अल्फवेन की प्रमेय: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Theorem in magnetohydrodynamics}} आदर्श मैग्नेटोहाइड्रोडायनामिक्स में, अल्फ...")
 
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Theorem in magnetohydrodynamics}}
{{short description|Theorem in magnetohydrodynamics}}
[[आदर्श मैग्नेटोहाइड्रोडायनामिक्स]] में, अल्फवेन के प्रमेय, या जमे हुए प्रवाह प्रमेय में कहा गया है कि विद्युत प्रवाहकीय तरल पदार्थ और एम्बेडेड [[चुंबकीय क्षेत्र]] बड़े [[चुंबकीय रेनॉल्ड्स संख्या]]ओं की सीमा में एक साथ चलने के लिए विवश हैं। इसका नाम हेंस अल्फवेन के नाम पर रखा गया है, जिन्होंने 1943 में इस विचार को सामने रखा था।
[[आदर्श मैग्नेटोहाइड्रोडायनामिक्स]] में, '''अल्फवेन के प्रमेय''', या जमे हुए प्रवाह प्रमेय में कहा गया है कि विद्युत प्रवाहकीय तरल पदार्थ और एम्बेडेड [[चुंबकीय क्षेत्र]] बड़े [[चुंबकीय रेनॉल्ड्स संख्या]]ओं की सीमा में एक साथ चलने के लिए विवश हैं। इसका नाम हेंस अल्फवेन के नाम पर रखा गया है, जिन्होंने 1943 में इस विचार को सामने रखा था।


अल्फवेन के प्रमेय का तात्पर्य है कि एक बड़े चुंबकीय रेनॉल्ड्स संख्या की सीमा में द्रव का [[चुंबकीय टोपोलॉजी]] नहीं बदल सकता है। यह सन्निकटन वर्तमान शीट्स में टूट जाता है, जहाँ [[चुंबकीय पुन: संयोजन]] हो सकता है।
अल्फवेन के प्रमेय का तात्पर्य है कि बड़े चुंबकीय रेनॉल्ड्स संख्या की सीमा में द्रव का [[चुंबकीय टोपोलॉजी]] परिवर्तन नहीं कर सकता है। यह सन्निकटन वर्तमान शीट्स में टूट जाता है, जहाँ [[चुंबकीय पुन: संयोजन]] हो सकता है।


== इतिहास ==
== इतिहास                                                                                                                                       ==
अनंत विद्युत चालकता वाले द्रवों में जमे हुए चुंबकीय क्षेत्र की अवधारणा को पहली बार हेंस अल्फवेन द्वारा 1943 में ऑन द एक्जिस्टेंस ऑफ इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक वेव्स शीर्षक से प्रस्तावित किया गया था, जो आर्किव फॉर मैटेमैटिक, एस्ट्रोनोमी ओच फिजिक पत्रिका में प्रकाशित हुआ था। उन्होंने लिखा है:<ref name="alfven43">{{cite journal|last1=Alfvén|first1=Hannes|title=इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक तरंगों के अस्तित्व पर|journal=Arkiv för matematik, astronomi och fysik|date=1943|volume=29B(2)|pages=1–7|url=https://archive.org/download/MagnetohydrodynamicWavesAlfven1943/Magnetohydrodynamic%20waves%20-%20Alfven%201943.pdf}}</ref>
अनंत विद्युत चालकता वाले द्रवों में जमे हुए चुंबकीय क्षेत्र की अवधारणा को पहली बार हेंस अल्फवेन द्वारा 1943 में ऑन द एक्जिस्टेंस ऑफ इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक वेव्स शीर्षक से प्रस्तावित किया गया था, जो आर्किव फॉर मैटेमैटिक, एस्ट्रोनोमी ओच फिजिक पत्रिका में प्रकाशित हुआ था। उन्होंने लिखा है:<ref name="alfven43">{{cite journal|last1=Alfvén|first1=Hannes|title=इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक तरंगों के अस्तित्व पर|journal=Arkiv för matematik, astronomi och fysik|date=1943|volume=29B(2)|pages=1–7|url=https://archive.org/download/MagnetohydrodynamicWavesAlfven1943/Magnetohydrodynamic%20waves%20-%20Alfven%201943.pdf}}</ref>
{{Block quote
{{Block quote
|text=In view of the infinite conductivity, every motion (perpendicular to the field) of the liquid in relation to the lines of force is forbidden because it would give infinite [[eddy current]]s. Thus the matter of the liquid is "fastened" to the lines of force...
|text=अनंत चालकता को ध्यान में रखते हुए, बल की रेखाओं के संबंध में तरल की प्रत्येक गति (क्षेत्र के लंबवत) वर्जित है क्योंकि यह अनंत [एडी धारा] देती है। इस प्रकार तरल पदार्थ बल की रेखाओं के लिए "जुड़ा हुआ" है ...
}}
}}
  इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक वेव्स के अस्तित्व पर 1942 में जर्नल नेचर (जर्नल) में प्रकाशित अल्फवेन के पहले के पेपर एग्जिस्टेंस ऑफ इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक वेव्स के परिणामों की व्याख्या की।<ref>{{cite journal|last1=Alfvén|first1=Hannes|title=इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक तरंगों का अस्तित्व|journal=Nature|date=1942|volume=150|issue=3805|page=405|doi=10.1038/150405d0|bibcode=1942Natur.150..405A|s2cid=4072220}}</ref>
  इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक वेव्स के अस्तित्व पर 1942 में जर्नल नेचर (जर्नल) में प्रकाशित अल्फवेन के पहले के पेपर एग्जिस्टेंस ऑफ इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक वेव्स के परिणामों की व्याख्या की थी।<ref>{{cite journal|last1=Alfvén|first1=Hannes|title=इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक तरंगों का अस्तित्व|journal=Nature|date=1942|volume=150|issue=3805|page=405|doi=10.1038/150405d0|bibcode=1942Natur.150..405A|s2cid=4072220}}</ref>
बाद में जीवन में, अल्फवेन ने अपने स्वयं के प्रमेय के उपयोग के विरुद्ध सलाह दी।<ref>{{Cite journal |last=Alfvén |first=H. |date=August 1976 |title=फ्रोजन-इन फील्ड लाइन्स और फील्ड-लाइन रीकनेक्शन पर|url=https://doi.org/10.1029/JA081i022p04019 |journal=Journal of Geophysical Research |language=en |volume=81 |issue=22 |pages=4019–4021 |doi=10.1029/JA081i022p04019|bibcode=1976JGR....81.4019A }}</ref>
बाद में जीवन में, अल्फवेन ने अपने स्वयं के प्रमेय के उपयोग के विरुद्ध सलाह दी थी।<ref>{{Cite journal |last=Alfvén |first=H. |date=August 1976 |title=फ्रोजन-इन फील्ड लाइन्स और फील्ड-लाइन रीकनेक्शन पर|url=https://doi.org/10.1029/JA081i022p04019 |journal=Journal of Geophysical Research |language=en |volume=81 |issue=22 |pages=4019–4021 |doi=10.1029/JA081i022p04019|bibcode=1976JGR....81.4019A }}</ref>
== सिंहावलोकन        ==
यह अनौपचारिक रूप से, अल्फवेन की प्रमेय मैग्नेटोहाइड्रोडायनामिक्स या आइडियल एमएचडी में मौलिक परिणाम को संदर्भित करती है जो विद्युत प्रवाहकीय तरल पदार्थ और अन्दर के चुंबकीय क्षेत्र के बड़े चुंबकीय रेनॉल्ड्स संख्याओं की सीमा में एक साथ चलने के लिए विवश हैं - जैसे कि जब द्रव एक [[सही कंडक्टर|सही चालक]] है या जब वेग और लंबाई के मापदंड असीम रूप से बड़े हैं। दोनों की गति इस बात से विवश है कि चुंबकीय क्षेत्र के लंबवत सभी किन्तु द्रव गतियों का परिणाम समान वेग से क्षेत्र की लंबवत गति से मिलता है और इसके विपरीत होता है।


