फ्लक्स ट्यूब

फ्लक्स ट्यूब स्थान युक्त सामान्यतः ट्यूब जैसा (बेलनाकार) क्षेत्र होता है जिसमें एक चुंबकीय क्षेत्र, B होता है, जैसे कि ट्यूब के बेलनाकार पक्ष हर जगह चुंबकीय क्षेत्र रेखाओं के समानांतर होते हैं। यह एक चुंबकीय क्षेत्र की कल्पना के लिए एक चित्रमय दृश्य सहायता है। चूंकि ट्यूब के किनारों से कोई चुंबकीय प्रवाह नहीं गुजरता है, ट्यूब के किसी भी क्रॉस-सेक्शन के माध्यम से प्रवाह बराबर होता है, और एक छोर पर ट्यूब में प्रवेश करने वाला प्रवाह ट्यूब को दूसरे पर छोड़ने वाले प्रवाह के बराबर होता है। ट्यूब के अनुप्रस्थ काट क्षेत्र और चुंबकीय क्षेत्र की सामर्थ्य दोनों ट्यूब की लंबाई के साथ भिन्न हो सकती है, लेकिन चुंबकीय प्रवाह हमेशा स्थिर रहता है।
जैसा कि खगोल भौतिकी में प्रयोग किया जाता है, एक फ्लक्स ट्यूब का अर्थ सामान्यतः अंतरिक्ष का एक क्षेत्र होता है जिसके माध्यम से एक मजबूत चुंबकीय क्षेत्र गुजरता है, जिसमें पदार्थ का व्यवहार (सामान्यतः आयनित गैस या प्लाज्मा) क्षेत्र से काफी प्रभावित होता है। वे सामान्यतः सितारों के आसपास पाए जाते हैं, जिसमें सूर्य भी सम्मिलित है, जिसमें दसियों से सैकड़ों किलोमीटर व्यास की कई फ्लक्स ट्यूब हैं।[1] सनस्पॉट 2500 किलोमीटर व्यास के बड़े फ्लक्स ट्यूब से भी जुड़े हुए हैं।[1] कुछ ग्रहों में फ्लक्स ट्यूब्स भी होती हैं। एक प्रसिद्ध उदाहरण बृहस्पति और उसके चंद्रमा Io (आईओ) के बीच प्रवाह ट्यूब है।
परिभाषा
किसी भी बंद उन्मुख सतह से गुजरने वाले सदिश क्षेत्र का प्रवाह सतह पर क्षेत्र का सतही अभिन्न अंग है। उदाहरण के लिए, गतिमान तरल के आयतन के वेग और तरल के भीतर एक काल्पनिक सतह से युक्त सदिश क्षेत्र के लिए, फ्लक्स समय की प्रति इकाई सतह से गुजरने वाले तरल का आयतन है।
एक फ्लक्स ट्यूब को एक सदिश क्षेत्र में किसी भी बंद, उन्मुख सतह से गुजरने के रूप में परिभाषित किया जा सकता है, क्योंकि की सीमा से गुजरने वाली क्षेत्र रेखाओं पर सभी बिंदुओं का सेट होता है। यह सेट एक खोखली नली का निर्माण करता है। ट्यूब क्षेत्र रेखाओं का अनुसरण करती है, संभवत: मोड़ती है, मुड़ती है, और इसके अनुप्रस्थ काट आकार और आकार को बदलती है क्योंकि फ़ील्ड लाइनें अभिसरण या विचलन करती हैं। चूंकि ट्यूब की दीवारों से कोई फील्ड लाइन नहीं गुजरती है, इसलिए ट्यूब की दीवारों के माध्यम से कोई फ्लक्स नहीं होता है, इसलिए सभी फील्ड लाइन अंत सतहों के माध्यम से प्रवेश करती हैं और बाहर निकलती हैं। इस प्रकार एक फ्लक्स ट्यूब सभी क्षेत्र रेखाओं को दो सेटों में विभाजित करती है; जो ट्यूब के अंदर से गुजर रहे हैं, और जो बाहर से गुजर रहे हैं। ट्यूब से घिरे हुए आयतन पर विचार करें और किन्हीं भी दो सतहों और को इसे प्रतिच्छेद करें। यदि फ़ील्ड में ट्यूब के भीतर स्रोत या सिंक हैं, तो इस आयतन से प्रवाह शून्य नहीं होगा। हालाँकि, यदि क्षेत्र अपसरण रहित है (सोलनॉइडल, ) तो विचलन प्रमेय से इन दो सतहों के माध्यम से वॉल्यूम छोड़ने वाले फ्लक्स का योग शून्य होगा, अतः से निकलने वाला फ्लक्स से प्रवेश करने वाले फ्लक्स के बराबर होगा। दूसरे शब्दों में, ट्यूब के भीतर किसी भी सतह के माध्यम से ट्यूब को छेड़छाड़ करने वाला प्रवाह बराबर होता है, ट्यूब अपनी लंबाई के साथ निरंतर मात्रा में प्रवाह को घेरता है। सदिश क्षेत्र की शक्ति (परिमाण), और ट्यूब का अनुप्रस्थ काट क्षेत्र इसकी लंबाई के साथ बदलता रहता है, लेकिन ट्यूब में फैले किसी भी सतह पर क्षेत्र का सतह अभिन्न बराबर है।
