अनुरूप मॉडल: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Relation of types of systems with corresponding dynamics}} {{Confuse|Analogical modeling}} {{other uses| Analogy (disambiguation)}} File:Mobility analogy...")
 
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Relation of types of systems with corresponding dynamics}}
{{Confuse|अनुरूप मॉडलिंग}}
{{Confuse|Analogical modeling}}
{{other uses|सादृश्य (बहुविकल्पी)}}
{{other uses| Analogy (disambiguation)}}
[[File:Mobility analogy resonator vertical.svg|thumb|280px|एक साधारण आरएलसी परिपथ का [[यांत्रिक नेटवर्क]] आरेख #समानांतर आरएलसी परिपथ (ऊपर) और समकक्ष संरचना और व्यवहार (नीचे) के साथ [[विद्युत नेटवर्क]], फिर, इसके लिए एनालॉग।]]'''एनालॉग मॉडल''' वर्तमान समय की ऐसी घटना हैं जिसका उपयोग प्रतिनिधित्व करने के लिए किया जाता है, जिसे अधिकांशतः किसी अन्य अधिक समझने योग्य या विश्लेषण योग्य प्रणाली द्वारा उपयोग किया जाता हैं, जिसे टार्गेटेड सिस्टम कहा जाता है। इन्हें डायनैमिकल एनालाॅजी भी कहा जाता है।
[[File:Mobility analogy resonator vertical.svg|thumb|280px|एक साधारण आरएलसी सर्किट का एक [[यांत्रिक नेटवर्क]] आरेख #समानांतर आरएलसी सर्किट (ऊपर) और एक समकक्ष संरचना और व्यवहार (नीचे) के साथ एक [[विद्युत नेटवर्क]], फिर, इसके लिए एक एनालॉग।]]एनालॉग मॉडल दुनिया की एक घटना का प्रतिनिधित्व करने की एक विधि है, जिसे अक्सर किसी अन्य, अधिक समझने योग्य या विश्लेषण योग्य प्रणाली द्वारा लक्ष्य प्रणाली कहा जाता है। इन्हें गतिशील उपमाएँ भी कहा जाता है।


दो खुली प्रणालियों (सिस्टम सिद्धांत) में ''एनालॉग'' प्रतिनिधित्व होता है (चित्रण देखें) यदि वे [[ब्लैक बॉक्स]] समरूपता#अनुप्रयोग हैं।
दो संवृत प्रणालियों (सिस्टम सिद्धांत) में ''एनालॉग'' प्रतिनिधित्व होता है, जिसे आप चित्र में देख सकते हैं। इस प्रकार यदि [[ब्लैक बॉक्स]] समरूपता का अनुप्रयोग करता हैं।


==स्पष्टीकरण==
==स्पष्टीकरण==
एक सरल प्रकार की सादृश्यता वह है जो साझा गुणों पर आधारित होती है;<ref>Stanford Encyclopedia of Philosophy.{{citation needed|date=June 2023}}</ref><ref>[[Dedre Gentner|Gentner, Dedre]] (1989), [https://groups.psych.northwestern.edu/gentner/papers/Gentner89.pdf "Mechanisms of Analogical Learning", pp.199-241, in Stella Vosniadou and Andrew Ortony (eds.), ''Similarity and Analogical Reasoning'', Cambridge: Cambridge University Press.]</ref> और सादृश्य किसी विशेष विषय ([[समानता]] या स्रोत प्रणाली) के बारे में जानकारी को किसी अन्य विशेष विषय (लक्ष्य प्रणाली) द्वारा प्रस्तुत करने की प्रक्रिया है।<ref>"There is general agreement that analogical reasoning involves the transfer of relational information from a domain that already exists in memory (…''source''…) to the domain to be explained (…''target''…). Similarity is implicated in this process because a successful, useful analogy depends upon there being some sort of [perceived] similarity between the source domain and the target domain and because the perception of similarity is likely to play a major role in some of the key processes associated with analogical reasoning" (Vosniadou and Ortony, 1989, pp.6-7).</ref> प्राथमिक डोमेन के कुछ विशेष पहलू को स्पष्ट करने के लिए (या चयनित विशेषताओं को स्पष्ट करने के लिए)।<ref>Yeates (2004), p.71.</ref>
किसी सरल प्रकार की एनालाॅजी वह प्रक्रिया है जो अपने साझा किए गए गुणों पर आधारित होती है,<ref>Stanford Encyclopedia of Philosophy.{{citation needed|date=June 2023}}</ref><ref>[[Dedre Gentner|Gentner, Dedre]] (1989), [https://groups.psych.northwestern.edu/gentner/papers/Gentner89.pdf "Mechanisms of Analogical Learning", pp.199-241, in Stella Vosniadou and Andrew Ortony (eds.), ''Similarity and Analogical Reasoning'', Cambridge: Cambridge University Press.]</ref> और एनालाॅजी किसी विशेष विषय ([[समानता]] या सोर्स प्रणाली) के बारे में जानकारी को किसी अन्य विशेष विषय (टार्गेटेड सिस्टम) द्वारा प्रस्तुत करने की प्रक्रिया है।<ref>"There is general agreement that analogical reasoning involves the transfer of relational information from a domain that already exists in memory (…''source''…) to the domain to be explained (…''target''…). Similarity is implicated in this process because a successful, useful analogy depends upon there being some sort of [perceived] similarity between the source domain and the target domain and because the perception of similarity is likely to play a major role in some of the key processes associated with analogical reasoning" (Vosniadou and Ortony, 1989, pp.6-7).</ref> इसके प्राथमिक डोमेन के कुछ विशेष पहलू को स्पष्ट करने के लिए या चयनित विशेषताओं को स्पष्ट करने के लिए उपयोग किया जाता हैं।<ref>Yeates (2004), p.71.</ref>
एनालॉग मॉडल, जिन्हें एनालॉग या एनालॉग मॉडल भी कहा जाता है, उन एनालॉग सिस्टम की तलाश करते हैं जो दुनिया का प्रतिनिधित्व करने के साधन के रूप में लक्ष्य प्रणाली के साथ गुण साझा करते हैं। ऐसे स्रोत सिस्टम का निर्माण करना अक्सर व्यावहारिक होता है जो लक्ष्य सिस्टम से छोटे और/या तेज़ होते हैं ताकि कोई लक्ष्य सिस्टम व्यवहार के बारे में प्राथमिक और पिछला [[ज्ञान]] प्राप्त कर सके। इसलिए एनालॉग डिवाइस वे होते हैं जिनमें पदार्थ या संरचना में भिन्नता हो सकती है लेकिन गतिशील व्यवहार के गुण साझा होते हैं (ट्रुइट और रोजर्स, पृष्ठ 1-3)।


