एकीकृत प्रणाली: Difference between revisions
(Created page with "{{Short description|Property of certain dynamical systems}} गणित में, पूर्णता कुछ गतिशील प्रणालियों की...") |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Property of certain dynamical systems}} | {{Short description|Property of certain dynamical systems}} | ||
गणित में, | गणित में, अभिन्नता कुछ गतिशील प्रणालियों की का गुण है। जबकि कई अलग-अलग औपचारिक परिभाषाएँ हैं, अनौपचारिक रूप से बोलना, एकीकृत प्रणाली, [[गतिशील प्रणाली]] है, जिसमें पर्याप्त रूप से कई [[संरक्षित मात्रा|संरक्षित मात्राएँ]], या पहले अभिन्न अंग हैं, जैसे कि इसके व्यवहार में इसके [[चरण स्थान]] की आयाम की तुलना में स्वतंत्रता (भौतिकी और रसायन विज्ञान) की बहुत कम डिग्री है; अर्थात्, इसका विकास इसके चरण स्थान के अन्दर सबमनीफोल्ड तक ही सीमित है। | ||
तीन विशेषताओं को | तीन विशेषताओं को अधिकांशतः अभिन्न प्रणालियों की विशेषता के रूप में संदर्भित किया जाता है:<ref>{{cite book |first1=N.J. |last1=Hitchin |first2=G.B. |last2=Segal |first3=R.S. |last3=Ward |title=Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces |url=https://books.google.com/books?id=eQ8oAAAAQBAJ |date=2013 |publisher=Oxford University Press |isbn=978-0-19-967677-4 |orig-year=1999}}</ref> | ||
* संरक्षित मात्राओं के | * संरक्षित मात्राओं के अधिकतम समुच्चय का अस्तित्व ('पूर्ण पूर्णांकता' की सामान्य परिभाषित गुण) | ||
* 'बीजगणितीय' अपरिवर्तनीयताओं का अस्तित्व, [[बीजगणितीय ज्यामिति]] में आधार ( | * 'बीजगणितीय' अपरिवर्तनीयताओं का अस्तित्व, [[बीजगणितीय ज्यामिति]] में आधार (गुण जिसे कभी-कभी 'बीजगणितीय अभिन्नता' के रूप में जाना जाता है) | ||
* | * स्पष्ट कार्यात्मक रूप में समाधान का स्पष्ट निर्धारण (आंतरिक गुण नहीं है, लेकिन जिसे अधिकांशतः 'सॉल्वैबिलिटी' कहा जाता है) | ||
अधिक सामान्य गतिशील प्रणालियों से एकीकृत प्रणालियों को गुणात्मक चरित्र में बहुत भिन्न के रूप में देखा जा सकता है, | अधिक सामान्य गतिशील प्रणालियों से एकीकृत प्रणालियों को गुणात्मक चरित्र में बहुत भिन्न के रूप में देखा जा सकता है, जो अधिक सामान्यतः [[अराजकता सिद्धांत]] हैं। उत्तरार्द्ध में सामान्यतः कोई संरक्षित मात्रा नहीं होती है, और विषम रूप से आकर्षक होते हैं, क्योंकि प्रारंभिक स्थितियों में इच्छानुसार ढंग से छोटे गड़बड़ी से पर्याप्त रूप से बड़े समय में उनके प्रक्षेपवक्र में इच्छानुसार ढंग से बड़े विचलन हो सकते हैं। | ||
जो अधिक | |||
भौतिकी में अध्ययन की गई कई प्रणालियाँ पूरी तरह से एकीकृत हैं, विशेष रूप से, [[हैमिल्टनियन प्रणाली]] के अर्थ में, बहु-आयामी हार्मोनिक ऑसिलेटर्स का प्रमुख उदाहरण है। | भौतिकी में अध्ययन की गई कई प्रणालियाँ पूरी तरह से एकीकृत हैं, विशेष रूप से, [[हैमिल्टनियन प्रणाली]] के अर्थ में, बहु-आयामी हार्मोनिक ऑसिलेटर्स का प्रमुख उदाहरण है। अन्य मानक उदाहरण; निश्चित केंद्र (जैसे, सूर्य) या दो के बारे में ग्रहों की गति है। अन्य प्रारंभिक उदाहरणों में द्रव्यमान के केंद्र ([[यूलर टॉप]]) के बारे में कठोर शरीर की गति और समरूपता के अक्ष में एक बिंदु के बारे में अक्षीय रूप से सममित कठोर शरीर की गति (लाग्रेंज शीर्ष) सम्मिलित है। | ||
1965 में [[मार्टिन क्रुस्कल]] और [[नॉर्मन ज़बस्की]] द्वारा सोलिटोन की संख्यात्मक खोज के साथ एकीकृत प्रणालियों के आधुनिक सिद्धांत को पुनर्जीवित किया गया था, जिसके कारण 1967 में व्युत्क्रम प्रकीर्णन परिवर्तन विधि का मार्ग प्रशस्त हुआ। स्वतंत्रता की डिग्री, जैसे उथले पानी की लहरों के कुछ मॉडल (कॉर्टवेग-डी वीस समीकरण), ऑप्टिकल फाइबर में [[केर प्रभाव]], नॉनलाइनियर श्रोडिंगर समीकरण द्वारा वर्णित, और टोडा जाली जैसे कुछ पूर्णांक कई-निकाय | 1965 में [[मार्टिन क्रुस्कल]] और [[नॉर्मन ज़बस्की]] द्वारा सोलिटोन की संख्यात्मक खोज के साथ एकीकृत प्रणालियों के आधुनिक सिद्धांत को पुनर्जीवित किया गया था, जिसके कारण 1967 में व्युत्क्रम प्रकीर्णन परिवर्तन विधि का मार्ग प्रशस्त हुआ। स्वतंत्रता की डिग्री, जैसे उथले पानी की लहरों के कुछ मॉडल (कॉर्टवेग-डी वीस समीकरण), ऑप्टिकल फाइबर में [[केर प्रभाव]], नॉनलाइनियर श्रोडिंगर समीकरण द्वारा वर्णित, और टोडा जाली जैसे कुछ पूर्णांक कई-निकाय प्रणालियां इत्यादि। | ||
हैमिल्टनियन प्रणालियों के विशेष | हैमिल्टनियन प्रणालियों के विशेष स्थिति में, यदि पर्याप्त स्वतंत्र पोइसन हैं, जो प्रवाह मापदंडों के लिए पहले इंटीग्रल को अपरिवर्तनीय स्तर के समुच्चय (लैग्रैंगियन [[ पत्तियों से सजाना |पत्तियों से सजाना]] की 'पत्तियां') पर समन्वय प्रणाली के रूप में सेवा करने में सक्षम होने के लिए प्रारंभ करते हैं, और यदि प्रवाह पूर्ण हैं और ऊर्जा स्तर समुच्चय कॉम्पैक्ट है, इसका तात्पर्य [[लिउविल-अर्नोल्ड प्रमेय]] से है; अर्थात्, [[क्रिया-कोण चर]] का अस्तित्व से है। सामान्य गतिशील प्रणालियों में ऐसी कोई संरक्षित मात्रा नहीं होती है; स्वायत्त हैमिल्टनियन प्रणाली, प्रणाली की स्थिति में, ऊर्जा सामान्यतः केवल एक ही होती है, और ऊर्जा स्तर समुच्चय पर, प्रवाह सामान्यतः अराजक होते हैं। | ||
इंटीग्रेबल | इंटीग्रेबल प्रणालियों को चिह्नित करने में प्रमुख घटक फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) है, जो बताता है कि प्रणाली 'फ्रोबेनियस इंटीग्रेबल' है (अर्थात्, इंटीग्रेबल डिस्ट्रीब्यूशन द्वारा उत्पन्न होता है), यदि स्थानीय रूप से, इसमें अधिकतम इंटीग्रल मैनिफोल्ड्स द्वारा फोलिएशन होता है। लेकिन समग्रता, गतिशील प्रणालियों के अर्थ में, वैश्विक गुण है, न कि स्थानीय गुण, क्योंकि इसके लिए आवश्यक है कि पत्ते नियमित रूप से हों, जिसमें पत्तियां एम्बेडेड सबमनिफोल्ड हों। | ||
समाकलित प्रणालियों के पास आवश्यक रूप से समाधान नहीं होते हैं जिन्हें [[बंद रूप अभिव्यक्ति]] या [[विशेष कार्य]] | समाकलित प्रणालियों के पास आवश्यक रूप से समाधान नहीं होते हैं, जिन्हें [[बंद रूप अभिव्यक्ति|सवृत रूप अभिव्यक्ति]] या [[विशेष कार्य]] के संदर्भ में व्यक्त किया जा सकता है; वर्तमान अर्थ में, इंटीग्रैबिलिटी चरण स्थान में प्रणाली के समाधानों की ज्यामिति या टोपोलॉजी का गुण है। | ||
== सामान्य गतिशील प्रणाली == | == सामान्य गतिशील प्रणाली == | ||
अलग-अलग गतिशील प्रणालियों के संदर्भ में, अभिन्नता की धारणा अपरिवर्तनीय, नियमित पर्णसमूह के अस्तित्व को संदर्भित करती है; | अलग-अलग गतिशील प्रणालियों के संदर्भ में, अभिन्नता की धारणा अपरिवर्तनीय, नियमित पर्णसमूह के अस्तित्व को संदर्भित करती है; अर्थात्, जिनके पत्ते [[प्रवाह (गणित)]] के अनुसार अपरिवर्तनीय सबसे छोटे संभव आयाम के सबमनीफोल्ड एम्बेडेड हैं। इस प्रकार अपरिवर्तनीय पर्णसमूह की पत्तियों के आयाम के आधार पर, अभिन्नता की डिग्री की चर धारणा है। [[हैमिल्टनियन यांत्रिकी]] के स्थिति में इस अवधारणा में परिशोधन है, जिसे [[लिओविले]] (नीचे देखें) के अर्थ में पूर्ण अभिन्नता के रूप में जाना जाता है, जिसे इस संदर्भ में सबसे अधिक बार संदर्भित किया जाता है। | ||