औपचारिक रूप से तरल पदार्थ की गति और चुंबकीय क्षेत्र की गति के बीच संबंध दो प्राथमिक परिणामों में विस्तृत है जिन्हें अधिकांशतः चुंबकीय प्रवाह संरक्षण और चुंबकीय क्षेत्र रेखा संरक्षण कहा जाता है। की चुंबकीय प्रवाह संरक्षण का तात्पर्य है कि किन्तु द्रव वेग के साथ चलती सतह के माध्यम से चुंबकीय प्रवाह स्थिर है और चुंबकीय क्षेत्र रेखा संरक्षण का अर्थ है कि यदि दो द्रव तत्व चुंबकीय क्षेत्र रेखा से जुड़े हैं तो वे सदैव रहते है।<ref>{{cite journal |last1=Priest |first1=E. |title=तीन आयामी पुन: संयोजन में एमएचडी संरचनाएं|journal=Magnetic Reconnection |series=Astrophysics and Space Science Library |date=2016 |volume=427 |pages=101–142 |doi=10.1007/978-3-319-26432-5_3|isbn=978-3-319-26430-1 }}</ref>


== सिंहावलोकन ==
=== फ्लक्स ट्यूब और क्षेत्र लाइन ===
अनौपचारिक रूप से, अल्फवेन की प्रमेय मैग्नेटोहाइड्रोडायनामिक्स # आइडियल एमएचडी में मौलिक परिणाम को संदर्भित करती है जो विद्युत प्रवाहकीय तरल पदार्थ और भीतर के चुंबकीय क्षेत्र बड़े चुंबकीय रेनॉल्ड्स संख्याओं की सीमा में एक साथ चलने के लिए विवश हैं - जैसे कि जब द्रव एक [[सही कंडक्टर]] है या जब वेग और लंबाई के पैमाने असीम रूप से बड़े हैं। दोनों की गति इस बात से विवश है कि चुंबकीय क्षेत्र के लंबवत सभी बल्क द्रव गतियों का परिणाम समान वेग से क्षेत्र की लंबवत गति से मेल खाता है और इसके विपरीत।
{{Further|फ्लक्स ट्यूब|फील्ड लाइन}}
[[File:Flux tube diagram.svg|thumb|सतह <math>S_1</math> और <math>S_2</math> एक चुंबकीय प्रवाह ट्यूब के क्रॉस सेक्शन हैं; के माध्यम से चुंबकीय प्रवाह <math>S_1</math> के माध्यम से चुंबकीय प्रवाह के समान है <math>S_2</math>.]]अल्फवेन के प्रमेय को अधिकांशतः चुंबकीय प्रवाह ट्यूबों और चुंबकीय क्षेत्र रेखाओं के संदर्भ में व्यक्त किया जाता है।


औपचारिक रूप से, तरल पदार्थ की गति और चुंबकीय क्षेत्र की गति के बीच संबंध दो प्राथमिक परिणामों में विस्तृत है जिन्हें अक्सर चुंबकीय प्रवाह संरक्षण और चुंबकीय क्षेत्र रेखा संरक्षण कहा जाता है। चुंबकीय प्रवाह संरक्षण का तात्पर्य है कि बल्क द्रव वेग के साथ चलती सतह के माध्यम से चुंबकीय प्रवाह स्थिर है, और चुंबकीय क्षेत्र रेखा संरक्षण का अर्थ है कि, यदि दो द्रव तत्व चुंबकीय क्षेत्र रेखा से जुड़े हैं, तो वे हमेशा रहेंगे।<ref>{{cite journal |last1=Priest |first1=E. |title=तीन आयामी पुन: संयोजन में एमएचडी संरचनाएं|journal=Magnetic Reconnection |series=Astrophysics and Space Science Library |date=2016 |volume=427 |pages=101–142 |doi=10.1007/978-3-319-26432-5_3|isbn=978-3-319-26430-1 }}</ref>
यह चुंबकीय फ्लक्स ट्यूब एक ट्यूब- या [[सिलेंडर]] जैसा क्षेत्र है जिसमें चुंबकीय क्षेत्र होता है जैसे कि इसके किनारे हर स्थान क्षेत्र के समानांतर होते हैं। परिणाम स्वरुप, इन पक्षों के माध्यम से चुंबकीय प्रवाह शून्य है, और ट्यूब की लंबाई के साथ क्रॉस सेक्शन में निरंतर, समान चुंबकीय प्रवाह होता है। जो बड़ी चुंबकीय रेनॉल्ड्स संख्या की सीमा में, अल्फवेन के प्रमेय के लिए आवश्यक है कि निरंतर प्रवाह की ये सतहें उस तरल पदार्थ के साथ चलती हैं जिसमें वे एम्बेडेड होते हैं। जैसे चुंबकीय प्रवाह ट्यूब तरल पदार्थ में जमे हुए हैं।


 
दो चुंबकीय फ्लक्स ट्यूबों के किनारों का प्रतिच्छेदन पर चुंबकीय क्षेत्र रेखा बनाता है एक वक्र जो हर स्थान चुंबकीय क्षेत्र के समानांतर होता है। तरल पदार्थों में जहां फ्लक्स ट्यूब जमी हुई होती हैं, तब यह अनुसरण करता है कि चुंबकीय क्षेत्र रेखाएं भी जमी हुई होनी चाहिए। चूँकि, फ्रोजेन-इन क्षेत्र लाइन्स के लिए स्थितियाँ फ्रोजन-इन फ्लक्स ट्यूब्स या समान रूप से फ्लक्स के संरक्षण के लिए स्थितियों की तुलना में अशक्त होती हैं।।<ref name="priest00">{{cite book |first1=Eric |last1=Priest |first2=Terry |last2=Forbes |title=Magnetic Reconnection: MHD Theory and Applications |publisher=Cambridge University Press |edition=First |year=2000 |isbn=0-521-48179-1 }}</ref>{{rp|25}}
=== फ्लक्स ट्यूब और फील्ड लाइन ===
{{Further|Flux tube|Field line}}
[[File:Flux tube diagram.svg|thumb|सतह <math>S_1</math> और <math>S_2</math> एक चुंबकीय प्रवाह ट्यूब के क्रॉस सेक्शन हैं; के माध्यम से चुंबकीय प्रवाह <math>S_1</math> के माध्यम से चुंबकीय प्रवाह के बराबर है <math>S_2</math>.]]अल्फवेन के प्रमेय को अक्सर चुंबकीय प्रवाह ट्यूबों और चुंबकीय क्षेत्र रेखाओं के संदर्भ में व्यक्त किया जाता है।
 
एक चुंबकीय फ्लक्स ट्यूब एक ट्यूब- या [[सिलेंडर]] जैसा क्षेत्र है जिसमें एक चुंबकीय क्षेत्र होता है जैसे कि इसके किनारे हर जगह क्षेत्र के समानांतर होते हैं। नतीजतन, इन पक्षों के माध्यम से चुंबकीय प्रवाह शून्य है, और ट्यूब की लंबाई के साथ क्रॉस सेक्शन में निरंतर, बराबर चुंबकीय प्रवाह होता है। एक बड़ी चुंबकीय रेनॉल्ड्स संख्या की सीमा में, अल्फवेन के प्रमेय के लिए आवश्यक है कि निरंतर प्रवाह की ये सतहें उस तरल पदार्थ के साथ चलती हैं जिसमें वे एम्बेडेड होते हैं। जैसे, चुंबकीय प्रवाह ट्यूब तरल पदार्थ में जमे हुए हैं।
 
दो चुंबकीय फ्लक्स ट्यूबों के किनारों का प्रतिच्छेदन एक चुंबकीय क्षेत्र रेखा बनाता है, एक वक्र जो हर जगह चुंबकीय क्षेत्र के समानांतर होता है। तरल पदार्थों में जहां फ्लक्स ट्यूब जमी हुई होती हैं, तब यह अनुसरण करता है कि चुंबकीय क्षेत्र रेखाएं भी जमी हुई होनी चाहिए। हालांकि, फ्रोजेन-इन फील्ड लाइन्स के लिए स्थितियां फ्रोजन-इन फ्लक्स ट्यूबों की स्थितियों से कमजोर होती हैं, या, समतुल्य रूप से, फ्लक्स के संरक्षण के लिए।<ref name="priest00">{{cite book |first1=Eric |last1=Priest |first2=Terry |last2=Forbes |title=Magnetic Reconnection: MHD Theory and Applications |publisher=Cambridge University Press |edition=First |year=2000 |isbn=0-521-48179-1 }}</ref>{{rp|25}}


