स्वतंत्रता (संभावना सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Fundamental concept in probability theory}}
{{Short description|Fundamental concept in probability theory}}
{{Probability fundamentals}}
संभाव्यता सिद्धांत में '''स्वतंत्रता''' एक मौलिक धारणा है, जैसा कि सांख्यिकी और स्टोकेस्टिक प्रक्रियाओं के सिद्धांत में है। दो घटनाएँ (संभाव्यता सिद्धांत) स्वतंत्र, सांख्यिकीय रूप से स्वतंत्र, या [[आंकड़े]] रूप से स्वतंत्र हैं<ref name="Artificial Intelligence">{{cite book | last1 = Russell| first1 =Stuart| last2 = Norvig | first2 = Peter | title = Artificial Intelligence: A Modern Approach | url = https://archive.org/details/artificialintell00russ_726| url-access = limited| page = [https://archive.org/details/artificialintell00russ_726/page/n506 478] | publisher = [[Prentice Hall]] | year = 2002 | isbn = 0-13-790395-2}}</ref> यदि दृच्छिक वेरिएबल स्वतंत्र होते हैं यदि एक की प्राप्ति दूसरे के संभाव्यता वितरण को प्रभावित नहीं करती है।
संभाव्यता सिद्धांत में स्वतंत्रता एक मौलिक धारणा है, जैसा कि सांख्यिकी और स्टोकेस्टिक प्रक्रियाओं के सिद्धांत में है। दो घटनाएँ (संभाव्यता सिद्धांत) स्वतंत्र, सांख्यिकीय रूप से स्वतंत्र, या [[आंकड़े]] रूप से स्वतंत्र हैं<ref name="Artificial Intelligence">{{cite book | last1 = Russell| first1 =Stuart| last2 = Norvig | first2 = Peter | title = Artificial Intelligence: A Modern Approach | url = https://archive.org/details/artificialintell00russ_726| url-access = limited| page = [https://archive.org/details/artificialintell00russ_726/page/n506 478] | publisher = [[Prentice Hall]] | year = 2002 | isbn = 0-13-790395-2}}</ref> यदि दृच्छिक चर स्वतंत्र होते हैं यदि एक की प्राप्ति दूसरे के संभाव्यता वितरण को प्रभावित नहीं करती है।


दो से अधिक घटनाओं के संग्रह के साथ व्यवहार करते समय, स्वतंत्रता की दो धारणाओं को अलग करने की आवश्यकता होती है। घटनाओं को [[जोड़ीदार स्वतंत्र]] कहा जाता है यदि संग्रह में कोई भी दो घटनाएँ एक दूसरे से स्वतंत्र हैं, जबकि घटनाओं की पारस्परिक स्वतंत्रता (या सामूहिक स्वतंत्रता) का अर्थ है, अनौपचारिक रूप से बोला जाता है कि प्रत्येक घटना संग्रह में अन्य घटनाओं के किसी भी संयोजन से स्वतंत्र है। इसी तरह की धारणा यादृच्छिक चर के संग्रह के लिए उपस्थित है। पारस्परिक स्वतंत्रता का तात्पर्य जोड़ीदार स्वतंत्रता से है, किंतु इसके विपरीत नहीं संभाव्यता सिद्धांत, सांख्यिकी, और स्टोचैस्टिक प्रक्रियाओं के मानक साहित्य में आगे की योग्यता के बिना स्वतंत्रता सामान्यतः पारस्परिक स्वतंत्रता को संदर्भित करती है।
दो से अधिक घटनाओं के संग्रह के साथ व्यवहार करते समय, स्वतंत्रता की दो धारणाओं को भिन्न करने की आवश्यकता होती है। घटनाओं को [[जोड़ीदार स्वतंत्र]] कहा जाता है यदि संग्रह में कोई भी दो घटनाएँ एक दूसरे से स्वतंत्र हैं, जबकि घटनाओं की पारस्परिक स्वतंत्रता (या सामूहिक स्वतंत्रता) का अर्थ है, अनौपचारिक रूप से बोला जाता है कि प्रत्येक घटना संग्रह में अन्य घटनाओं के किसी भी संयोजन से स्वतंत्र है। इसी प्रकार की धारणा यादृच्छिक वेरिएबल के संग्रह के लिए उपस्थित है। पारस्परिक स्वतंत्रता का तात्पर्य जोड़ीदार स्वतंत्रता से है, किंतु इसके विपरीत नहीं संभाव्यता सिद्धांत, सांख्यिकी, और स्टोचैस्टिक प्रक्रियाओं के मानक साहित्य में आगे की योग्यता के बिना स्वतंत्रता सामान्यतः पारस्परिक स्वतंत्रता को संदर्भित करती है।


== परिभाषा ==
== परिभाषा ==
Line 10: Line 9:


==== दो घटनाएँ ====
==== दो घटनाएँ ====
दो घटनाएँ <math>A</math> और <math>B</math> स्वतंत्र हैं ( अधिकांशतः लिखा जाता है <math>A \perp B</math> या <math>A \perp\!\!\!\perp B</math>, जहां बाद वाला प्रतीक अधिकांशतः नियमित स्वतंत्रता के लिए भी प्रयोग किया जाता है) यदि और केवल यदि उनकी संयुक्त संभावना उनकी संभावनाओं के उत्पाद के समान होती है:<ref name=Florescu>{{cite book | author=Florescu, Ionut| title=Probability and Stochastic Processes| publisher=Wiley| year=2014 | isbn=978-0-470-62455-5}}</ref>{{rp|p. 29}}<ref name=Gallager/>{{rp|p. 10}}
दो घटनाएँ <math>A</math> और <math>B</math> स्वतंत्र हैं ( अधिकांशतः लिखा जाता है <math>A \perp B</math> या <math>A \perp\!\!\!\perp B</math>, जहां बाद वाला प्रतीक अधिकांशतः नियमित स्वतंत्रता के लिए भी प्रयोग किया जाता है) यदि और केवल यदि उनकी संयुक्त संभावना उनकी संभावनाओं के उत्पाद के समान होती है:<ref name=Florescu>{{cite book | author=Florescu, Ionut| title=Probability and Stochastic Processes| publisher=Wiley| year=2014 | isbn=978-0-470-62455-5}}</ref>{{rp|p. 29}}<ref name=Gallager/>{{rp|p. 10}}


{{Equation box 1
{{Equation box 1
Line 21: Line 20:
|पृष्ठभूमि का रंग=#F5FFFA}}
|पृष्ठभूमि का रंग=#F5FFFA}}


 
<math>A \cap B \neq \emptyset</math> इंगित करता है कि दो स्वतंत्र घटनाओं <math>A</math> और <math>B</math> के नमूना स्थान में सामान्य तत्व हैं ताकि वह परस्पर अनन्य न हों (परस्पर अनन्य यदि <math>A \cap B = \emptyset</math> )। यह स्वतंत्रता को क्यों परिभाषित करता है, इसे नियमित संभावनाओं <math>P(A \mid B) = \frac{P(A \cap B)}{P(B)}</math> के साथ पुनर्लेखन द्वारा स्पष्ट किया जाता है, जिस संभावना पर घटना <math>A</math> घटित होती है, परन्तु कि घटना <math>B</math> घटित हुई हो या मानी गई हो:
<math>A \cap B \neq \emptyset</math> इंगित करता है कि दो स्वतंत्र घटनाओं <math>A</math> और <math>B</math> के नमूना स्थान में सामान्य तत्व हैं ताकि वे परस्पर अनन्य न हों (परस्पर अनन्य यदि <math>A \cap B = \emptyset</math> )। यह स्वतंत्रता को क्यों परिभाषित करता है, इसे नियमित संभावनाओं <math>P(A \mid B) = \frac{P(A \cap B)}{P(B)}</math> के साथ पुनर्लेखन द्वारा स्पष्ट किया जाता है, जिस संभावना पर घटना <math>A</math> घटित होती है, परन्तु कि घटना <math>B</math> घटित हुई हो या मानी गई हो:


:<math>\mathrm{P}(A \cap B) = \mathrm{P}(A)\mathrm{P}(B) \iff \mathrm{P}(A\mid B) = \frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} = \mathrm{P}(A).</math>
:<math>\mathrm{P}(A \cap B) = \mathrm{P}(A)\mathrm{P}(B) \iff \mathrm{P}(A\mid B) = \frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} = \mathrm{P}(A).</math>
और इसी तरह
और इसी प्रकार


:<math>\mathrm{P}(A \cap B) = \mathrm{P}(A)\mathrm{P}(B) \iff\mathrm{P}(B\mid A) = \frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A)} = \mathrm{P}(B).</math>
:<math>\mathrm{P}(A \cap B) = \mathrm{P}(A)\mathrm{P}(B) \iff\mathrm{P}(B\mid A) = \frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A)} = \mathrm{P}(B).</math>
इस प्रकार, <math>B</math> की घटना <math>A</math> की संभावना को प्रभावित नहीं करती है, और इसके विपरीत दूसरे शब्दों में, <math>A</math> और <math>B</math> एक दूसरे से स्वतंत्र हैं। चूँकि व्युत्पन्न अभिव्यक्तियाँ अधिक सहज लग सकती हैं, वे पसंदीदा परिभाषा नहीं हैं, क्योंकि नियमित संभावनाएँ अपरिभाषित हो सकती हैं यदि <math>\mathrm{P}(A)</math> या <math>\mathrm{P}(B)</math> 0 हैं। इसके अतिरिक्त , पसंदीदा परिभाषा समरूपता से स्पष्ट करती है कि जब <math>A</math> <math>B</math> से स्वतंत्र है, <math>B</math> भी <math>A</math> से स्वतंत्र है
इस प्रकार, <math>B</math> की घटना <math>A</math> की संभावना को प्रभावित नहीं करती है, और इसके विपरीत दूसरे शब्दों में, <math>A</math> और <math>B</math> एक दूसरे से स्वतंत्र हैं। चूँकि व्युत्पन्न अभिव्यक्तियाँ अधिक सहज लग सकती हैं, वह पसंदीदा परिभाषा नहीं हैं, क्योंकि नियमित संभावनाएँ अपरिभाषित हो सकती हैं यदि <math>\mathrm{P}(A)</math> या <math>\mathrm{P}(B)</math> 0 हैं। इसके अतिरिक्त , पसंदीदा परिभाषा समरूपता से स्पष्ट करती है कि जब <math>A</math> <math>B</math> से स्वतंत्र है, <math>B</math> भी <math>A</math> से स्वतंत्र है