इंटीग्रेबिलिटी की धारणा का विस्तार लैटिस जैसी असतत प्रणालियों पर भी | इंटीग्रेबिलिटी की धारणा का विस्तार लैटिस जैसी असतत प्रणालियों पर भी प्रयुक्त होता है। इस परिभाषा को विकास समीकरणों का वर्णन करने के लिए अनुकूलित किया जा सकता है, जो या तो अंतर समीकरणों या [[परिमित अंतर]] की प्रणाली हैं। | ||
अभिन्न और गैर-अभिन्न गतिशील प्रणालियों के बीच अंतर में नियमित गति | अभिन्न और गैर-अभिन्न गतिशील प्रणालियों के बीच अंतर में नियमित गति के विरुद्ध [[अराजक गति]] का गुणात्मक निहितार्थ है और इसलिए यह आंतरिक गुण है, न कि केवल प्रणाली को स्पष्ट रूप में स्पष्ट रूप से एकीकृत किया जा सकता है या नहीं किया जा सकता है। | ||
== हैमिल्टनियन | == हैमिल्टनियन प्रणाली और लिउविले इंटीग्रेबिलिटी == | ||
हैमिल्टन के समीकरणों की विशेष सेटिंग में, हमारे पास [[जोसेफ लिउविल]] के अर्थ में | हैमिल्टन के समीकरणों की विशेष सेटिंग में, हमारे पास [[जोसेफ लिउविल|जोसेफ लिउविले]] के अर्थ में अभिन्नता की धारणा है। (लिउविले-अर्नोल्ड प्रमेय देखें।) लिउविले इंटीग्रैबिलिटी का अर्थ है कि इनवेरिएंट मैनिफोल्ड्स द्वारा चरण स्थान का नियमित फोलिएशन उपस्थित है, जैसे कि हेमिल्टनियन वेक्टर फील्ड फोलिएशन के इनवेरिएंट्स से जुड़े हैं, जो स्पर्शरेखा वितरण को फैलाते हैं। इसे बताने की एक और विधि यह है कि पोइसन आने वाले आक्रमणकारियों का अधिकतम समुच्चय उपस्थित है (अर्थात्, चरण स्थान पर कार्य करता है जिसका पॉसॉन प्रणाली के हैमिल्टनियन के साथ ब्रैकेट करता है, और एक दूसरे के साथ, लुप्त हो जाते हैं)। | ||
और एक दूसरे के साथ, | |||
परिमित आयामों में, यदि चरण स्थान [[सहानुभूतिपूर्ण ज्यामिति]] है (अर्थात, पॉइसन बीजगणित के केंद्र में केवल स्थिरांक होते हैं), तो इसका आयाम भी | परिमित आयामों में, यदि चरण स्थान [[सहानुभूतिपूर्ण ज्यामिति|एकीकृत ज्यामिति]] है (अर्थात, पॉइसन बीजगणित के केंद्र में केवल स्थिरांक होते हैं), तो इसका आयाम भी <math>2n </math> होना चाहिए, और स्वतंत्र पोइसन आने वाले आक्रमणकारियों की अधिकतम संख्या <math>n </math> (हैमिल्टनियन सहित) है। पर्णसमूह की पत्तियाँ सिम्प्लेक्टिक रूप के संबंध में [[Lagrangian सबमनीफोल्ड|लैग्रैंगियन सबमनीफोल्ड]] हैं और इस तरह के अधिकतम आइसोट्रोपिक फ़ॉलिएशन को लैग्रैंगियन सबमेनिफ़ोल्ड कहा जाता है। सभी स्वायत्त हैमिल्टनियन प्रणाली (अर्थात् जिनके लिए हैमिल्टनियन और पॉसॉन ब्रैकेट स्पष्ट रूप से समय-निर्भर नहीं हैं) में कम से कम अपरिवर्तनीय है; अर्थात्, हैमिल्टन ही, जिसके प्रवाह के साथ मूल्य ऊर्जा है। यदि ऊर्जा स्तर समुच्चय कॉम्पैक्ट होते हैं, लैग्रैंगियन फोलिएशन की पत्तियां टोरी होती हैं, और इन पर प्राकृतिक रैखिक निर्देशांक को कोण चर कहा जाता है। विहित के चक्र <math> 1 </math>-फ़ॉर्म को क्रिया चर कहा जाता है, और परिणामी विहित निर्देशांक को क्रिया-कोण चर कहा जाता है (नीचे देखें)। | ||
लिउविले के अर्थ में, और आंशिक इंटीग्रेबिलिटी के साथ-साथ [[सुपरिन्टेग्रेबल हैमिल्टनियन सिस्टम]] और मैक्सिमल सुपरइंटीग्रेबिलिटी की धारणा के बीच पूर्ण इंटीग्रेबिलिटी के बीच भी अंतर है। अनिवार्य रूप से, ये भेद पर्णसमूह की पत्तियों के आकार के अनुरूप होते हैं। जब स्वतंत्र पोइसन आने वाले आक्रमणकारियों की संख्या अधिकतम से कम है (लेकिन, स्वायत्त प्रणालियों | लिउविले के अर्थ में, और आंशिक इंटीग्रेबिलिटी के साथ-साथ [[सुपरिन्टेग्रेबल हैमिल्टनियन सिस्टम|सुपरिन्टेग्रेबल हैमिल्टनियन प्रणाली]] और मैक्सिमल सुपरइंटीग्रेबिलिटी की धारणा के बीच पूर्ण इंटीग्रेबिलिटी के बीच भी अंतर है। अनिवार्य रूप से, ये भेद पर्णसमूह की पत्तियों के आकार के अनुरूप होते हैं। जब स्वतंत्र पोइसन आने वाले आक्रमणकारियों की संख्या अधिकतम से कम है (लेकिन, स्वायत्त प्रणालियों की स्थिति में, एक से अधिक), तो हम कहते हैं कि प्रणाली आंशिक रूप से पूर्णांक है। जब अधिक से अधिक कार्यात्मक रूप से स्वतंत्र आक्रमणकारी उपस्थित होते हैं, तो अधिकतम संख्या से परे जो कि पॉसॉन यात्रा कर सकते हैं, और इसलिए इनवेरिएंट फोलिएशन की पत्तियों का आयाम n से कम है, हम कहते हैं कि प्रणाली सुपरइंटीग्रेबल हैमिल्टनियन प्रणाली है। यदि आयामी पत्तियों (वक्र) के साथ नियमित रूप से पर्णसमूह होता है, तो इसे अधिकतम अधीक्षणीय कहा जाता है। | ||
== क्रिया-कोण चर == | == क्रिया-कोण चर == | ||
जब | जब परिमित-आयामी हैमिल्टनियन प्रणाली लिउविले अर्थ में पूरी तरह से एकीकृत होती है, और ऊर्जा स्तर समुच्च्च्य कॉम्पैक्ट होते हैं, प्रवाह पूर्ण होते हैं, और अपरिवर्तनीय पत्ते की पत्तियां [[ टोरस्र्स |टोरी]] होती हैं। इसके बाद, जैसा कि ऊपर उल्लेख किया गया है, क्रिया-कोण चर के रूप में ज्ञात चरण स्थान पर [[विहित निर्देशांक]] के विशेष समुच्च्च्य उपस्थित हैं, जैसे कि अपरिवर्तनीय टोरी [[क्रिया (भौतिकी)|क्रिया]] चर के संयुक्त स्तर के समुच्च्च्य हैं। इस प्रकार ये हैमिल्टनियन प्रवाह (गति के स्थिरांक) के अपरिवर्तनीयों का पूरा समुच्च्च्य प्रदान करते हैं, और कोण चर टोरस पर प्राकृतिक आवधिक निर्देशांक हैं। इन विहित निर्देशांकों के संदर्भ में व्यक्त की गई अपरिवर्तनीय टोरी पर गति, कोण चर में रैखिक है। | ||
और ऊर्जा स्तर | |||
जैसे कि अपरिवर्तनीय टोरी [[क्रिया (भौतिकी)]] चर के संयुक्त स्तर के | |||
== हैमिल्टन-जैकोबी दृष्टिकोण == | == हैमिल्टन-जैकोबी दृष्टिकोण == | ||
कैनोनिकल परिवर्तन सिद्धांत में, | कैनोनिकल परिवर्तन सिद्धांत में, हैमिल्टन-जैकोबी विधि है, जिसमें हैमिल्टन-जैकोबी समीकरण से संबंधित हैमिल्टन-जैकोबी समीकरण का पूरा समाधान खोजने के द्वारा पहले हैमिल्टन के समीकरणों के समाधान की मांग की जाती है। मौलिक शब्दावली में, इसे पूरी तरह से अज्ञानी चर वाले निर्देशांक के विहित समुच्चय में परिवर्तन का निर्धारण करने के रूप में वर्णित किया गया है; अर्थात्, वे जिनमें विहित स्थिति निर्देशांक के पूर्ण समुच्चय पर हैमिल्टनियन की कोई निर्भरता नहीं है, और इसलिए संबंधित कैनोनिक रूप से संयुग्मित संवेग सभी संरक्षित मात्राएं हैं। कॉम्पैक्ट एनर्जी लेवल समुच्चय की स्थिति में, यह क्रिया-कोण चर निर्धारित करने की दिशा में पहला कदम है। हैमिल्टन-जैकोबी समीकरणों के आंशिक अंतर समीकरणों के सामान्य सिद्धांत में हैमिल्टन-जैकोबी प्रकार, पूर्ण समाधान (अर्थात्; जो एकीकरण के n स्वतंत्र स्थिरांक पर निर्भर करता है, जहां n विन्यास स्थान का आयाम है), बहुत सामान्य स्थितियों में उपस्थित है, लेकिन केवल स्थानीय अर्थों में है। इसलिए, हैमिल्टन-जैकोबी समीकरण के पूर्ण समाधान का अस्तित्व किसी भी तरह से लिउविले अर्थों में पूर्ण अभिन्नता का लक्षण वर्णन नहीं है। अधिकांश स्थिति जिन्हें स्पष्ट रूप से एकीकृत किया जा सकता है, उनमें चरों का पूर्ण पृथक्करण सम्मिलित है, जिसमें पृथक्करण स्थिरांक आवश्यक एकीकरण स्थिरांक का पूरा समुच्चय प्रदान करते हैं। केवल जब इन स्थिरांकों की पुनर्व्याख्या की जा सकती है, पूर्ण चरण स्थान सेटिंग के अन्दर, लैग्रैंगियन फोलिएशन की पत्तियों तक सीमित पोइसन कम्यूटिंग फलनों के पूर्ण समुच्चय के मूल्यों के रूप में, प्रणाली को लिउविले अर्थों में पूरी तरह से एकीकृत माना जा सकता है। | ||
