प्रीओन: Difference between revisions

From Vigyanwiki
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 212: Line 212:


=== द्रव्यमान विरोधाभास ===
=== द्रव्यमान विरोधाभास ===
एक प्रीओन मॉडल 1994 के आसपास [[फर्मिलैब]] (CDF) में कोलाइडर संसूचक में एक आंतरिक पेपर के रूप में शुरू हुआ था। 1992-1993 की कार्यावधि में 200 [[ इलेक्ट्रॉन वोल्ट |GeV]] से अधिक ऊर्जा वाले जेट के अप्रत्याशित और अकथनीय अतिरिक्त होने के बाद पेपर लिखा गया था। हालांकि, प्रकीर्णन प्रयोगों से पता चला है कि क्वार्क और लेप्टान{{10^|−18}} मी (या एक प्रोटॉन व्यास के{{frac|1|1000}} ) से कम दूरी के पैमाने पर "बिंदु की तरह" हैं। इस आकार के एक बॉक्स तक सीमित एक प्रीओन (जो भी द्रव्यमान हो) की [[गति]] [[अनिश्चितता]] लगभग 200 GeV/c है, जो अप-क्वार्क के [[शेष द्रव्यमान]] (मॉडल पर निर्भर) से 50,000 गुना बड़ा है, और एक इलेक्ट्रॉन के शेष द्रव्यमान से 400,000 गुना बड़ा है।
एक प्रीओन मॉडल 1994 के आसपास [[फर्मिलैब]] (CDF) में कोलाइडर संसूचक में एक आंतरिक पेपर के रूप में शुरू हुआ था। 1992-1993 की कार्यावधि में 200 [[ इलेक्ट्रॉन वोल्ट |GeV]] से अधिक ऊर्जा वाले जेट के अप्रत्याशित और अकथ अतिरिक्त होने के बाद पेपर लिखा गया था। हालांकि, प्रकीर्णन प्रयोगों से पता चला है कि क्वार्क और लेप्टान{{10^|−18}} मी (या एक प्रोटॉन व्यास के{{frac|1|1000}} ) से कम दूरी के पैमाने पर "बिंदु की तरह" हैं। इस आकार के एक बॉक्स तक सीमित एक प्रीओन (जो भी द्रव्यमान हो) की [[गति]] [[अनिश्चितता]] लगभग 200 GeV/c है, जो अप-क्वार्क के [[शेष द्रव्यमान]] (मॉडल पर निर्भर) से 50,000 गुना बड़ा है, और एक इलेक्ट्रॉन के शेष द्रव्यमान से 400,000 गुना बड़ा है।


हाइजेनबर्ग का [[अनिश्चितता सिद्धांत]] कहता है कि <math>\operatorname{\Delta} x \cdot \operatorname{\Delta} p \ge \tfrac{1}{2}\hbar</math> और इस प्रकार <math>\operatorname{\Delta} x</math> से छोटे बॉक्स तक सीमित कुछ भी एक गति अनिश्चितता आनुपातिक रूप से अधिक होती है। इस प्रकार, प्रीओन मॉडल प्रस्तावित कणों को प्राथमिक कणों से छोटा बनाता है, क्योंकि संवेग अनिश्चितता <math>\operatorname{\Delta} p</math> स्वयं कणों से बड़ा होना चाहिए।
हाइजेनबर्ग का [[अनिश्चितता सिद्धांत]] कहता है कि <math>\operatorname{\Delta} x \cdot \operatorname{\Delta} p \ge \tfrac{1}{2}\hbar</math> और इस प्रकार <math>\operatorname{\Delta} x</math> से छोटे बॉक्स तक सीमित कुछ भी एक गति अनिश्चितता आनुपातिक रूप से अधिक होती है। इस प्रकार, प्रीओन मॉडल प्रस्तावित कणों को प्राथमिक कणों से छोटा बनाता है, क्योंकि संवेग अनिश्चितता <math>\operatorname{\Delta} p</math> स्वयं कणों से बड़ा होना चाहिए।


तो प्रीओन मॉडल एक बड़े पैमाने पर विरोधाभास का प्रतिनिधित्व करता है: क्वार्क या इलेक्ट्रॉन छोटे कणों से कैसे बने हो सकते हैं जिनके तीव्र संवेग से उत्पन्न होने वाली अधिक द्रव्यमान-ऊर्जा के परिमाण के कई ऑर्डर होंगे? इस विरोधाभास को हल करने का एक तरीका यह है कि प्रीओन्स के बीच एक बड़े बाध्यकारी बल का अनुमान लगाया जाए जो उनकी द्रव्यमान-ऊर्जा को रद्द कर दे।{{citation needed|date=May 2012}}
तो प्रीओन मॉडल एक बड़े पैमाने पर विरोधाभास का निरूपण करता है: क्वार्क या इलेक्ट्रॉन छोटे कणों से कैसे बने हो सकते हैं जिनके तीव्र संवेग से उत्पन्न होने वाली अधिक द्रव्यमान-ऊर्जा के परिमाण के कई अनुक्रम होंगे? इस विरोधाभास को हल करने का एक तरीका यह है कि प्रीओन्स के बीच एक बड़े बाध्यकारी बल का अनुमान लगाया जाए जो उनकी द्रव्यमान-ऊर्जा को रद्द कर दे।{{citation needed|date=May 2012}}