== गणितीय कथन ==
== गणितीय कथन ==
गणितीय शब्दों में, अल्फवेन के प्रमेय में कहा गया है कि, एक बड़े चुंबकीय रेनॉल्ड्स संख्या की सीमा में विद्युत प्रवाहकीय द्रव में, चुंबकीय प्रवाह <math>\Phi_B</math> एक ओरिएंटेबिलिटी के माध्यम से # ओरिएंटेबल सतहें, सतह (टोपोलॉजी) # मैक्रोस्कोपिक, अंतरिक्ष- और समय-निर्भर [[वेग क्षेत्र]] द्वारा विकसित सतहें बंद सतहें{{NoteTag|name=fn1|In MHD, the bulk velocity field <math>\mathbf{v}</math> is a linear combination of the mean motions of the individual species weighted by the species' respective mass. Under Alfvén's theorem, the magnetic field is restricted to move with this bulk velocity, but not necessarily with the velocity of the individual species. As such, Alfvén's theorem does not guarantee that individual species within the fluid will be restricted to move with the magnetic field, and currents can flow perpendicular to the magnetic field provided the bulk velocity matches the velocity of the magnetic field.{{Citation needed|date=January 2023}}}} <math>\mathbf{v}</math> स्थिर है, या
गणितीय शब्दों में अल्फवेन के प्रमेय में कहा गया है कि बड़े चुंबकीय रेनॉल्ड्स संख्या की सीमा में विद्युत प्रवाहकीय द्रव में चुंबकीय प्रवाह <math>\Phi_B</math> ओरिएंटेबिलिटी के माध्यम से या ओरिएंटेबल सतहें सतह (टोपोलॉजी) यह मैक्रोस्कोपिक अंतरिक्ष- और समय-निर्भर [[वेग क्षेत्र]] द्वारा विकसित बंद सतहें{{NoteTag|name=fn1|In MHD, the bulk velocity field <math>\mathbf{v}</math> is a linear combination of the mean motions of the individual species weighted by the species' respective mass. Under Alfvén's theorem, the magnetic field is restricted to move with this bulk velocity, but not necessarily with the velocity of the individual species. As such, Alfvén's theorem does not guarantee that individual species within the fluid will be restricted to move with the magnetic field, and currents can flow perpendicular to the magnetic field provided the bulk velocity matches the velocity of the magnetic field.{{Citation needed|date=January 2023}}}} <math>\mathbf{v}</math> स्थिर है या
:<math>\frac{D\Phi_B}{Dt} = 0 ,</math>
:<math>\frac{D\Phi_B}{Dt} = 0 ,</math>
कहाँ <math>D/Dt = \partial/\partial t + (\mathbf{v} \cdot \mathbf{\nabla})</math> क्रिया-[[विशेषण व्युत्पन्न]] है।
जंहा <math>D/Dt = \partial/\partial t + (\mathbf{v} \cdot \mathbf{\nabla})</math> क्रिया-[[विशेषण व्युत्पन्न]] है।


=== प्रवाह संरक्षण ===
=== प्रवाह संरक्षण ===
आदर्श मैग्नेटोहाइड्रोडायनामिक्स में, विद्युत चुम्बकीय प्रेरण अध्ययन किए जा रहे वेग और लंबाई के पैमाने पर [[चुंबकीय प्रसार]] पर हावी है। गवर्निंग इंडक्शन समीकरण में डिफ्यूजन टर्म को इंडक्शन टर्म के सापेक्ष छोटा माना जाता है और इसे उपेक्षित किया जाता है। [[प्रेरण समीकरण]] तब अपने आदर्श रूप में कम हो जाता है:
आदर्श मैग्नेटोहाइड्रोडायनामिक्स में, विद्युत चुम्बकीय प्रेरण अध्ययन किए जा रहे वेग और लंबाई के मापदंड पर [[चुंबकीय प्रसार]] पर प्रसारित है। गवर्निंग इंडक्शन समीकरण में डिफ्यूजन टर्म को इंडक्शन टर्म के सापेक्ष छोटा माना जाता है और इसे उपेक्षित किया जाता है। [[प्रेरण समीकरण]] तब अपने आदर्श रूप में कम हो जाता है।
:<math>\frac{\partial\mathbf{B}}{\partial t} = \nabla \times \left(\mathbf{v}\times\mathbf{B}\right).</math>
:<math>\frac{\partial\mathbf{B}}{\partial t} = \nabla \times \left(\mathbf{v}\times\mathbf{B}\right).</math>
द्रव में एम्बेडेड भौतिक सतहों के माध्यम से चुंबकीय प्रवाह का संरक्षण सीधे आदर्श प्रेरण समीकरण और चुंबकत्व के लिए गॉस के कानून के माध्यम से कोई चुंबकीय मोनोपोल की धारणा से होता है।
इस प्रकार द्रव में एम्बेडेड भौतिक सतहों के माध्यम से चुंबकीय प्रवाह का संरक्षण सीधे आदर्श प्रेरण समीकरण और चुंबकत्व के लिए गॉस के नियम के माध्यम से कोई चुंबकीय मोनोपोल की धारणा से होता है।


{{Math proof|title=Elementary derivation<ref>{{cite journal |last1=Blackman |first1=Eric G |title=On deriving flux freezing in magnetohydrodynamics by direct differentiation |journal=European Journal of Physics |date=1 March 2013 |volume=34 |issue=2 |pages=489–494 |doi=10.1088/0143-0807/34/2/489 |arxiv=1301.3562 |bibcode=2013EJPh...34..489B |s2cid=119247916 }}</ref><ref>{{cite book |last1=Lyu |first1=Ling-Hsiao |title=Elementary Space Plasma Physics |date=2010 |publisher=Airiti Press Inc |location=Taipei |isbn=978-9868270954 |pages=173–176 |url=http://www.ss.ncu.edu.tw/~lyu/lecture_files_en/lyu_SPP_Book_A4format_pdf_html/pdf_2_App/lyu_SPP_Appendix_C.pdf |access-date=12 January 2023}}</ref>
{{Math proof|title=Elementary derivation<ref>{{cite journal |last1=Blackman |first1=Eric G |title=On deriving flux freezing in magnetohydrodynamics by direct differentiation |journal=European Journal of Physics |date=1 March 2013 |volume=34 |issue=2 |pages=489–494 |doi=10.1088/0143-0807/34/2/489 |arxiv=1301.3562 |bibcode=2013EJPh...34..489B |s2cid=119247916 }}</ref><ref>{{cite book |last1=Lyu |first1=Ling-Hsiao |title=Elementary Space Plasma Physics |date=2010 |publisher=Airiti Press Inc |location=Taipei |isbn=978-9868270954 |pages=173–176 |url=http://www.ss.ncu.edu.tw/~lyu/lecture_files_en/lyu_SPP_Book_A4format_pdf_html/pdf_2_App/lyu_SPP_Appendix_C.pdf |access-date=12 January 2023}}</ref>
Line 57: Line 54:


=== क्षेत्र रेखा संरक्षण ===
=== क्षेत्र रेखा संरक्षण ===
फील्ड लाइन संरक्षण को गणितीय रूप से आदर्श प्रेरण समीकरण, चुंबकत्व के लिए गॉस के नियम और द्रव्यमान निरंतरता समीकरण का उपयोग करके भी प्राप्त किया जा सकता है।
क्षेत्र रेखा संरक्षण को गणितीय रूप से आदर्श प्रेरण समीकरण चुंबकत्व के लिए गॉस के नियम और द्रव्यमान निरंतरता समीकरण का उपयोग करके भी प्राप्त किया जा सकता है।


{{Math proof|title=Field line conservation<ref name="priest00" />|
{{Math proof|title=Field line conservation<ref name="priest00" />|
Line 72: Line 69:
}}
}}


जबकि फ्लक्स संरक्षण का तात्पर्य फील्ड लाइन संरक्षण से है (देखें {{slink||Flux tubes and field lines}}), बाद वाले के लिए स्थितियां पूर्व के लिए शर्तों की तुलना में कमजोर हैं। फ्लक्स संरक्षण की शर्तों के विपरीत, फील्ड लाइन संरक्षण की शर्तों को तब संतुष्ट किया जा सकता है जब चुंबकीय क्षेत्र के समानांतर एक अतिरिक्त, स्रोत शब्द आदर्श प्रेरण समीकरण में मौजूद हो।
जबकि फ्लक्स संरक्षण का तात्पर्य क्षेत्र रेखा संरक्षण से है (देखें {{slink||फ्लक्स ट्यूब और फील्ड लाइन}}), बाद वाले के लिए स्थितियां पूर्व के लिए नियम की तुलना में अशक्त हैं। फ्लक्स संरक्षण की नियम के विपरीत, क्षेत्र रेखा संरक्षण की नियम को तब संतुष्ट किया जा सकता है जब चुंबकीय क्षेत्र के समानांतर अतिरिक्त, स्रोत शब्द आदर्श प्रेरण समीकरण में उपस्थित हो।