चूंकि मैक्सवेल के समीकरणों (विशेष रूप से चुंबकत्व के लिए गॉस के नियम) से चुंबकीय क्षेत्र अपसरण रहित होते हैं, चुंबकीय फ्लक्स ट्यूबों में यह गुण होता है, इसलिए फ्लक्स ट्यूबों को मुख्य रूप से चुंबकीय क्षेत्रों की कल्पना में सहायता के रूप में उपयोग किया जाता है। हालांकि, फ्लक्स ट्यूब शून्य विचलन वाले क्षेत्रों में अन्य सदिश क्षेत्रों की कल्पना करने के लिए भी उपयोगी हो सकते हैं, जैसे क्षेत्रों में विद्युत क्षेत्र जहां कोई शुल्क नहीं है और गुरुत्वाकर्षण क्षेत्र जहां कोई द्रव्यमान नहीं है।
कण भौतिकी में, हैड्रान कण जो न्यूट्रॉन और प्रोटॉन जैसे सभी पदार्थ बनाते हैं, क्वार्क नामक अधिक बुनियादी कणों से बने होते हैं, जो एक मजबूत परमाणु बल क्षेत्र के पतले फ्लक्स ट्यूबों द्वारा एक साथ बंधे होते हैं। फ्लक्स ट्यूब मॉडल तथाकथित रंग परिसीमन तंत्र की व्याख्या करने में महत्वपूर्ण है, और क्यों कण प्रयोगों में क्वार्क को अलग से कभी नहीं देखा जाता है।
प्रकार
- फ्लक्स रोप: ट्विस्टेड मैग्नेटिक फ्लक्स ट्यूब।[1]
- फाइब्रिल फील्ड (क्षेत्र): मैग्नेटिक फ्लक्स ट्यूब जिसमें ट्यूब के बाहर कोई मैग्नेटिक फील्ड नहीं होता है [1]
इतिहास
1861 में, जेम्स क्लर्क मैक्सवेल ने "ऑन फिजिकल लाइन्स ऑफ़ फ़ोर्स" शीर्षक वाले अपने पेपर में विद्युत और चुंबकीय व्यवहार में माइकल फैराडे के काम से प्रेरित फ्लक्स ट्यूब की अवधारणा को जन्म दिया।[2] मैक्सवेल ने फ्लक्स ट्यूबों को इस प्रकार वर्णित किया:
यदि किसी सतह पर जो द्रव गति की रेखाओं को काटती है, हम एक बंद वक्र बनाते हैं, और यदि इस वक्र के प्रत्येक बिंदु से हम गति की रेखाएँ खींचते हैं, तो ये गति की रेखाएँ एक ट्यूबलर सतह उत्पन्न करेंगी जिसे हम द्रव गति की एक ट्यूब कह सकते हैं।[3]
फ्लक्स ट्यूब शक्ति
फ्लक्स ट्यूब की शक्ति, को एक सतह के माध्यम से चुंबकीय प्रवाह के रूप में परिभाषित किया गया है, जो ट्यूब को काटता है, चुंबकीय क्षेत्र के पर सतह के अभिन्न अंग के बराबर है।
प्लाज्मा भौतिकी
प्रवाह संरक्षण
मैग्नेटोहाइड्रोडायनामिक्स में, अल्फवेन के प्रमेय में कहा गया है कि एक सतह के माध्यम से चुंबकीय प्रवाह, जैसे फ्लक्स ट्यूब की सतह, एक पूरी तरह से संचालन तरल पदार्थ के साथ चलती है, संरक्षित है। दूसरे शब्दों में, चुंबकीय क्षेत्र तरल पदार्थ के साथ चलने के लिए विवश है या तरल पदार्थ में "जमे हुए" है।
यह पूरी तरह से प्रवाहकीय द्रव के प्रेरण समीकरण का उपयोग करके फ्लक्स ट्यूब के लिए गणितीय रूप से दिखाया जा सकता है
जहाँ चुंबकीय क्षेत्र है और द्रव का वेग क्षेत्र है। फ्लक्स ट्यूब की किसी भी खुली सतह के माध्यम से समय के साथ चुंबकीय प्रवाह में परिवर्तन इसके द्वारा संलग्न एक अंतर रेखा तत्व के साथ रूप में लिखा जा सकता हैप्रेरण के समीकरण का उपयोग करके देता हैजिसे क्रमशः पहले और दूसरे पद पर स्टोक्स के प्रमेय और प्राथमिक सदिश पहचान का उपयोग करके फिर से लिखा जा सकता है[6]संपीड़न और विस्तार