=== अवलोकित भौतिकी के साथ संघर्ष ===
=== अवलोकित भौतिकी के साथ संघर्ष ===
Line 223: Line 223:
प्रीओन सिद्धांतों के लिए क्वार्क और लेप्टॉन का एक परिमित आकार होना आवश्यक है। यह संभव है कि [[लार्ज हैड्रोन कोलाइडर]] उच्च ऊर्जा में अपग्रेड होने के बाद इसका निरीक्षण करते हैं।{{citation needed|date=February 2023}}
प्रीओन सिद्धांतों के लिए क्वार्क और लेप्टॉन का एक परिमित आकार होना आवश्यक है। यह संभव है कि [[लार्ज हैड्रोन कोलाइडर]] उच्च ऊर्जा में अपग्रेड होने के बाद इसका निरीक्षण करते हैं।{{citation needed|date=February 2023}}


== लोकप्रिय संस्कृति में ==
== प्रमुख संवर्धन में ==
{{unreferenced section|date=November 2022}}
{{unreferenced section|date=November 2022}}
* 1948 में अपने 1930 के उपन्यास [[अंतरिक्ष का स्काईलार्क|''स्काईलार्क थ्री'']] के पुनर्मुद्रण/संपादन में, ''[[ई. ई. स्मिथ]]'' ने 'पहले और दूसरे प्रकार के उपइलेक्ट्रॉन' की एक श्रृंखला की परिकल्पना की, जिसमें बाद वाले मौलिक कण थे जो गुरुत्वाकर्षण बल से जुड़े थे। हालांकि यह मूल उपन्यास का एक तत्व नहीं हो सकता है (श्रृंखला के कुछ अन्य उपन्यासों का वैज्ञानिक आधार अतिरिक्त अठारह वर्षों के वैज्ञानिक विकास के कारण बड़े पैमाने पर संशोधित किया गया था), यहां तक ​​कि संपादित प्रकाशन भी पहला या पहला हो सकता है, इस संभावना का उल्लेख करता है कि इलेक्ट्रॉन मौलिक कण नहीं हैं।
* 1948 में अपने 1930 के उपन्यास [[अंतरिक्ष का स्काईलार्क|''स्काईलार्क थ्री'']] के पुनर्मुद्रण/संपादन में, ''[[ई. ई. स्मिथ]]'' ने 'पहले और दूसरे प्रकार के उपइलेक्ट्रॉन' की एक श्रृंखला की परिकल्पना की, जिसमें बाद वाले मौलिक कण थे जो गुरुत्वाकर्षण बल से जुड़े थे। हालांकि यह मूल उपन्यास का एक तत्व नहीं हो सकता है (श्रृंखला के कुछ अन्य उपन्यासों का वैज्ञानिक आधार के अतिरिक्त अठारह वर्षों के वैज्ञानिक विकास के कारण बड़े पैमाने पर संशोधित किया गया था), यहां तक ​​कि संपादित प्रकाशन भी पहला या पहला हो सकता है, इस संभावना का उल्लेख करता है कि इलेक्ट्रॉन मौलिक कण नहीं हैं।
* 1982 के चलचित्र ''स्टार ट्रेक II'' के उपन्यास संस्करण में: ''[[द रैथ ऑफ खान]]'', [[वोंडा मैकइंटायर]] द्वारा लिखित, डॉ. कैरल मार्कस की जेनेसिस प्रोजेक्ट टीम के दो सदस्य, वेंस मैडिसन और डेल्विन मार्च ने उप-प्राथमिक कणों का अध्ययन किया है जिसे उन्होंने "बूजम्स" और "स्नार्क्स" नाम दिया है, एक क्षेत्र में वे मजाक में "किंडरगार्टन भौतिकी" कहते हैं क्योंकि यह "प्राथमिक" (स्कूल स्तर के अनुरूप) से कम है।
* 1982 के चलचित्र ''स्टार ट्रेक II'' के उपन्यास संस्करण में: ''[[द रैथ ऑफ खान]]'', [[वोंडा मैकइंटायर]] द्वारा लिखित, डॉ. कैरल मार्कस की जेनेसिस प्रोजेक्ट टीम के दो सदस्य, वेंस मैडिसन और डेल्विन मार्च ने उप-प्राथमिक कणों का अध्ययन किया है जिसे उन्होंने "बूजम्स" और "स्नार्क्स" नाम दिया है, एक क्षेत्र में वे मजाक में "किंडरगार्टन भौतिकी" कहते हैं क्योंकि यह "प्राथमिक" (स्कूल स्तर के अनुरूप) से कम है।
* [[जेम्स पी. होगन]] के 1982 के उपन्यास ''[[वॉयेज फ्रॉम येस्टरियर]]'' में प्रिओन्स (जिन्हें ट्वीडल्स कहा जाता है) पर चर्चा की गई, जो भौतिकी कथानक (प्लाट) का केंद्र बन गया है।
* [[जेम्स पी. होगन]] के 1982 के उपन्यास ''[[वॉयेज फ्रॉम येस्टरियर]]'' में प्रिओन्स (जिन्हें ट्वीडल्स कहा जाता है) पर चर्चा की गई, जो भौतिकी कथानक (प्लाट) का केंद्र बन गया है।
Line 257: Line 257:


{{particles}}
{{particles}}
[[Category: काल्पनिक प्राथमिक कण]]


 
[[Category:All Wikipedia articles in need of updating]]
 
[[Category:All articles needing additional references]]
[[Category: Machine Translated Page]]
[[Category:All articles with specifically marked weasel-worded phrases]]
[[Category:All articles with unsourced statements]]
[[Category:Articles needing additional references from July 2019]]
[[Category:Articles needing additional references from November 2022]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with specifically marked weasel-worded phrases from February 2016]]
[[Category:Articles with unsourced statements from February 2023]]
[[Category:Articles with unsourced statements from July 2019]]
[[Category:Articles with unsourced statements from May 2012]]
[[Category:Collapse templates]]
[[Category:Created On 18/05/2023]]
[[Category:Created On 18/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia articles in need of updating from July 2019]]
[[Category:Wikipedia metatemplates]]
[[Category:काल्पनिक प्राथमिक कण]]

Latest revision as of 16:47, 8 June 2023

कण भौतिकी में, प्रिओन्स बिंदु कण होते हैं, जिन्हें क्वार्क और लेप्टान के उप-घटकों के रूप में माना जाता है।[1] यह शब्द 1974 में जोगेश पति और अब्दुस सलाम द्वारा अंकित किया गया था। 1980 के दशक में प्रीओन मॉडल में अभिरुचि चरम पर थी, लेकिन धीमी हो गई, क्योंकि कण भौतिकी के मानक मॉडल ने अधिकतर सफलतापूर्वक भौतिकी का वर्णन करना जारी रखा है, और लेप्टान और क्वार्क सम्मिश्रता के लिए कोई प्रत्यक्ष प्रायोगिक प्रमाण नहीं मिला है। प्रिओन्स चार प्रकारों जैसे प्लस, एंटी-प्लस, जीरो और एंटी-जीरो में आते हैं। डब्ल्यू बोसॉन में छह प्रीओन होते हैं, और क्वार्क और लेप्टॉन में केवल तीन होते हैं।

हैड्रोनिक क्षेत्र में, मानक मॉडल के अंदर कुछ प्रभावों को विसंगतियों के रूप में माना जाता है। उदाहरण के लिए, प्रोटॉन स्पिन समस्या (पज़ल), EMC प्रभाव, न्यूक्लियंस के अंदर विद्युत आवेशों का वितरण, जैसा कि 1956 में होफस्टैड्टर द्वारा पाया गया था। [2][3]

जब ''प्रिओन'' शब्द अंकित किया गया था, तो यह मुख्य रूप से स्पिन-1/2 फ़र्मियन के दो वर्गों की व्याख्या करने के लिए था: क्वार्क और लेप्टान। अभी हाल ही के प्रीओन मॉडल भी स्पिन-1 बोसॉन के लिए स्पष्टीकरण (अकाउन्ट) हैं, और अभी भी "प्रीओन" कहलाते हैं। प्रीओन मॉडल में से प्रत्येक मानक मॉडल की तुलना में कम मौलिक कणों के एक सेट को एक साथ रखता है, साथ ही यह नियंत्रित करने वाले नियम कि वे मौलिक कणों को कैसे संयोजित और इंटरैक्ट करते है| इन नियमों के आधार पर, प्रीओन मॉडल मानक मॉडल की व्याख्या करने की कोशिश करते हैं, अक्सर इस मॉडल के साथ छोटी विसंगतियों का पूर्वानुमान करते हैं और नए कणों तथा कुछ घटनाओं को उत्पन्न करते हैं, जो मानक मॉडल से संबंधित नहीं होते हैं।

प्रीओन मॉडल के उद्देश्य

प्रीओन अनुसंधान निम्नलिखित की इच्छा से प्रेरित है:

  • बड़ी संख्या में कणों को कम करें, अधिक मौलिक कणों की एक छोटी संख्या के लिए, बहुत से जो केवल आवेश में भिन्न होते हैं। उदाहरण के लिए,आवेश को छोड़कर डाउन क्वार्क और अप क्वार्क लगभग समान हैं, और द्रव्यमान में सामान्य अंतर है; प्रीओन अनुसंधान यह वर्णन करने से प्रेरित है कि क्वार्क समान प्रिओन्स से बने होते हैं| आशा है कि तत्वों की आवर्त सारणी और मेसन तथा बैरियन के क्वार्क मॉडल के लिए काम करने वाली न्यूनकारी (रेड्यूक्शनिस्ट) विधि को पुन: प्रस्तुत किया जा सकता है।
  • फ़र्मियन्स की ठीक तीन पीढ़ियाँ होने का कारण स्पष्ट कीजिए।
  • उन पैरामीटरों की गणना करें जो वर्तमान में मानक मॉडल द्वारा अस्पष्टीकृत हैं, जैसे कि एस.एम. मौलिक फर्मन, उनके विद्युत आवेश और रंग आवेश; वास्तव में, मानक मॉडल द्वारा आवश्यक संख्या से मॉडल-अभीष्ट प्रयोगात्मक इनपुट पैरामीटर की संख्या कम करें।
  • इलेक्ट्रॉन न्यूट्रिनो से लेकरशीर्ष क्वार्क तक कथित रूप से मौलिक कणों में देखी गई द्रव्यमान-ऊर्जा की बहुत बड़ी श्रेणी (रेंज) के लिए कारण प्रदान करें।
  • हिग्स क्षेत्र को लागू किए बिना वैद्यत्-निर्बल समरूपता को तोड़ने के लिए वैकल्पिक स्पष्टीकरण प्रदान करें, जिसे संभवतः हिग्स क्षेत्र से जुड़ी सैद्धांतिक समस्याओं को ठीक करने के लिए सुपरसिमेट्री की जरूरत है;[which?] (इसके अलावा, अब तक प्रस्तावित सुपरसिमेट्रिक सिद्धांतों की अपनी स्वयं की सैद्धांतिक और अवलोकन संबंधी समस्याएं हैं[which?])|
  • न्यूट्रिनो कंपन और स्पष्ट रूप से अद्वितीय द्रव्यमान तंत्र के लिए विवरण।
  • नए, गैर-दोहराव वाले पूर्वानुमान करें, जैसे ठंडे काले भौतिक द्रव्य वाले कैन्डिडेट को प्रदान करना।
  • व्याख्या करें कि केवल देखे गए कण प्रकारों की भिन्नता क्यों उपस्थित है, और केवल इन देखे गए कणों के उत्पादन के कारणों के साथ एक मॉडल दें (चूंकि गैर-अवलोकित कणों का पूर्वानुमान कई मौजूदा मॉडलों के साथ एक समस्या है, जैसे कि सुपरसिमेट्री है)।

पृष्ठभूमि

1970 के दशक में मानक मॉडल विकसित होने से पहले (मानक मॉडल के प्रमुख तत्व जिन्हें क्वार्क के रूप में जाना जाता है, 1964 में मुरै गेल-मान और जॉर्ज ज़्विग द्वारा प्रस्तावित किए गए थे), भौतिकविदों ने कण त्वरक में सैकड़ों विभिन्न प्रकार के कणों का अवलोकन किया था। बड़े पैमाने पर पदानुक्रम की तदर्थ प्रणाली में उनके भौतिक गुणों के संबंधों में व्यवस्थित किए गए थे, पूरी तरह से भिन्न नहीं थे जिस तरह से वर्गीकरण जानवरों को उनकी भौतिक विशेषताओं के आधार पर वर्गीकृत किया गया था। आश्चर्य की बात नहीं, कणों की बहुत बड़ी संख्या को ''कण ज़ू'' कहा जाता था।

मानक मॉडल, जो अब कण भौतिकी का प्रचलित मॉडल है, नाटकीय रूप से इस चित्र को यह दिखाते हुए सरल बना दिया कि देखे गए अधिकांश कण मेसन थे, जो दो क्वार्कों या बेरिऑन जो तीन क्वार्कों का संयोजन हैं, साथ ही कुछ अल्पमात्रा में अन्य कण हैं। सिद्धांत के अनुसार, हमेशा से अधिक प्रबल त्वरक में देखे जा रहे कण आमतौर पर इन क्वार्कों के संयोजन से अधिक कुछ नहीं थे।

क्वार्क, लेप्टान और बोसॉन की तुलना

मानक मॉडल के अंदर, कणों के कई वर्ग होते हैं। इनमें से एक, क्वार्क के छह प्रकार के हैं, जिनमें से प्रत्येक में तीन प्रकार हैं (डब "रंग", लाल, हरा और नीला, क्वांटम क्रोमोडायनामिक्स का विकास करते हैं)।

इसके अतिरिक्त, छह अलग-अलग प्रकार हैं जिन्हें लेप्टान के रूप में जाना जाता है। इन छह लेप्टानों में से तीन आवेशित कण हैं: इलेक्ट्रॉन, म्यूऑन और ताऊ हैं।न्युट्रीनो में अन्य तीन लेप्टान होते हैं, और प्रत्येक न्यूट्रिनो युग्म में तीन आवेशित लेप्टान होते हैं।

मानक मॉडल में, फोटॉन और ग्लून्स सहित बोसॉन भी होते हैं; W+, W तथा Z बोसॉन; और हिग्स बोसॉन; और गुरुत्वाकर्षण के लिए एक खुला स्थान छोड़ दिया है। इनमें से लगभग सभी कण ''बाएं हाथ'' और ''दाएं हाथ'' के संस्करणों में आते हैं (दाहिनी ओर (किरेलिटी) देखें)। क्वार्क, लेप्टान और डब्ल्यू बोसॉन सभी में विपरीत विद्युत आवेश वाले प्रति-कण होते हैं (या न्यूट्रिनो की स्थिति में, निर्बल आइसोस्पिन के विपरीत)।