गणितीय रूप से, क्षेत्र रेखाओं के स्थिर होने के लिए, द्रव को संतुष्ट होना चाहिए
गणितीय रूप से क्षेत्र रेखाओं के स्थिर होने के लिए द्रव को संतुष्ट होना चाहिए
:<math>\left( \frac{\partial\mathbf{B}}{\partial t} - \nabla \times \left(\mathbf{v}\times\mathbf{B}\right)\right) \times \mathbf{B} = 0,</math>
:<math>\left( \frac{\partial\mathbf{B}}{\partial t} - \nabla \times \left(\mathbf{v}\times\mathbf{B}\right)\right) \times \mathbf{B} = 0,</math>
जबकि, फ्लक्स के संरक्षण के लिए, द्रव को आदर्श प्रेरण समीकरण द्वारा लगाई गई मजबूत स्थिति को पूरा करना चाहिए।<ref name="eyink06">{{cite journal |last1=Eyink |first1=Gregory L. |last2=Aluie |first2=Hussein |title=The breakdown of Alfvén's theorem in ideal plasma flows: Necessary conditions and physical conjectures |journal=Physica D: Nonlinear Phenomena |date=November 2006 |volume=223 |issue=1 |pages=82–92 |doi=10.1016/j.physd.2006.08.009 |arxiv=physics/0607073 |bibcode=2006PhyD..223...82E |s2cid=16529234 }}</ref><ref name="gubbins07" />
जबकि, फ्लक्स के संरक्षण के लिए, द्रव को आदर्श प्रेरण समीकरण द्वारा लगाई गई शक्तिशाली स्थिति को पूरा करना चाहिए।<ref name="eyink06">{{cite journal |last1=Eyink |first1=Gregory L. |last2=Aluie |first2=Hussein |title=The breakdown of Alfvén's theorem in ideal plasma flows: Necessary conditions and physical conjectures |journal=Physica D: Nonlinear Phenomena |date=November 2006 |volume=223 |issue=1 |pages=82–92 |doi=10.1016/j.physd.2006.08.009 |arxiv=physics/0607073 |bibcode=2006PhyD..223...82E |s2cid=16529234 }}</ref><ref name="gubbins07">{{cite book |editor1-last=Gubbins |editor1-first=David |editor2-last=Herrero-Bervera |editor2-first=Emilio |title=भू-चुंबकत्व और पीले-चुंबकत्व का विश्वकोश|date=2007 |publisher=Springer |location=Dordrecht |isbn=978-1-4020-3992-8 |pages=7–11 |doi=10.1007/978-1-4020-4423-6 |url=https://link.springer.com/referencework/10.1007/978-1-4020-4423-6}}</ref>




=== केल्विन का परिसंचरण प्रमेय ===
=== केल्विन का परिसंचरण प्रमेय ===
{{Further|Kelvin's circulation theorem}}
{{Further|केल्विन का परिसंचरण प्रमेय}}
केल्विन के संचलन प्रमेय में कहा गया है कि एक [[आदर्श तरल पदार्थ]] के साथ चलने वाली वर्टिसिटी # वोर्टेक्स लाइनें और वोर्टेक्स ट्यूब तरल पदार्थ के लिए जमे हुए हैं, इसी तरह चुंबकीय प्रवाह ट्यूब पूरी तरह से चलने वाले आदर्श-एमएचडी तरल पदार्थ के साथ तरल पदार्थ में जमे हुए हैं। आदर्श प्रेरण समीकरण वर्टिसिटी के समीकरण के समान रूप लेता है <math>\boldsymbol{\omega} = \nabla\times\mathbf{v}</math> एक आदर्श तरल पदार्थ में जहां <math>\mathbf{v}</math> वेग क्षेत्र है:
केल्विन के संचलन प्रमेय में कहा गया है कि [[आदर्श तरल पदार्थ]] के साथ चलने वाली वर्टिसिटी या वोर्टेक्स रेखाओ और वोर्टेक्स ट्यूब तरल पदार्थ के लिए जमे हुए हैं, इसी तरह चुंबकीय प्रवाह ट्यूब पूरी तरह से चलने वाले आदर्श-एमएचडी तरल पदार्थ के साथ तरल पदार्थ में जमे हुए हैं। आदर्श प्रेरण समीकरण वर्टिसिटी <math>\boldsymbol{\omega} = \nabla\times\mathbf{v}</math> के समीकरण के समान रूप लेता है आदर्श तरल पदार्थ में जहां <math>\mathbf{v}</math> वेग क्षेत्र होता है।
:<math>\frac{\partial \boldsymbol{\omega}}{\partial t} = \nabla \times (\mathbf{v}\times\boldsymbol{\omega}).</math>
:<math>\frac{\partial \boldsymbol{\omega}}{\partial t} = \nabla \times (\mathbf{v}\times\boldsymbol{\omega}).</math>
हालाँकि, प्रेरण समीकरण रैखिक है, जबकि बीच में एक गैर-रैखिक संबंध है <math>\nabla\times\mathbf{v}</math> और <math>\mathbf{v}</math> वर्टिसिटी समीकरण में।<ref name="gubbins07">{{cite book |editor1-last=Gubbins |editor1-first=David |editor2-last=Herrero-Bervera |editor2-first=Emilio |title=भू-चुंबकत्व और पीले-चुंबकत्व का विश्वकोश|date=2007 |publisher=Springer |location=Dordrecht |isbn=978-1-4020-3992-8 |pages=7–11 |doi=10.1007/978-1-4020-4423-6 |url=https://link.springer.com/referencework/10.1007/978-1-4020-4423-6}}</ref>
चूँकि प्रेरण समीकरण रैखिक है, जबकि वर्टिसिटी समीकरण में <math>\nabla\times\mathbf{v}</math> और <math>\mathbf{v}</math> के बीच एक अरैखिक संबंध है।<ref name="gubbins07" />
 
 
== निहितार्थ ==
== निहितार्थ ==
अल्फवेन का प्रमेय इंगित करता है कि चुंबकीय क्षेत्र की टोपोलॉजी पूरी तरह से प्रवाहकीय द्रव में नहीं बदल सकती है। हालांकि, यह बहुत जटिल टोपोलॉजी के साथ अत्यधिक पेचीदा चुंबकीय क्षेत्र को जन्म देगा जो द्रव गतियों को बाधित करना चाहिए। उच्च विद्युत चालकता वाले [[एस्ट्रोफिजिकल प्लाज्मा]] आमतौर पर ऐसे जटिल पेचीदा क्षेत्र नहीं दिखाते हैं। फ्लक्स फ्रीजिंग स्थितियों से जो अपेक्षा की जाएगी, उसके विपरीत इन प्लाज़्मा में चुंबकीय पुन: संयोजन होता है। डायनेमो सिद्धांत के लिए इसका महत्वपूर्ण प्रभाव है। वास्तव में, एक बहुत ही उच्च विद्युत चालकता उच्च चुंबकीय रेनॉल्ड्स संख्या में परिवर्तित होती है, जो इंगित करती है कि प्लाज्मा अशांत होगा।<ref>{{cite journal|last1=Eyink|first1=Gregory|last2=Aluie|first2=Hussein|title=The breakdown of Alfvén's theorem in ideal plasma flows: Necessary conditions and physical conjectures|journal=Physica D: Nonlinear Phenomena|date=2006|volume=223|issue=1|page=82|doi=10.1016/j.physd.2006.08.009|arxiv=physics/0607073|bibcode=2006PhyD..223...82E|s2cid=16529234}}</ref>
अल्फवेन का प्रमेय इंगित करता है कि चुंबकीय क्षेत्र की टोपोलॉजी पूरी तरह से प्रवाहकीय द्रव में नहीं परिवर्तन कर सकती है। चूँकि, यह बहुत जटिल टोपोलॉजी के साथ अत्यधिक जटिल चुंबकीय क्षेत्र को जन्म देगा जो द्रव गतियों को बाधित करना चाहिए। उच्च विद्युत चालकता वाले [[एस्ट्रोफिजिकल प्लाज्मा]] सामान्यतः ऐसे जटिल जटिल क्षेत्र नहीं दिखाते हैं। फ्लक्स फ्रीजिंग स्थितियों से जो अपेक्षा की जाएगी, उसके विपरीत इन प्लाज़्मा में चुंबकीय पुन: संयोजन होता है। डायनेमो सिद्धांत के लिए इसका महत्वपूर्ण प्रभाव है। वास्तव में, बहुत ही उच्च विद्युत चालकता उच्च चुंबकीय रेनॉल्ड्स संख्या में परिवर्तित होती है जो इंगित करती है कि प्लाज्मा अशांत होता है।<ref>{{cite journal|last1=Eyink|first1=Gregory|last2=Aluie|first2=Hussein|title=The breakdown of Alfvén's theorem in ideal plasma flows: Necessary conditions and physical conjectures|journal=Physica D: Nonlinear Phenomena|date=2006|volume=223|issue=1|page=82|doi=10.1016/j.physd.2006.08.009|arxiv=physics/0607073|bibcode=2006PhyD..223...82E|s2cid=16529234}}</ref>                                                                                                                                                                                                                                                  
 