{{cquote|dynamical analogies establish the analogies between electrical, mechanical, acoustical, magnetic and electronic systems: Olson (1958), p.&nbsp;2.}}
एनालॉग मॉडल, जिन्हें एनालॉग या एनालॉग मॉडल भी कहा जाता है, उन एनालॉग सिस्टम की खोज करते हैं, जो वर्तमान समय का प्रतिनिधित्व करने के साधन के रूप में टार्गेटेड सिस्टम के साथ गुण साझा करते हैं। ऐसे सोर्स मुख्य रूप से सिस्टम का निर्माण करने में तथा अधिकांशतः व्यावहारिक होता है, जो टार्गेटेड सिस्टम से छोटे तथा तेज़ होते हैं, जिससे कि कोई टार्गेटेड सिस्टम व्यवहार के बारे में प्राथमिक और पिछला [[ज्ञान]] प्राप्त कर सके। इसलिए एनालॉग डिवाइस वे होते हैं जिनमें पदार्थ या संरचना में भिन्नता हो सकती है, अपितु गतिशील व्यवहार के गुण साझा होते हैं, जिसे ट्रुइट और रोजर्स के लिए पृष्ठ 1-3 पर देख सकते हैं।


उदाहरण के लिए, एनालॉग इलेक्ट्रॉनिक सर्किट में, कोई अंकगणितीय मात्रा का प्रतिनिधित्व करने के लिए [[वोल्टेज]] का उपयोग कर सकता है; [[ऑपरेशनल एंप्लीफायर]] तब अंकगणितीय संचालन (जोड़, घटाव, गुणा और भाग) का प्रतिनिधित्व कर सकते हैं। [[अंशांकन]] की प्रक्रिया के माध्यम से इन छोटे/बड़े, धीमे/तेज़ सिस्टम को ऊपर या नीचे बढ़ाया जाता है ताकि वे लक्ष्य प्रणाली के कामकाज से मेल खा सकें, और इसलिए उन्हें लक्ष्य प्रणाली के एनालॉग कहा जाता है। एक बार अंशांकन हो जाने के बाद, मॉडेलर प्राथमिक प्रणाली और उसके एनालॉग के बीच व्यवहार में एक-से-एक पत्राचार की बात करते हैं। इस प्रकार एक के साथ प्रयोग करके दो प्रणालियों का व्यवहार निर्धारित किया जा सकता है।
{{cquote|गतिशील उपमाएँ विद्युत, यांत्रिक, ध्वनिक, चुंबकीय और इलेक्ट्रॉनिक प्रणालियों के बीच सादृश्य स्थापित करती हैं: पी. ओल्सन (1958), }}
<!--This doesn't seem right. Is the "model" the "target system" or the "analogue/source system"? It seems that Stanford encyclopedia and Wikipedia do not mesh!-->