मानक मॉडल के साथ अनसुलझी समस्याएं

मानक मॉडल में भी कई समस्याएं हैं जो पूरी तरह से हल नहीं हुई हैं। विशेष रूप से, कण सिद्धांत पर आधारित गुरुत्वाकर्षण का कोई सफल सिद्धांत अभी तक प्रस्तावित नहीं किया गया है। हालांकि मॉडल एक गुरुत्वाकर्षण के अस्तित्व को मानता है, उनके आधार पर एक स्पष्ट सिद्धांत तैयार करने के सभी प्रयास विफल रहे हैं।

कलमन[4] दावा करता है कि, परमाणुवाद की अवधारणा के अनुसार, प्रकृति के मौलिक निर्माण खंड पदार्थ के अविभाज्य टुकड़े हैं जो अनिर्मित और अविनाशी हैं। न तो लेप्टान और न ही क्वार्क वास्तव में अविनाशी हैं, क्योंकि कुछ लेप्टान अन्य लेप्टान में तथा कुछ क्वार्क अन्य क्वार्क में क्षय होते हैं। इस प्रकार, मौलिक आधारों पर, क्वार्क स्वयं मूलभूत निर्माण खंड नहीं हैं, बल्कि अन्य, मौलिक मात्राओं - प्रिओन्स से बना होता है। हालांकि प्रत्येक क्रमिक कण का द्रव्यमान कुछ पैटर्न का पालन करता है, अधिकांश कणों के शेष द्रव्यमान का पूर्वानुमान सटीक रूप से नहीं किया जा सकता है, लगभग सभी बैरियन के द्रव्यमान को छोड़कर जिन्हें डी सूजा (2010) द्वारा अच्छी तरह से तैयार किया गया है।[5]

मानक मॉडल में ब्रह्मांड की बड़े पैमाने की संरचना का पूर्वानुमान करने में भी समस्याएँ हैं। उदाहरण के लिए, एसएम आमतौर पर ब्रह्मांड में समान मात्रा में पदार्थ और प्रतिद्रव्य का पूर्वानुमान करता है। विभिन्न तंत्रों के माध्यम से इसे ''निर्धारित'' करने के लिए कई प्रयास किए गए हैं, लेकिन आज तक किसी को भी व्यापक समर्थन नहीं मिला है। इसी तरह, मॉडल के मूलभूत रूपांतरण प्रोटॉन क्षय की उपस्थिति का सुझाव देते हैं, जो अभी तक नहीं देखा गया है।

प्रीओन मॉडल के लिए प्रेरणा

काल्पनिक मूलभूत कण घटकों के लिए ''पार्टन'' या ''प्रीओन'' जैसे नामों का उपयोग करके प्रायोगिक और सैद्धांतिक कण भौतिकी में परिणामों की प्रमुख व्याख्या प्रदान करने के प्रयास में कई मॉडल प्रस्तावित किए गए हैं।

प्रीओन सिद्धांत रसायन विज्ञान में आवर्त सारणी की उपलब्धियों को कण भौतिकी में दोहराने की इच्छा से प्रेरित है, जिसने 94 प्राकृतिक रूप से पाए जाने वाले तत्वों को केवल तीन मूलभूत अंगों (प्रोटॉन, न्यूट्रॉन, इलेक्ट्रॉन) के संयोजन में घटा दिया है। इसी तरह, मानक मॉडल ने बाद में हैड्रॉन के ''कण ज़ू'' का एकीकृत कई दर्जन कणों को कम करके (पहले) सिर्फ तीन क्वार्क के एक अधिक मौलिक स्तर पर संयोजन के लिए किया, जिसके परिणामस्वरूप मानक मॉडल और क्वांटम क्रोमोडायनामिक्स से पहले बीसवीं सदी के मध्य कण भौतिकी में स्वेच्छ स्थिरांक की भारी संख्या को कम करना है।

हालांकि, नीचे चर्चा किए गए विशेष प्रीओन मॉडल ने कण भौतिकी समूह के बीच आज तक तुलनात्मक रूप से बहुत कम रुचि को आकर्षित किया है, क्योंकि कोलाइडर प्रयोगों में अब तक कोई प्रमाण प्राप्त नहीं हुआ है, यह दिखाने के लिए कि मानक मॉडल के फर्मन समग्र हैं।

प्रयास

कई भौतिकविदों ने मानक मॉडल के कई भागों को सैद्धांतिक रूप से उचित सिद्ध करने के प्रयास में ''प्री-क्वार्क'' (जिससे नाम प्रीओन निकला है) के सिद्धांत को विकसित करने का प्रयास किया है, जो केवल प्रयोगात्मक डेटा के माध्यम से जाना जाता है। इन प्रस्तावित मौलिक कणों (या मानक मॉडल में देखे गए सबसे मौलिक कणों के बीच मध्यवर्ती कणों) के लिए अन्य नामों का उपयोग किया गया है जिनमें प्रीक्वार्क्स, सबक्वार्क्स, मॉन्स,[6] अल्फोंस, क्विंक्स, रिशोन, ट्वीडल्स, हेलन्स, हैप्लॉन्स, वाई-कण,[7] और प्राइमन्स सम्मिलित हैं।[8] भौतिकी समूह में प्रीओन अग्रणी नाम है।

