विशेष रैखिक समूह: Difference between revisions

From Vigyanwiki
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 80: Line 80:
{{Reflist}}{{Citation | last1=Conder | first1=Marston|author1-link=Marston Conder | last2=Robertson | first2=Edmund | last3=Williams | first3=Peter | title=Presentations for 3-dimensional special linear groups over integer rings | mr=1079696  | year=1992 | journal=Proceedings of the American Mathematical Society | volume=115 | issue=1 | pages=19–26 |doi=10.2307/2159559 | publisher=American Mathematical Society | jstor=2159559 }}
{{Reflist}}{{Citation | last1=Conder | first1=Marston|author1-link=Marston Conder | last2=Robertson | first2=Edmund | last3=Williams | first3=Peter | title=Presentations for 3-dimensional special linear groups over integer rings | mr=1079696  | year=1992 | journal=Proceedings of the American Mathematical Society | volume=115 | issue=1 | pages=19–26 |doi=10.2307/2159559 | publisher=American Mathematical Society | jstor=2159559 }}
*{{Citation| last=Hall|first=Brian C.|title=Lie groups, Lie algebras, and representations: An elementary introduction|edition=2nd|series=Graduate Texts in Mathematics|volume=222|publisher=Springer|year=2015}}
*{{Citation| last=Hall|first=Brian C.|title=Lie groups, Lie algebras, and representations: An elementary introduction|edition=2nd|series=Graduate Texts in Mathematics|volume=222|publisher=Springer|year=2015}}
[[Category: लीनियर अलजेब्रा]] [[Category: झूठ बोलने वाले समूह]] [[Category: रैखिक बीजगणितीय समूह]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 26/05/2023]]
[[Category:Created On 26/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematics sidebar templates]]
[[Category:Pages with script errors]]
[[Category:Physics sidebar templates]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:झूठ बोलने वाले समूह]]
[[Category:रैखिक बीजगणितीय समूह]]
[[Category:लीनियर अलजेब्रा]]

Latest revision as of 10:23, 15 June 2023

एसएल (2,3) की केली टेबल

गणित में विशेष रेखीय समूह SL(n, F) एक क्षेत्र (गणित) F पर डिग्री n का निर्धारक 1 के साथ n × n आव्यूह (गणित) का समुच्चय हैं, जिसमें साधारण आव्यूह गुणन और आव्यूह व्युत्क्रम के समूह संचालन होते हैं। यह निर्धारक के कर्नेल (बीजगणित) द्वारा दिए गए सामान्य रैखिक समूह का सामान्य उपसमूह है

जहां F× F का गुणक समूह है (अर्थात F को छोड़कर 0)।

ये तत्व "विशेष" हैं क्योंकि वे सामान्य रेखीय समूह की एक बीजगणितीय विविधता बनाते हैं - वे एक बहुपद समीकरण को संतुष्ट करते हैं (चूंकि निर्धारक प्रविष्टियों में बहुपद है)।

जब F क्रम q का परिमित क्षेत्र है, तो अंकन SL(n, q) कभी-कभी प्रयोग किया जाता है।

ज्यामितीय व्याख्या

विशेष रैखिक समूह SL(n, R) को 'Rn' के रैखिक परिवर्तनों को संरक्षित करने वाले आयतन और अभिविन्यास (गणित) के समूह के रूप में वर्णित किया जा सकता है, यह मात्रा और अभिविन्यास में परिवर्तन को मापने के रूप में निर्धारक की व्याख्या के अनुरूप है।

लाई उपसमूह

जब F 'R' या 'C' है, तो SL(n, F), GL(n, F) आयाम n2 − 1 का लाई उपसमूह होता है। लाई बीजगणित के मैथफ्राक SL(n, F) में सभी n × n आव्यूह होते हैं जो विलुप्त होने वाले ट्रेस के साथ F पर होते हैं। लेट ब्रैकेट कम्यूटेटर द्वारा दिया जाता है।

टोपोलॉजी

किसी भी व्युत्क्रमणीय आव्यूह को विशिष्ट रूप से ध्रुवीय अपघटन के अनुसार एकात्मक आव्यूह के उत्पाद के रूप में और धनात्मक ईगेनवेल्यूज़ ​​​​के साथ एक हेर्मिटियन आव्यूह का प्रतिनिधित्व किया जा सकता है। एकात्मक आव्यूह का निर्धारक यूनिट चक्र पर है, जबकि हर्मिटियन आव्यूह वास्तविक और सकारात्मक है चूंकि विशेष रैखिक समूह से आव्यूह की स्थिति में इन दो निर्धारकों का उत्पाद 1 होना चाहिए, तो उनमें से प्रत्येक होना चाहिए इसलिए, एक विशेष रैखिक आव्यूह को एक विशेष एकात्मक आव्यूह (या वास्तविक स्थिति में विशेष ऑर्थोगोनल आव्यूह) और एक सकारात्मक-निश्चित हर्मिटियन आव्यूह (या वास्तविक स्थिति में सममित आव्यूह) के उत्पाद के रूप में लिखा जा सकता है, जिसमें निर्धारक 1 है।