==== लॉग संभाव्यता और सूचना सामग्री ====
==== लॉग संभाव्यता और सूचना सामग्री ====
लॉग संभाव्यता के संदर्भ में कहा गया है, दो घटनाएं स्वतंत्र हैं यदि और केवल यदि संयुक्त घटना की [[लॉग संभावना]] अलग-अलग घटनाओं की लॉग संभावना का योग है:
लॉग संभाव्यता के संदर्भ में कहा गया है, दो घटनाएं स्वतंत्र हैं यदि और केवल यदि संयुक्त घटना की [[लॉग संभावना]] भिन्न -भिन्न घटनाओं की लॉग संभावना का योग है:
:<math>\log \mathrm{P}(A \cap B) = \log \mathrm{P}(A) + \log \mathrm{P}(B)</math>
:<math>\log \mathrm{P}(A \cap B) = \log \mathrm{P}(A) + \log \mathrm{P}(B)</math>
[[सूचना सिद्धांत]] में, नकारात्मक लॉग संभाव्यता की व्याख्या सूचना सामग्री के रूप में की जाती है, और इस प्रकार दो घटनाएं स्वतंत्र होती हैं यदि और केवल यदि संयुक्त घटना की सूचना सामग्री अलग-अलग घटनाओं की सूचना सामग्री के योग के समान होती है:
[[सूचना सिद्धांत]] में, नकारात्मक लॉग संभाव्यता की व्याख्या सूचना सामग्री के रूप में की जाती है, और इस प्रकार दो घटनाएं स्वतंत्र होती हैं यदि और केवल यदि संयुक्त घटना की सूचना सामग्री भिन्न -भिन्न घटनाओं की सूचना सामग्री के योग के समान होती है:
:<math>\mathrm{I}(A \cap B) = \mathrm{I}(A) + \mathrm{I}(B)</math>
:<math>\mathrm{I}(A \cap B) = \mathrm{I}(A) + \mathrm{I}(B)</math>
विवरण के लिए सूचना सामग्री देखें § स्वतंत्र घटनाओं की संयोजकता है ।
विवरण के लिए सूचना सामग्री देखें § स्वतंत्र घटनाओं की संयोजकता है ।


==== ऑड्स ====
==== ऑड्स ====
बाधाओं के संदर्भ में कहा गया है, दो घटनाएं स्वतंत्र हैं यदि और केवल यदि बाधाओं का अनुपात {{tmath|A}} और {{tmath|B}} एकता (1) है। संभाव्यता के अनुरूप, यह बिना नियम बाधाओं के समान नियमित बाधाओं के समान है:
बाधाओं के संदर्भ में कहा गया है, दो घटनाएं स्वतंत्र हैं यदि और केवल यदि बाधाओं का अनुपात {{tmath|A}} और {{tmath|B}} एकता (1) है। संभाव्यता के अनुरूप, यह बिना नियम बाधाओं के समान नियमित बाधाओं के समान है:
:<math>O(A \mid B) = O(A) \text{ and } O(B \mid A) = O(B),</math>
:<math>O(A \mid B) = O(A) \text{ and } O(B \mid A) = O(B),</math>
या एक घटना की विषमताओं के लिए, दूसरी घटना को देखते हुए, घटना की बाधाओं के समान होने के कारण दूसरी घटना घटित नहीं होती है:
या एक घटना की विषमताओं के लिए, दूसरी घटना को देखते हुए, घटना की बाधाओं के समान होने के कारण दूसरी घटना घटित नहीं होती है:
Line 47: Line 45:


==== दो से अधिक घटनाएँ ====
==== दो से अधिक घटनाएँ ====
घटनाओं का एक सीमित सेट <math> \{ A_i \} _{i=1}^{n}</math> जोड़ीवार स्वतंत्र है यदि घटनाओं की प्रत्येक जोड़ी स्वतंत्र है<ref name="Feller">{{cite book | last = Feller | first = W | year = 1971 | title = An Introduction to Probability Theory and Its Applications | publisher = [[John Wiley & Sons|Wiley]] | chapter = Stochastic Independence}}</ref> - अथार्त, यदि और केवल यदि सूचकांकों के सभी अलग-अलग जोड़े के लिए <math>m,k</math> है ।
घटनाओं का एक सीमित सेट <math> \{ A_i \} _{i=1}^{n}</math> जोड़ीवार स्वतंत्र है यदि घटनाओं की प्रत्येक जोड़ी स्वतंत्र है <ref name="Feller">{{cite book | last = Feller | first = W | year = 1971 | title = An Introduction to Probability Theory and Its Applications | publisher = [[John Wiley & Sons|Wiley]] | chapter = Stochastic Independence}}</ref> - अथार्त, यदि और केवल यदि सूचकांकों के सभी भिन्न -भिन्न जोड़े के लिए <math>m,k</math> है ।


{{Equation box 1
{{Equation box 1
Line 69: Line 67:
|पृष्ठभूमि का रंग=#F5FFFA}}
|पृष्ठभूमि का रंग=#F5FFFA}}


इसे स्वतंत्र घटनाओं का गुणन नियम कहा जाता है। यह एक ऐसी स्थिति नहीं है जिसमें केवल सभी एकल घटनाओं की सभी संभावनाओं का उत्पाद सम्मिलित हो; इसे घटनाओं के सभी उपसमूहों के लिए सत्य होना चाहिए।
इसे स्वतंत्र घटनाओं का गुणन नियम कहा जाता है। यह एक ऐसी स्थिति नहीं है जिसमें केवल सभी एकल घटनाओं की सभी संभावनाओं का उत्पाद सम्मिलित हैं इसे घटनाओं के सभी उपसमूहों के लिए सत्य होना चाहिए।


दो से अधिक घटनाओं के लिए, घटनाओं का परस्पर स्वतंत्र सेट (परिभाषा के अनुसार) जोड़ीवार स्वतंत्र होता है; किंतु इसका विपरीत आवश्यक रूप से सत्य नहीं है।<ref name=Florescu/>{{rp|p. 30}}
दो से अधिक घटनाओं के लिए, घटनाओं का परस्पर स्वतंत्र सेट (परिभाषा के अनुसार) जोड़ीवार स्वतंत्र होता है; किंतु इसका विपरीत आवश्यक रूप से सत्य नहीं है।<ref name=Florescu/>{{rp|p. 30}}
=== वास्तविक मूल्यवान यादृच्छिक चर के लिए ===
=== वास्तविक मूल्यांकित यादृच्छिक वेरिएबल के लिए ===


==== दो यादृच्छिक चर ====
==== '''दो यादृच्छिक वेरीएबल''' ====
'''दो यादृच्छिक चर <math>X</math> और <math>Y</math> स्वतंत्र हैं [[अगर और केवल अगर]]  (iff) Pi सिस्टम के तत्व|π-सिस्टम उनके द्वारा उत्पन्न स्वतंत्र हैं; अर्थात् प्रत्येक के लिए <math>x</math> और <math>y</math>, घटनाएं <math>\{ X \le x\}</math> और <math>\{ Y \le y\}</math> स्वतंत्र घटनाएँ हैं (जैसा कि ऊपर परिभाषित किया गया है {{EquationNote|Eq.1}}). वह है, <math>X</math> और <math>Y</math> [[संचयी वितरण कार्य]]ों के साथ <math>F_X(x)</math> और <math>F_Y(y)</math>, स्वतंत्र हैं यदि  और केवल यदि  संयुक्त यादृच्छिक चर <math>(X,Y)</math> एक [[संयुक्त वितरण]] संचयी वितरण समारोह है<ref name=Gallager>{{cite book | first=Robert G. | last=Gallager| title=Stochastic Processes Theory for Applications| publisher=Cambridge University Press| year=2013 | isbn=978-1-107-03975-9}}</ref>{{rp|p. 15}}'''
'''<nowiki/>'<nowiki/>'''''दो यादृच्छिक वेरिएबल <math>X</math> और <math>Y</math> स्वतंत्र हैं [[अगर और केवल अगर]]  (iff) Pi सिस्टम के तत्व|π-सिस्टम उनके द्वारा उत्पन्न स्वतंत्र हैं; अर्थात् प्रत्येक के लिए <math>x</math> और <math>y</math>, घटनाएं <math>\{ X \le x\}</math> और <math>\{ Y \le y\}</math> स्वतंत्र घटनाएँ हैं (जैसा कि ऊपर परिभाषित किया गया है {{EquationNote|Eq.1}}). वह है, <math>X</math> और <math>Y</math> [[संचयी वितरण कार्य]] के साथ <math>F_X(x)</math> और <math>F_Y(y)</math>, स्वतंत्र हैं यदि  और केवल यदि  संयुक्त यादृच्छिक वेरिएबल<math>(X,Y)</math> एक [[संयुक्त वितरण]] संचयी वितरण फलन है<ref name=Gallager>{{cite book | first=Robert G. | last=Gallager| title=Stochastic Processes Theory for Applications| publisher=Cambridge University Press| year=2013 | isbn=978-1-107-03975-9}}</ref>{{rp|p. 15}}'''''''''


{{Equation box 1
{{Equation box 1
Line 86: Line 84:
|पृष्ठभूमि का रंग=#F5FFFA}}
|पृष्ठभूमि का रंग=#F5FFFA}}


या समतुल्य, यदि प्रायिकता घनत्व कार्य करता है <math>f_X(x)</math> और <math>f_Y(y)</math> और संयुक्त संभाव्यता घनत्व <math>f_{X,Y}(x,y)</math> अस्तित्व,
या समकक्ष, यदि संभाव्यता घनत्व <math>f_X(x)</math> और <math>f_Y(y)</math> और संयुक्त संभाव्यता घनत्व <math>f_{X,Y}(x,y)</math> है।


:<math>f_{X,Y}(x,y) = f_X(x) f_Y(y) \quad \text{for all } x,y.</math>
:<math>f_{X,Y}(x,y) = f_X(x) f_Y(y) \quad \text{for all } x,y.</math>




==== दो से अधिक यादृच्छिक चर ====
==== दो से अधिक यादृच्छिक वेरीएबल ====
का एक परिमित सेट <math>n</math> यादृच्छिक चर <math>\{X_1,\ldots,X_n\}</math> जोड़ीदार स्वतंत्र है यदि और केवल यदि यादृच्छिक चर की प्रत्येक जोड़ी स्वतंत्र है। यहां तक ​​​​कि यदि यादृच्छिक चर का सेट जोड़ीदार स्वतंत्र है, तो जरूरी नहीं कि यह पारस्परिक रूप से स्वतंत्र हो, जैसा कि आगे परिभाषित किया गया है।
का एक परिमित सेट <math>n</math> यादृच्छिक वेरिएबल <math>\{X_1,\ldots,X_n\}</math> जोड़ीदार स्वतंत्र है यदि और केवल यदि यादृच्छिक वेरिएबल की प्रत्येक जोड़ी स्वतंत्र है। यहां तक ​​​​कि यदि यादृच्छिक वेरिएबल का सेट जोड़ीदार स्वतंत्र है, तब जरूरी नहीं कि यह पारस्परिक रूप से स्वतंत्र हो, जैसा कि आगे परिभाषित किया गया है।