मैग्नेटोहाइड्रोडायनामिक्स में, यदि लंबाई का एक बेलनाकार फ्लक्स ट्यूब संपीडित होता है जबकि ट्यूब की लंबाई समान रहती है, चुंबकीय क्षेत्र और ट्यूब का घनत्व समान अनुपात में बढ़ता है। यदि एक चुंबकीय क्षेत्र के विन्यास के साथ एक फ्लक्स ट्यूब और एक प्लाज्मा (भौतिकी) का घनत्व ट्यूब तक ही सीमित एक अदिश मान के रूप में परिभाषित किया गया है , नया चुंबकीय क्षेत्र और घनत्व इसके द्वारा दिया गया है:[4]
अगर अनुप्रस्थ संपीड़न के रूप में जाना जाता है, और वृद्धि और अनुप्रस्थ विस्तार घटते समय समान होते हैं और उसी मूल्य और अनुपात से जहाँ स्थिर है।[4]फ्लक्स ट्यूब की लंबाई को से बढ़ाने पर की नई लंबाई मिलती है जबकि ट्यूब का घनत्व वही रहता है, , जिसके परिणामस्वरूप चुंबकीय क्षेत्र की ताकत से बढ़ जाती है। ट्यूबों की लंबाई के परिणामस्वरूप चुंबकीय क्षेत्र की शक्ति में कमी आती है।[4]
प्लाज्मा दबाव
मैग्नेटोहाइड्रोस्टेटिक संतुलन में, फ्लक्स ट्यूब तक सीमित प्लाज्मा की गति के समीकरण के लिए निम्नलिखित शर्त पूरी की जाती है:[4]
जहाँ
- प्लाज्मा दबाव है
- प्लाज्मा का वर्तमान घनत्व है
- गुरुत्वाकर्षण है
मैग्नेटोहाइड्रोस्टेटिक संतुलन की स्थिति के साथ एक बेलनाकार फ्लक्स ट्यूब के के प्लाज्मा दबाव को बेलनाकार निर्देशांक में के साथ अक्ष से दूरी के रूप में निम्नलिखित संबंध द्वारा दिया जाता है:[4]
उपरोक्त समीकरण में दूसरा पद चुंबकीय दबाव बल देता है जबकि तीसरा पद चुंबकीय तनाव बल का प्रतिनिधित्व करता है।[4] लंबाई की ट्यूब के एक छोर से दूसरे छोर तक धुरी के चारों ओर फ़ील्ड लाइन का मोड़ इसके द्वारा दिया गया है:[4]उदाहरण
सौर
सौर फ्लक्स ट्यूबों के उदाहरणों में प्रकाशमंडल में सनस्पॉट और तीव्र चुंबकीय ट्यूब और सौर प्रमुखता के आसपास के क्षेत्र और कोरोना में कोरोनल लूप सम्मिलित हैं।[4]
सनस्पॉट तब होते हैं जब छोटे फ्लक्स ट्यूब एक बड़े फ्लक्स ट्यूब में संयोजित होते हैं जो फोटोस्फीयर की सतह को तोड़ते हैं।[1] सनस्पॉट की बड़ी फ्लक्स ट्यूब में सामान्यतः 4000 किमी के व्यास के साथ लगभग 3 किग्रा की क्षेत्र तीव्रता होती है।[1] अत्यधिक स्थिति हैं जब बड़े फ्लक्स ट्यूबों का व्यास किमी जब तक सूर्य की सतह पर छोटे फ्लक्स ट्यूबों से नए फ्लक्स की निरंतर आपूर्ति होती है, तब तक सनस्पॉट बढ़ते रह सकते हैं।[1] फ्लक्स ट्यूब के भीतर चुंबकीय क्षेत्र को अंदर गैस के दबाव को कम करके और इसलिए बाहर एक स्थिर दबाव बनाए रखते हुए ट्यूब के आंतरिक तापमान को कम करके संकुचित किया जा सकता है।[1]
तीव्र चुंबकीय ट्यूब अलग-अलग फ्लक्स ट्यूब होते हैं जिनका व्यास 100 से 300 किमी होता है, जिसकी समग्र क्षेत्र शक्ति 1 से 2 किलोग्राम होती है और प्रवाह लगभग डब्ल्यूबी होता है।[4] ये फ्लक्स ट्यूब केंद्रित मजबूत चुंबकीय क्षेत्र हैं जो सौर कणों के बीच पाए जाते हैं।[7] चुंबकीय क्षेत्र फ्लक्स ट्यूब में प्लाज्मा के दबाव को कम करने का कारण बनता है, जिसे प्लाज्मा घनत्व कमी क्षेत्र के रूप में जाना जाता है।[7] अगर फ्लक्स ट्यूब और आसपास के तापमान में महत्वपूर्ण अंतर होता है, तो प्लाज्मा दबाव में कमी के साथ-साथ प्लाज्मा घनत्व में कमी होती है जिससे कुछ चुंबकीय क्षेत्र प्लाज्मा से बच जाते हैं।[7]
प्लाज्मा जो चुंबकीय प्रवाह ट्यूबों के भीतर फंसा हुआ है जो प्रकाशमंडल से जुड़ा हुआ है, जिसे फुटपॉइंट कहा जाता है, एक लूप जैसी संरचना बनाता है जिसे कोरोनल लूप के रूप में जाना जाता है।[8] लूप के अंदर के प्लाज्मा का तापमान परिवेश की तुलना में अधिक होता है जिससे प्लाज्मा का दबाव और घनत्व बढ़ जाता है।[8] इन कोरोनल लूप्स को चुंबकीय फ्लक्स ट्यूब के व्यवहार से अपनी विशेषता उच्च चमक और आकार की श्रेणी मिलती है।[8] ये फ्लक्स ट्यूब प्लाज्मा को सीमित करती हैं और इन्हें अलग-थलग किया जाता है। सीमित चुंबकीय क्षेत्र की ताकत 200 से 300 किमी तक के व्यास के साथ 0.1 से 10 जी तक भिन्न होती है।[8][9]
सूर्य के आंतरिक भाग से मुड़ी हुई फ्लक्स ट्यूबों के उभरने का परिणाम कोरोना में मुड़ चुंबकीय संरचनाओं का कारण बनता है, जो तब सौर प्रमुखता का कारण बनता है।[10] सौर प्रमुखता को फ्लक्स रस्सियों के रूप में ज्ञात मुड़ चुंबकीय प्रवाह ट्यूबों का उपयोग करके तैयार किया गया है।[11]
ग्रह
चुंबकित ग्रहों का उनके आयनमंडलों के ऊपर एक क्षेत्र होता है जो चुंबकीय क्षेत्रों के साथ ऊर्जावान कणों और प्लाज्मा को फंसाता है, जिसे चुंबकमंडल कहा जाता है।[12] सूर्य से दूर मैग्नेटोस्फीयर के विस्तार को मैग्नेटोटेल के रूप में जाना जाता है, जिसे चुंबकीय फ्लक्स ट्यूब के रूप में तैयार किया जाता है।[12] मंगल और शुक्र दोनों के पास मजबूत चुंबकीय क्षेत्र हैं, जिसके परिणामस्वरूप ग्रहों के सूर्य की तरफ आयनोस्फीयर की उच्च ऊंचाई पर सौर हवा से फ्लक्स ट्यूब इकट्ठा होते हैं और फ्लक्स ट्यूबों को फ्लक्स रस्सियों का निर्माण करने वाली चुंबकीय क्षेत्र रेखाओं के साथ विकृत होने का कारण बनता है।[12] सौर पवन चुंबकीय क्षेत्र रेखाओं के कण चुंबकीय पुन: संयोजन की प्रक्रियाओं के माध्यम से किसी ग्रह के मैग्नेटोस्फीयर की चुंबकीय क्षेत्र रेखाओं में स्थानांतरित हो सकते हैं जो तब होता है जब सौर हवा से एक प्रवाह ट्यूब और मैग्नेटोस्फीयर से एक फ्लक्स ट्यूब विपरीत क्षेत्र दिशाओं में एक दूसरे के करीब हो जाती है।[12]
फ्लक्स ट्यूब जो चुंबकीय पुन: संयोजन से उत्पन्न होती हैं, ग्रह के चारों ओर एक द्विध्रुव-समान विन्यास में बनती हैं जहां प्लाज्मा प्रवाह होता है।[12] इस मामले का एक उदाहरण बृहस्पति और उसके चंद्रमा Io के बीच लगभग 450 किमी व्यास वाली फ्लक्स ट्यूब है, जो बृहस्पति के सबसे निकट बिंदुओं पर है।[13]
यह भी देखें
- क्यूसीडी स्ट्रिंग, जिसे कभी-कभी फ्लक्स ट्यूब भी कहा जाता है
- प्रवाह स्थानांतरण घटना
- बिर्कलैंड करंट
- मैग्नेटोहाइड्रोडायनामिक्स (एमएचडी)
- मार्कलंड संवहन
संदर्भ
- ↑ Jump up to: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Parker, E. N. (1979). "सनस्पॉट और चुंबकीय प्रवाह ट्यूबों का भौतिकी। I सनस्पॉट की सामान्य प्रकृति". The Astrophysical Journal. 230: 905–913. Bibcode:1979ApJ...230..905P. doi:10.1086/157150.