== [[सॉलिटन]] और व्युत्क्रम वर्णक्रमीय विधियाँ == | == [[सॉलिटन]] और व्युत्क्रम वर्णक्रमीय विधियाँ == | ||
1960 के दशक के उत्तरार्ध में | 1960 के दशक के उत्तरार्ध में मौलिक समाकलन प्रणालियों में रुचि का पुनरुत्थान खोज के साथ हुआ, जो सॉलिटॉन, जो दृढ़ता से स्थिर हैं, आंशिक विभेदक समीकरणों के स्थानीयकृत समाधान जैसे कि कोर्टेवेग-डी व्रीस समीकरण (जो 1-आयामी गैर-विघटनकारी द्रव गतिकी का वर्णन उथले घाटियों में करता है), इन समीकरणों को अनंत-आयामी पूर्णांक हैमिल्टनियन प्रणालियों के रूप में देखकर समझा जा सकता है। उनका अध्ययन इस तरह की प्रणालियों को एकीकृत करने के लिए बहुत ही उपयोगी दृष्टिकोण की ओर जाता है, उलटा बिखरने वाला परिवर्तन और अधिक सामान्य उलटा वर्णक्रमीय विधियाँ (अधिकांशतः रिमेंन-हिल्बर्ट समस्याओं को कम करने योग्य), जो संबद्ध अभिन्न समीकरणों के समाधान के माध्यम से स्थानीय रेखीय विधियों जैसे फूरियर विश्लेषण से गैर-स्थानीय रेखीयकरण का सामान्यीकरण करते हैं। | ||
जो संबद्ध अभिन्न समीकरणों के समाधान के माध्यम से स्थानीय रेखीय विधियों जैसे फूरियर विश्लेषण से गैर-स्थानीय रेखीयकरण का सामान्यीकरण करते हैं। | |||
इस पद्धति का मूल विचार | इस पद्धति का मूल विचार रैखिक ऑपरेटर को प्रस्तुत करना है, जो चरण स्थान में स्थिति से निर्धारित होता है और जो प्रणाली की गतिशीलता के अनुसार इस तरह से विकसित होता है कि इसका "स्पेक्ट्रम" (उपयुक्त सामान्यीकृत अर्थ में) विकास, सी.एफ. [[लक्स जोड़ी]] के अनुसार अपरिवर्तनीय है। यह, कुछ स्थितियों में, प्रणाली को पूरी तरह से एकीकृत करने के लिए पर्याप्त अपरिवर्तनीय, या गति के अभिन्न अंग प्रदान करता है। स्वतंत्रता की अनंत संख्या वाली प्रणालियों के स्थिति में, जैसे कि केडीवी समीकरण, यह लिउविले इंटीग्रेबिलिटी के गुण को स्पष्ट बनाने के लिए पर्याप्त नहीं है। चूँकि, उपयुक्त रूप से परिभाषित सीमा नियमों के लिए, वर्णक्रमीय परिवर्तन, वास्तव में, पूरी तरह से अनदेखा निर्देशांक के लिए परिवर्तन के रूप में व्याख्या किया जा सकता है, जिसमें संरक्षित मात्रा विहित निर्देशांकों के दोगुने अनंत समुच्चय का आधा हिस्सा बनाती है, और इनमें प्रवाह रैखिक होता है। कुछ स्थितियों में, इसे क्रिया-कोण चर में परिवर्तन के रूप में भी देखा जा सकता है, चूँकि सामान्यतः स्थिति चर की केवल सीमित संख्या ही वास्तव में कोण निर्देशांक होती है, और शेष गैर-कॉम्पैक्ट होते हैं। | ||
== हिरोटा बिलिनियर समीकरण और τ- | == हिरोटा बिलिनियर समीकरण और τ-फलनों == | ||
एकीकृत प्रणालियों के आधुनिक सिद्धांत में उत्पन्न अन्य और दृष्टिकोण जो रयोगो हिरोटा द्वारा अग्रणी गणनात्मक दृष्टिकोण में उत्पन्न हुआ,<ref>{{cite journal |first=R. |last=Hirota |title=द्विरेखीय रूप में सॉलिटॉन समीकरणों का अपचयन|journal=Physica D: Nonlinear Phenomena |volume=18 |issue=1–3 |pages=161–170 |year=1986 |doi=10.1016/0167-2789(86)90173-9 |bibcode=1986PhyD...18..161H}}</ref> जिसमें सहायक मात्रा के लिए निरंतर गुणांक समीकरणों की बिलिनियर प्रणाली के साथ मूल गैर-रैखिक गतिशील प्रणाली को परिवर्तित करना सम्मिलित था, जिसे बाद में τ-फलन के नाम से जाना जाने लगा। इन्हें अब हिरोटा समीकरण कहा जाता है। यद्यपि मूल रूप से केवल गणनात्मक उपकरण के रूप में दिखाई दे रहा है, उलटा बिखरने वाले दृष्टिकोण या हैमिल्टनियन संरचना के स्पष्ट संबंध के बिना, फिर भी यह बहुत ही सीधी विधि प्रदान करता है, जिससे सॉलिटॉन जैसे समाधान के महत्वपूर्ण वर्गों को प्राप्त किया जा सकता है। | |||
रयोगो हिरोटा द्वारा | |||
निरंतर गुणांक की बिलिनियर प्रणाली के साथ मूल गैर-रैखिक गतिशील प्रणाली | |||
इसके बाद, [[मिकियो सातो]] | इसके बाद, इसकी व्याख्या [[मिकियो सातो]]<ref name="DJKM1">{{cite journal |first1=E. |last1=Date |first2=M. |last2=Jimbo |first3=M. |last3=Kashiwara |first4=T. |last4=Miwa |title=कदोमत्सेव-पेटवीश्विली समीकरण III के लिए ऑपरेटर दृष्टिकोण|journal=Journal of the Physical Society of Japan |volume=50 |issue=11 |pages=3806–12 |year=1981 |doi=10.1143/JPSJ.50.3806}}</ref> और उनके छात्रों द्वारा की गई,<ref name="DJKM2">{{cite journal |first1=M. |last1=Jimbo |first2=T. |last2=Miwa |title=सॉलिटॉन और अनंत-आयामी झूठ बीजगणित|journal=Publ. Res. Inst. Math. Sci. |volume=19 |issue=3 |pages=943–1001 |year=1983 |doi=10.2977/prims/1195182017 |url=https://www.jstage.jst.go.jp/article/kyotoms1969/19/3/19_3_943/_article|doi-access=free }}</ref><ref name="Sato">{{cite journal |first=M. |last=Sato |title=अनंत आयामी ग्रासमैन मैनिफोल्ड्स पर डायनेमिक सिस्टम के रूप में सॉलिटॉन समीकरण|journal=Kokyuroku, RIMS, Kyoto University |volume=439 |pages=30–46 |year=1981 |hdl=2433/102800 |url=https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/102800/1/0439-5.pdf}}</ref> सबसे पहले पीडीई के पूर्णांकीय पदानुक्रम की स्थिति के लिए, जैसे कि कदोमत्सेव-पेटविअश्विली पदानुक्रम, लेकिन फिर पूर्णांक पदानुक्रम के बहुत अधिक सामान्य वर्गों के लिए , सार्वभौमिक चरण स्थान दृष्टिकोण के एक प्रकार के रूप में, जिसमें, सामान्यतः, आने वाली गतिशीलता को निश्चित (परिमित या अनंत) एबेलियन [[समूह क्रिया]] द्वारा (परिमित या अनंत) ग्रासमैन मैनिफोल्ड पर निर्धारित किया गया था। τ-फलन को [[ग्रासमानियन|ग्रासमैनियन]] के अन्दर [[समूह कक्षा]] के तत्वों से लेकर कुछ मूल तक प्रोजेक्शन ऑपरेटर के निर्धारक के रूप में देखा गया था, और हिरोटा समीकरण प्लकर संबंधों को अभिव्यक्त करने के रूप में ग्रासमैनियन के प्लकर एम्बेडिंग को उपयुक्त रूप से परिभाषित अनंत के प्रोजेक्टिवाइजेशन में व्यक्त करते हैं। [[बाहरी बीजगणित|बाहरी स्थान]] को फर्मीओनिक [[फॉक स्पेस|फॉक स्थान]] के रूप में देखा जाता है। | ||
पीडीई के | |||
τ- | |||
[[ग्रासमानियन]] के | |||
और | |||
उपयुक्त रूप से | |||
परिभाषित | |||
== क्वांटम इंटीग्रेबल | == क्वांटम इंटीग्रेबल प्रणाली == | ||
क्वांटम इंटीग्रेबल | क्वांटम इंटीग्रेबल प्रणाली की भी धारणा है। | ||
क्वांटम सेटिंग में, फेज़ | क्वांटम सेटिंग में, फेज़ स्थान पर फलनों को [[ हिल्बर्ट अंतरिक्ष |हिल्बर्ट स्थान]] पर [[ स्व-संयोजित ऑपरेटर |स्व-संयोजित ऑपरेटर]] द्वारा प्रतिस्थापित किया जाना चाहिए, और पोइसन कम्यूटिंग फलनों की धारणा को कम्यूटिंग ऑपरेटरों द्वारा प्रतिस्थापित किया जाना चाहिए। स्थानीयता संरक्षण कानूनों के सिद्धांत के लिए संरक्षण कानूनों की धारणा विशिष्ट होनी चाहिए।<ref>{{cite journal | last1=Calabrese | first1=Pasquale | last2=Essler | first2=Fabian H L | last3=Mussardo | first3=Giuseppe | title='क्वांटम इंटीग्रेबिलिटी इन आउट ऑफ इक्विलिब्रियम सिस्टम्स' का परिचय| journal=Journal of Statistical Mechanics: Theory and Experiment | publisher=IOP Publishing | volume=2016 | issue=6 | date=2016-06-27 | issn=1742-5468 | doi=10.1088/1742-5468/2016/06/064001 | page=064001| bibcode=2016JSMTE..06.4001C | s2cid=124170507 | url=https://ora.ox.ac.uk/objects/uuid:8bf032d9-9d7a-4658-8238-6f297b2a0598 }}</ref> प्रत्येक [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] में प्रोजेक्टर द्वारा अपनी ऊर्जा [[eigenstates|आइजन अवस्थाओं]] के लिए दी गई संरक्षित मात्रा का अनंत समुच्चय है। चूँकि, यह किसी विशेष गतिशील संरचना का अर्थ नहीं है। | ||