का एक परिमित सेट <math>n</math> यादृच्छिक चर <math>\{X_1,\ldots,X_n\}</math> संख्याओं के किसी अनुक्रम के लिए यदि और केवल यदि परस्पर स्वतंत्र है <math>\{x_1, \ldots, x_n\}</math>, घटनाएं <math>\{X_1 \le x_1\}, \ldots, \{X_n \le x_n \}</math> परस्पर स्वतंत्र घटनाएँ हैं (जैसा कि ऊपर परिभाषित किया गया है {{EquationNote|Eq.3}}). यह संयुक्त संचयी वितरण समारोह पर निम्नलिखित शर्त के समान है {{nowrap|<math>F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)</math>.}} का एक परिमित सेट <math>n</math> यादृच्छिक चर <math>\{X_1,\ldots,X_n\}</math> पारस्परिक रूप से स्वतंत्र है यदि और केवल यदि <ref name=Gallager/>{{rp|p. 16}}
का एक परिमित सेट <math>n</math> यादृच्छिक वेरिएबल <math>\{X_1,\ldots,X_n\}</math> संख्याओं के किसी अनुक्रम के लिए यदि और केवल यदि परस्पर स्वतंत्र है <math>\{x_1, \ldots, x_n\}</math>, घटनाएं <math>\{X_1 \le x_1\}, \ldots, \{X_n \le x_n \}</math> परस्पर स्वतंत्र घटनाएँ हैं (जैसा कि ऊपर परिभाषित किया गया है {{EquationNote|Eq.3}}). यह संयुक्त संचयी वितरण कार्य पर निम्नलिखित शर्त के समान है {{nowrap|<math>F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)</math>.}} का एक परिमित सेट <math>n</math> यादृच्छिक वेरिएबल <math>\{X_1,\ldots,X_n\}</math> पारस्परिक रूप से स्वतंत्र है यदि और केवल यदि <ref name=Gallager/>{{rp|p. 16}}


{{Equation box 1
{{Equation box 1
Line 105: Line 103:
|पृष्ठभूमि का रंग=#F5FFFA}}
|पृष्ठभूमि का रंग=#F5FFFA}}


ध्यान दें कि यहाँ यह आवश्यक नहीं है कि प्रायिकता वितरण सभी संभव के लिए गुणनखंडित हो {{nowrap|<math>k</math>-element}} मामले के रूप में सबसेट <math>n</math> आयोजन। इसकी आवश्यकता नहीं है क्योंकि उदा। <math>F_{X_1,X_2,X_3}(x_1,x_2,x_3) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot F_{X_3}(x_3)</math> तात्पर्य <math>F_{X_1,X_3}(x_1,x_3) = F_{X_1}(x_1) \cdot F_{X_3}(x_3)</math>.
ध्यान दें कि यहाँ यह आवश्यक नहीं है कि प्रायिकता वितरण सभी संभव के लिए गुणनखंडित हो {{nowrap|<math>k</math>-element}} स्थिति के रूप में सबसेट <math>n</math> आयोजन में इसकी आवश्यकता नहीं है क्योंकि उदा। <math>F_{X_1,X_2,X_3}(x_1,x_2,x_3) = F_{X_1}(x_1) \cdot F_{X_2}(x_2) \cdot F_{X_3}(x_3)</math> तात्पर्य <math>F_{X_1,X_3}(x_1,x_3) = F_{X_1}(x_1) \cdot F_{X_3}(x_3)</math>.


माप-सैद्धांतिक रूप से इच्छुक घटनाओं को स्थानापन्न करना पसंद कर सकते हैं <math>\{ X \in A \}</math> घटनाओं के लिए <math>\{ X \leq x \}</math> उपरोक्त परिभाषा में, कहाँ <math>A</math> कोई [[बोरेल बीजगणित]] है। यह परिभाषा उपरोक्त के बिल्कुल समतुल्य है जब यादृच्छिक चर के मान [[वास्तविक संख्या]]एं हैं। यह जटिल-मूल्यवान यादृच्छिक चर के लिए या किसी भी [[मापने योग्य स्थान]] में मान लेने वाले यादृच्छिक चर के लिए भी काम करने का लाभ है (जिसमें उचित σ-अल्जेब्रस द्वारा संपन्न [[टोपोलॉजिकल स्पेस]] स्थान सम्मिलित हैं)।
माप-सैद्धांतिक रूप से इच्छुक उपरोक्त परिभाषा में घटनाओं <math>\{ X \leq x \}</math> के लिए घटनाओं <math>\{ X \in A \}</math> को प्रतिस्थापित करना पसंद कर सकते हैं, जहां <math>A</math> कोई बोरेल सेट है। वह परिभाषा बिल्कुल उपरोक्त परिभाषा के समतुल्य है जब यादृच्छिक वेरिएबल के मान वास्तविक संख्याएँ होते हैं। इसमें सम्मिश्र-मूल्यवान यादृच्छिक वेरिएबल के लिए या किसी भी मापने योग्य स्थान में मान लेने वाले यादृच्छिक वेरिएबल के लिए भी काम करने का लाभ है (जिसमें उचित σ-बीजगणित द्वारा संपन्न टोपोलॉजिकल रिक्त स्थान सम्मिलित हैं)।


=== वास्तविक मूल्यवान यादृच्छिक वैक्टर के लिए ===
=== वास्तविक मूल्यवान यादृच्छिक सदिश के लिए ===
दो यादृच्छिक वैक्टर <math>\mathbf{X}=(X_1,\ldots,X_m)^\mathrm{T}</math> और <math>\mathbf{Y}=(Y_1,\ldots,Y_n)^\mathrm{T}</math> स्वतंत्र कहलाते हैं यदि<ref name="Papoulis">{{cite book | last = Papoulis| first =Athanasios| title = Probability, Random Variables and Stochastic Processes | publisher = MCGraw Hill | year = 1991| isbn = 0-07-048477-5}}</ref>{{rp|p. 187}}
दो यादृच्छिक सदिश <math>\mathbf{X}=(X_1,\ldots,X_m)^\mathrm{T}</math> और <math>\mathbf{Y}=(Y_1,\ldots,Y_n)^\mathrm{T}</math> स्वतंत्र कहलाते हैं यदि<ref name="Papoulis">{{cite book | last = Papoulis| first =Athanasios| title = Probability, Random Variables and Stochastic Processes | publisher = MCGraw Hill | year = 1991| isbn = 0-07-048477-5}}</ref>{{rp|p. 187}}


{{Equation box 1
{{Equation box 1
Line 121: Line 119:
|पृष्ठभूमि का रंग=#F5FFFA}}
|पृष्ठभूमि का रंग=#F5FFFA}}


कहाँ <math>F_{\mathbf{X}}(\mathbf{x})</math> और <math>F_{\mathbf{Y}}(\mathbf{y})</math> के संचयी वितरण कार्यों को निरूपित करें <math>\mathbf{X}</math> और <math>\mathbf{Y}</math> और <math>F_{\mathbf{X,Y}}(\mathbf{x,y})</math> उनके संयुक्त संचयी वितरण समारोह को दर्शाता है। की स्वतंत्रता <math>\mathbf{X}</math> और <math>\mathbf{Y}</math> द्वारा  अधिकांशतः दर्शाया जाता है <math>\mathbf{X} \perp\!\!\!\perp \mathbf{Y}</math>.
<math>F_{\mathbf{X}}(\mathbf{x})</math> और <math>F_{\mathbf{Y}}(\mathbf{y})</math>, <math>\mathbf{X}</math> और <math>\mathbf{Y}</math> के संचयी वितरण फलन को दर्शाते हैं और <math>F_{\mathbf{X,Y}}(\mathbf{x,y})</math> उनके संयुक्त संचयी वितरण फलन को दर्शाते हैं। <math>\mathbf{X}</math> और <math>\mathbf{Y}</math> की स्वतंत्रता को अधिकांशत: <math>\mathbf{X} \perp\!\!\!\perp \mathbf{Y}</math> से दर्शाया जाता है। लिखित घटक-वार <math>\mathbf{X}</math> से दर्शाया जाता है और <math>\mathbf{Y}</math>को स्वतंत्र कहा जाता है
लिखित घटक-वार, <math>\mathbf{X}</math> और <math>\mathbf{Y}</math> स्वतंत्र कहलाते हैं यदि
:<math>F_{X_1,\ldots,X_m,Y_1,\ldots,Y_n}(x_1,\ldots,x_m,y_1,\ldots,y_n) = F_{X_1,\ldots,X_m}(x_1,\ldots,x_m) \cdot F_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n) \quad \text{for all } x_1,\ldots,x_m,y_1,\ldots,y_n.</math>
:<math>F_{X_1,\ldots,X_m,Y_1,\ldots,Y_n}(x_1,\ldots,x_m,y_1,\ldots,y_n) = F_{X_1,\ldots,X_m}(x_1,\ldots,x_m) \cdot F_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n) \quad \text{for all } x_1,\ldots,x_m,y_1,\ldots,y_n.</math>


Line 129: Line 126:


==== एक स्टोकेस्टिक प्रक्रिया के लिए ====
==== एक स्टोकेस्टिक प्रक्रिया के लिए ====
स्वतंत्रता की परिभाषा को यादृच्छिक वैक्टर से स्टोकेस्टिक प्रक्रिया तक बढ़ाया जा सकता है। इसलिए, एक स्वतंत्र [[अनेक संभावनाओं में से चुनी हूई प्रक्रिया]] के लिए यह आवश्यक है कि किसी भी समय प्रक्रिया का नमूना लेने से प्राप्त यादृच्छिक चर <math>n</math> टाइम्स <math>t_1,\ldots,t_n</math> किसी के लिए स्वतंत्र यादृच्छिक चर हैं <math>n</math>.<ref name=HweiHsu>{{cite book| last1=Hwei| first1=Piao| title=Theory and Problems of Probability, Random Variables, and Random Processes| publisher=McGraw-Hill| year=1997| isbn=0-07-030644-3| url-access=registration| url=https://archive.org/details/schaumsoutlineof00hsuh}}</ref>{{rp|p. 163}}
स्वतंत्रता की परिभाषा को यादृच्छिक सदिश से स्टोकेस्टिक प्रक्रिया तक बढ़ाया जा सकता है। इसलिए, एक स्वतंत्र स्टोकेस्टिक प्रक्रिया के लिए यह आवश्यक है कि किसी भी <math>n</math> गुना <math>t_1,\ldots,t_n</math> पर प्रक्रिया का नमूना लेकर प्राप्त यादृच्छिक वेरिएबल किसी भी <math>n</math> के लिए स्वतंत्र यादृच्छिक वेरिएबल होते हैं।<ref name=HweiHsu>{{cite book| last1=Hwei| first1=Piao| title=Theory and Problems of Probability, Random Variables, and Random Processes| publisher=McGraw-Hill| year=1997| isbn=0-07-030644-3| url-access=registration| url=https://archive.org/details/schaumsoutlineof00hsuh}}</ref>{{rp|p. 163}}
औपचारिक रूप से, एक स्टोकेस्टिक प्रक्रिया <math>\left\{ X_t \right\}_{t\in\mathcal{T}}</math> स्वतंत्र कहा जाता है, यदि और केवल यदि सभी के लिए <math>n\in \mathbb{N}</math> और सभी के लिए <math>t_1,\ldots,t_n\in\mathcal{T}</math>
 
औपचारिक रूप से, एक स्टोकेस्टिक प्रक्रिया <math>\left\{ X_t \right\}_{t\in\mathcal{T}}</math> को स्वतंत्र कहा जाता है, यदि और केवल यदि सभी <math>n\in \mathbb{N}</math> के लिए और सभी <math>t_1,\ldots,t_n\in\mathcal{T}</math> के लिए उपयुक्त है


{{Equation box 1
{{Equation box 1
Line 141: Line 139:
|पृष्ठभूमि का रंग=#F5FFFA}}
|पृष्ठभूमि का रंग=#F5FFFA}}


कहाँ {{nowrap|<math>F_{X_{t_1},\ldots,X_{t_n}}(x_1,\ldots,x_n) = \mathrm{P}(X(t_1) \leq x_1,\ldots,X(t_n) \leq x_n)</math>}} स्टोचैस्टिक प्रक्रिया की स्वतंत्रता भीतर की संपत्ति है एक स्टोकेस्टिक प्रक्रिया, दो स्टोकेस्टिक प्रक्रियाओं के बीच नहीं।
जहाँ {{nowrap|<math>F_{X_{t_1},\ldots,X_{t_n}}(x_1,\ldots,x_n) = \mathrm{P}(X(t_1) \leq x_1,\ldots,X(t_n) \leq x_n)</math>}} स्टोचैस्टिक प्रक्रिया की स्वतंत्रता अंदर की गुण है एक स्टोकेस्टिक प्रक्रिया, दो स्टोकेस्टिक प्रक्रियाओं के मध्य नहीं है।


==== दो स्टोकेस्टिक प्रक्रियाओं के लिए ====
==== दो स्टोकेस्टिक प्रक्रियाओं के लिए ====
दो स्टोकेस्टिक प्रक्रियाओं की स्वतंत्रता दो स्टोकेस्टिक प्रक्रियाओं के बीच की संपत्ति है <math>\left\{ X_t \right\}_{t\in\mathcal{T}}</math> और <math>\left\{ Y_t \right\}_{t\in\mathcal{T}}</math> जो समान प्रायिकता स्थान पर परिभाषित हैं <math>(\Omega,\mathcal{F},P)</math>. औपचारिक रूप से, दो स्टोकेस्टिक प्रक्रियाएं <math>\left\{ X_t \right\}_{t\in\mathcal{T}}</math> और <math>\left\{ Y_t \right\}_{t\in\mathcal{T}}</math> यदि सभी के लिए स्वतंत्र कहा जाता है <math>n\in \mathbb{N}</math> और सभी के लिए <math>t_1,\ldots,t_n\in\mathcal{T}</math>, यादृच्छिक वैक्टर <math>(X(t_1),\ldots,X(t_n))</math> और <math>(Y(t_1),\ldots,Y(t_n))</math> स्वतंत्र हैं,<ref name="Lapidoth2017">{{cite book|author=Amos Lapidoth|title=A Foundation in Digital Communication|url=https://books.google.com/books?id=6oTuDQAAQBAJ&q=independence|date=8 February 2017|publisher=Cambridge University Press|isbn=978-1-107-17732-1}}</ref>{{rp|p. 515}} यानी यदि  
दो स्टोकेस्टिक प्रक्रियाओं की स्वतंत्रता दो स्टोकेस्टिक प्रक्रियाओं <math>\left\{ X_t \right\}_{t\in\mathcal{T}}</math> और <math>\left\{ Y_t \right\}_{t\in\mathcal{T}}</math> के मध्य की गुण है जो समान प्रायिकता स्थान <math>(\Omega,\mathcal{F},P)</math> पर परिभाषित हैं औपचारिक रूप से, दो स्टोकेस्टिक प्रक्रियाएं <math>\left\{ X_t \right\}_{t\in\mathcal{T}}</math> और <math>\left\{ Y_t \right\}_{t\in\mathcal{T}}</math> यदि सभी के लिए स्वतंत्र कहा जाता है और सभी <math>n\in \mathbb{N}</math> के लिए <math>t_1,\ldots,t_n\in\mathcal{T}</math>, यादृच्छिक सदिश <math>(X(t_1),\ldots,X(t_n))</math> और <math>(Y(t_1),\ldots,Y(t_n))</math> स्वतंत्र हैं,<ref name="Lapidoth2017">{{cite book|author=Amos Lapidoth|title=A Foundation in Digital Communication|url=https://books.google.com/books?id=6oTuDQAAQBAJ&q=independence|date=8 February 2017|publisher=Cambridge University Press|isbn=978-1-107-17732-1}}</ref>{{rp|p. 515}} अथार्त यदि  


{{Equation box 1
{{Equation box 1
Line 156: Line 154:


===स्वतंत्र σ-अलजेब्रा===
===स्वतंत्र σ-अलजेब्रा===
उपरोक्त परिभाषाएँ ({{EquationNote|Eq.1}} और {{EquationNote|Eq.2}}) दोनों सिग्मा बीजगणित के लिए स्वतंत्रता की निम्नलिखित परिभाषा द्वारा सामान्यीकृत हैं|σ-अलजेब्रा। होने देना <math>(\Omega, \Sigma, \mathrm{P})</math> एक संभाव्यता स्थान बनें और दें <math>\mathcal{A}</math> और <math>\mathcal{B}</math> के दो उप-σ-बीजगणित हो <math>\Sigma</math>. <math>\mathcal{A}</math> और <math>\mathcal{B}</math> स्वतंत्र कहा जाता है यदि , जब भी <math>A \in \mathcal{A}</math> और <math>B \in \mathcal{B}</math>,
उपरोक्त परिभाषाएँ ({{EquationNote|Eq.1}} और {{EquationNote|Eq.2}}) दोनों को σ-बीजगणित के लिए स्वतंत्रता की निम्नलिखित परिभाषा द्वारा सामान्यीकृत किया गया है। मान लीजिए कि <math>(\Omega, \Sigma, \mathrm{P})</math> एक संभाव्यता स्थान है और<math>\mathcal{A}</math> और <math>\mathcal{B}</math> <math>\Sigma</math>के दो उप-σ-बीजगणित हैं।. <math>\mathcal{A}</math> और <math>\mathcal{B}</math> को स्वतंत्र कहा जाता है यदि, जब भी <math>A \in \mathcal{A}</math> और <math>B \in \mathcal{B}</math>, हो।


:<math>\mathrm{P}(A \cap B) = \mathrm{P}(A) \mathrm{P}(B).</math>
:<math>\mathrm{P}(A \cap B) = \mathrm{P}(A) \mathrm{P}(B).</math>
इसी तरह, σ-अलजेब्रा का परिमित परिवार <math>(\tau_i)_{i\in I}</math>, कहाँ <math>I</math> एक [[सूचकांक सेट]] है, यदि और केवल यदि स्वतंत्र कहा जाता है
इसी प्रकार, σ-अलजेब्रा का परिमित वर्ग <math>(\tau_i)_{i\in I}</math>, जहाँ <math>I</math> एक [[सूचकांक सेट]] है, यदि और केवल यदि स्वतंत्र कहा जाता है


:<math>\forall \left(A_i\right)_{i\in I} \in \prod\nolimits_{i\in I}\tau_i \ : \ \mathrm{P}\left(\bigcap\nolimits_{i\in I}A_i\right) = \prod\nolimits_{i\in I}\mathrm{P}\left(A_i\right)</math>
:<math>\forall \left(A_i\right)_{i\in I} \in \prod\nolimits_{i\in I}\tau_i \ : \ \mathrm{P}\left(\bigcap\nolimits_{i\in I}A_i\right) = \prod\nolimits_{i\in I}\mathrm{P}\left(A_i\right)</math>
और σ-अलजेब्रस के एक अनंत परिवार को स्वतंत्र कहा जाता है यदि इसके सभी परिमित उपपरिवार स्वतंत्र हों।
और σ-अलजेब्रस के एक अनंत वर्ग को स्वतंत्र कहा जाता है यदि इसके सभी परिमित उपवर्ग स्वतंत्र हों।


नई परिभाषा पिछले वाले से सीधे तौर पर संबंधित है:
नई परिभाषा पिछले वाले से सीधे रूप से संबंधित है:
* दो घटनाएँ स्वतंत्र हैं (पुराने अर्थों में) यदि और केवल यदि उनके द्वारा उत्पन्न σ-अल्जेब्रा स्वतंत्र हैं (नए अर्थों में)। एक घटना द्वारा उत्पन्न σ-बीजगणित <math>E \in \Sigma</math> है, परिभाषा के अनुसार,
* दो घटनाएँ स्वतंत्र हैं (पुराने अर्थों में) यदि और केवल यदि उनके द्वारा उत्पन्न σ-अल्जेब्रा स्वतंत्र हैं (नए अर्थों में)। एक घटना द्वारा उत्पन्न σ-बीजगणित <math>E \in \Sigma</math> है, परिभाषा के अनुसार,
::<math>\sigma(\{E\}) = \{ \emptyset, E, \Omega \setminus E, \Omega \}.</math>
::<math>\sigma(\{E\}) = \{ \emptyset, E, \Omega \setminus E, \Omega \}.</math>
* दो यादृच्छिक चर <math>X</math> और <math>Y</math> परिभाषित किया गया <math>\Omega</math> स्वतंत्र हैं (पुराने अर्थों में) यदि और केवल यदि σ-अलजेब्रा जो वे उत्पन्न करते हैं वे स्वतंत्र हैं (नए अर्थों में)एक यादृच्छिक चर द्वारा उत्पन्न σ-बीजगणित <math>X</math> कुछ मापने योग्य स्थान में मान लेना <math>S</math> परिभाषा के अनुसार, के सभी उपसमुच्चय सम्मिलित हैं <math>\Omega</math> फार्म का <math>X^{-1}(U)</math>, कहाँ <math>U</math> का कोई मापने योग्य उपसमुच्चय है <math>S</math>.
* दो यादृच्छिक वेरिएबल <math>X</math> और <math>Y</math> परिभाषित किया गया <math>\Omega</math> स्वतंत्र हैं (पुराने अर्थों में) यदि और केवल यदि σ-अलजेब्रा जो वह उत्पन्न करते हैं वह स्वतंत्र हैं (नए अर्थों में) हैं। एक यादृच्छिक वेरिएबल द्वारा उत्पन्न σ-बीजगणित <math>X</math> कुछ मापने योग्य स्थान में मान लेना <math>S</math> परिभाषा के अनुसार, के सभी <math>\Omega</math> उपसमुच्चय सम्मिलित हैं जो फार्म का <math>X^{-1}(U)</math>, जहां <math>U</math>, <math>S</math>का कोई मापने योग्य उपसमुच्चय है।


इस परिभाषा का उपयोग करके, यह दिखाना आसान है कि यदि <math>X</math> और <math>Y</math> यादृच्छिक चर हैं और <math>Y</math> स्थिर है, तो <math>X</math> और <math>Y</math> स्वतंत्र हैं, क्योंकि एक स्थिर यादृच्छिक चर द्वारा उत्पन्न σ-बीजगणित तुच्छ σ-बीजगणित है <math>\{ \varnothing, \Omega \}</math>. संभाव्यता शून्य घटना स्वतंत्रता को प्रभावित नहीं कर सकती है गीत स्वतंत्रता भी रखती है यदि <math>Y</math> केवल पीआर-[[लगभग निश्चित रूप से]] स्थिर है।
इस परिभाषा का उपयोग करके, यह दिखाना सरल है कि यदि <math>X</math> और <math>Y</math> यादृच्छिक वेरिएबल हैं और <math>Y</math> स्थिर है, तब <math>X</math> और <math>Y</math> स्वतंत्र हैं, क्योंकि एक स्थिर यादृच्छिक वेरिएबल द्वारा उत्पन्न σ-बीजगणित तुच्छ σ-बीजगणित है <math>\{ \varnothing, \Omega \}</math>. संभाव्यता शून्य घटना स्वतंत्रता को प्रभावित नहीं कर सकती है गीत स्वतंत्रता भी रखती है यदि <math>Y</math> केवल पीआर-[[लगभग निश्चित रूप से]] स्थिर है।


== गुण ==
== गुण ==


===आत्मनिर्भरता===
===आत्मनिर्भरता===
ध्यान दें कि एक घटना स्वयं से स्वतंत्र है यदि और केवल यदि  
ध्यान दें कि एक घटना स्वयं से स्वतंत्र है यदि और केवल यदि  


:<math>\mathrm{P}(A) = \mathrm{P}(A \cap A) = \mathrm{P}(A) \cdot \mathrm{P}(A) \iff \mathrm{P}(A) = 0 \text{ or } \mathrm{P}(A) = 1.</math>
:<math>\mathrm{P}(A) = \mathrm{P}(A \cap A) = \mathrm{P}(A) \cdot \mathrm{P}(A) \iff \mathrm{P}(A) = 0 \text{ or } \mathrm{P}(A) = 1.</math>
Line 181: Line 179:


=== अपेक्षा और सहप्रसरण ===
=== अपेक्षा और सहप्रसरण ===
{{main|Correlation and dependence}}
{{main|सहसंबंध और निर्भरता}}
यदि <math>X</math> और <math>Y</math> स्वतंत्र यादृच्छिक चर हैं, फिर अपेक्षित मान <math>\operatorname{E}</math> संपत्ति है
यदि <math>X</math> और <math>Y</math> स्वतंत्र यादृच्छिक वेरिएबल हैं, फिर अपेक्षित मान <math>\operatorname{E}</math> गुण है


:<math>\operatorname{E}[X Y] = \operatorname{E}[X] \operatorname{E}[Y],</math>
:<math>\operatorname{E}[X Y] = \operatorname{E}[X] \operatorname{E}[Y],</math>
और [[सहप्रसरण]] <math>\operatorname{cov}[X,Y]</math> शून्य है, इस प्रकार से
और [[सहप्रसरण]] <math>\operatorname{cov}[X,Y]</math>शून्य है, जैसा कि निम्नानुसार है


:<math>\operatorname{cov}[X,Y] = \operatorname{E}[X Y] - \operatorname{E}[X] \operatorname{E}[Y].</math>
:<math>\operatorname{cov}[X,Y] = \operatorname{E}[X Y] - \operatorname{E}[X] \operatorname{E}[Y].</math>
इसका विलोम मान्य नहीं है: यदि दो यादृच्छिक चरों का सहप्रसरण 0 है, तब भी वे स्वतंत्र नहीं हो सकते हैं। असंबद्ध देखें।
इसका विलोम मान्य नहीं है: यदि दो यादृच्छिक वेरिएबलों का सहप्रसरण 0 है, तब भी वह स्वतंत्र नहीं हो सकते हैं। असंबद्ध देखें।


इसी तरह दो स्टोकेस्टिक प्रक्रियाओं के लिए <math>\left\{ X_t \right\}_{t\in\mathcal{T}}</math> और <math>\left\{ Y_t \right\}_{t\in\mathcal{T}}</math>: यदि वे स्वतंत्र हैं, तो वे असंबद्ध हैं।<ref name=KunIlPark>{{cite book | author=Park,Kun Il| title=Fundamentals of Probability and Stochastic Processes with Applications to Communications| publisher=Springer | year=2018 | isbn=978-3-319-68074-3}}</ref>{{rp|p. 151}}
इसी प्रकार दो स्टोकेस्टिक प्रक्रियाओं के लिए <math>\left\{ X_t \right\}_{t\in\mathcal{T}}</math> और <math>\left\{ Y_t \right\}_{t\in\mathcal{T}}</math>: यदि वह स्वतंत्र हैं, तब वह असंबद्ध हैं।<ref name=KunIlPark>{{cite book | author=Park,Kun Il| title=Fundamentals of Probability and Stochastic Processes with Applications to Communications| publisher=Springer | year=2018 | isbn=978-3-319-68074-3}}</ref>{{rp|p. 151}}




=== विशेषता समारोह ===
=== विशेषता समारोह ===
दो यादृच्छिक चर <math>X</math> और <math>Y</math> स्वतंत्र हैं यदि और केवल यदि यादृच्छिक वेक्टर के विशेषता कार्य (संभाव्यता सिद्धांत)<math>(X,Y)</math> संतुष्ट
दो यादृच्छिक वेरिएबल <math>X</math> और <math>Y</math> स्वतंत्र हैं यदि और केवल यदि यादृच्छिक वेक्टर के विशेषता कार्य (संभाव्यता सिद्धांत) <math>(X,Y)</math> संतुष्ट है
:<math>\varphi_{(X,Y)}(t,s) = \varphi_{X}(t)\cdot \varphi_{Y}(s). </math>
:<math>\varphi_{(X,Y)}(t,s) = \varphi_{X}(t)\cdot \varphi_{Y}(s). </math>
विशेष रूप से उनकी राशि का विशिष्ट कार्य उनके सीमांत विशेषता कार्यों का उत्पाद है:
विशेष रूप से उनकी राशि का विशिष्ट कार्य उनके सीमांत विशेषता कार्यों का उत्पाद है:
:<math>\varphi_{X+Y}(t) = \varphi_X(t)\cdot\varphi_Y(t),</math>
:<math>\varphi_{X+Y}(t) = \varphi_X(t)\cdot\varphi_Y(t),</math>
हालांकि विपरीत निहितार्थ सत्य नहीं है। यादृच्छिक चर जो बाद की स्थिति को संतुष्ट करते हैं उन्हें उप-निर्भरता कहा जाता है।
चूँकि विपरीत निहितार्थ सत्य नहीं है। यादृच्छिक वेरिएबल जो बाद की स्थिति को संतुष्ट करते हैं उन्हें उप-निर्भरता कहा जाता है।


== उदाहरण ==
== उदाहरण ==


=== रोलिंग पासा ===
=== रोलिंग पासा ===
एक पासे को पहली बार फेंके जाने पर 6 आने की घटना और दूसरी बार 6 आने की घटना स्वतंत्र होती है। इसके विपरीत, पहली बार एक पासा फेंके जाने पर 6 आने की घटना और पहली और दूसरी कोशिश में देखी गई संख्याओं का योग 8 होने की घटना स्वतंत्र नहीं है।
एक पासे को पहली बार फेंके जाने पर 6 आने की घटना और दूसरी बार 6 आने की घटना स्वतंत्र होती है। इसके विपरीत, पहली बार एक पासा फेंके जाने पर 6 आने की घटना और पहली और दूसरी प्रयाश में देखी गई संख्याओं का योग 8 होने की घटना स्वतंत्र नहीं है।


=== कार्ड बनाना ===
=== कार्ड बनाना ===
यदि ताश की गड्डी से प्रतिस्थापन के साथ दो पत्ते निकाले जाते हैं, तो पहले परीक्षण पर लाल कार्ड निकालने की घटना और दूसरे परीक्षण पर लाल कार्ड निकालने की घटना स्वतंत्र होती है। इसके विपरीत, यदि ताश की गड्डी से प्रतिस्थापन के बिना दो पत्ते निकाले जाते हैं, तो पहले प्रयास में लाल कार्ड निकालने की घटना और दूसरे प्रयास में लाल कार्ड निकालने की घटना स्वतंत्र नहीं होती है, क्योंकि जिस डेक का लाल रंग होता है हटाए गए कार्ड में आनुपातिक रूप से कम लाल कार्ड हैं।
यदि ताश की गड्डी से प्रतिस्थापन के साथ दो पत्ते निकाले जाते हैं, तब पहले परीक्षण पर लाल कार्ड निकालने की घटना और दूसरे परीक्षण पर लाल कार्ड निकालने की घटना स्वतंत्र होती है। इसके विपरीत, यदि ताश की गड्डी से प्रतिस्थापन के बिना दो पत्ते निकाले जाते हैं, तब पहले प्रयास में लाल कार्ड निकालने की घटना और दूसरे प्रयास में लाल कार्ड निकालने की घटना स्वतंत्र नहीं होती है, क्योंकि जिस डेक का लाल रंग होता है हटाए गए कार्ड में आनुपातिक रूप से कम लाल कार्ड हैं।


===जोड़ीवार और आपसी स्वतंत्रता===
===जोड़ीवार और आपसी स्वतंत्रता===


[[File:Pairwise independent.svg|thumb|जोड़ियों में स्वतंत्र, किंतु परस्पर स्वतंत्र नहीं, घटनाएँ।]]
[[File:Pairwise independent.svg|thumb|जोड़ियों में स्वतंत्र, किंतु परस्पर स्वतंत्र नहीं, घटनाएँ।]]
[[File:Mutually independent.svg|thumb|परस्पर स्वतंत्र घटनाएँ।]]दिखाए गए दो प्रायिकता स्थानों पर विचार करें। दोनों ही मामलों में, <math>\mathrm{P}(A) = \mathrm{P}(B) = 1/2</math> और <math>\mathrm{P}(C) = 1/4</math>. पहली जगह में यादृच्छिक चर जोड़ीदार स्वतंत्र हैं क्योंकि <math>\mathrm{P}(A|B) = \mathrm{P}(A|C)=1/2=\mathrm{P}(A)</math>, <math>\mathrm{P}(B|A) = \mathrm{P}(B|C)=1/2=\mathrm{P}(B)</math>, और <math>\mathrm{P}(C|A) = \mathrm{P}(C|B)=1/4=\mathrm{P}(C)</math>; किंतु तीन यादृच्छिक चर परस्पर स्वतंत्र नहीं हैं। दूसरी जगह में यादृच्छिक चर जोड़ीदार स्वतंत्र और पारस्परिक रूप से स्वतंत्र दोनों हैं। अंतर को स्पष्ट करने के लिए, दो घटनाओं पर कंडीशनिंग पर विचार करें। जोड़ीदार स्वतंत्र मामले में, हालांकि कोई भी एक घटना व्यक्तिगत रूप से अन्य दो में से प्रत्येक से स्वतंत्र है, यह अन्य दो के प्रतिच्छेदन से स्वतंत्र नहीं है:
[[File:Mutually independent.svg|thumb|परस्पर स्वतंत्र घटनाएँ।]]दिखाए गए दो प्रायिकता स्थानों पर विचार करें। दोनों ही स्थिति में, <math>\mathrm{P}(A) = \mathrm{P}(B) = 1/2</math> और <math>\mathrm{P}(C) = 1/4</math>. पहली जगह में यादृच्छिक वेरिएबल जोड़ीदार स्वतंत्र हैं क्योंकि <math>\mathrm{P}(A|B) = \mathrm{P}(A|C)=1/2=\mathrm{P}(A)</math>, <math>\mathrm{P}(B|A) = \mathrm{P}(B|C)=1/2=\mathrm{P}(B)</math>, और <math>\mathrm{P}(C|A) = \mathrm{P}(C|B)=1/4=\mathrm{P}(C)</math>; किंतु तीन यादृच्छिक वेरिएबल परस्पर स्वतंत्र नहीं हैं। दूसरी जगह में यादृच्छिक वेरिएबल जोड़ीदार स्वतंत्र और पारस्परिक रूप से स्वतंत्र दोनों हैं। अंतर को स्पष्ट करने के लिए, दो घटनाओं पर कंडीशनिंग पर विचार करें। जोड़ीदार स्वतंत्र स्थिति में, चूँकि कोई भी एक घटना व्यक्तिगत रूप से अन्य दो में से प्रत्येक से स्वतंत्र है, यह अन्य दो के प्रतिच्छेदन से स्वतंत्र नहीं है:


:<math>\mathrm{P}(A|BC) = \frac{\frac{4}{40}}{\frac{4}{40} + \frac{1}{40}} = \tfrac{4}{5} \ne \mathrm{P}(A)</math>
:<math>\mathrm{P}(A|BC) = \frac{\frac{4}{40}}{\frac{4}{40} + \frac{1}{40}} = \tfrac{4}{5} \ne \mathrm{P}(A)</math>
:<math>\mathrm{P}(B|AC) = \frac{\frac{4}{40}}{\frac{4}{40} + \frac{1}{40}} = \tfrac{4}{5} \ne \mathrm{P}(B)</math>
:<math>\mathrm{P}(B|AC) = \frac{\frac{4}{40}}{\frac{4}{40} + \frac{1}{40}} = \tfrac{4}{5} \ne \mathrm{P}(B)</math>
:<math>\mathrm{P}(C|AB) = \frac{\frac{4}{40}}{\frac{4}{40} + \frac{6}{40}} = \tfrac{2}{5} \ne \mathrm{P}(C)</math>
:<math>\mathrm{P}(C|AB) = \frac{\frac{4}{40}}{\frac{4}{40} + \frac{6}{40}} = \tfrac{2}{5} \ne \mathrm{P}(C)</math>
हालांकि, परस्पर स्वतंत्र मामले में,
चूँकि , परस्पर स्वतंत्र स्थिति में,
:<math>\mathrm{P}(A|BC) = \frac{\frac{1}{16}}{\frac{1}{16} + \frac{1}{16}} = \tfrac{1}{2} = \mathrm{P}(A)</math>
:<math>\mathrm{P}(A|BC) = \frac{\frac{1}{16}}{\frac{1}{16} + \frac{1}{16}} = \tfrac{1}{2} = \mathrm{P}(A)</math>
:<math>\mathrm{P}(B|AC) = \frac{\frac{1}{16}}{\frac{1}{16} + \frac{1}{16}} = \tfrac{1}{2} = \mathrm{P}(B)</math>
:<math>\mathrm{P}(B|AC) = \frac{\frac{1}{16}}{\frac{1}{16} + \frac{1}{16}} = \tfrac{1}{2} = \mathrm{P}(B)</math>
Line 230: Line 228:


== नियमित स्वतंत्रता ==
== नियमित स्वतंत्रता ==
{{main|Conditional independence}}
{{main|नियमित स्वतंत्रता}}




===घटनाओं के लिए===
===घटनाओं के लिए===
घटनाएं <math>A</math> और <math>B</math> किसी घटना को देखते हुए नियमित रूप से स्वतंत्र हैं <math>C</math> कब
जब कोई घटना <math>C</math> दी जाती है तब घटनाएँ <math>A</math> और <math>B</math> नियमित रूप से स्वतंत्र होती हैं


<math>\mathrm{P}(A \cap B \mid C) =  \mathrm{P}(A \mid C) \cdot \mathrm{P}(B \mid C)</math>.
<math>\mathrm{P}(A \cap B \mid C) =  \mathrm{P}(A \mid C) \cdot \mathrm{P}(B \mid C)</math>.


=== यादृच्छिक चर के लिए ===
=== यादृच्छिक वेरिएबल के लिए ===


सहज रूप से, दो यादृच्छिक चर <math>X</math> और <math>Y</math> नियमित रूप से स्वतंत्र दिए गए हैं <math>Z</math> यदि , एक बार <math>Z</math> जाना जाता है, का मूल्य <math>Y</math> के बारे में कोई अतिरिक्त जानकारी नहीं जोड़ता है <math>X</math>. उदाहरण के लिए, दो माप <math>X</math> और <math>Y</math> समान अंतर्निहित मात्रा का <math>Z</math> स्वतंत्र नहीं हैं, किंतु नियमित रूप से स्वतंत्र हैं <math>Z</math> (जब तक कि दो मापों में त्रुटियां किसी तरह जुड़ी न हों)।
सहज रूप से, दो यादृच्छिक वेरिएबल X और Y नियमित हैं स्वतंत्र दिया गया Z यदि, एक बार Z ज्ञात हो जाए, तब Y का मान X के बारे में कोई अतिरिक्त जानकारी नहीं जोड़ता है। उदाहरण के लिए, एक ही अंतर्निहित मात्रा Z के दो माप X और Y स्वतंत्र नहीं हैं, किंतु वह Z दिए जाने पर नियमित रूप से स्वतंत्र हैं (जब तक कि दोनों मापों में त्रुटियाँ किसी प्रकार जुड़ी हुई हैं)।


नियमित स्वतंत्रता की औपचारिक परिभाषा [[सशर्त वितरण|नियमित वितरण]] के विचार पर आधारित है। यदि <math>X</math>, <math>Y</math>, और <math>Z</math> [[असतत यादृच्छिक चर]] हैं, फिर हम परिभाषित करते हैं <math>X</math> और <math>Y</math> नियमित रूप से स्वतंत्र होने के लिए <math>Z</math> यदि  
नियमित स्वतंत्रता की औपचारिक परिभाषा [[सशर्त वितरण|नियमित वितरण]] के विचार पर आधारित है। यदि <math>X</math>, <math>Y</math>, और <math>Z</math> [[असतत यादृच्छिक चर|असतत यादृच्छिक]] वेरिएबल हैं, फिर हम परिभाषित करते हैं <math>X</math> और <math>Y</math> नियमित रूप से स्वतंत्र होने के लिए <math>Z</math> यदि  


:<math>\mathrm{P}(X \le x, Y \le y\;|\;Z = z) = \mathrm{P}(X \le x\;|\;Z = z) \cdot \mathrm{P}(Y \le y\;|\;Z = z)</math>
:<math>\mathrm{P}(X \le x, Y \le y\;|\;Z = z) = \mathrm{P}(X \le x\;|\;Z = z) \cdot \mathrm{P}(Y \le y\;|\;Z = z)</math>
सभी के लिए <math>x</math>, <math>y</math> और <math>z</math> ऐसा है कि <math>\mathrm{P}(Z=z)>0</math>. दूसरी ओर, यदि यादृच्छिक चर निरंतर यादृच्छिक चर हैं और एक संयुक्त संभाव्यता घनत्व कार्य है <math>f_{XYZ}(x,y,z)</math>, तब <math>X</math> और <math>Y</math> [[सशर्त रूप से स्वतंत्र|नियमित रूप से स्वतंत्र]] दिए गए हैं <math>Z</math> यदि
सभी <math>x</math>, <math>y</math> और <math>z</math> के लिए ऐसा कि <math>\mathrm{P}(Z=z)>0</math>दूसरी ओर, यदि यादृच्छिक वेरिएबल निरंतर हैं और एक संयुक्त संभाव्यता घनत्व फलन <math>f_{XYZ}(x,y,z)</math> है, तब <math>X</math> और <math>Y</math> नियमित रूप से स्वतंत्र हैं यदि <math>Z</math> दिया गया है


:<math>f_{XY|Z}(x, y | z) = f_{X|Z}(x | z) \cdot f_{Y|Z}(y | z)</math>
:<math>f_{XY|Z}(x, y | z) = f_{X|Z}(x | z) \cdot f_{Y|Z}(y | z)</math>
सभी वास्तविक संख्याओं के लिए <math>x</math>, <math>y</math> और <math>z</math> ऐसा है कि <math>f_Z(z)>0</math>.
सभी वास्तविक संख्याओं के लिए <math>x</math>, <math>y</math> और <math>z</math> ऐसा है कि <math>f_Z(z)>0</math>.


यदि असतत <math>X</math> और <math>Y</math> नियमित रूप से स्वतंत्र दिए गए हैं <math>Z</math>, तब
यदि असतत <math>X</math> और <math>Y</math>, <math>Z</math> दिए जाने पर नियमित रूप से स्वतंत्र हैं


:<math>\mathrm{P}(X = x | Y = y , Z = z) = \mathrm{P}(X = x | Z = z)</math>
:<math>\mathrm{P}(X = x | Y = y , Z = z) = \mathrm{P}(X = x | Z = z)</math>
किसी के लिए <math>x</math>, <math>y</math> और <math>z</math> साथ <math>\mathrm{P}(Z=z)>0</math>. यानी नियमित वितरण के लिए <math>X</math> दिया गया <math>Y</math> और <math>Z</math> जैसा दिया गया है वैसा ही है <math>Z</math> अकेला। निरंतर मामले में नियमित संभाव्यता घनत्व कार्यों के लिए एक समान समीकरण लागू होता है।
किसी के लिए <math>x</math>, <math>y</math> और <math>z</math> साथ <math>\mathrm{P}(Z=z)>0</math>. अथार्त नियमित वितरण के लिए <math>X</math> दिया गया <math>Y</math> और <math>Z</math> जैसा दिया गया है वैसा ही है <math>Z</math> अकेला। निरंतर स्थिति में नियमित संभाव्यता घनत्व कार्यों के लिए एक समान समीकरण प्रयुक्त होता है।


स्वतंत्रता को एक विशेष प्रकार की नियमित स्वतंत्रता के रूप में देखा जा सकता है, क्योंकि संभाव्यता को एक प्रकार की नियमित संभावना के रूप में देखा जा सकता है, जिसमें कोई घटना नहीं है।
स्वतंत्रता को एक विशेष प्रकार की नियमित स्वतंत्रता के रूप में देखा जा सकता है, क्योंकि संभाव्यता को एक प्रकार की नियमित संभावना के रूप में देखा जा सकता है, जिसमें कोई घटना नहीं है।
Line 259: Line 258:
== यह भी देखें ==
== यह भी देखें ==
* [[कोपुला (सांख्यिकी)]]
* [[कोपुला (सांख्यिकी)]]
* [[स्वतंत्र और समान रूप से वितरित यादृच्छिक चर]]
* [[स्वतंत्र और समान रूप से वितरित यादृच्छिक चर|स्वतंत्र और समान रूप से वितरित यादृच्छिक वेरीएबल]]
* [[परस्पर अनन्य कार्यक्रम]]
* [[परस्पर अनन्य कार्यक्रम]]
* [[जोड़ीदार स्वतंत्रता]]
* [[जोड़ीदार स्वतंत्रता]]
Line 273: Line 272:
==बाहरी संबंध==
==बाहरी संबंध==
*{{Commons category-inline}}
*{{Commons category-inline}}
[[Category: स्वतंत्रता (संभावना सिद्धांत) | स्वतंत्रता (संभावना सिद्धांत) ]] [[Category: प्रयोग (संभाव्यता सिद्धांत)]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 08/02/2023]]
[[Category:Created On 08/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:प्रयोग (संभाव्यता सिद्धांत)]]
[[Category:स्वतंत्रता (संभावना सिद्धांत)| स्वतंत्रता (संभावना सिद्धांत) ]]

Latest revision as of 16:16, 4 September 2023

संभाव्यता सिद्धांत में स्वतंत्रता एक मौलिक धारणा है, जैसा कि सांख्यिकी और स्टोकेस्टिक प्रक्रियाओं के सिद्धांत में है। दो घटनाएँ (संभाव्यता सिद्धांत) स्वतंत्र, सांख्यिकीय रूप से स्वतंत्र, या आंकड़े रूप से स्वतंत्र हैं[1] यदि दृच्छिक वेरिएबल स्वतंत्र होते हैं यदि एक की प्राप्ति दूसरे के संभाव्यता वितरण को प्रभावित नहीं करती है।

दो से अधिक घटनाओं के संग्रह के साथ व्यवहार करते समय, स्वतंत्रता की दो धारणाओं को भिन्न करने की आवश्यकता होती है। घटनाओं को जोड़ीदार स्वतंत्र कहा जाता है यदि संग्रह में कोई भी दो घटनाएँ एक दूसरे से स्वतंत्र हैं, जबकि घटनाओं की पारस्परिक स्वतंत्रता (या सामूहिक स्वतंत्रता) का अर्थ है, अनौपचारिक रूप से बोला जाता है कि प्रत्येक घटना संग्रह में अन्य घटनाओं के किसी भी संयोजन से स्वतंत्र है। इसी प्रकार की धारणा यादृच्छिक वेरिएबल के संग्रह के लिए उपस्थित है। पारस्परिक स्वतंत्रता का तात्पर्य जोड़ीदार स्वतंत्रता से है, किंतु इसके विपरीत नहीं संभाव्यता सिद्धांत, सांख्यिकी, और स्टोचैस्टिक प्रक्रियाओं के मानक साहित्य में आगे की योग्यता के बिना स्वतंत्रता सामान्यतः पारस्परिक स्वतंत्रता को संदर्भित करती है।

परिभाषा

घटनाओं के लिए

दो घटनाएँ

दो घटनाएँ और स्वतंत्र हैं ( अधिकांशतः लिखा जाता है या , जहां बाद वाला प्रतीक अधिकांशतः नियमित स्वतंत्रता के लिए भी प्रयोग किया जाता है) यदि और केवल यदि उनकी संयुक्त संभावना उनकी संभावनाओं के उत्पाद के समान होती है:[2]: p. 29 [3]: p. 10 

 

 

 

 

(Eq.1)

इंगित करता है कि दो स्वतंत्र घटनाओं और के नमूना स्थान में सामान्य तत्व हैं ताकि वह परस्पर अनन्य न हों (परस्पर अनन्य यदि )। यह स्वतंत्रता को क्यों परिभाषित करता है, इसे नियमित संभावनाओं के साथ पुनर्लेखन द्वारा स्पष्ट किया जाता है, जिस संभावना पर घटना घटित होती है, परन्तु कि घटना घटित हुई हो या मानी गई हो:

और इसी प्रकार

इस प्रकार, की घटना की संभावना को प्रभावित नहीं करती है, और इसके विपरीत दूसरे शब्दों में, और एक दूसरे से स्वतंत्र हैं। चूँकि व्युत्पन्न अभिव्यक्तियाँ अधिक सहज लग सकती हैं, वह पसंदीदा परिभाषा नहीं हैं, क्योंकि नियमित संभावनाएँ अपरिभाषित हो सकती हैं यदि या 0 हैं। इसके अतिरिक्त , पसंदीदा परिभाषा समरूपता से स्पष्ट करती है कि जब से स्वतंत्र है, भी से स्वतंत्र है

लॉग संभाव्यता और सूचना सामग्री

लॉग संभाव्यता के संदर्भ में कहा गया है, दो घटनाएं स्वतंत्र हैं यदि और केवल यदि संयुक्त घटना की लॉग संभावना भिन्न -भिन्न घटनाओं की लॉग संभावना का योग है:

सूचना सिद्धांत में, नकारात्मक लॉग संभाव्यता की व्याख्या सूचना सामग्री के रूप में की जाती है, और इस प्रकार दो घटनाएं स्वतंत्र होती हैं यदि और केवल यदि संयुक्त घटना की सूचना सामग्री भिन्न -भिन्न घटनाओं की सूचना सामग्री के योग के समान होती है:

विवरण के लिए सूचना सामग्री देखें § स्वतंत्र घटनाओं की संयोजकता है ।

ऑड्स

बाधाओं के संदर्भ में कहा गया है, दो घटनाएं स्वतंत्र हैं यदि और केवल यदि बाधाओं का अनुपात और एकता (1) है। संभाव्यता के अनुरूप, यह बिना नियम बाधाओं के समान नियमित बाधाओं के समान है:

या एक घटना की विषमताओं के लिए, दूसरी घटना को देखते हुए, घटना की बाधाओं के समान होने के कारण दूसरी घटना घटित नहीं होती है:

विषम अनुपात के रूप में परिभाषित किया जा सकता है

या सममित रूप से की बाधाओं के लिए दिया गया है, और इस प्रकार 1 है यदि और केवल यदि घटनाएं स्वतंत्र हैं।

दो से अधिक घटनाएँ

घटनाओं का एक सीमित सेट जोड़ीवार स्वतंत्र है यदि घटनाओं की प्रत्येक जोड़ी स्वतंत्र है [4] - अथार्त, यदि और केवल यदि सूचकांकों के सभी भिन्न -भिन्न जोड़े के लिए है ।

 

 

 

 

(Eq.2)

घटनाओं का एक सीमित सेट पारस्परिक रूप से स्वतंत्र होता है यदि प्रत्येक घटना अन्य घटनाओं के किसी भी प्रतिच्छेदन से स्वतंत्र होती है[[4][3]: p. 11  —अर्थात्, यदि और केवल यदि प्रत्येक के लिए और प्रत्येक k सूचकांकों के लिए उपयोग किया जाता है

 

 

 

 

(Eq.3)

इसे स्वतंत्र घटनाओं का गुणन नियम कहा जाता है। यह एक ऐसी स्थिति नहीं है जिसमें केवल सभी एकल घटनाओं की सभी संभावनाओं का उत्पाद सम्मिलित हैं इसे घटनाओं के सभी उपसमूहों के लिए सत्य होना चाहिए।

दो से अधिक घटनाओं के लिए, घटनाओं का परस्पर स्वतंत्र सेट (परिभाषा के अनुसार) जोड़ीवार स्वतंत्र होता है; किंतु इसका विपरीत आवश्यक रूप से सत्य नहीं है।[2]: p. 30 

वास्तविक मूल्यांकित यादृच्छिक वेरिएबल के लिए

दो यादृच्छिक वेरीएबल

'दो यादृच्छिक वेरिएबल और स्वतंत्र हैं अगर और केवल अगर (iff) Pi सिस्टम के तत्व|π-सिस्टम उनके द्वारा उत्पन्न स्वतंत्र हैं; अर्थात् प्रत्येक के लिए और , घटनाएं और स्वतंत्र घटनाएँ हैं (जैसा कि ऊपर परिभाषित किया गया है Eq.1). वह है, और संचयी वितरण कार्य के साथ और , स्वतंत्र हैं यदि और केवल यदि संयुक्त यादृच्छिक वेरिएबल एक संयुक्त वितरण संचयी वितरण फलन है[3]: p. 15 ''''

 

 

 

 

(Eq.4)

या समकक्ष, यदि संभाव्यता घनत्व और और संयुक्त संभाव्यता घनत्व है।


दो से अधिक यादृच्छिक वेरीएबल

का एक परिमित सेट यादृच्छिक वेरिएबल जोड़ीदार स्वतंत्र है यदि और केवल यदि यादृच्छिक वेरिएबल की प्रत्येक जोड़ी स्वतंत्र है। यहां तक ​​​​कि यदि यादृच्छिक वेरिएबल का सेट जोड़ीदार स्वतंत्र है, तब जरूरी नहीं कि यह पारस्परिक रूप से स्वतंत्र हो, जैसा कि आगे परिभाषित किया गया है।

का एक परिमित सेट यादृच्छिक वेरिएबल संख्याओं के किसी अनुक्रम के लिए यदि और केवल यदि परस्पर स्वतंत्र है , घटनाएं परस्पर स्वतंत्र घटनाएँ हैं (जैसा कि ऊपर परिभाषित किया गया है Eq.3). यह संयुक्त संचयी वितरण कार्य पर निम्नलिखित शर्त के समान है . का एक परिमित सेट यादृच्छिक वेरिएबल पारस्परिक रूप से स्वतंत्र है यदि और केवल यदि [3]: p. 16 

 

 

 

 

(Eq.5)

ध्यान दें कि यहाँ यह आवश्यक नहीं है कि प्रायिकता वितरण सभी संभव के लिए गुणनखंडित हो -element स्थिति के रूप में सबसेट आयोजन में इसकी आवश्यकता नहीं है क्योंकि उदा। तात्पर्य .

माप-सैद्धांतिक रूप से इच्छुक उपरोक्त परिभाषा में घटनाओं के लिए घटनाओं को प्रतिस्थापित करना पसंद कर सकते हैं, जहां कोई बोरेल सेट है। वह परिभाषा बिल्कुल उपरोक्त परिभाषा के समतुल्य है जब यादृच्छिक वेरिएबल के मान वास्तविक संख्याएँ होते हैं। इसमें सम्मिश्र-मूल्यवान यादृच्छिक वेरिएबल के लिए या किसी भी मापने योग्य स्थान में मान लेने वाले यादृच्छिक वेरिएबल के लिए भी काम करने का लाभ है (जिसमें उचित σ-बीजगणित द्वारा संपन्न टोपोलॉजिकल रिक्त स्थान सम्मिलित हैं)।

वास्तविक मूल्यवान यादृच्छिक सदिश के लिए

दो यादृच्छिक सदिश और स्वतंत्र कहलाते हैं यदि[5]: p. 187 

 

 

 

 

(Eq.6)

और , और के संचयी वितरण फलन को दर्शाते हैं और उनके संयुक्त संचयी वितरण फलन को दर्शाते हैं। और की स्वतंत्रता को अधिकांशत: से दर्शाया जाता है। लिखित घटक-वार से दर्शाया जाता है और को स्वतंत्र कहा जाता है


स्टोकास्टिक प्रक्रियाओं के लिए

एक स्टोकेस्टिक प्रक्रिया के लिए

स्वतंत्रता की परिभाषा को यादृच्छिक सदिश से स्टोकेस्टिक प्रक्रिया तक बढ़ाया जा सकता है। इसलिए, एक स्वतंत्र स्टोकेस्टिक प्रक्रिया के लिए यह आवश्यक है कि किसी भी गुना पर प्रक्रिया का नमूना लेकर प्राप्त यादृच्छिक वेरिएबल किसी भी के लिए स्वतंत्र यादृच्छिक वेरिएबल होते हैं।[6]: p. 163 

औपचारिक रूप से, एक स्टोकेस्टिक प्रक्रिया को स्वतंत्र कहा जाता है, यदि और केवल यदि सभी के लिए और सभी के लिए उपयुक्त है

 

 

 

 

(Eq.7)

जहाँ स्टोचैस्टिक प्रक्रिया की स्वतंत्रता अंदर की गुण है एक स्टोकेस्टिक प्रक्रिया, दो स्टोकेस्टिक प्रक्रियाओं के मध्य नहीं है।

दो स्टोकेस्टिक प्रक्रियाओं के लिए

दो स्टोकेस्टिक प्रक्रियाओं की स्वतंत्रता दो स्टोकेस्टिक प्रक्रियाओं और के मध्य की गुण है जो समान प्रायिकता स्थान पर परिभाषित हैं औपचारिक रूप से, दो स्टोकेस्टिक प्रक्रियाएं और यदि सभी के लिए स्वतंत्र कहा जाता है और सभी के लिए , यादृच्छिक सदिश और स्वतंत्र हैं,[7]: p. 515  अथार्त यदि

>Eq.8

 

 

 

 

({{{3}}})

स्वतंत्र σ-अलजेब्रा

उपरोक्त परिभाषाएँ (Eq.1 और Eq.2) दोनों को σ-बीजगणित के लिए स्वतंत्रता की निम्नलिखित परिभाषा द्वारा सामान्यीकृत किया गया है। मान लीजिए कि एक संभाव्यता स्थान है और और के दो उप-σ-बीजगणित हैं।. और को स्वतंत्र कहा जाता है यदि, जब भी और , हो।

इसी प्रकार, σ-अलजेब्रा का परिमित वर्ग , जहाँ एक सूचकांक सेट है, यदि और केवल यदि स्वतंत्र कहा जाता है

और σ-अलजेब्रस के एक अनंत वर्ग को स्वतंत्र कहा जाता है यदि इसके सभी परिमित उपवर्ग स्वतंत्र हों।

नई परिभाषा पिछले वाले से सीधे रूप से संबंधित है:

  • दो घटनाएँ स्वतंत्र हैं (पुराने अर्थों में) यदि और केवल यदि उनके द्वारा उत्पन्न σ-अल्जेब्रा स्वतंत्र हैं (नए अर्थों में)। एक घटना द्वारा उत्पन्न σ-बीजगणित है, परिभाषा के अनुसार,
  • दो यादृच्छिक वेरिएबल और परिभाषित किया गया स्वतंत्र हैं (पुराने अर्थों में) यदि और केवल यदि σ-अलजेब्रा जो वह उत्पन्न करते हैं वह स्वतंत्र हैं (नए अर्थों में) हैं। एक यादृच्छिक वेरिएबल द्वारा उत्पन्न σ-बीजगणित कुछ मापने योग्य स्थान में मान लेना परिभाषा के अनुसार, के सभी उपसमुच्चय सम्मिलित हैं जो फार्म का , जहां , का कोई मापने योग्य उपसमुच्चय है।

इस परिभाषा का उपयोग करके, यह दिखाना सरल है कि यदि और यादृच्छिक वेरिएबल हैं और स्थिर है, तब और स्वतंत्र हैं, क्योंकि एक स्थिर यादृच्छिक वेरिएबल द्वारा उत्पन्न σ-बीजगणित तुच्छ σ-बीजगणित है . संभाव्यता शून्य घटना स्वतंत्रता को प्रभावित नहीं कर सकती है गीत स्वतंत्रता भी रखती है यदि केवल पीआर-लगभग निश्चित रूप से स्थिर है।

गुण

आत्मनिर्भरता

ध्यान दें कि एक घटना स्वयं से स्वतंत्र है यदि और केवल यदि

इस प्रकार एक घटना स्वयं से स्वतंत्र होती है यदि और केवल यदि यह लगभग निश्चित रूप से होती है या इसका पूरक (सेट सिद्धांत) लगभग निश्चित रूप से होता है; शून्य–एक नियम सिद्ध करते समय यह तथ्य उपयोगी होता है।[8]


अपेक्षा और सहप्रसरण

यदि और स्वतंत्र यादृच्छिक वेरिएबल हैं, फिर अपेक्षित मान गुण है

और सहप्रसरण शून्य है, जैसा कि निम्नानुसार है

इसका विलोम मान्य नहीं है: यदि दो यादृच्छिक वेरिएबलों का सहप्रसरण 0 है, तब भी वह स्वतंत्र नहीं हो सकते हैं। असंबद्ध देखें।

इसी प्रकार दो स्टोकेस्टिक प्रक्रियाओं के लिए और : यदि वह स्वतंत्र हैं, तब वह असंबद्ध हैं।[9]: p. 151 


विशेषता समारोह

दो यादृच्छिक वेरिएबल और स्वतंत्र हैं यदि और केवल यदि यादृच्छिक वेक्टर के विशेषता कार्य (संभाव्यता सिद्धांत) संतुष्ट है

विशेष रूप से उनकी राशि का विशिष्ट कार्य उनके सीमांत विशेषता कार्यों का उत्पाद है:

चूँकि विपरीत निहितार्थ सत्य नहीं है। यादृच्छिक वेरिएबल जो बाद की स्थिति को संतुष्ट करते हैं उन्हें उप-निर्भरता कहा जाता है।

उदाहरण

रोलिंग पासा

एक पासे को पहली बार फेंके जाने पर 6 आने की घटना और दूसरी बार 6 आने की घटना स्वतंत्र होती है। इसके विपरीत, पहली बार एक पासा फेंके जाने पर 6 आने की घटना और पहली और दूसरी प्रयाश में देखी गई संख्याओं का योग 8 होने की घटना स्वतंत्र नहीं है।

कार्ड बनाना

यदि ताश की गड्डी से प्रतिस्थापन के साथ दो पत्ते निकाले जाते हैं, तब पहले परीक्षण पर लाल कार्ड निकालने की घटना और दूसरे परीक्षण पर लाल कार्ड निकालने की घटना स्वतंत्र होती है। इसके विपरीत, यदि ताश की गड्डी से प्रतिस्थापन के बिना दो पत्ते निकाले जाते हैं, तब पहले प्रयास में लाल कार्ड निकालने की घटना और दूसरे प्रयास में लाल कार्ड निकालने की घटना स्वतंत्र नहीं होती है, क्योंकि जिस डेक का लाल रंग होता है हटाए गए कार्ड में आनुपातिक रूप से कम लाल कार्ड हैं।

जोड़ीवार और आपसी स्वतंत्रता

जोड़ियों में स्वतंत्र, किंतु परस्पर स्वतंत्र नहीं, घटनाएँ।
परस्पर स्वतंत्र घटनाएँ।

दिखाए गए दो प्रायिकता स्थानों पर विचार करें। दोनों ही स्थिति में, और . पहली जगह में यादृच्छिक वेरिएबल जोड़ीदार स्वतंत्र हैं क्योंकि , , और ; किंतु तीन यादृच्छिक वेरिएबल परस्पर स्वतंत्र नहीं हैं। दूसरी जगह में यादृच्छिक वेरिएबल जोड़ीदार स्वतंत्र और पारस्परिक रूप से स्वतंत्र दोनों हैं। अंतर को स्पष्ट करने के लिए, दो घटनाओं पर कंडीशनिंग पर विचार करें। जोड़ीदार स्वतंत्र स्थिति में, चूँकि कोई भी एक घटना व्यक्तिगत रूप से अन्य दो में से प्रत्येक से स्वतंत्र है, यह अन्य दो के प्रतिच्छेदन से स्वतंत्र नहीं है:

चूँकि , परस्पर स्वतंत्र स्थिति में,


ट्रिपल-स्वतंत्रता किंतु जोड़ीदार-स्वतंत्रता नहीं

जिसमें तीन-घटना का उदाहरण बनाना संभव है

और फिर भी तीन घटनाओं में से कोई भी जोड़ीदार स्वतंत्र नहीं है (और इसलिए घटनाओं का सेट पारस्परिक रूप से स्वतंत्र नहीं है)।[10] इस उदाहरण से पता चलता है कि आपसी स्वतंत्रता में घटनाओं के सभी संयोजनों की संभावनाओं के उत्पादों पर आवश्यकताएं सम्मिलित हैं, न कि केवल एक घटना जैसा कि इस उदाहरण में है।

नियमित स्वतंत्रता


घटनाओं के लिए

जब कोई घटना दी जाती है तब घटनाएँ और नियमित रूप से स्वतंत्र होती हैं

.

यादृच्छिक वेरिएबल के लिए

सहज रूप से, दो यादृच्छिक वेरिएबल X और Y नियमित हैं स्वतंत्र दिया गया Z यदि, एक बार Z ज्ञात हो जाए, तब Y का मान X के बारे में कोई अतिरिक्त जानकारी नहीं जोड़ता है। उदाहरण के लिए, एक ही अंतर्निहित मात्रा Z के दो माप X और Y स्वतंत्र नहीं हैं, किंतु वह Z दिए जाने पर नियमित रूप से स्वतंत्र हैं (जब तक कि दोनों मापों में त्रुटियाँ किसी प्रकार जुड़ी हुई हैं)।

नियमित स्वतंत्रता की औपचारिक परिभाषा नियमित वितरण के विचार पर आधारित है। यदि , , और असतत यादृच्छिक वेरिएबल हैं, फिर हम परिभाषित करते हैं और नियमित रूप से स्वतंत्र होने के लिए यदि

सभी , और के लिए ऐसा कि । दूसरी ओर, यदि यादृच्छिक वेरिएबल निरंतर हैं और एक संयुक्त संभाव्यता घनत्व फलन है, तब और नियमित रूप से स्वतंत्र हैं यदि दिया गया है

सभी वास्तविक संख्याओं के लिए , और ऐसा है कि .

यदि असतत और , दिए जाने पर नियमित रूप से स्वतंत्र हैं

किसी के लिए , और साथ . अथार्त नियमित वितरण के लिए दिया गया और जैसा दिया गया है वैसा ही है अकेला। निरंतर स्थिति में नियमित संभाव्यता घनत्व कार्यों के लिए एक समान समीकरण प्रयुक्त होता है।

स्वतंत्रता को एक विशेष प्रकार की नियमित स्वतंत्रता के रूप में देखा जा सकता है, क्योंकि संभाव्यता को एक प्रकार की नियमित संभावना के रूप में देखा जा सकता है, जिसमें कोई घटना नहीं है।

यह भी देखें

संदर्भ

  1. Russell, Stuart; Norvig, Peter (2002). Artificial Intelligence: A Modern Approach. Prentice Hall. p. 478. ISBN 0-13-790395-2.
  2. 2.0 2.1 Florescu, Ionut (2014). Probability and Stochastic Processes. Wiley. ISBN 978-0-470-62455-5.
  3. 3.0 3.1 3.2 3.3 Gallager, Robert G. (2013). Stochastic Processes Theory for Applications. Cambridge University Press. ISBN 978-1-107-03975-9.
  4. 4.0 4.1 Feller, W (1971). "Stochastic Independence". An Introduction to Probability Theory and Its Applications. Wiley.
  5. Papoulis, Athanasios (1991). Probability, Random Variables and Stochastic Processes. MCGraw Hill. ISBN 0-07-048477-5.
  6. Hwei, Piao (1997). Theory and Problems of Probability, Random Variables, and Random Processes. McGraw-Hill. ISBN 0-07-030644-3.
  7. Amos Lapidoth (8 February 2017). A Foundation in Digital Communication. Cambridge University Press. ISBN 978-1-107-17732-1.
  8. Durrett, Richard (1996). Probability: theory and examples (Second ed.). page 62
  9. Park,Kun Il (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. ISBN 978-3-319-68074-3.
  10. George, Glyn, "Testing for the independence of three events," Mathematical Gazette 88, November 2004, 568. PDF


बाहरी संबंध