भौतिक समीक्षा में पति और सलाम के पेपर के साथ कम से कम 1974 तक एक सबस्ट्रक्चर डेट विकसित करने का प्रयास किया गया था।[9] अन्य प्रयासों में तेराज़वा, चिकाशिगे और अकामा द्वारा 1977 का पेपर,[10] समरूप, लेकिन स्वतंत्र, 1979 में नीमैन,[11]हरारी[12]और शुपे[13] द्वारा पेपर, फ्रिट्ज़ और मैंडेलबौम द्वारा 1981 का पेपर[14]और डिसूजा और कलमन द्वारा 1992 की किताब सम्मिलित है।[1]इनमें से किसी को भी भौतिकी विश्व में व्यापक स्वीकृति नहीं मिली है। हालाँकि, हाल के एक काम में[15]डी सूजा ने दिखाया है कि उनके मॉडल ने अपने समग्रता मॉडल से प्राप्त क्वांटम संख्या द्वारा निर्धारित चयन नियमों के अनुसार हैड्रॉन के सभी निर्बल क्षयों का अच्छी तरह से वर्णन किया है। उनके मॉडल में लेप्टान प्राथमिक कण होते हैं और प्रत्येक क्वार्क दो प्राइमॉन से बना होता है, और इस प्रकार, सभी क्वार्क चार प्राइमॉन द्वारा वर्णित होते हैं। इसलिए, मानक मॉडल को हिग्स बोसॉन की कोई आवश्यकता नहीं है और प्रत्येक क्वार्क द्रव्यमान तीन हिग्स-जैसे बोसॉन के माध्यम से प्रत्येक युग्म प्राइमॉन के बीच की परस्पर क्रिया से प्राप्त होता है।

अपने 1989 के नोबेल पुरस्कार स्वीकृति व्याख्यान में, हंस जॉर्ज डेहमेल्ट ने निश्चित गुणों के साथ एक सबसे मौलिक प्राथमिक कण का वर्णन किया, जिसे उन्होंने तेजी से अधिक प्राथमिक कणों की एक लंबी लेकिन परिमित श्रृंखला के संभावित परिणाम के रूप में ब्रह्मांड (कोस्मोन) कहा है।[16]


समग्र हिग्स

कई प्रीओन मॉडल या तो हिग्स बोसॉन के लिए उत्तरदायी नहीं हैं या इसे अस्वीकृत करते हैं, और प्रस्तावित करते हैं कि विद्युत-निर्बल समरूपता अदिश हिग्स क्षेत्र से नहीं बल्कि समग्र प्रीओन द्वारा तोड़ी जाती है।[17] उदाहरण के लिए, फ्रेडरिकसन प्रीओन सिद्धांत को हिग्स बोसॉन की आवश्यकता नहीं है, और विद्युत-निर्बल खंडन (ब्रेकिंग) को हिग्स-मध्यस्थ क्षेत्र के बजाय प्रिओन्स की पुनर्व्यवस्था के रूप में वर्णन करते है। वास्तव में, फ्रेडरिकसन प्रीओन मॉडल और डी सूजा मॉडल पूर्वानुमान करते हैं कि मानक मॉडल हिग्स बोसॉन उपस्थित नहीं है।

रिशोन मॉडल

रिशोन मॉडल (आरएम) कण भौतिकी के मानक मॉडल (एसएम) में दिखाई देने वाली घटना की व्याख्या करने के लिए प्रीओन मॉडल विकसित करने का सबसे पहला प्रयास (1979) है। यह पहली बार हैम हरारी और माइकल ए शुपे (एक दूसरे से स्वतंत्र) द्वारा विकसित किया गया था, और बाद में हरारी और उनके तत्कालीन छात्र नाथन सीबर्ग द्वारा विस्तारित किया गया था।[18]

मॉडल में दो प्रकार के मूलभूत कण होते हैं जिन्हें रिशोन (ראשונים) कहा जाता है (जिसका अर्थ यहूदी (हिब्रू) में "पहला" होता है)। वे T (''थर्ड'' हैं क्योंकि इसमें ⅓ e, या तोहू (תוהו) का विद्युत आवेश होता है जिसका अर्थ "कैओस" है) और V (''वैनिश'', क्योंकि यह विद्युत रूप से तटस्थ है, या वोहू जिसका अर्थ ''वॉइड'' है)। सभी लेप्टान और क्वार्क के सभी फ्लेवर तीन-रिशोन क्रमित ट्रिपलेट हैं। तीन रिशोन के इन समूहों में स्पिन-½ है।