क्वांटम समाकलनीयता की व्याख्या करने के लिए, मुक्त कण सेटिंग पर विचार करना सहायक होता है। यहाँ सभी गतिकी एक-शरीर को कम करने योग्य हैं। | क्वांटम समाकलनीयता की व्याख्या करने के लिए, मुक्त कण सेटिंग पर विचार करना सहायक होता है। यहाँ सभी गतिकी एक-शरीर को कम करने योग्य हैं। यदि गतिकी के दो-निकाय कम करने योग्य हो, तो क्वांटम प्रणाली को पूर्णांक कहा जाता है। यांग-बैक्सटर समीकरण इस न्यूनीकरण का परिणाम है और उन पहचानों का पता लगाता है, जो संरक्षित मात्राओं का अनंत समुच्चय प्रदान करते हैं। इन सभी विचारों को क्वांटम व्युत्क्रम प्रकीर्णन विधि में सम्मिलित किया गया है; जहां स्पष्ट समाधान प्राप्त करने के लिए बीजगणितीय [[बेथे दृष्टिकोण]] का उपयोग किया जा सकता है। क्वांटम इंटीग्रेबल मॉडल के उदाहरण लिब-लिनिगर मॉडल, [[हबर्ड मॉडल]] और [[हाइजेनबर्ग मॉडल (क्वांटम)]] पर कई भिन्नताएं हैं।<ref>{{cite book | author-link=Vladimir Korepin |first1=V.E. |last1=Korepin |first2=N.M. |last2=Bogoliubov |first3=A.G. |last3=Izergin | title=क्वांटम व्युत्क्रम बिखरने की विधि और सहसंबंध कार्य| publisher=Cambridge University Press | year = 1997 | isbn=978-0-521-58646-7}}</ref> कुछ अन्य प्रकार की क्वांटम इंटीग्रेबिलिटी स्पष्ट रूप से समय-निर्भर क्वांटम समस्याओं में जानी जाती हैं, जैसे कि चालित टैविस-कमिंग्स मॉडल।<ref name='sinitsyn-16pra1'>{{cite journal|doi=10.1103/PhysRevA.93.063859|title=कैविटी QED में लैंडौ-जेनर ट्रांज़िशन का सॉल्वेबल मल्टीस्टेट मॉडल|first1=N.A. |last1=Sinitsyn |first2=F. |last2=Li |journal=[[Phys. Rev. A]]|volume=93|issue=6|year=2016|pages= 063859|bibcode=2016PhRvA..93f3859S|arxiv=1602.03136|s2cid=119331736}}</ref> | ||
== | == स्पस्ट रूप से हल करने योग्य मॉडल == | ||
भौतिकी में, | भौतिकी में, पूर्णतया एकीकृत प्रणाली, विशेष रूप से अनंत-आयामी सेटिंग में, अधिकांशतः स्पष्ट रूप से हल करने योग्य मॉडल के रूप में संदर्भित होती हैं। यह हैमिल्टनियन अर्थ में अभिन्नता और अधिक सामान्य गतिशील प्रणालियों के अर्थ के बीच अंतर को अस्पष्ट करती है। | ||
सांख्यिकीय यांत्रिकी में | सांख्यिकीय यांत्रिकी में स्पष्ट रूप से हल करने योग्य मॉडल भी हैं, जो मौलिक लोगों की तुलना में क्वांटम इंटीग्रेबल प्रणाली से अधिक निकटता से संबंधित हैं। दो निकटता से संबंधित विधियों: यांग-बैक्सटर समीकरणों और क्वांटम व्युत्क्रम स्कैटरिंग विधि के आधार पर, अपने आधुनिक अर्थों में, बेथे एनाट्ज़ दृष्टिकोण, व्युत्क्रम वर्णक्रमीय विधियों के क्वांटम एनालॉग प्रदान करता है। ये सांख्यिकीय यांत्रिकी में हल करने योग्य मॉडलों के अध्ययन में समान रूप से महत्वपूर्ण हैं। | ||
अर्थ के रूप में | अर्थ के रूप में स्पष्ट विलेयता की अभेद्य धारणा: कुछ पूर्व ज्ञात कार्यों के संदर्भ में समाधान स्पष्ट रूप से व्यक्त किए जा सकते हैं, कभी-कभी इसका उपयोग भी किया जाता है, चूँकि यह पूर्णतया गणनात्मक विशेषता के अतिरिक्त प्रणाली के आंतरिक गुण थे, जो हमारे पास होते है; कुछ ज्ञात कार्य उपलब्ध हैं, जिनके संदर्भ में समाधान व्यक्त किए जा सकते हैं। इस धारणा का कोई आंतरिक अर्थ नहीं है, क्योंकि ज्ञात कार्यों का अर्थ अधिकांशतः इस तथ्य से स्पष्ट रूप से परिभाषित किया जाता है कि वे कुछ दिए गए समीकरणों को पूरा करते हैं, और ऐसे ज्ञात कार्यों की सूची निरंतर बढ़ रही है। चूँकि इस तरह के अभिन्नता के लक्षण वर्णन की कोई आंतरिक वैधता नहीं है, लेकिन यह अधिकांशतः उस तरह की नियमितता को दर्शाता है, जिसकी अभिन्न प्रणालियों में अपेक्षा की जाती है। | ||
== कुछ जाने-माने इंटीग्रेबल | == कुछ जाने-माने इंटीग्रेबल प्रणालियों की सूची == | ||
मौलिक यांत्रिक प्रणाली | |||
* कैलोगेरो-मोजर-सदरलैंड मॉडल<ref>{{cite journal |author-link=Francesco Calogero |first=F. |last=Calogero |year=2008 |title=कैलोगेरो-मोजर प्रणाली|journal=Scholarpedia |volume=3 |issue=8 |page=7216|doi=10.4249/scholarpedia.7216 |bibcode=2008SchpJ...3.7216C |doi-access=free }}</ref> | * कैलोगेरो-मोजर-सदरलैंड मॉडल<ref>{{cite journal |author-link=Francesco Calogero |first=F. |last=Calogero |year=2008 |title=कैलोगेरो-मोजर प्रणाली|journal=Scholarpedia |volume=3 |issue=8 |page=7216|doi=10.4249/scholarpedia.7216 |bibcode=2008SchpJ...3.7216C |doi-access=free }}</ref> | ||
* [[केंद्रीय बल]] गति ([[शास्त्रीय केंद्रीय-बल समस्याओं का सटीक समाधान]]) | * [[केंद्रीय बल]] गति ([[शास्त्रीय केंद्रीय-बल समस्याओं का सटीक समाधान|मौलिक केंद्रीय-बल समस्याओं का स्पष्ट समाधान]]) | ||
* एनोसोव प्रवाह | * एनोसोव प्रवाह | ||
* [[लयबद्ध दोलक]] | * [[लयबद्ध दोलक]] | ||
* तरल पदार्थों में इंटीग्रेबल क्लेब्स और स्टेकलोव | * तरल पदार्थों में इंटीग्रेबल क्लेब्स और स्टेकलोव प्रणाली | ||
* लैग्रेंज, यूलर और कोवालेवस्काया सबसे ऊपर हैं | * लैग्रेंज, यूलर और कोवालेवस्काया सबसे ऊपर हैं | ||
* [[कार्ल न्यूमैन]] | * [[कार्ल न्यूमैन]] | ||
Line 100: | Line 83: | ||
* [[एकेएनएस प्रणाली]] | * [[एकेएनएस प्रणाली]] | ||
* बेंजामिन-ओनो समीकरण | * बेंजामिन-ओनो समीकरण | ||
* [[Boussinesq समीकरण (जल तरंगें)]] | * [[Boussinesq समीकरण (जल तरंगें)|बौसिन्सक समीकरण (जल तरंगें)]] | ||
* कैमासा-होल्म समीकरण | * कैमासा-होल्म समीकरण | ||
* [[क्लासिकल हाइजेनबर्ग फेरोमैग्नेट मॉडल (स्पिन चेन)]] | * [[क्लासिकल हाइजेनबर्ग फेरोमैग्नेट मॉडल (स्पिन चेन)]] | ||
* डेगस्पेरिस-प्रोसीसी समीकरण | * डेगस्पेरिस-प्रोसीसी समीकरण | ||
* दिम समीकरण | * दिम समीकरण | ||
* [[गार्नियर इंटीग्रेबल सिस्टम]] | * [[गार्नियर इंटीग्रेबल सिस्टम|गार्नियर इंटीग्रेबल प्रणाली]] | ||
* कौप-कुपरश्मिड समीकरण | * कौप-कुपरश्मिड समीकरण | ||
* क्रिकेवर-नोविकोव समीकरण | * क्रिकेवर-नोविकोव समीकरण | ||
Line 115: | Line 98: | ||
* [[ कॉलिंग मॉडल ]] | * [[ कॉलिंग मॉडल ]] | ||
* [[तीन तरंग समीकरण]] | * [[तीन तरंग समीकरण]] | ||
2 + 1 आयामों में एकीकृत पीडीई | |||
===== 2 + 1 आयामों में एकीकृत पीडीई ===== | |||
* डेवी-स्टीवर्टसन समीकरण | * डेवी-स्टीवर्टसन समीकरण | ||
* [[इशिमोरी समीकरण]] | * [[इशिमोरी समीकरण]] | ||
Line 121: | Line 105: | ||
* नोविकोव-वेसेलोव समीकरण | * नोविकोव-वेसेलोव समीकरण | ||
;3 + 1 आयामों में एकीकृत पीडीई | ;3 + 1 आयामों में एकीकृत पीडीई | ||