उदाहरण के लिए, एनालॉग इलेक्ट्रॉनिक परिपथ में, कोई अंकगणितीय मात्रा का प्रतिनिधित्व करने के लिए [[वोल्टेज]] का उपयोग कर सकता है, [[ऑपरेशनल एंप्लीफायर]] तब अंकगणितीय संचालन जैसे जोड़, घटाव, गुणा और भाग का प्रतिनिधित्व करते हैं। [[अंशांकन|कैलिब्रेशन]] की प्रक्रिया के माध्यम से इन छोटे या बड़े, धीमे या तेज़ सिस्टम को ऊपर या नीचे बढ़ाया जाता है, जिससे कि वे टार्गेटेड सिस्टम के कार्य करने की प्रक्रिया से मेल खा सकें, और इसलिए उन्हें टार्गेटेड सिस्टम के एनालॉग कहा जाता है। इस बार कैलिब्रेशन हो जाने के पश्चात मॉडेलर प्राथमिक प्रणाली और उसके एनालॉग के बीच व्यवहार में एक-से-एक पत्राचार की बात करते हैं। इस प्रकार के साथ प्रयोग करके दो प्रणालियों का व्यवहार निर्धारित किया जा सकता है।
==एनालाॅजिकल मॉडल बनाना==
एनालॉग मॉडल का तंत्र<ref>Yeates (2004), p.73.</ref> ऐसे एनालाॅजिकल मॉडल बनाने के लिए कई अलग-अलग उपकरणों और प्रणालियों का उपयोग किया जा सकता है।<ref>"An analogue model describes specific relationships between selected components of the "original" by creating analogies with the relationships that are displayed by components in some other "secondary domain" of a totally different medium." (Yeates, 2004, p.72).</ref>
:: कई महत्वपूर्ण खोजें तब की गईं जब वैज्ञानिकों ने अपना कार्य इस प्रकार से प्रारंभ किया जैसे मानो परमाणुओं, वायरस, विटामिन, हार्मोन और जीन के उनके सैद्धांतिक रूप से निर्धारित मॉडल का वास्तविक, वास्तविक दुनिया में पर्याप्त अस्तित्व हो। वे ऐसे आगे बढ़े मानो प्रत्येक काल्पनिक अवधारणा वास्तव में ठीक उसी रूप में अस्तित्व में हो जैसा कि उनकी सैद्धांतिक अटकलों ने रेखांकित किया था, और, एनालाॅजी के किसी भी दिखावे को त्यागते हुए, वे इस दृष्टिकोण के साथ आगे बढ़े कि सारवान, वास्तविक दुनिया बिल्कुल वैसी ही थी जैसी उन्होंने सैद्धांतिक रूप से इसका वर्णन किया था। इसके आधार पर गैसों के व्यवहार को समझने में सहायता के लिए उन्नत एनालॉग मॉडल पर विचार करें जो गैस कणों की कुछ सैद्धांतिक गतिविधियों और बिलियर्ड-बॉल की कुछ अवलोकनीय गतिविधियों के बीच संभावित संबंधों का सुझाव देता है। इस प्रकार अचिंस्टीन (1964, पृ.332) हमें यह याद दिलाते हैं कि, गैसों के बारे में इस उपयोगी विधियों से सोचने के अतिरिक्त, भौतिक विज्ञानी स्पष्ट रूप से मानते हैं कि अणुओं में, बिलियर्ड बाल्स में नहीं, हैं इस प्रकार इसमें गैसें सम्मिलित होती हैं {{em-dash}} येट्स (2004, पृ.71, 73)