- ↑ Roberts, B (1990). "चुंबकीय प्रवाह ट्यूबों में तरंगें". Basic Plasma Processes on the Sun: Proceedings of the 142nd Symposium of the International Astronomical Union Held in Bangalore, India, December 1–5, 1989. Edition 1.
- ↑ Maxwell, J. C. (1861). "बल की भौतिक रेखाओं पर". Philosophical Magazine and Journal of Science. 4.
- ↑ Jump up to: 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 Priest, E. (2014). सूर्य का मैग्नेटोहाइड्रोडायनामिक्स. Cambridge University Press. pp. 100–103. ISBN 978-0-521-85471-9.
- ↑ Priest, E. R.; Forbes, T. G. (2001). "मैग्नेटोहाइड्रोडायनामिक्स" (PDF). Nature.
- ↑ Parker, E. N. (1979). ब्रह्मांडीय चुंबकीय क्षेत्र उनकी उत्पत्ति और उनकी गतिविधि. Bristol, UK: Oxford University Press. ISBN 0-19-851290-2.
- ↑ Jump up to: 7.0 7.1 7.2 Roberts, B. (2001). "Solar Photospheric Magnetic Flux Tubes: Theory" (PDF). Encyclopedia of Astronomy and Astrophysics. doi:10.1888/0333750888/2255. ISBN 0333750888.
- ↑ Jump up to: 8.0 8.1 8.2 8.3 Reale, F. (2014). "Coronal Loops: Observations and Modeling of Confined Plasma". Living Reviews in Solar Physics. 11 (1): 4. arXiv:1010.5927. Bibcode:2014LRSP...11....4R. doi:10.12942/lrsp-2014-4. PMC 4841190. PMID 27194957.
- ↑ Peter, H.; et al. (2013). "Structure of Solar Coronal Loops: from Miniature to Large-Scale". Astronomy & Astrophysics. 556: A104. arXiv:1306.4685. Bibcode:2013A&A...556A.104P. doi:10.1051/0004-6361/201321826. S2CID 119237311.
- ↑ Fan, Y. (2015). सौर प्रमुखताएँ. Springer. ISBN 978-3-319-10416-4.
- ↑ Jibben, P.R.; et al. (2016). "सोलर प्रॉमिनेंस-कैविटी सिस्टम की टिप्पणियों में एक चुंबकीय प्रवाह रस्सी के लिए साक्ष्य". Frontiers in Astronomy and Space Sciences. 3: 10. Bibcode:2016FrASS...3...10J. doi:10.3389/fspas.2016.00010.
- ↑ Jump up to: 12.0 12.1 12.2 12.3 12.4 Kivelson, M. G.; Bagenal, F. (2007). "Planetary Magnetospheres" (PDF). pp. 519–540. Bibcode:2007ess..book..519K. doi:10.1016/B978-012088589-3/50032-3. ISBN 9780120885893.
{{cite book}}
:|journal=
ignored (help); Missing or empty|title=
(help)- ↑ Bhardwaj, A.; Gladstone, G. R.; Zarka, P. (2001). "ज्यूप्टियर के ऑरोरल आयनमंडल में आईओ फ्लक्स ट्यूब फुटप्वाइंट का अवलोकन". Advances in Space Research. 27 (11): 1915–1922. Bibcode:2001AdSpR..27.1915B. doi:10.1016/s0273-1177(01)00280-0.