रिशोन मॉडल इस क्षेत्र में कुछ विशिष्ट प्रयासों को दिखाता है। कई प्रीओन मॉडल सिद्धांत देते हैं कि ब्रह्मांड में पदार्थ और प्रतिद्रव्य का स्पष्ट असंतुलन वास्तव में आभासी है, बड़ी मात्रा में प्रीओन-लेवल प्रतिद्रव्य अधिक जटिल संरचनाओं के अंदर सीमित है।

विवेचना

द्रव्यमान विरोधाभास

एक प्रीओन मॉडल 1994 के आसपास फर्मिलैब (CDF) में कोलाइडर संसूचक में एक आंतरिक पेपर के रूप में शुरू हुआ था। 1992-1993 की कार्यावधि में 200 GeV से अधिक ऊर्जा वाले जेट के अप्रत्याशित और अकथ अतिरिक्त होने के बाद पेपर लिखा गया था। हालांकि, प्रकीर्णन प्रयोगों से पता चला है कि क्वार्क और लेप्टान10−18 मी (या एक प्रोटॉन व्यास के11000 ) से कम दूरी के पैमाने पर "बिंदु की तरह" हैं। इस आकार के एक बॉक्स तक सीमित एक प्रीओन (जो भी द्रव्यमान हो) की गति अनिश्चितता लगभग 200 GeV/c है, जो अप-क्वार्क के शेष द्रव्यमान (मॉडल पर निर्भर) से 50,000 गुना बड़ा है, और एक इलेक्ट्रॉन के शेष द्रव्यमान से 400,000 गुना बड़ा है।

हाइजेनबर्ग का अनिश्चितता सिद्धांत कहता है कि और इस प्रकार से छोटे बॉक्स तक सीमित कुछ भी एक गति अनिश्चितता आनुपातिक रूप से अधिक होती है। इस प्रकार, प्रीओन मॉडल प्रस्तावित कणों को प्राथमिक कणों से छोटा बनाता है, क्योंकि संवेग अनिश्चितता स्वयं कणों से बड़ा होना चाहिए।

तो प्रीओन मॉडल एक बड़े पैमाने पर विरोधाभास का निरूपण करता है: क्वार्क या इलेक्ट्रॉन छोटे कणों से कैसे बने हो सकते हैं जिनके तीव्र संवेग से उत्पन्न होने वाली अधिक द्रव्यमान-ऊर्जा के परिमाण के कई अनुक्रम होंगे? इस विरोधाभास को हल करने का एक तरीका यह है कि प्रीओन्स के बीच एक बड़े बाध्यकारी बल का अनुमान लगाया जाए जो उनकी द्रव्यमान-ऊर्जा को रद्द कर दे।[citation needed]

अवलोकित भौतिकी के साथ संघर्ष

प्रीओन मॉडल प्राथमिक कणों के देखे गए गुणों के लिए अतिरिक्त अप्रत्यक्ष बलों या गतिकी का प्रस्ताव करते हैं, जो अवलोकन के साथ संघर्ष में निहितार्थ हो सकते हैं। उदाहरण के लिए, अब जबकि हिग्स बोसॉन के LHC's के अवलोकन की पुष्टि हो गई है, अवलोकन कई प्रीओन मॉडलों के पूर्वानुमानों का खंडन करते है जिन्होंने इसे बाहर रखा था।[citation needed]

प्रीओन सिद्धांतों के लिए क्वार्क और लेप्टॉन का एक परिमित आकार होना आवश्यक है। यह संभव है कि लार्ज हैड्रोन कोलाइडर उच्च ऊर्जा में अपग्रेड होने के बाद इसका निरीक्षण करते हैं।[citation needed]