इस प्रकार समूह SL(n, C) की टोपोलॉजी SU (n) की टोपोलॉजी का उत्पाद है और यूनिट निर्धारक के हेर्मिटियन आव्यूह के समूह की टोपोलॉजी सकारात्मक आइगेनवैल्यू के साथ है, यूनिट निर्धारक का एक हेर्मिटियन आव्यूह और सकारात्मक ईगेनवेल्यूज़ ​​​को विशिष्ट रूप से ट्रेसलेस हेर्मिटियन आव्यूह के घातांक के रूप में व्यक्त किया जा सकता है इसलिए इसकी टोपोलॉजी यह है (n2 − 1)-आयामी यूक्लिडियन स्पेस[1] चूँकि SU(n) बस जुड़ा हुआ है,[2] हम यह निष्कर्ष निकालते हैं SL(n, C) 2 से अधिक या उसके बराबर सभी n के लिए भी बस जुड़ा हुआ है।

टोपोलॉजी SL(n, R) की टोपोलॉजी SO (n) की टोपोलॉजी का उत्पाद है और सममित आव्यूह के समूह की टोपोलॉजी सकारात्मक आइगेनवैल्यू और यूनिट निर्धारक के साथ है चूंकि बाद वाले आव्यूह को विशिष्ट रूप से सममित ट्रैसलेस आव्यूह के घातांक के रूप में व्यक्त किया जा सकता है, तो यह बाद वाला टोपोलॉजी है (n + 2)(n − 1)/2-आयामी यूक्लिडियन स्पेस का है। इस प्रकार समूह SL(n, R) का मौलिक समूह SO(n) के समान है, अर्थात 'Z' के लिए n = 2 और Z2 के लिए n > 2.[3] विशेष रूप से इसका मतलब यह है SL(n, R) के विपरीत SL(n, C) 1 से अधिक n के लिए बस जुड़ा हुआ नहीं है।

GL(n,A) के अन्य उपसमूहों से संबंध

दो संबंधित उपसमूह जो कुछ स्थिति में SL के साथ मेल खाते हैं और अन्य स्थिति में गलती से SL के साथ मिल जाते हैं, GL के कम्यूटेटर उपसमूह हैं और संवहन द्वारा उत्पन्न समूह। ये दोनों SL के उपसमूह हैं (संक्रमण में निर्धारक 1 है और det एक एबेलियन समूह के लिए एक मानचित्र है इसलिए [GL, GL] ≤ SL) लेकिन सामान्य तौर पर इसके साथ मेल नहीं खाता है।

संवहन द्वारा उत्पन्न समूह को E(n, A) (प्रारंभिक आव्यूह के लिए) या TV(n, A)के रूप में दर्शाया गया है। दूसरे स्टाइनबर्ग संबंध द्वारा n ≥ 3के लिए संवहन कम्यूटेटर हैं इसलिए n ≥ 3के लिए E(n, A) ≤ [GL(n, A), GL(n, A)].

n = 2 के लिए संवहन को कम्यूटेटर नहीं होना चाहिए ( 2 × 2 आव्यूह के) जैसा कि उदाहरण के लिए देखा गया है जब A F2 है, दो तत्वों का क्षेत्र है, तो

जहाँ Alt(3) और Sym(3) वैकल्पिक समूह सम्मान को दर्शाता है, 3 अक्षरों पर सममित समूह।

हालाँकि, यदि A 2 से अधिक तत्वों वाला क्षेत्र है तो E(2, A) = [GL(2, A), GL(2, A)] और यदि A 3 से अधिक तत्वों वाला क्षेत्र है, तो E(2, A) = [SL(2, A), SL(2, A)].