* बेलिंस्की-ज़खारोव परिवर्तन [[आइंस्टीन क्षेत्र समीकरण]] | * बेलिंस्की-ज़खारोव परिवर्तन [[आइंस्टीन क्षेत्र समीकरण]] के लिए लक्स जोड़ी उत्पन्न करता है; सामान्य समाधानों को [[गुरुत्वाकर्षण सॉलिटॉन]] कहा जाता है, जिनमें से [[श्वार्जस्चिल्ड मीट्रिक]], [[ केर मीट्रिक |केर मीट्रिक]] और कुछ [[गुरुत्वाकर्षण तरंग]] समाधान उदाहरण हैं। | ||
स्पष्ट रूप से हल करने योग्य सांख्यिकीय जाली मॉडल | |||
* [[8-वर्टेक्स मॉडल]] | * [[8-वर्टेक्स मॉडल]] | ||
* [[गौडिन मॉडल]] | * [[गौडिन मॉडल]] | ||
Line 141: | Line 125: | ||
=== कुछ प्रमुख योगदानकर्ता (1965 से) === | === कुछ प्रमुख योगदानकर्ता (1965 से) === | ||
{{columns-list|colwidth=20em| | {{columns-list|colwidth=20em| | ||
* [[ | * [[मार्क एब्लोविट्ज़]] | ||
* [[ | * [[रोडनी बैक्सटर]] | ||
* [[ | * [[पर्सी डिफ्ट]] | ||
* | * लियोनिद डिकी | ||
* [[ | * [[व्लादिमीर ड्रिनफेल्ड]] | ||
* [[ | * [[बोरिस डबरोविन (गणितज्ञ)|बोरिस डबरोविन]] | ||
* [[ | * [[लुडविग फादीव]] | ||
* [[ | * [[हरमन फ्लास्का]] | ||
* [[ | * [[इज़राइल गेलफैंड]] | ||
* [[ | * [[अलेक्जेंडर इट]] | ||
* [[ | * [[मिचिओ जिम्बो]] | ||
* | * इगोर एम. क्रिचेवर | ||
* [[ | * [[मार्टिन क्रुस्कल]] | ||
* [[ | * [[पीटर लैक]] | ||
* | * व्लादिमीर मतवेव | ||
* [[ | * [[रॉबर्ट मिउरा]] | ||
* [[ | * [[तेत्सुजी मिवा]] | ||
* [[ | * [[एलन सी. नेवेल|एलन नेवेल]] | ||
* [[ | * [[निकोलाई रेशेतिखिन]] | ||
* | * अलेक्सी शबात | ||
* [[ | * [[एवगेनी स्काईलिन]] | ||
* [[ | * [[मिकिओ सातो]] | ||
* [[ | * [[इलियट एच. लाइब]] | ||
* [[ | * [[ग्रीम सहगल]] | ||
* | * जॉर्ज विल्सन | ||
* [[ | * [[व्लादिमीर ई. ज़खारोव]] | ||
}} | }} | ||
Line 208: | Line 192: | ||
{{Integrable systems}} | {{Integrable systems}} | ||
[Category:Partial differential equatio | |||
[[Category: | [[Category:Citation Style 1 templates|M]] | ||
[[Category:Collapse templates]] | |||
[[Category:Commons category link is locally defined]] | |||
[[Category:Created On 23/05/2023]] | [[Category:Created On 23/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite magazine]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Cite magazine]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:आंशिक विभेदक समीकरण]] | |||
[[Category:इंटीग्रेबल सिस्टम| इंटीग्रेबल सिस्टम ]] | |||
[[Category:गतिशील प्रणाली]] | |||
[[Category:हैमिल्टनियन यांत्रिकी]] |
Latest revision as of 09:06, 13 June 2023
गणित में, अभिन्नता कुछ गतिशील प्रणालियों की का गुण है। जबकि कई अलग-अलग औपचारिक परिभाषाएँ हैं, अनौपचारिक रूप से बोलना, एकीकृत प्रणाली, गतिशील प्रणाली है, जिसमें पर्याप्त रूप से कई संरक्षित मात्राएँ, या पहले अभिन्न अंग हैं, जैसे कि इसके व्यवहार में इसके चरण स्थान की आयाम की तुलना में स्वतंत्रता (भौतिकी और रसायन विज्ञान) की बहुत कम डिग्री है; अर्थात्, इसका विकास इसके चरण स्थान के अन्दर सबमनीफोल्ड तक ही सीमित है।
तीन विशेषताओं को अधिकांशतः अभिन्न प्रणालियों की विशेषता के रूप में संदर्भित किया जाता है:[1]
- संरक्षित मात्राओं के अधिकतम समुच्चय का अस्तित्व ('पूर्ण पूर्णांकता' की सामान्य परिभाषित गुण)
- 'बीजगणितीय' अपरिवर्तनीयताओं का अस्तित्व, बीजगणितीय ज्यामिति में आधार (गुण जिसे कभी-कभी 'बीजगणितीय अभिन्नता' के रूप में जाना जाता है)
- स्पष्ट कार्यात्मक रूप में समाधान का स्पष्ट निर्धारण (आंतरिक गुण नहीं है, लेकिन जिसे अधिकांशतः 'सॉल्वैबिलिटी' कहा जाता है)
अधिक सामान्य गतिशील प्रणालियों से एकीकृत प्रणालियों को गुणात्मक चरित्र में बहुत भिन्न के रूप में देखा जा सकता है, जो अधिक सामान्यतः अराजकता सिद्धांत हैं। उत्तरार्द्ध में सामान्यतः कोई संरक्षित मात्रा नहीं होती है, और विषम रूप से आकर्षक होते हैं, क्योंकि प्रारंभिक स्थितियों में इच्छानुसार ढंग से छोटे गड़बड़ी से पर्याप्त रूप से बड़े समय में उनके प्रक्षेपवक्र में इच्छानुसार ढंग से बड़े विचलन हो सकते हैं।
भौतिकी में अध्ययन की गई कई प्रणालियाँ पूरी तरह से एकीकृत हैं, विशेष रूप से, हैमिल्टनियन प्रणाली के अर्थ में, बहु-आयामी हार्मोनिक ऑसिलेटर्स का प्रमुख उदाहरण है। अन्य मानक उदाहरण; निश्चित केंद्र (जैसे, सूर्य) या दो के बारे में ग्रहों की गति है। अन्य प्रारंभिक उदाहरणों में द्रव्यमान के केंद्र (यूलर टॉप) के बारे में कठोर शरीर की गति और समरूपता के अक्ष में एक बिंदु के बारे में अक्षीय रूप से सममित कठोर शरीर की गति (लाग्रेंज शीर्ष) सम्मिलित है।
1965 में मार्टिन क्रुस्कल और नॉर्मन ज़बस्की द्वारा सोलिटोन की संख्यात्मक खोज के साथ एकीकृत प्रणालियों के आधुनिक सिद्धांत को पुनर्जीवित किया गया था, जिसके कारण 1967 में व्युत्क्रम प्रकीर्णन परिवर्तन विधि का मार्ग प्रशस्त हुआ। स्वतंत्रता की डिग्री, जैसे उथले पानी की लहरों के कुछ मॉडल (कॉर्टवेग-डी वीस समीकरण), ऑप्टिकल फाइबर में केर प्रभाव, नॉनलाइनियर श्रोडिंगर समीकरण द्वारा वर्णित, और टोडा जाली जैसे कुछ पूर्णांक कई-निकाय प्रणालियां इत्यादि।
हैमिल्टनियन प्रणालियों के विशेष स्थिति में, यदि पर्याप्त स्वतंत्र पोइसन हैं, जो प्रवाह मापदंडों के लिए पहले इंटीग्रल को अपरिवर्तनीय स्तर के समुच्चय (लैग्रैंगियन पत्तियों से सजाना की 'पत्तियां') पर समन्वय प्रणाली के रूप में सेवा करने में सक्षम होने के लिए प्रारंभ करते हैं, और यदि प्रवाह पूर्ण हैं और ऊर्जा स्तर समुच्चय कॉम्पैक्ट है, इसका तात्पर्य लिउविल-अर्नोल्ड प्रमेय से है; अर्थात्, क्रिया-कोण चर का अस्तित्व से है। सामान्य गतिशील प्रणालियों में ऐसी कोई संरक्षित मात्रा नहीं होती है; स्वायत्त हैमिल्टनियन प्रणाली, प्रणाली की स्थिति में, ऊर्जा सामान्यतः केवल एक ही होती है, और ऊर्जा स्तर समुच्चय पर, प्रवाह सामान्यतः अराजक होते हैं।
इंटीग्रेबल प्रणालियों को चिह्नित करने में प्रमुख घटक फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) है, जो बताता है कि प्रणाली 'फ्रोबेनियस इंटीग्रेबल' है (अर्थात्, इंटीग्रेबल डिस्ट्रीब्यूशन द्वारा उत्पन्न होता है), यदि स्थानीय रूप से, इसमें अधिकतम इंटीग्रल मैनिफोल्ड्स द्वारा फोलिएशन होता है। लेकिन समग्रता, गतिशील प्रणालियों के अर्थ में, वैश्विक गुण है, न कि स्थानीय गुण, क्योंकि इसके लिए आवश्यक है कि पत्ते नियमित रूप से हों, जिसमें पत्तियां एम्बेडेड सबमनिफोल्ड हों।
समाकलित प्रणालियों के पास आवश्यक रूप से समाधान नहीं होते हैं, जिन्हें सवृत रूप अभिव्यक्ति या विशेष कार्य के संदर्भ में व्यक्त किया जा सकता है; वर्तमान अर्थ में, इंटीग्रैबिलिटी चरण स्थान में प्रणाली के समाधानों की ज्यामिति या टोपोलॉजी का गुण है।
सामान्य गतिशील प्रणाली
अलग-अलग गतिशील प्रणालियों के संदर्भ में, अभिन्नता की धारणा अपरिवर्तनीय, नियमित पर्णसमूह के अस्तित्व को संदर्भित करती है; अर्थात्, जिनके पत्ते प्रवाह (गणित) के अनुसार अपरिवर्तनीय सबसे छोटे संभव आयाम के सबमनीफोल्ड एम्बेडेड हैं। इस प्रकार अपरिवर्तनीय पर्णसमूह की पत्तियों के आयाम के आधार पर, अभिन्नता की डिग्री की चर धारणा है। हैमिल्टनियन यांत्रिकी के स्थिति में इस अवधारणा में परिशोधन है, जिसे लिओविले (नीचे देखें) के अर्थ में पूर्ण अभिन्नता के रूप में जाना जाता है, जिसे इस संदर्भ में सबसे अधिक बार संदर्भित किया जाता है।
इंटीग्रेबिलिटी की धारणा का विस्तार लैटिस जैसी असतत प्रणालियों पर भी प्रयुक्त होता है। इस परिभाषा को विकास समीकरणों का वर्णन करने के लिए अनुकूलित किया जा सकता है, जो या तो अंतर समीकरणों या परिमित अंतर की प्रणाली हैं।
अभिन्न और गैर-अभिन्न गतिशील प्रणालियों के बीच अंतर में नियमित गति के विरुद्ध अराजक गति का गुणात्मक निहितार्थ है और इसलिए यह आंतरिक गुण है, न कि केवल प्रणाली को स्पष्ट रूप में स्पष्ट रूप से एकीकृत किया जा सकता है या नहीं किया जा सकता है।
हैमिल्टनियन प्रणाली और लिउविले इंटीग्रेबिलिटी
हैमिल्टन के समीकरणों की विशेष सेटिंग में, हमारे पास जोसेफ लिउविले के अर्थ में अभिन्नता की धारणा है। (लिउविले-अर्नोल्ड प्रमेय देखें।) लिउविले इंटीग्रैबिलिटी का अर्थ है कि इनवेरिएंट मैनिफोल्ड्स द्वारा चरण स्थान का नियमित फोलिएशन उपस्थित है, जैसे कि हेमिल्टनियन वेक्टर फील्ड फोलिएशन के इनवेरिएंट्स से जुड़े हैं, जो स्पर्शरेखा वितरण को फैलाते हैं। इसे बताने की एक और विधि यह है कि पोइसन आने वाले आक्रमणकारियों का अधिकतम समुच्चय उपस्थित है (अर्थात्, चरण स्थान पर कार्य करता है जिसका पॉसॉन प्रणाली के हैमिल्टनियन के साथ ब्रैकेट करता है, और एक दूसरे के साथ, लुप्त हो जाते हैं)।
परिमित आयामों में, यदि चरण स्थान एकीकृत ज्यामिति है (अर्थात, पॉइसन बीजगणित के केंद्र में केवल स्थिरांक होते हैं), तो इसका आयाम भी होना चाहिए, और स्वतंत्र पोइसन आने वाले आक्रमणकारियों की अधिकतम संख्या (हैमिल्टनियन सहित) है। पर्णसमूह की पत्तियाँ सिम्प्लेक्टिक रूप के संबंध में लैग्रैंगियन सबमनीफोल्ड हैं और इस तरह के अधिकतम आइसोट्रोपिक फ़ॉलिएशन को लैग्रैंगियन सबमेनिफ़ोल्ड कहा जाता है। सभी स्वायत्त हैमिल्टनियन प्रणाली (अर्थात् जिनके लिए हैमिल्टनियन और पॉसॉन ब्रैकेट स्पष्ट रूप से समय-निर्भर नहीं हैं) में कम से कम अपरिवर्तनीय है; अर्थात्, हैमिल्टन ही, जिसके प्रवाह के साथ मूल्य ऊर्जा है। यदि ऊर्जा स्तर समुच्चय कॉम्पैक्ट होते हैं, लैग्रैंगियन फोलिएशन की पत्तियां टोरी होती हैं, और इन पर प्राकृतिक रैखिक निर्देशांक को कोण चर कहा जाता है। विहित के चक्र -फ़ॉर्म को क्रिया चर कहा जाता है, और परिणामी विहित निर्देशांक को क्रिया-कोण चर कहा जाता है (नीचे देखें)।
लिउविले के अर्थ में, और आंशिक इंटीग्रेबिलिटी के साथ-साथ सुपरिन्टेग्रेबल हैमिल्टनियन प्रणाली और मैक्सिमल सुपरइंटीग्रेबिलिटी की धारणा के बीच पूर्ण इंटीग्रेबिलिटी के बीच भी अंतर है। अनिवार्य रूप से, ये भेद पर्णसमूह की पत्तियों के आकार के अनुरूप होते हैं। जब स्वतंत्र पोइसन आने वाले आक्रमणकारियों की संख्या अधिकतम से कम है (लेकिन, स्वायत्त प्रणालियों की स्थिति में, एक से अधिक), तो हम कहते हैं कि प्रणाली आंशिक रूप से पूर्णांक है। जब अधिक से अधिक कार्यात्मक रूप से स्वतंत्र आक्रमणकारी उपस्थित होते हैं, तो अधिकतम संख्या से परे जो कि पॉसॉन यात्रा कर सकते हैं, और इसलिए इनवेरिएंट फोलिएशन की पत्तियों का आयाम n से कम है, हम कहते हैं कि प्रणाली सुपरइंटीग्रेबल हैमिल्टनियन प्रणाली है। यदि आयामी पत्तियों (वक्र) के साथ नियमित रूप से पर्णसमूह होता है, तो इसे अधिकतम अधीक्षणीय कहा जाता है।
क्रिया-कोण चर
जब परिमित-आयामी हैमिल्टनियन प्रणाली लिउविले अर्थ में पूरी तरह से एकीकृत होती है, और ऊर्जा स्तर समुच्च्च्य कॉम्पैक्ट होते हैं, प्रवाह पूर्ण होते हैं, और अपरिवर्तनीय पत्ते की पत्तियां टोरी होती हैं। इसके बाद, जैसा कि ऊपर उल्लेख किया गया है, क्रिया-कोण चर के रूप में ज्ञात चरण स्थान पर विहित निर्देशांक के विशेष समुच्च्च्य उपस्थित हैं, जैसे कि अपरिवर्तनीय टोरी क्रिया चर के संयुक्त स्तर के समुच्च्च्य हैं। इस प्रकार ये हैमिल्टनियन प्रवाह (गति के स्थिरांक) के अपरिवर्तनीयों का पूरा समुच्च्च्य प्रदान करते हैं, और कोण चर टोरस पर प्राकृतिक आवधिक निर्देशांक हैं। इन विहित निर्देशांकों के संदर्भ में व्यक्त की गई अपरिवर्तनीय टोरी पर गति, कोण चर में रैखिक है।
हैमिल्टन-जैकोबी दृष्टिकोण
कैनोनिकल परिवर्तन सिद्धांत में, हैमिल्टन-जैकोबी विधि है, जिसमें हैमिल्टन-जैकोबी समीकरण से संबंधित हैमिल्टन-जैकोबी समीकरण का पूरा समाधान खोजने के द्वारा पहले हैमिल्टन के समीकरणों के समाधान की मांग की जाती है। मौलिक शब्दावली में, इसे पूरी तरह से अज्ञानी चर वाले निर्देशांक के विहित समुच्चय में परिवर्तन का निर्धारण करने के रूप में वर्णित किया गया है; अर्थात्, वे जिनमें विहित स्थिति निर्देशांक के पूर्ण समुच्चय पर हैमिल्टनियन की कोई निर्भरता नहीं है, और इसलिए संबंधित कैनोनिक रूप से संयुग्मित संवेग सभी संरक्षित मात्राएं हैं। कॉम्पैक्ट एनर्जी लेवल समुच्चय की स्थिति में, यह क्रिया-कोण चर निर्धारित करने की दिशा में पहला कदम है। हैमिल्टन-जैकोबी समीकरणों के आंशिक अंतर समीकरणों के सामान्य सिद्धांत में हैमिल्टन-जैकोबी प्रकार, पूर्ण समाधान (अर्थात्; जो एकीकरण के n स्वतंत्र स्थिरांक पर निर्भर करता है, जहां n विन्यास स्थान का आयाम है), बहुत सामान्य स्थितियों में उपस्थित है, लेकिन केवल स्थानीय अर्थों में है। इसलिए, हैमिल्टन-जैकोबी समीकरण के पूर्ण समाधान का अस्तित्व किसी भी तरह से लिउविले अर्थों में पूर्ण अभिन्नता का लक्षण वर्णन नहीं है। अधिकांश स्थिति जिन्हें स्पष्ट रूप से एकीकृत किया जा सकता है, उनमें चरों का पूर्ण पृथक्करण सम्मिलित है, जिसमें पृथक्करण स्थिरांक आवश्यक एकीकरण स्थिरांक का पूरा समुच्चय प्रदान करते हैं। केवल जब इन स्थिरांकों की पुनर्व्याख्या की जा सकती है, पूर्ण चरण स्थान सेटिंग के अन्दर, लैग्रैंगियन फोलिएशन की पत्तियों तक सीमित पोइसन कम्यूटिंग फलनों के पूर्ण समुच्चय के मूल्यों के रूप में, प्रणाली को लिउविले अर्थों में पूरी तरह से एकीकृत माना जा सकता है।
सॉलिटन और व्युत्क्रम वर्णक्रमीय विधियाँ
1960 के दशक के उत्तरार्ध में मौलिक समाकलन प्रणालियों में रुचि का पुनरुत्थान खोज के साथ हुआ, जो सॉलिटॉन, जो दृढ़ता से स्थिर हैं, आंशिक विभेदक समीकरणों के स्थानीयकृत समाधान जैसे कि कोर्टेवेग-डी व्रीस समीकरण (जो 1-आयामी गैर-विघटनकारी द्रव गतिकी का वर्णन उथले घाटियों में करता है), इन समीकरणों को अनंत-आयामी पूर्णांक हैमिल्टनियन प्रणालियों के रूप में देखकर समझा जा सकता है। उनका अध्ययन इस तरह की प्रणालियों को एकीकृत करने के लिए बहुत ही उपयोगी दृष्टिकोण की ओर जाता है, उलटा बिखरने वाला परिवर्तन और अधिक सामान्य उलटा वर्णक्रमीय विधियाँ (अधिकांशतः रिमेंन-हिल्बर्ट समस्याओं को कम करने योग्य), जो संबद्ध अभिन्न समीकरणों के समाधान के माध्यम से स्थानीय रेखीय विधियों जैसे फूरियर विश्लेषण से गैर-स्थानीय रेखीयकरण का सामान्यीकरण करते हैं।
इस पद्धति का मूल विचार रैखिक ऑपरेटर को प्रस्तुत करना है, जो चरण स्थान में स्थिति से निर्धारित होता है और जो प्रणाली की गतिशीलता के अनुसार इस तरह से विकसित होता है कि इसका "स्पेक्ट्रम" (उपयुक्त सामान्यीकृत अर्थ में) विकास, सी.एफ. लक्स जोड़ी के अनुसार अपरिवर्तनीय है। यह, कुछ स्थितियों में, प्रणाली को पूरी तरह से एकीकृत करने के लिए पर्याप्त अपरिवर्तनीय, या गति के अभिन्न अंग प्रदान करता है। स्वतंत्रता की अनंत संख्या वाली प्रणालियों के स्थिति में, जैसे कि केडीवी समीकरण, यह लिउविले इंटीग्रेबिलिटी के गुण को स्पष्ट बनाने के लिए पर्याप्त नहीं है। चूँकि, उपयुक्त रूप से परिभाषित सीमा नियमों के लिए, वर्णक्रमीय परिवर्तन, वास्तव में, पूरी तरह से अनदेखा निर्देशांक के लिए परिवर्तन के रूप में व्याख्या किया जा सकता है, जिसमें संरक्षित मात्रा विहित निर्देशांकों के दोगुने अनंत समुच्चय का आधा हिस्सा बनाती है, और इनमें प्रवाह रैखिक होता है। कुछ स्थितियों में, इसे क्रिया-कोण चर में परिवर्तन के रूप में भी देखा जा सकता है, चूँकि सामान्यतः स्थिति चर की केवल सीमित संख्या ही वास्तव में कोण निर्देशांक होती है, और शेष गैर-कॉम्पैक्ट होते हैं।
हिरोटा बिलिनियर समीकरण और τ-फलनों
एकीकृत प्रणालियों के आधुनिक सिद्धांत में उत्पन्न अन्य और दृष्टिकोण जो रयोगो हिरोटा द्वारा अग्रणी गणनात्मक दृष्टिकोण में उत्पन्न हुआ,[2] जिसमें सहायक मात्रा के लिए निरंतर गुणांक समीकरणों की बिलिनियर प्रणाली के साथ मूल गैर-रैखिक गतिशील प्रणाली को परिवर्तित करना सम्मिलित था, जिसे बाद में τ-फलन के नाम से जाना जाने लगा। इन्हें अब हिरोटा समीकरण कहा जाता है। यद्यपि मूल रूप से केवल गणनात्मक उपकरण के रूप में दिखाई दे रहा है, उलटा बिखरने वाले दृष्टिकोण या हैमिल्टनियन संरचना के स्पष्ट संबंध के बिना, फिर भी यह बहुत ही सीधी विधि प्रदान करता है, जिससे सॉलिटॉन जैसे समाधान के महत्वपूर्ण वर्गों को प्राप्त किया जा सकता है।
इसके बाद, इसकी व्याख्या मिकियो सातो[3] और उनके छात्रों द्वारा की गई,[4][5] सबसे पहले पीडीई के पूर्णांकीय पदानुक्रम की स्थिति के लिए, जैसे कि कदोमत्सेव-पेटविअश्विली पदानुक्रम, लेकिन फिर पूर्णांक पदानुक्रम के बहुत अधिक सामान्य वर्गों के लिए , सार्वभौमिक चरण स्थान दृष्टिकोण के एक प्रकार के रूप में, जिसमें, सामान्यतः, आने वाली गतिशीलता को निश्चित (परिमित या अनंत) एबेलियन समूह क्रिया द्वारा (परिमित या अनंत) ग्रासमैन मैनिफोल्ड पर निर्धारित किया गया था। τ-फलन को ग्रासमैनियन के अन्दर समूह कक्षा के तत्वों से लेकर कुछ मूल तक प्रोजेक्शन ऑपरेटर के निर्धारक के रूप में देखा गया था, और हिरोटा समीकरण प्लकर संबंधों को अभिव्यक्त करने के रूप में ग्रासमैनियन के प्लकर एम्बेडिंग को उपयुक्त रूप से परिभाषित अनंत के प्रोजेक्टिवाइजेशन में व्यक्त करते हैं। बाहरी स्थान को फर्मीओनिक फॉक स्थान के रूप में देखा जाता है।
क्वांटम इंटीग्रेबल प्रणाली
क्वांटम इंटीग्रेबल प्रणाली की भी धारणा है।
क्वांटम सेटिंग में, फेज़ स्थान पर फलनों को हिल्बर्ट स्थान पर स्व-संयोजित ऑपरेटर द्वारा प्रतिस्थापित किया जाना चाहिए, और पोइसन कम्यूटिंग फलनों की धारणा को कम्यूटिंग ऑपरेटरों द्वारा प्रतिस्थापित किया जाना चाहिए। स्थानीयता संरक्षण कानूनों के सिद्धांत के लिए संरक्षण कानूनों की धारणा विशिष्ट होनी चाहिए।[6] प्रत्येक हैमिल्टनियन (क्वांटम यांत्रिकी) में प्रोजेक्टर द्वारा अपनी ऊर्जा आइजन अवस्थाओं के लिए दी गई संरक्षित मात्रा का अनंत समुच्चय है। चूँकि, यह किसी विशेष गतिशील संरचना का अर्थ नहीं है।
क्वांटम समाकलनीयता की व्याख्या करने के लिए, मुक्त कण सेटिंग पर विचार करना सहायक होता है। यहाँ सभी गतिकी एक-शरीर को कम करने योग्य हैं। यदि गतिकी के दो-निकाय कम करने योग्य हो, तो क्वांटम प्रणाली को पूर्णांक कहा जाता है। यांग-बैक्सटर समीकरण इस न्यूनीकरण का परिणाम है और उन पहचानों का पता लगाता है, जो संरक्षित मात्राओं का अनंत समुच्चय प्रदान करते हैं। इन सभी विचारों को क्वांटम व्युत्क्रम प्रकीर्णन विधि में सम्मिलित किया गया है; जहां स्पष्ट समाधान प्राप्त करने के लिए बीजगणितीय बेथे दृष्टिकोण का उपयोग किया जा सकता है। क्वांटम इंटीग्रेबल मॉडल के उदाहरण लिब-लिनिगर मॉडल, हबर्ड मॉडल और हाइजेनबर्ग मॉडल (क्वांटम) पर कई भिन्नताएं हैं।[7] कुछ अन्य प्रकार की क्वांटम इंटीग्रेबिलिटी स्पष्ट रूप से समय-निर्भर क्वांटम समस्याओं में जानी जाती हैं, जैसे कि चालित टैविस-कमिंग्स मॉडल।[8]
स्पस्ट रूप से हल करने योग्य मॉडल
भौतिकी में, पूर्णतया एकीकृत प्रणाली, विशेष रूप से अनंत-आयामी सेटिंग में, अधिकांशतः स्पष्ट रूप से हल करने योग्य मॉडल के रूप में संदर्भित होती हैं। यह हैमिल्टनियन अर्थ में अभिन्नता और अधिक सामान्य गतिशील प्रणालियों के अर्थ के बीच अंतर को अस्पष्ट करती है।
सांख्यिकीय यांत्रिकी में स्पष्ट रूप से हल करने योग्य मॉडल भी हैं, जो मौलिक लोगों की तुलना में क्वांटम इंटीग्रेबल प्रणाली से अधिक निकटता से संबंधित हैं। दो निकटता से संबंधित विधियों: यांग-बैक्सटर समीकरणों और क्वांटम व्युत्क्रम स्कैटरिंग विधि के आधार पर, अपने आधुनिक अर्थों में, बेथे एनाट्ज़ दृष्टिकोण, व्युत्क्रम वर्णक्रमीय विधियों के क्वांटम एनालॉग प्रदान करता है। ये सांख्यिकीय यांत्रिकी में हल करने योग्य मॉडलों के अध्ययन में समान रूप से महत्वपूर्ण हैं।
अर्थ के रूप में स्पष्ट विलेयता की अभेद्य धारणा: कुछ पूर्व ज्ञात कार्यों के संदर्भ में समाधान स्पष्ट रूप से व्यक्त किए जा सकते हैं, कभी-कभी इसका उपयोग भी किया जाता है, चूँकि यह पूर्णतया गणनात्मक विशेषता के अतिरिक्त प्रणाली के आंतरिक गुण थे, जो हमारे पास होते है; कुछ ज्ञात कार्य उपलब्ध हैं, जिनके संदर्भ में समाधान व्यक्त किए जा सकते हैं। इस धारणा का कोई आंतरिक अर्थ नहीं है, क्योंकि ज्ञात कार्यों का अर्थ अधिकांशतः इस तथ्य से स्पष्ट रूप से परिभाषित किया जाता है कि वे कुछ दिए गए समीकरणों को पूरा करते हैं, और ऐसे ज्ञात कार्यों की सूची निरंतर बढ़ रही है। चूँकि इस तरह के अभिन्नता के लक्षण वर्णन की कोई आंतरिक वैधता नहीं है, लेकिन यह अधिकांशतः उस तरह की नियमितता को दर्शाता है, जिसकी अभिन्न प्रणालियों में अपेक्षा की जाती है।
कुछ जाने-माने इंटीग्रेबल प्रणालियों की सूची
मौलिक यांत्रिक प्रणाली
- कैलोगेरो-मोजर-सदरलैंड मॉडल[9]
- केंद्रीय बल गति (मौलिक केंद्रीय-बल समस्याओं का स्पष्ट समाधान)
- एनोसोव प्रवाह
- लयबद्ध दोलक
- तरल पदार्थों में इंटीग्रेबल क्लेब्स और स्टेकलोव प्रणाली
- लैग्रेंज, यूलर और कोवालेवस्काया सबसे ऊपर हैं
- कार्ल न्यूमैन
- दो केंद्र न्यूटोनियन गुरुत्वाकर्षण गति
एकीकृत जाली मॉडल
- एब्लोविट्ज़-लादिक जाली
- टोडा जाली
- वोल्टेरा लेटेक्स
- 1 + 1 आयामों में एकीकृत प्रणाली
- एकेएनएस प्रणाली
- बेंजामिन-ओनो समीकरण
- बौसिन्सक समीकरण (जल तरंगें)
- कैमासा-होल्म समीकरण
- क्लासिकल हाइजेनबर्ग फेरोमैग्नेट मॉडल (स्पिन चेन)
- डेगस्पेरिस-प्रोसीसी समीकरण
- दिम समीकरण
- गार्नियर इंटीग्रेबल प्रणाली
- कौप-कुपरश्मिड समीकरण
- क्रिकेवर-नोविकोव समीकरण
- कॉर्टेवेग-डे व्रीस समीकरण
- लैंडौ-लिफ्शिट्ज समीकरण (निरंतर स्पिन क्षेत्र)
- नॉनलाइनियर श्रोडिंगर समीकरण
- नॉनलाइनियर सिग्मा मॉडल
- साइन-गॉर्डन समीकरण
- कॉलिंग मॉडल
- तीन तरंग समीकरण
2 + 1 आयामों में एकीकृत पीडीई
- डेवी-स्टीवर्टसन समीकरण
- इशिमोरी समीकरण
- कदोमत्सेव-पेटविअश्विली समीकरण