प्रमुख संवर्धन में

  • 1948 में अपने 1930 के उपन्यास स्काईलार्क थ्री के पुनर्मुद्रण/संपादन में, ई. ई. स्मिथ ने 'पहले और दूसरे प्रकार के उपइलेक्ट्रॉन' की एक श्रृंखला की परिकल्पना की, जिसमें बाद वाले मौलिक कण थे जो गुरुत्वाकर्षण बल से जुड़े थे। हालांकि यह मूल उपन्यास का एक तत्व नहीं हो सकता है (श्रृंखला के कुछ अन्य उपन्यासों का वैज्ञानिक आधार के अतिरिक्त अठारह वर्षों के वैज्ञानिक विकास के कारण बड़े पैमाने पर संशोधित किया गया था), यहां तक ​​कि संपादित प्रकाशन भी पहला या पहला हो सकता है, इस संभावना का उल्लेख करता है कि इलेक्ट्रॉन मौलिक कण नहीं हैं।
  • 1982 के चलचित्र स्टार ट्रेक II के उपन्यास संस्करण में: द रैथ ऑफ खान, वोंडा मैकइंटायर द्वारा लिखित, डॉ. कैरल मार्कस की जेनेसिस प्रोजेक्ट टीम के दो सदस्य, वेंस मैडिसन और डेल्विन मार्च ने उप-प्राथमिक कणों का अध्ययन किया है जिसे उन्होंने "बूजम्स" और "स्नार्क्स" नाम दिया है, एक क्षेत्र में वे मजाक में "किंडरगार्टन भौतिकी" कहते हैं क्योंकि यह "प्राथमिक" (स्कूल स्तर के अनुरूप) से कम है।
  • जेम्स पी. होगन के 1982 के उपन्यास वॉयेज फ्रॉम येस्टरियर में प्रिओन्स (जिन्हें ट्वीडल्स कहा जाता है) पर चर्चा की गई, जो भौतिकी कथानक (प्लाट) का केंद्र बन गया है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 D'Souza, I.A.; Kalman, C.S. (1992). Preons: Models of Leptons, Quarks and Gauge Bosons as Composite Objects. World Scientific. ISBN 978-981-02-1019-9.
  2. Hofstadter, Robert (1 July 1956). "इलेक्ट्रॉन बिखराव और परमाणु संरचना". Reviews of Modern Physics. 28 (3): 214–254. Bibcode:1956RvMP...28..214H. doi:10.1103/RevModPhys.28.214.
  3. Hofstadter, R.; Bumiller, F.; Yearian, M.R. (1 April 1958). "प्रोटॉन और न्यूट्रॉन की विद्युत चुम्बकीय संरचना" (PDF). Reviews of Modern Physics. 30 (2): 482–497. Bibcode:1958RvMP...30..482H. doi:10.1103/RevModPhys.30.482. Archived (PDF) from the original on 2018-02-23.
  4. Kalman, C.S. (2005). "क्वार्क मूलभूत कण क्यों नहीं हो सकते". Nuclear Physics B: Proceedings Supplements. 142: 235–237. arXiv:hep-ph/0411313. Bibcode:2005NuPhS.142..235K. doi:10.1016/j.nuclphysbps.2005.01.042. S2CID 119394495.
  5. de Souza, Mario Everaldo (2010). "बेरियनों के लगभग सभी ऊर्जा स्तरों की गणना". Papers in Physics. 3: 030003–1. doi:10.4279/PIP.030003.
  6. Overbye, D. (5 December 2006). "China pursues major role in particle physics". The New York Times. Retrieved 2011-09-12.
  7. Yershov, V.N. (2005). "Equilibrium configurations of tripolar charges". Few-Body Systems. 37 (1–2): 79–106. arXiv:physics/0609185. Bibcode:2005FBS....37...79Y. doi:10.1007/s00601-004-0070-2. S2CID 119474883.
  8. de Souza, M.E. (2005). "The ultimate division of matter". Scientia Plena. 1 (4): 83.
  9. Pati, J.C.; Salam, A. (1974). "Lepton number as the fourth "color"" (PDF). Physical Review D. 10 (1): 275–289. Bibcode:1974PhRvD..10..275P. doi:10.1103/PhysRevD.10.275. S2CID 17349483. Archived from the original (PDF) on 2019-02-20.
    Erratum: Pati, J.C.; Salam, A. (1975). "Erratum: Lepton number as the fourth "color"". Physical Review D. 11 (3): 703. Bibcode:1975PhRvD..11..703P. doi:10.1103/PhysRevD.11.703.2.
  10. Terazawa, H.; Chikashige, Y.; Akama, K. (1977). "Unified model of the Nambu-Jona-Lasinio type for all elementary particles". Physical Review D. 15 (2): 480–487. Bibcode:1977PhRvD..15..480T. doi:10.1103/PhysRevD.15.480.
  11. Ne'eman, Y. (1979). "Irreducible gauge theory of a consolidated Weinberg-Salam model". Physics Letters B. 81 (2): 190–194. Bibcode:1979PhLB...81..190N. doi:10.1016/0370-2693(79)90521-5. OSTI 6534180.
  12. Harari, H. (1979). "A schematic model of quarks and leptons" (PDF). Physics Letters B. 86 (1): 83–86. Bibcode:1979PhLB...86...83H. doi:10.1016/0370-2693(79)90626-9. OSTI 1447265.
  13. Shupe, M.A. (1979). "A composite model of leptons and quarks". Physics Letters B. 86 (1): 87–92. Bibcode:1979PhLB...86...87S. doi:10.1016/0370-2693(79)90627-0.
  14. Fritzsch, H.; Mandelbaum, G. (1981). "Weak interactions as manifestations of the substructure of leptons and quarks". Physics Letters B. 102 (5): 319. Bibcode:1981PhLB..102..319F. doi:10.1016/0370-2693(81)90626-2.
  15. de Souza, M.E. (2008). "Weak decays of hadrons reveal compositeness of quarks". Scientia Plena. 4 (6): 064801–1.
  16. Dehmelt, H.G. (1989). "Experiments with an isolated subatomic particle at rest". Nobel lecture. The Nobel Foundation. See also references therein.
  17. Dugne, J.-J.; Fredriksson, S.; Hansson, J.; Predazzi, E. (1997). "Higgs pain? Take a preon!". arXiv:hep-ph/9709227.
  18. Harari, Haim; Seiberg, Nathan (1982). "The Rishon model" (PDF). Nuclear Physics B. North-Holland Publishing. 204 (1): 141–167. Bibcode:1982NuPhB.204..141H. doi:10.1016/0550-3213(82)90426-6. Retrieved 2018-06-02.


अग्रिम पठन