 
== प्रतिरोधक तरल पदार्थ ==
== प्रतिरोधक तरल पदार्थ ==
यहां तक ​​​​कि गैर-आदर्श मामले के लिए, जिसमें [[विद्युत चालकता]] अनंत नहीं है, एक समान परिणाम लेखन द्वारा [[चुंबकीय प्रवाह]] परिवहन वेग को परिभाषित करके प्राप्त किया जा सकता है:
यहां तक ​​​​कि गैर-आदर्श स्थितियों के लिए, जिसमें [[विद्युत चालकता]] अनंत नहीं है, समान परिणाम लेखन द्वारा [[चुंबकीय प्रवाह]] परिवहन वेग को परिभाषित करके प्राप्त किया जा सकता है।
:<math>
:<math>
\nabla \times (\bf{w}\times \bf{B})=\eta \nabla^2 \bf{B} + \nabla \times (\bf{v} \times \bf{B}),
\nabla \times (\bf{w}\times \bf{B})=\eta \nabla^2 \bf{B} + \nabla \times (\bf{v} \times \bf{B}),
</math>
</math>
जिसमें द्रव वेग के बजाय, <math>\bf{v}</math>, प्रवाह वेग <math>\bf{w}</math> इस्तेमाल किया गया है। हालांकि, कुछ मामलों में, इस वेग क्षेत्र को [[चुंबकीय]] समीकरणों का उपयोग करके पाया जा सकता है, इस [[वेक्टर क्षेत्र]] का अस्तित्व और विशिष्टता अंतर्निहित स्थितियों पर निर्भर करती है।<ref>{{cite journal|last1=Wilmot-Smith|first1=A. L.|last2=Priest|first2=E. R.|last3=Horing|first3=G.|title=चुंबकीय प्रसार और क्षेत्र रेखाओं की गति|journal=Geophysical & Astrophysical Fluid Dynamics|date=2005|volume=99|issue=2|pages=177–197|doi=10.1080/03091920500044808|bibcode=2005GApFD..99..177W|s2cid=51997635}}</ref>
जिसमें द्रव वेग <math>\bf{v}</math> के अतिरिक्त प्रवाह वेग <math>\bf{w}</math> उपयोग किया गया है। चूँकि, कुछ स्थितियों में, इस वेग क्षेत्र को [[चुंबकीय]] समीकरणों का उपयोग करके पाया जा सकता है, इस [[वेक्टर क्षेत्र]] का अस्तित्व और विशिष्टता अंतर्निहित स्थितियों पर निर्भर करती है।<ref>{{cite journal|last1=Wilmot-Smith|first1=A. L.|last2=Priest|first2=E. R.|last3=Horing|first3=G.|title=चुंबकीय प्रसार और क्षेत्र रेखाओं की गति|journal=Geophysical & Astrophysical Fluid Dynamics|date=2005|volume=99|issue=2|pages=177–197|doi=10.1080/03091920500044808|bibcode=2005GApFD..99..177W|s2cid=51997635}}</ref>
 
== स्टोकेस्टिक फ्लक्स फ्रीजिंग ==
अत्यधिक संवाहक प्लास्मा में फ्लक्स फ्रीजिंग पर पारंपरिक विचार सहज स्टोचैस्टिसिटी की घटना के साथ असंगत हैं। दुर्भाग्य से यह मानक तर्क बन गया है यहां तक ​​कि पाठ्यपुस्तकों में भी चुंबकीय प्रवाह फ्रीजिंग तेजी से उतम होना चाहिए क्योंकि चुंबकीय प्रसार शून्य (गैर-विघटनकारी शासन) हो जाता है। किन्तु सूक्ष्मता यह है कि बहुत बड़ी चुंबकीय रेनॉल्ड्स संख्याएं (अर्थात, छोटी विद्युत प्रतिरोधकता या उच्च विद्युत चालकता) सामान्यतः उच्च गतिज रेनॉल्ड्स संख्याओं (अर्थात, बहुत छोटी श्यानता) से जुड़ी होती हैं। यदि कीनेमेटिक श्यानता प्रतिरोधकता के साथ-साथ शून्य हो जाती है, और यदि प्लाज्मा अशांत हो जाता है (उच्च रेनॉल्ड्स संख्या के साथ जुड़ा हुआ है), तो लैग्रैंगियन प्रक्षेपवक्र अब अद्वितीय नहीं होंगे ऊपर चर्चा की गई पारंपरिक नैव फ्लक्स फ्रीजिंग तर्क, सामान्य रूप से प्रयुक्त नहीं होती है।और स्टोकेस्टिक फ्लक्स फ्रीजिंग को नियोजित किया जाना चाहिए।<ref>{{cite journal|last1=Eyink|first1=Gregory|title=स्टोचैस्टिक फ्लक्स फ्रीजिंग और मैग्नेटिक डायनेमो|journal=Physical Review E|date=2011|volume=83|issue=5|page=056405|doi=10.1103/PhysRevE.83.056405|pmid=21728673|arxiv=1008.4959|bibcode=2011PhRvE..83e6405E|doi-access=free}}</ref>


== स्टोकेस्टिक फ्लक्स फ्रीजिंग ==
प्रतिरोधक मैग्नेटोहाइड्रोडायनामिक्स के लिए स्टोचैस्टिक फ्लक्स-फ्रीजिंग प्रमेय ऊपर चर्चा की गई साधारण फ्लक्स-फ्रीजिंग को सामान्य करता है। इस सामान्यीकृत प्रमेय में कहा गया है कि सुक्ष्म चुंबकीय क्षेत्र B की चुंबकीय क्षेत्र रेखाएँ निम्नलिखित स्टोचैस्टिक विभेदक समीकरण को हल करने वाले स्टोचैस्टिक प्रक्षेपवक्र के लिए "जमे हुए" हैं। जिसे [[लैंग्विन समीकरण]] के रूप में जाना जाता है।
{{Tone|section|date=January 2023}}
अत्यधिक संवाहक प्लास्मा में फ्लक्स फ्रीजिंग पर पारंपरिक विचार सहज स्टोचैस्टिसिटी की घटना के साथ असंगत हैं। दुर्भाग्य से, यह एक मानक तर्क बन गया है, यहां तक ​​कि पाठ्यपुस्तकों में भी, चुंबकीय प्रवाह फ्रीजिंग तेजी से बेहतर होना चाहिए क्योंकि चुंबकीय प्रसार शून्य (गैर-विघटनकारी शासन) हो जाता है। लेकिन सूक्ष्मता यह है कि बहुत बड़ी चुंबकीय रेनॉल्ड्स संख्याएं (यानी, छोटी विद्युत प्रतिरोधकता या उच्च विद्युत चालकता) आमतौर पर उच्च गतिज रेनॉल्ड्स संख्याओं (यानी, बहुत छोटी चिपचिपाहट) से जुड़ी होती हैं। यदि कीनेमेटिक चिपचिपाहट प्रतिरोधकता के साथ-साथ शून्य हो जाती है, और यदि प्लाज्मा अशांत हो जाता है (उच्च रेनॉल्ड्स संख्या के साथ जुड़ा हुआ है), तो लैग्रैंगियन प्रक्षेपवक्र अब अद्वितीय नहीं होंगे। ऊपर चर्चा की गई पारंपरिक भोली फ्लक्स फ्रीजिंग तर्क, सामान्य रूप से लागू नहीं होती है, और स्टोकेस्टिक फ्लक्स फ्रीजिंग को नियोजित किया जाना चाहिए।<ref>{{cite journal|last1=Eyink|first1=Gregory|title=स्टोचैस्टिक फ्लक्स फ्रीजिंग और मैग्नेटिक डायनेमो|journal=Physical Review E|date=2011|volume=83|issue=5|page=056405|doi=10.1103/PhysRevE.83.056405|pmid=21728673|arxiv=1008.4959|bibcode=2011PhRvE..83e6405E|doi-access=free}}</ref>
प्रतिरोधक मैग्नेटोहाइड्रोडायनामिक्स के लिए स्टोचैस्टिक फ्लक्स-फ्रीजिंग प्रमेय ऊपर चर्चा की गई साधारण फ्लक्स-फ्रीजिंग को सामान्य करता है। इस सामान्यीकृत प्रमेय में कहा गया है कि सुक्ष्म चुंबकीय क्षेत्र B की चुंबकीय क्षेत्र रेखाएँ निम्नलिखित स्टोचैस्टिक विभेदक समीकरण को हल करने वाले स्टोचैस्टिक प्रक्षेपवक्र के लिए "जमे हुए" हैं, जिसे [[लैंग्विन समीकरण]] के रूप में जाना जाता है:


:<math> d{\bf{x}}={\bf{u}}({\bf{x}},t)dt+\sqrt{2\eta} d{\bf{W}}(t)</math>
:<math> d{\bf{x}}={\bf{u}}({\bf{x}},t)dt+\sqrt{2\eta} d{\bf{W}}(t)</math>
जिसमें <math>\eta</math> चुंबकीय प्रसार है और <math>W</math> त्रि-आयामी गॉसियन श्वेत शोर है ([[वीनर प्रक्रिया]] भी देखें।) कई "आभासी" क्षेत्र-वैक्टर <math>\tilde {\bf{B}}</math> भौतिक चुंबकीय क्षेत्र प्राप्त करने के लिए एक ही अंतिम बिंदु पर पहुंचने का औसत होना चाहिए <math>{\bf{B}}</math> उस बिंदु पर।<ref>{{cite journal|last1= Lalescu|first1=Cristian C.|last2=Shi|first2=Yi-Kang|last3=Eyink|first3=Gregory|last4=Drivas|first4=Theodore D.|last5=Vishniac|first5=Ethan|author6-link=Alexandre Lazarian|last6=Lazarian|first6=Alex|title=मैग्नेटोहाइड्रोडायनामिक टर्बुलेंस और सौर पवन में जड़त्वीय-श्रेणी पुन: संयोजन|journal=Physical Review Letters|date=2015|volume=115|issue=2|page= 025001|doi=10.1103/PhysRevLett.115.025001|pmid=26207472|arxiv=1503.00509|bibcode=2015PhRvL.115b5001L|doi-access=free}}</ref>
जिसमें <math>\eta</math> चुंबकीय प्रसार है और <math>W</math> त्रि-आयामी गॉसियन श्वेत ध्वनि है ([[वीनर प्रक्रिया]] भी देखें।) कई "आभासी" क्षेत्र-वैक्टर जो एक ही अंतिम बिंदु पर पहुंचते हैं, उस बिंदु पर भौतिक चुंबकीय क्षेत्र प्राप्त करने के लिए औसत होना चाहिए।।<ref>{{cite journal|last1= Lalescu|first1=Cristian C.|last2=Shi|first2=Yi-Kang|last3=Eyink|first3=Gregory|last4=Drivas|first4=Theodore D.|last5=Vishniac|first5=Ethan|author6-link=Alexandre Lazarian|last6=Lazarian|first6=Alex|title=मैग्नेटोहाइड्रोडायनामिक टर्बुलेंस और सौर पवन में जड़त्वीय-श्रेणी पुन: संयोजन|journal=Physical Review Letters|date=2015|volume=115|issue=2|page= 025001|doi=10.1103/PhysRevLett.115.025001|pmid=26207472|arxiv=1503.00509|bibcode=2015PhRvL.115b5001L|doi-access=free}}</ref>
 
 
== यह भी देखें ==
== यह भी देखें ==
* अल्फवेन लहर
* अल्फवेन लहर
Line 118: Line 107:
{{reflist}}
{{reflist}}


{{DEFAULTSORT:Alfven's Theorem}}[[Category: मैग्नेटोहाइड्रोडायनामिक्स]]
{{DEFAULTSORT:Alfven's Theorem}}
 
 


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements|Alfven's Theorem]]
[[Category:Created On 01/06/2023]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Alfven's Theorem]]
[[Category:Articles with unsourced statements from January 2023|Alfven's Theorem]]
[[Category:CS1|Alfven's Theorem]]
[[Category:CS1 English-language sources (en)|Alfven's Theorem]]
[[Category:Created On 01/06/2023|Alfven's Theorem]]
[[Category:Lua-based templates|Alfven's Theorem]]
[[Category:Machine Translated Page|Alfven's Theorem]]
[[Category:Pages with script errors|Alfven's Theorem]]
[[Category:Templates Vigyan Ready|Alfven's Theorem]]
[[Category:Templates that add a tracking category|Alfven's Theorem]]
[[Category:Templates that generate short descriptions|Alfven's Theorem]]
[[Category:Templates using TemplateData|Alfven's Theorem]]
[[Category:मैग्नेटोहाइड्रोडायनामिक्स|Alfven's Theorem]]

Latest revision as of 14:28, 11 September 2023

आदर्श मैग्नेटोहाइड्रोडायनामिक्स में, अल्फवेन के प्रमेय, या जमे हुए प्रवाह प्रमेय में कहा गया है कि विद्युत प्रवाहकीय तरल पदार्थ और एम्बेडेड चुंबकीय क्षेत्र बड़े चुंबकीय रेनॉल्ड्स संख्याओं की सीमा में एक साथ चलने के लिए विवश हैं। इसका नाम हेंस अल्फवेन के नाम पर रखा गया है, जिन्होंने 1943 में इस विचार को सामने रखा था।

अल्फवेन के प्रमेय का तात्पर्य है कि बड़े चुंबकीय रेनॉल्ड्स संख्या की सीमा में द्रव का चुंबकीय टोपोलॉजी परिवर्तन नहीं कर सकता है। यह सन्निकटन वर्तमान शीट्स में टूट जाता है, जहाँ चुंबकीय पुन: संयोजन हो सकता है।

इतिहास

अनंत विद्युत चालकता वाले द्रवों में जमे हुए चुंबकीय क्षेत्र की अवधारणा को पहली बार हेंस अल्फवेन द्वारा 1943 में ऑन द एक्जिस्टेंस ऑफ इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक वेव्स शीर्षक से प्रस्तावित किया गया था, जो आर्किव फॉर मैटेमैटिक, एस्ट्रोनोमी ओच फिजिक पत्रिका में प्रकाशित हुआ था। उन्होंने लिखा है:[1]

अनंत चालकता को ध्यान में रखते हुए, बल की रेखाओं के संबंध में तरल की प्रत्येक गति (क्षेत्र के लंबवत) वर्जित है क्योंकि यह अनंत [एडी धारा] देती है। इस प्रकार तरल पदार्थ बल की रेखाओं के लिए "जुड़ा हुआ" है ...

इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक वेव्स के अस्तित्व पर 1942 में जर्नल नेचर (जर्नल) में प्रकाशित अल्फवेन के पहले के पेपर एग्जिस्टेंस ऑफ इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक वेव्स के परिणामों की व्याख्या की थी।[2]

बाद में जीवन में, अल्फवेन ने अपने स्वयं के प्रमेय के उपयोग के विरुद्ध सलाह दी थी।[3]

सिंहावलोकन

यह अनौपचारिक रूप से, अल्फवेन की प्रमेय मैग्नेटोहाइड्रोडायनामिक्स या आइडियल एमएचडी में मौलिक परिणाम को संदर्भित करती है जो विद्युत प्रवाहकीय तरल पदार्थ और अन्दर के चुंबकीय क्षेत्र के बड़े चुंबकीय रेनॉल्ड्स संख्याओं की सीमा में एक साथ चलने के लिए विवश हैं - जैसे कि जब द्रव एक सही चालक है या जब वेग और लंबाई के मापदंड असीम रूप से बड़े हैं। दोनों की गति इस बात से विवश है कि चुंबकीय क्षेत्र के लंबवत सभी किन्तु द्रव गतियों का परिणाम समान वेग से क्षेत्र की लंबवत गति से मिलता है और इसके विपरीत होता है।

औपचारिक रूप से तरल पदार्थ की गति और चुंबकीय क्षेत्र की गति के बीच संबंध दो प्राथमिक परिणामों में विस्तृत है जिन्हें अधिकांशतः चुंबकीय प्रवाह संरक्षण और चुंबकीय क्षेत्र रेखा संरक्षण कहा जाता है। की चुंबकीय प्रवाह संरक्षण का तात्पर्य है कि किन्तु द्रव वेग के साथ चलती सतह के माध्यम से चुंबकीय प्रवाह स्थिर है और चुंबकीय क्षेत्र रेखा संरक्षण का अर्थ है कि यदि दो द्रव तत्व चुंबकीय क्षेत्र रेखा से जुड़े हैं तो वे सदैव रहते है।[4]

फ्लक्स ट्यूब और क्षेत्र लाइन

सतह और एक चुंबकीय प्रवाह ट्यूब के क्रॉस सेक्शन हैं; के माध्यम से चुंबकीय प्रवाह के माध्यम से चुंबकीय प्रवाह के समान है .

अल्फवेन के प्रमेय को अधिकांशतः चुंबकीय प्रवाह ट्यूबों और चुंबकीय क्षेत्र रेखाओं के संदर्भ में व्यक्त किया जाता है।

यह चुंबकीय फ्लक्स ट्यूब एक ट्यूब- या सिलेंडर जैसा क्षेत्र है जिसमें चुंबकीय क्षेत्र होता है जैसे कि इसके किनारे हर स्थान क्षेत्र के समानांतर होते हैं। परिणाम स्वरुप, इन पक्षों के माध्यम से चुंबकीय प्रवाह शून्य है, और ट्यूब की लंबाई के साथ क्रॉस सेक्शन में निरंतर, समान चुंबकीय प्रवाह होता है। जो बड़ी चुंबकीय रेनॉल्ड्स संख्या की सीमा में, अल्फवेन के प्रमेय के लिए आवश्यक है कि निरंतर प्रवाह की ये सतहें उस तरल पदार्थ के साथ चलती हैं जिसमें वे एम्बेडेड होते हैं। जैसे चुंबकीय प्रवाह ट्यूब तरल पदार्थ में जमे हुए हैं।

दो चुंबकीय फ्लक्स ट्यूबों के किनारों का प्रतिच्छेदन पर चुंबकीय क्षेत्र रेखा बनाता है एक वक्र जो हर स्थान चुंबकीय क्षेत्र के समानांतर होता है। तरल पदार्थों में जहां फ्लक्स ट्यूब जमी हुई होती हैं, तब यह अनुसरण करता है कि चुंबकीय क्षेत्र रेखाएं भी जमी हुई होनी चाहिए। चूँकि, फ्रोजेन-इन क्षेत्र लाइन्स के लिए स्थितियाँ फ्रोजन-इन फ्लक्स ट्यूब्स या समान रूप से फ्लक्स के संरक्षण के लिए स्थितियों की तुलना में अशक्त होती हैं।।[5]: 25 

गणितीय कथन

गणितीय शब्दों में अल्फवेन के प्रमेय में कहा गया है कि बड़े चुंबकीय रेनॉल्ड्स संख्या की सीमा में विद्युत प्रवाहकीय द्रव में चुंबकीय प्रवाह ओरिएंटेबिलिटी के माध्यम से या ओरिएंटेबल सतहें सतह (टोपोलॉजी) यह मैक्रोस्कोपिक अंतरिक्ष- और समय-निर्भर वेग क्षेत्र द्वारा विकसित बंद सतहें[note 1] स्थिर है या

जंहा क्रिया-विशेषण व्युत्पन्न है।

प्रवाह संरक्षण

आदर्श मैग्नेटोहाइड्रोडायनामिक्स में, विद्युत चुम्बकीय प्रेरण अध्ययन किए जा रहे वेग और लंबाई के मापदंड पर चुंबकीय प्रसार पर प्रसारित है। गवर्निंग इंडक्शन समीकरण में डिफ्यूजन टर्म को इंडक्शन टर्म के सापेक्ष छोटा माना जाता है और इसे उपेक्षित किया जाता है। प्रेरण समीकरण तब अपने आदर्श रूप में कम हो जाता है।

इस प्रकार द्रव में एम्बेडेड भौतिक सतहों के माध्यम से चुंबकीय प्रवाह का संरक्षण सीधे आदर्श प्रेरण समीकरण और चुंबकत्व के लिए गॉस के नियम के माध्यम से कोई चुंबकीय मोनोपोल की धारणा से होता है।

Elementary derivation[6][7]
The closed surface formed by , , and

In an electrically conducting fluid with a space- and time-dependent magnetic field and velocity field , an arbitrary, orientable, open surface at time is advected by in a small time to the surface . The rate of change of the magnetic flux through the surface as it is advected from to is then

The surface integral over can be re expressed by applying Gauss's law for magnetism to assume that the magnetic flux through a closed surface formed by , , and the surface that connects the boundaries of and is zero. At time , this relationship can be expressed as

where the sense of was reversed so that points outwards from the enclosed volume. In the surface integral over , the differential surface element where is the line element around the boundary of the surface . Solving for the surface integral over then gives

where the final term was rewritten using the properties of scalar triple products and a first-order approximation was taken. Substituting this into the expression for and simplifying results in

Applying the definition of a partial derivative to the integrand of the first term, applying Stokes' theorem to the second term, and combining the resultant surface integrals gives

Using the ideal induction equation, the integrand vanishes, and

क्षेत्र रेखा संरक्षण

क्षेत्र रेखा संरक्षण को गणितीय रूप से आदर्श प्रेरण समीकरण चुंबकत्व के लिए गॉस के नियम और द्रव्यमान निरंतरता समीकरण का उपयोग करके भी प्राप्त किया जा सकता है।

Field line conservation[5]

The ideal induction equation can be rewritten using a vector identity and Gauss's law for magnetism as

Using the mass continuity equation,

the ideal induction equation can be further rearranged to give

Similarly, for a line segment where is the bulk plasma velocity at one end and is the velocity at the other end, the differential velocity between the two ends is and

,

which has the same form as the equation obtained previously for . Therefore, if and are initially parallel, they will remain parallel.

जबकि फ्लक्स संरक्षण का तात्पर्य क्षेत्र रेखा संरक्षण से है (देखें § फ्लक्स ट्यूब और फील्ड लाइन), बाद वाले के लिए स्थितियां पूर्व के लिए नियम की तुलना में अशक्त हैं। फ्लक्स संरक्षण की नियम के विपरीत, क्षेत्र रेखा संरक्षण की नियम को तब संतुष्ट किया जा सकता है जब चुंबकीय क्षेत्र के समानांतर अतिरिक्त, स्रोत शब्द आदर्श प्रेरण समीकरण में उपस्थित हो।

गणितीय रूप से क्षेत्र रेखाओं के स्थिर होने के लिए द्रव को संतुष्ट होना चाहिए

जबकि, फ्लक्स के संरक्षण के लिए, द्रव को आदर्श प्रेरण समीकरण द्वारा लगाई गई शक्तिशाली स्थिति को पूरा करना चाहिए।[8][9]


केल्विन का परिसंचरण प्रमेय

केल्विन के संचलन प्रमेय में कहा गया है कि आदर्श तरल पदार्थ के साथ चलने वाली वर्टिसिटी या वोर्टेक्स रेखाओ और वोर्टेक्स ट्यूब तरल पदार्थ के लिए जमे हुए हैं, इसी तरह चुंबकीय प्रवाह ट्यूब पूरी तरह से चलने वाले आदर्श-एमएचडी तरल पदार्थ के साथ तरल पदार्थ में जमे हुए हैं। आदर्श प्रेरण समीकरण वर्टिसिटी के समीकरण के समान रूप लेता है आदर्श तरल पदार्थ में जहां वेग क्षेत्र होता है।

चूँकि प्रेरण समीकरण रैखिक है, जबकि वर्टिसिटी समीकरण में और के बीच एक अरैखिक संबंध है।[9]

निहितार्थ

अल्फवेन का प्रमेय इंगित करता है कि चुंबकीय क्षेत्र की टोपोलॉजी पूरी तरह से प्रवाहकीय द्रव में नहीं परिवर्तन कर सकती है। चूँकि, यह बहुत जटिल टोपोलॉजी के साथ अत्यधिक जटिल चुंबकीय क्षेत्र को जन्म देगा जो द्रव गतियों को बाधित करना चाहिए। उच्च विद्युत चालकता वाले एस्ट्रोफिजिकल प्लाज्मा सामान्यतः ऐसे जटिल जटिल क्षेत्र नहीं दिखाते हैं। फ्लक्स फ्रीजिंग स्थितियों से जो अपेक्षा की जाएगी, उसके विपरीत इन प्लाज़्मा में चुंबकीय पुन: संयोजन होता है। डायनेमो सिद्धांत के लिए इसका महत्वपूर्ण प्रभाव है। वास्तव में, बहुत ही उच्च विद्युत चालकता उच्च चुंबकीय रेनॉल्ड्स संख्या में परिवर्तित होती है जो इंगित करती है कि प्लाज्मा अशांत होता है।[10]