कुछ परिस्थितियों में ये मेल खाते हैं: किसी क्षेत्र या यूक्लिडियन डोमेन पर विशेष रैखिक समूह संवहन द्वारा उत्पन्न होता है और डेडेकाइंड डोमेन पर स्थिर विशेष रैखिक समूह संवहन द्वारा उत्पन्न होता है। अधिक सामान्य छल्लों के लिए स्थिर अंतर को विशेष व्हाइटहेड समूह SK1(A) := SL(A)/E(A) द्वारा मापा जाता है, जहां SL(A) और E(A) विशेष रैखिक समूह और प्रारंभिक आव्यूहों के समूहों की प्रत्यक्ष सीमा हैं।

जनरेटर और संबंध

अगर एक रिंग पर काम कर रहे हैं जहां SL संवहन (जैसे क्षेत्र (गणित) या यूक्लिडियन डोमेन) द्वारा उत्पन्न होता है, तो कोई कुछ संबंधों के साथ संवहन का उपयोग करके SL के समूह की प्रस्तुति दे सकता है। संवहन स्टाइनबर्ग संबंधों को संतुष्ट करते हैं, लेकिन ये पर्याप्त नहीं हैं: परिणामी समूह स्टाइनबर्ग समूह (के-सिद्धांत) है जो विशेष रैखिक समूह नहीं हैं, बल्कि GL के कम्यूटेटर उपसमूह का सार्वभौमिक केंद्रीय विस्तार है।

संबंधों का एक पर्याप्त संग्रह SL(n, Z) के लिए n ≥ 3 स्टाइनबर्ग संबंधों में से दो, साथ ही एक तीसरे संबंध (कॉनडर, रॉबर्टसन एंड विलियम्स 1992, पृष्ठ 19)द्वारा दिया गया है।

माना Tij := eij(1) विकर्ण पर 1 के साथ और ij स्थिति में 1 के साथ प्राथमिक आव्युह हो और अन्यत्र 0 (और i ≠ j) हो, तब

SL(n, Z), n ≥ 3 के लिए संबंधों का एक पूर्ण संग्रह है।

SL±(n,F)

विशेषता (बीजगणित) में 2 के अलावा निर्धारक के साथ आव्यूह का संग्रह ±1 GL का एक अन्य उपसमूह बनाते हैं, जिसमें SL एक सूचकांक 2 उपसमूह (अनिवार्य रूप से सामान्य) के रूप में होता है, विशेषता 2 में यह SL के समान है। यह समूहों का एक संक्षिप्त सटीक अनुक्रम बनाता है:

यह अनुक्रम निर्धारक −1के साथ किसी भी आव्यूह को लेकर विभाजित होता है, उदाहरण के लिए विकर्ण आव्यूह अगर विषम है, नकारात्मक पहचान आव्यूह हैं SL±(n,F) में है लेकिन SL(n,F) में नहीं है और इस प्रकार समूह आंतरिक प्रत्यक्ष उत्पाद के रूप में विभाजित हो जाता है . हालांकि, यदि सम है पहले से ही SL(n,F) में है, SL± विभाजित नहीं होता है और सामान्य रूप से एक गैर-तुच्छ समूह विस्तार है।

वास्तविक संख्याओं पर SL±(n, R) में दो जुड़े हुए घटक (टोपोलॉजी) होते हैं, जो SL(n, R) और एक अन्य घटक के अनुरूप होते हैं जो बिंदु की पसंद (निर्धारक के साथ आव्यूह) −1)के आधार पर पहचान के साथ आइसोमोर्फिक होते हैं। विषम आयाम में इन्हें स्वाभाविक रूप से द्वारा पहचाना जाता है, लेकिन सम आयाम में कोई एक प्राकृतिक पहचान नहीं है।

GL (n,F) की संरचना

समूह GL(n, F) अपने निर्धारक पर विभाजित होता है (हम F× ≅ GL(1, F) → GL(n, F) का उपयोग F× से GL(n, F) तक एकरूपता के रूप में करते हैं, सेमीडायरेक्ट उत्पाद देखें) इसलिए GL(n, F) को F× द्वारा SL(n, F) के अर्ध-प्रत्यक्ष उत्पाद के रूप में लिखा जा सकता है:

GL(n, F) = SL(n, F) ⋊ F×

यह भी देखें

संदर्भ

  1. Hall 2015 Section 2.5
  2. Hall 2015 Proposition 13.11
  3. Hall 2015 Sections 13.2 and 13.3

Conder, Marston; Robertson, Edmund; Williams, Peter (1992), "Presentations for 3-dimensional special linear groups over integer rings", Proceedings of the American Mathematical Society, American Mathematical Society, 115 (1): 19–26, doi:10.2307/2159559, JSTOR 2159559, MR 1079696

  • Hall, Brian C. (2015), Lie groups, Lie algebras, and representations: An elementary introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer