑपरेटरों के कुछ सामान्य गुण सूचीबद्ध करते हैं।

यदि X और Y वियोज्य हिल्बर्ट रिक्त स्थान हैं (वास्तव में, X बनच और Y मानक पर्याप्त होंगे), तो T : X → Y कॉम्पैक्ट है यदि और एकमात्र यदि यह क्रमिक रूप से निरंतर है जब इसे कमजोर अभिसरण के साथ X से मानचित्र के रूप में देखा जाता है (हिल्बर्ट अंतरिक्ष) से ​​Y (मानक टोपोलॉजी के साथ)। (देखना (Zhu 2007, प्रमेय1.14, p.11), और इस संदर्भ में ध्यान दें कि समान सीमा उस स्थिति में लागू होगी जहां F ⊆ X संतुष्ट करता है (∀φ ∈ Hom(X, K)) sup{x**(φ) = φ(x) : x} < ∞ , जहां K अंतर्निहित क्षेत्र है। समरूप सीमा सिद्धांत लागू होता है क्योंकि होम (एक्स, के) आदर्श टोपोलॉजी के साथ एक बैनाच स्पेस होगा, और मानचित्र x **: होम (एक्स, के) → के इस टोपोलॉजी के संबंध में निरंतर होमोमोर्फिज्म हैं।)

कॉम्पैक्ट ऑपरेटरों का परिवार एक मानक-बंद, दो-तरफा, *-एल (H ) में आदर्श है। नतीजतन, यदि H अनंत-आयामी है तो एक कॉम्पैक्ट ऑपरेटर टी में एक बाध्य उलटा नहीं हो सकता है। यदि ST = TS = I, तो पहचान संकारक कॉम्पैक्ट होगा, एक विरोधाभास होता है।

यदि परिबद्ध संकारकों का अनुक्रम Bn→ B, Cn→ C मजबूत ऑपरेटर टोपोलॉजी में और T कॉम्पैक्ट है, फिर में विलीन हो जाता है आदर्श रूप में होता है।[1] उदाहरण के लिए, हिल्बर्ट स्पेस पर विचार करें मानक आधार के साथ {ईn}. चलो Pm{ई के रैखिक विस्तार पर ओर्थोगोनल प्रक्षेपण हो1, ..., यह हैm}. अनुक्रम {Pm} आइडेंटिटी ऑपरेटर I में दृढ़ता से परिवर्तित होता है किन्तु समान रूप से नहीं। T को परिभाषित कीजिए टी कॉम्पैक्ट है, और, जैसा कि ऊपर दावा किया गया है, पीmटी → आईटी = टी यूनिफॉर्म ऑपरेटर टोपोलॉजी में: सभी एक्स के लिए,

प्रत्येक Pm पर ध्यान दें एक परिमित-रैंक ऑपरेटर है। इसी तरह के तर्क से पता चलता है कि यदि टी कॉम्पैक्ट है, तो टी परिमित-रैंक ऑपरेटरों के कुछ अनुक्रमों की एक समान सीमा है।

कॉम्पैक्ट ऑपरेटरों के आदर्श के मानदंड-निकटता से, इसका विलोम भी सत्य है।

कॉम्पैक्ट ऑपरेटरों के एल (H ) मॉड्यूलो के अंश सी * - बीजगणित को कैल्किन बीजगणित कहा जाता है, जिसमें एक ऑपरेटर के गुणों को कॉम्पैक्ट गड़बड़ी तक माना जा सकता है।

कॉम्पैक्ट स्व-आसन्न ऑपरेटर

एक हिल्बर्ट स्पेस H पर एक परिबद्ध ऑपरेटर टी को स्व-संबद्ध ऑपरेटर कहा जाता है | स्व-संयोजित यदि टी = टी *, या समकक्ष,

यह इस प्रकार है कि ⟨Tx, x⟩ प्रत्येक x ∈ H के लिए वास्तविक है, इस प्रकार T के इगेनवैल्यूज़ , जब वे उपस्थित हैं, वास्तविक हैं। जब H का एक बंद रेखीय उप-स्थान T के अंतर्गत अपरिवर्तनीय होता है, तो T से L का प्रतिबंध L पर एक स्व-आसन्न ऑपरेटर होता है, और इसके अलावा, ऑर्थोगोनल पूरक Lएल का ⊥ भी टी के तहत अपरिवर्तनीय है। उदाहरण के लिए, स्थान H को दो टी-इनवेरिएंट बंद रैखिक उप-स्थानों के ऑर्थोगोनल प्रत्यक्ष योग के रूप में विघटित किया जा सकता है: टी का कर्नेल (रैखिक ऑपरेटर), और ऑर्थोगोनल पूरक {{math|(ker T)}कर्नेल का } (जो कि किसी भी बंधे स्व-आसन्न ऑपरेटर के लिए टी की सीमा के बंद होने के बराबर है)। ये मूल तथ्य नीचे वर्णक्रमीय प्रमेय के प्रमाण में महत्वपूर्ण भूमिका निभाते हैं।

हर्मिटियन के लिए वर्गीकरण परिणाम n × n मेट्रिसेस स्पेक्ट्रल प्रमेय है: यदि एम = एम *, तो एम एकात्मक रूप से विकर्ण है, और एम के विकर्ण में वास्तविक प्रविष्टियाँ हैं। टी को एक हिल्बर्ट स्पेस H पर एक कॉम्पैक्ट स्व-आसन्न ऑपरेटर होने दें। हम टी के लिए एक ही कथन साबित करेंगे: ऑपरेटर टी को ईजेनवेक्टरों के एक ऑर्थोनॉर्मल सेट द्वारा विकर्ण किया जा सकता है, जिनमें से प्रत्येक एक वास्तविक ईजेनवेल्यू से मेल खाता है।