- नोविकोव-वेसेलोव समीकरण
- 3 + 1 आयामों में एकीकृत पीडीई
- बेलिंस्की-ज़खारोव परिवर्तन आइंस्टीन क्षेत्र समीकरण के लिए लक्स जोड़ी उत्पन्न करता है; सामान्य समाधानों को गुरुत्वाकर्षण सॉलिटॉन कहा जाता है, जिनमें से श्वार्जस्चिल्ड मीट्रिक, केर मीट्रिक और कुछ गुरुत्वाकर्षण तरंग समाधान उदाहरण हैं।
स्पष्ट रूप से हल करने योग्य सांख्यिकीय जाली मॉडल
- 8-वर्टेक्स मॉडल
- गौडिन मॉडल
- 1- और 2-आयामों में आइसिंग मॉडल
- लाइब का बर्फ के प्रकार का मॉडल
- क्वांटम हाइजेनबर्ग मॉडल
यह भी देखें
संबंधित क्षेत्र
कुछ प्रमुख योगदानकर्ता (1965 से)
- मार्क एब्लोविट्ज़
- रोडनी बैक्सटर
- पर्सी डिफ्ट
- लियोनिद डिकी
- व्लादिमीर ड्रिनफेल्ड
- बोरिस डबरोविन
- लुडविग फादीव
- हरमन फ्लास्का
- इज़राइल गेलफैंड
- अलेक्जेंडर इट
- मिचिओ जिम्बो
- इगोर एम. क्रिचेवर
- मार्टिन क्रुस्कल
- पीटर लैक
- व्लादिमीर मतवेव
- रॉबर्ट मिउरा
- तेत्सुजी मिवा
- एलन नेवेल
- निकोलाई रेशेतिखिन
- अलेक्सी शबात
- एवगेनी स्काईलिन
- मिकिओ सातो
- इलियट एच. लाइब
- ग्रीम सहगल
- जॉर्ज विल्सन
- व्लादिमीर ई. ज़खारोव
संदर्भ
- Arnold, V.I. (1997). Mathematical Methods of Classical Mechanics (2nd ed.). Springer. ISBN 978-0-387-96890-2.
- Audin, M. (1996). Spinning Tops: A Course on Integrable Systems. Cambridge Studies in Advanced Mathematics. Vol. 51. Cambridge University Press. ISBN 978-0521779197.
- Babelon, O.; Bernard, D.; Talon, M. (2003). Introduction to classical integrable systems. Cambridge University Press. doi:10.1017/CBO9780511535024. ISBN 0-521-82267-X.
- Baxter, R.J. (1982). Exactly solved models in statistical mechanics. Academic Press. ISBN 978-0-12-083180-7.
- Dunajski, M. (2009). Solitons, Instantons and Twistors. Oxford University Press. ISBN 978-0-19-857063-9.
- Faddeev, L.D.; Takhtajan, L.A. (1987). Hamiltonian Methods in the Theory of Solitons. Addison-Wesley. ISBN 978-0-387-15579-1.
- Fomenko, A.T. (1995). Symplectic Geometry. Methods and Applications (2nd ed.). Gordon and Breach. ISBN 978-2-88124-901-3.
- Fomenko, A.T.; Bolsinov, A.V. (2003). Integrable Hamiltonian Systems: Geometry, Topology, Classification. Taylor and Francis. ISBN 978-0-415-29805-6.
- Goldstein, H. (1980). Classical Mechanics (2nd ed.). Addison-Wesley. ISBN 0-201-02918-9.
- Harnad, J.; Winternitz, P.; Sabidussi, G., eds. (2000). Integrable Systems: From Classical to Quantum. American Mathematical Society. ISBN 0-8218-2093-1.
- Harnad, J.; Balogh, F. (2021). Tau functions and Their Applications. Cambridge Monographs on Mathematical Physics. Cambridge University Press. doi:10.1017/9781108610902. ISBN 9781108492683. S2CID 222379146.
- Hietarinta, J.; Joshi, N.; Nijhoff, F. (2016). Discrete systems and integrability. Cambridge University Press. doi:10.1017/CBO9781107337411. ISBN 978-1-107-04272-8.
- Korepin, V. E.; Bogoliubov, N.M.; Izergin, A.G. (1997). Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press. ISBN 978-0-521-58646-7.
- Afrajmovich, V.S.; Arnold, V.I.; Il'yashenko, Yu. S.; Shil'nikov, L.P. Dynamical Systems V. Springer. ISBN 3-540-18173-3.
- Mussardo, Giuseppe (2010). Statistical Field Theory. An Introduction to Exactly Solved Models of Statistical Physics. Oxford University Press. ISBN 978-0-19-954758-6.
- Sardanashvily, G. (2015). Handbook of Integrable Hamiltonian Systems. URSS. ISBN 978-5-396-00687-4.
अग्रिम पठन
- Beilinson, A.; Drinfeld, V. "Quantization of Hitchin's integrable system and Hecke eigensheaves" (PDF).
- Donagi, R.; Markman, E. (1996). "Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles". Integrable systems and quantum groups. Lecture Notes in Mathematics. Vol. 1620. Springer. pp. 1–119. doi:10.1007/BFb0094792. ISBN 978-3-540-60542-3.
- Sonnad, Kiran G.; Cary, John R. (2004). "Finding a nonlinear lattice with improved integrability using Lie transform perturbation theory". Physical Review E. 69 (5): 056501. Bibcode:2004PhRvE..69e6501S. doi:10.1103/PhysRevE.69.056501. PMID 15244955.
बाहरी संबंध
- "Integrable system", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- "SIDE - Symmetries and Integrability of Difference Equations", a conference devoted to the study of integrable difference equations and related topics.[10]
टिप्पणियाँ
- ↑ Hitchin, N.J.; Segal, G.B.; Ward, R.S. (2013) [1999]. Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces. Oxford University Press. ISBN 978-0-19-967677-4.
- ↑ Hirota, R. (1986). "द्विरेखीय रूप में सॉलिटॉन समीकरणों का अपचयन". Physica D: Nonlinear Phenomena. 18 (1–3): 161–170. Bibcode:1986PhyD...18..161H. doi:10.1016/0167-2789(86)90173-9.
- ↑ Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T. (1981). "कदोमत्सेव-पेटवीश्विली समीकरण III के लिए ऑपरेटर दृष्टिकोण". Journal of the Physical Society of Japan. 50 (11): 3806–12. doi:10.1143/JPSJ.50.3806.
- ↑ Jimbo, M.; Miwa, T. (1983). "सॉलिटॉन और अनंत-आयामी झूठ बीजगणित". Publ. Res. Inst. Math. Sci. 19 (3): 943–1001. doi:10.2977/prims/1195182017.
- ↑ Sato, M. (1981). "अनंत आयामी ग्रासमैन मैनिफोल्ड्स पर डायनेमिक सिस्टम के रूप में सॉलिटॉन समीकरण" (PDF). Kokyuroku, RIMS, Kyoto University. 439: 30–46. hdl:2433/102800.
- ↑ Calabrese, Pasquale; Essler, Fabian H L; Mussardo, Giuseppe (2016-06-27). "'क्वांटम इंटीग्रेबिलिटी इन आउट ऑफ इक्विलिब्रियम सिस्टम्स' का परिचय". Journal of Statistical Mechanics: Theory and Experiment. IOP Publishing. 2016 (6): 064001. Bibcode:2016JSMTE..06.4001C. doi:10.1088/1742-5468/2016/06/064001. ISSN 1742-5468. S2CID 124170507.
- ↑ Korepin, V.E.; Bogoliubov, N.M.; Izergin, A.G. (1997). क्वांटम व्युत्क्रम बिखरने की विधि और सहसंबंध कार्य. Cambridge University Press. ISBN 978-0-521-58646-7.
- ↑ Sinitsyn, N.A.; Li, F. (2016). "कैविटी QED में लैंडौ-जेनर ट्रांज़िशन का सॉल्वेबल मल्टीस्टेट मॉडल". Phys. Rev. A. 93 (6): 063859. arXiv:1602.03136. Bibcode:2016PhRvA..93f3859S. doi:10.1103/PhysRevA.93.063859. S2CID 119331736.
- ↑ Calogero, F. (2008). "कैलोगेरो-मोजर प्रणाली". Scholarpedia. 3 (8): 7216. Bibcode:2008SchpJ...3.7216C. doi:10.4249/scholarpedia.7216.
- ↑ Clarkson, Peter A.; Nijhoff, Frank W. (1999). Symmetries and Integrability of Difference Equations. London Mathematical Society. Vol. 255. Cambridge University Press. ISBN 978-0-521-59699-2.
[Category:Partial differential equatio