प्रतिरोधक तरल पदार्थ

यहां तक ​​​​कि गैर-आदर्श स्थितियों के लिए, जिसमें विद्युत चालकता अनंत नहीं है, समान परिणाम लेखन द्वारा चुंबकीय प्रवाह परिवहन वेग को परिभाषित करके प्राप्त किया जा सकता है।

जिसमें द्रव वेग के अतिरिक्त प्रवाह वेग उपयोग किया गया है। चूँकि, कुछ स्थितियों में, इस वेग क्षेत्र को चुंबकीय समीकरणों का उपयोग करके पाया जा सकता है, इस वेक्टर क्षेत्र का अस्तित्व और विशिष्टता अंतर्निहित स्थितियों पर निर्भर करती है।[11]

स्टोकेस्टिक फ्लक्स फ्रीजिंग

अत्यधिक संवाहक प्लास्मा में फ्लक्स फ्रीजिंग पर पारंपरिक विचार सहज स्टोचैस्टिसिटी की घटना के साथ असंगत हैं। दुर्भाग्य से यह मानक तर्क बन गया है यहां तक ​​कि पाठ्यपुस्तकों में भी चुंबकीय प्रवाह फ्रीजिंग तेजी से उतम होना चाहिए क्योंकि चुंबकीय प्रसार शून्य (गैर-विघटनकारी शासन) हो जाता है। किन्तु सूक्ष्मता यह है कि बहुत बड़ी चुंबकीय रेनॉल्ड्स संख्याएं (अर्थात, छोटी विद्युत प्रतिरोधकता या उच्च विद्युत चालकता) सामान्यतः उच्च गतिज रेनॉल्ड्स संख्याओं (अर्थात, बहुत छोटी श्यानता) से जुड़ी होती हैं। यदि कीनेमेटिक श्यानता प्रतिरोधकता के साथ-साथ शून्य हो जाती है, और यदि प्लाज्मा अशांत हो जाता है (उच्च रेनॉल्ड्स संख्या के साथ जुड़ा हुआ है), तो लैग्रैंगियन प्रक्षेपवक्र अब अद्वितीय नहीं होंगे ऊपर चर्चा की गई पारंपरिक नैव फ्लक्स फ्रीजिंग तर्क, सामान्य रूप से प्रयुक्त नहीं होती है।और स्टोकेस्टिक फ्लक्स फ्रीजिंग को नियोजित किया जाना चाहिए।[12]

प्रतिरोधक मैग्नेटोहाइड्रोडायनामिक्स के लिए स्टोचैस्टिक फ्लक्स-फ्रीजिंग प्रमेय ऊपर चर्चा की गई साधारण फ्लक्स-फ्रीजिंग को सामान्य करता है। इस सामान्यीकृत प्रमेय में कहा गया है कि सुक्ष्म चुंबकीय क्षेत्र B की चुंबकीय क्षेत्र रेखाएँ निम्नलिखित स्टोचैस्टिक विभेदक समीकरण को हल करने वाले स्टोचैस्टिक प्रक्षेपवक्र के लिए "जमे हुए" हैं। जिसे लैंग्विन समीकरण के रूप में जाना जाता है।

जिसमें चुंबकीय प्रसार है और त्रि-आयामी गॉसियन श्वेत ध्वनि है (वीनर प्रक्रिया भी देखें।) कई "आभासी" क्षेत्र-वैक्टर जो एक ही अंतिम बिंदु पर पहुंचते हैं, उस बिंदु पर भौतिक चुंबकीय क्षेत्र प्राप्त करने के लिए औसत होना चाहिए।।[13]

यह भी देखें

व्याख्यात्मक नोट्स

  1. In MHD, the bulk velocity field is a linear combination of the mean motions of the individual species weighted by the species' respective mass. Under Alfvén's theorem, the magnetic field is restricted to move with this bulk velocity, but not necessarily with the velocity of the individual species. As such, Alfvén's theorem does not guarantee that individual species within the fluid will be restricted to move with the magnetic field, and currents can flow perpendicular to the magnetic field provided the bulk velocity matches the velocity of the magnetic field.[citation needed]

संदर्भ

  1. Alfvén, Hannes (1943). "इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक तरंगों के अस्तित्व पर" (PDF). Arkiv för matematik, astronomi och fysik. 29B(2): 1–7.
  2. Alfvén, Hannes (1942). "इलेक्ट्रोमैग्नेटिक-हाइड्रोडायनामिक तरंगों का अस्तित्व". Nature. 150 (3805): 405. Bibcode:1942Natur.150..405A. doi:10.1038/150405d0. S2CID 4072220.
  3. Alfvén, H. (August 1976). "फ्रोजन-इन फील्ड लाइन्स और फील्ड-लाइन रीकनेक्शन पर". Journal of Geophysical Research (in English). 81 (22): 4019–4021. Bibcode:1976JGR....81.4019A. doi:10.1029/JA081i022p04019.
  4. Priest, E. (2016). "तीन आयामी पुन: संयोजन में एमएचडी संरचनाएं". Magnetic Reconnection. Astrophysics and Space Science Library. 427: 101–142. doi:10.1007/978-3-319-26432-5_3. ISBN 978-3-319-26430-1.
  5. 5.0 5.1 Priest, Eric; Forbes, Terry (2000). Magnetic Reconnection: MHD Theory and Applications (First ed.). Cambridge University Press. ISBN 0-521-48179-1.
  6. Blackman, Eric G (1 March 2013). "On deriving flux freezing in magnetohydrodynamics by direct differentiation". European Journal of Physics. 34 (2): 489–494. arXiv:1301.3562. Bibcode:2013EJPh...34..489B. doi:10.1088/0143-0807/34/2/489. S2CID 119247916.
  7. Lyu, Ling-Hsiao (2010). Elementary Space Plasma Physics (PDF). Taipei: Airiti Press Inc. pp. 173–176. ISBN 978-9868270954. Retrieved 12 January 2023.
  8. Eyink, Gregory L.; Aluie, Hussein (November 2006). "The breakdown of Alfvén's theorem in ideal plasma flows: Necessary conditions and physical conjectures". Physica D: Nonlinear Phenomena. 223 (1): 82–92. arXiv:physics/0607073. Bibcode:2006PhyD..223...82E. doi:10.1016/j.physd.2006.08.009. S2CID 16529234.
  9. 9.0 9.1 Gubbins, David; Herrero-Bervera, Emilio, eds. (2007). भू-चुंबकत्व और पीले-चुंबकत्व का विश्वकोश. Dordrecht: Springer. pp. 7–11. doi:10.1007/978-1-4020-4423-6. ISBN 978-1-4020-3992-8.
  10. Eyink, Gregory; Aluie, Hussein (2006). "The breakdown of Alfvén's theorem in ideal plasma flows: Necessary conditions and physical conjectures". Physica D: Nonlinear Phenomena. 223 (1): 82. arXiv:physics/0607073. Bibcode:2006PhyD..223...82E. doi:10.1016/j.physd.2006.08.009. S2CID 16529234.
  11. Wilmot-Smith, A. L.; Priest, E. R.; Horing, G. (2005). "चुंबकीय प्रसार और क्षेत्र रेखाओं की गति". Geophysical & Astrophysical Fluid Dynamics. 99 (2): 177–197. Bibcode:2005GApFD..99..177W. doi:10.1080/03091920500044808. S2CID 51997635.
  12. Eyink, Gregory (2011). "स्टोचैस्टिक फ्लक्स फ्रीजिंग और मैग्नेटिक डायनेमो". Physical Review E. 83 (5): 056405. arXiv:1008.4959. Bibcode:2011PhRvE..83e6405E. doi:10.1103/PhysRevE.83.056405. PMID 21728673.
  13. Lalescu, Cristian C.; Shi, Yi-Kang; Eyink, Gregory; Drivas, Theodore D.; Vishniac, Ethan; Lazarian, Alex (2015). "मैग्नेटोहाइड्रोडायनामिक टर्बुलेंस और सौर पवन में जड़त्वीय-श्रेणी पुन: संयोजन". Physical Review Letters. 115 (2): 025001. arXiv:1503.00509. Bibcode:2015PhRvL.115b5001L. doi:10.1103/PhysRevLett.115.025001. PMID 26207472.