स्पेक्ट्रल प्रमेय

प्रमेय एक वास्तविक या जटिल हिल्बर्ट स्पेस H पर प्रत्येक कॉम्पैक्ट स्व-आसन्न ऑपरेटर T के लिए, T के इगेनवेक्टर्स से मिलकर H का एक असामान्य आधार उपस्थित है। अधिक विशेष रूप से, 'टी' के कर्नेल का ऑर्थोगोनल पूरक या तो टी के ईजेनवेक्टरों के परिमित ऑर्थोनॉर्मल आधार को स्वीकार करता है, या एक गणनीय सेट ऑर्थोनॉर्मल आधार {en} T के इगनवेक्टर , इसी इगनवैल्यू ​​​​के साथ {λn} ⊂ R, ऐसा है कि λn → 0.

दूसरे शब्दों में, एक कॉम्पैक्ट स्व-आसन्न ऑपरेटर को एकात्मक रूप से विकर्ण किया जा सकता है। यह वर्णक्रमीय प्रमेय है।

जब H वियोज्य स्थान है, तो कोई आधार {ई को मिला सकता हैn} टी के कर्नेल के लिए एक गणनीय सेट ऑर्थोनॉर्मल आधार के साथ, और एक ऑर्थोनॉर्मल आधार प्राप्त करें {fn} H के लिए, T के इगेनवेक्टर्स से मिलकर वास्तविक इगेनवैल्यूज़ ​​​​{μn} ऐसा है कि μn → 0.

कोरोलरी एक वास्तविक या जटिल वियोज्य अनंत-आयामी हिल्बर्ट स्पेस H पर प्रत्येक कॉम्पैक्ट स्व-आसन्न ऑपरेटर टी के लिए, एक अनगिनत अनंत ऑर्थोनॉर्मल आधार उपस्थित है {एफn} का H, T के इगनवेक्टर से मिलकर बना है, इसी इगेनवैल्यूज़ ​​​​के साथ {μn} ⊂ R, ऐसा है कि μn → 0.

विचार

आइए पहले हम परिमित-विम उपपत्ति पर चर्चा करें। यह एक हर्मिटियन n × n मैट्रिक्स T के लिए वर्णक्रमीय प्रमेय को साबित करता है जो एक ईजेनवेक्टर x के अस्तित्व को दर्शाता है। एक बार यह हो जाने के बाद, हर्मिटिसिटी का अर्थ है कि एक्स (आयाम n-1 के) के रैखिक विस्तार और ऑर्थोगोनल पूरक दोनों टी के अपरिवर्तनीय उप-स्थान हैं। वांछित परिणाम तब के लिए प्रेरण द्वारा प्राप्त किया जाता है .

एक ईजेनवेक्टर के अस्तित्व को (कम से कम) दो वैकल्पिक तरीकों से दिखाया जा सकता है:

  1. कोई बीजगणितीय रूप से बहस कर सकता है: T की विशेषता बहुपद की एक जटिल जड़ है, इसलिए T का एक संबंधित ईजेनवेक्टर क साथ एक आइगेनवैल्यू है।
  2. आइगेनवैल्यू को भिन्न रूप से चित्रित किया जा सकता है: सबसे बड़ा आइगेनवैल्यू फ़ंक्शन के बंद इकाई क्षेत्र पर अधिकतम है f: R2nR द्वारा परिभाषित f(x) = x*Tx = ⟨Tx, x.

टिप्पणी। परिमित-आयामी स्थितियों में, पहले दृष्टिकोण का भाग बहुत अधिक सामान्यता में काम करता है; किसी भी वर्ग मैट्रिक्स, जरूरी नहीं कि हर्मिटियन, में एक ईजेनवेक्टर हो। हिल्बर्ट स्पेस पर सामान्य ऑपरेटरों के लिए यह बिल्कुल सच नहीं है। अनंत आयामों में, यह भी तत्काल नहीं है कि विशिष्ट बहुपद की अवधारणा को सामान्य कैसे किया जाए।

कॉम्पैक्ट स्व-आसन्न स्थितियों के लिए वर्णक्रमीय प्रमेय समान रूप से प्राप्त किया जा सकता है: ऊपर दूसरे परिमित-आयामी तर्क का विस्तार करके एक ईजेनवेक्टर पाता है, फिर प्रेरण लागू करें। हम पहले मेट्रिसेस के लिए तर्क को स्केच करते हैं।

चूंकि बंद इकाई क्षेत्र आर में एस है2n कॉम्पैक्ट है, और f निरंतर है, f(S) वास्तविक रेखा पर कॉम्पैक्ट है, इसलिए f किसी इकाई वेक्टर y पर S पर अधिकतम प्राप्त करता है। लैग्रेंज गुणक द्वारा | लैग्रेंज गुणक प्रमेय, y संतुष्ट करता है

कुछ λ के लिए। हर्मिटिसिटी द्वारा, Ty = λy.

वैकल्पिक रूप से, मान लीजिए z ∈ 'C'n कोई सदिश हो। ध्यान दें कि यदि एक इकाई सदिश y अधिकतम ⟨Tx, x⟩ इकाई क्षेत्र (या इकाई गेंद पर) पर है, तो यह रेले भागफल को भी अधिकतम करता है:

समारोह पर विचार करें:
कलन द्वारा, h′(0) = 0, अर्थात।,