==एक अनुरूप मॉडल बनाना==
गणितीय गणनाओं को दर्शाने के लिए यांत्रिक उपकरण का उपयोग किया जा सकता है। उदाहरण के लिए, फिलिप्स हाइड्रोलिक कंप्यूटर [[MONIAC|मोनियाक]] ​​ने आर्थिक प्रणालियों (टार्गेटेड सिस्टम) को मॉडल करने के लिए पानी के प्रवाह का उपयोग किया जाता हैं, इस प्रकार इलेक्ट्रॉनिक परिपथ का उपयोग शारीरिक और पारिस्थितिक दोनों प्रणालियों का प्रतिनिधित्व करने के लिए किया जा सकता है। जब कोई मॉडल एनालॉग या डिजिटल कंप्यूटर पर चलाया जाता है तो इसे [[सिमुलेशन]] की प्रक्रिया के रूप में जाना जाता है।
फ़ाइल:एनालॉग मॉडल का तंत्र-(येट्स, 2004).tif|thumb|280px|एनालॉग मॉडल का तंत्र।<ref>Yeates (2004), p.73.</ref>एक अनुरूप मॉडल बनाने के लिए कई अलग-अलग उपकरणों और प्रणालियों का उपयोग किया जा सकता है।<ref>"An analogue model describes specific relationships between selected components of the "original" by creating analogies with the relationships that are displayed by components in some other "secondary domain" of a totally different medium." (Yeates, 2004, p.72).</ref>
==यांत्रिक ऐनालाॅजी==
:: कई महत्वपूर्ण खोजें तब की गईं जब वैज्ञानिकों ने अपना काम इस तरह शुरू किया मानो परमाणुओं, वायरस, विटामिन, हार्मोन और जीन के उनके सैद्धांतिक रूप से निर्धारित मॉडल का वास्तविक, वास्तविक दुनिया में पर्याप्त अस्तित्व हो। वे ऐसे आगे बढ़े मानो प्रत्येक काल्पनिक अवधारणा वास्तव में ठीक उसी रूप में अस्तित्व में हो जैसा कि उनकी सैद्धांतिक अटकलों ने रेखांकित किया था; और, सादृश्य के किसी भी दिखावे को त्यागते हुए, वे इस दृष्टिकोण के साथ आगे बढ़े कि सारवान, वास्तविक दुनिया बिल्कुल वैसी ही थी जैसी उन्होंने सैद्धांतिक रूप से इसका वर्णन किया था। ... गैसों के व्यवहार को समझने में सहायता के लिए उन्नत एनालॉग मॉडल पर विचार करें जो गैस कणों की कुछ सैद्धांतिक गतिविधियों और बिलियर्ड-बॉल की कुछ अवलोकनीय गतिविधियों के बीच संभावित संबंधों का सुझाव देता है। अचिंस्टीन (1964, पृ.332) हमें याद दिलाते हैं कि, गैसों के बारे में इस उपयोगी तरीके से सोचने के बावजूद, भौतिक विज्ञानी स्पष्ट रूप से मानते हैं कि अणुओं में, बिलियर्ड गेंदों में नहीं, गैसें शामिल हैं {{em-dash}} येट्स (2004, पृ.71, 73)
{{Main|यांत्रिक-विद्युत एनालाॅजी}}


गणितीय गणनाओं को दर्शाने के लिए एक यांत्रिक उपकरण का उपयोग किया जा सकता है। उदाहरण के लिए, फिलिप्स हाइड्रोलिक कंप्यूटर [[MONIAC]] ​​ने आर्थिक प्रणालियों (लक्ष्य प्रणाली) को मॉडल करने के लिए पानी के प्रवाह का उपयोग किया; इलेक्ट्रॉनिक सर्किट का उपयोग शारीरिक और पारिस्थितिक दोनों प्रणालियों का प्रतिनिधित्व करने के लिए किया जा सकता है। जब कोई मॉडल एनालॉग या डिजिटल कंप्यूटर पर चलाया जाता है तो इसे [[सिमुलेशन]] की प्रक्रिया के रूप में जाना जाता है।
विद्युत परिघटनाओं को यांत्रिक परिघटनाओं में मैप करने के लिए किसी भी संख्या में सिस्टम का उपयोग किया जा सकता है, अपितु सामान्यतः दो सिद्धांत प्रणालियों का उपयोग किया जाता है: इस प्रकार [[प्रतिबाधा सादृश्य|प्रतिबाधा एनालाॅजी]] और [[गतिशीलता सादृश्य|गतिशीलता एनालाॅजी]] इसके दो उदाहरण हैं। इसके आधार पर प्रतिबाधा एनालाॅजी मानचित्र वोल्टेज को बल देता है जबकि गतिशीलता एनालाॅजी मानचित्र वर्तमान को बल देता है।
<!-- EXAMPLES! WE NEED EXAMPLES! -->


प्रतिबाधा एनालाॅजी [[विद्युत प्रतिबाधा]] और [[यांत्रिक प्रतिबाधा]] के बीच एनालाॅजी को संरक्षित करता है, अपितु नेटवर्क टोपोलॉजी को संरक्षित नहीं करता है। गतिशीलता एनालाॅजी नेटवर्क टोपोलॉजी को संरक्षित करता है अपितु बाधाओं के बीच एनालाॅजी को संरक्षित नहीं करता है। इसके आधार पर दोनों वैरियेबल के संयुग्म वैरियेबल (ऊष्मागतिकी) को एनालाॅजिकल बनाकर सही ऊर्जा और शक्ति संबंधों को संरक्षित करते हैं।


==यांत्रिक उपमाएँ==
==[[हाइड्रोलिक सादृश्य|हाइड्रोलिक एनालाॅजी]]==
{{Main|Mechanical–electrical analogies}}
* हाइड्रोलिक एनालाॅजी में, [[जल समाकलक|जल  समाकलक (वाटर इंटीग्रेटर)]] [[ अभिन्न |अभिन्न]] का गणितीय संचालन कर सकता है।
विद्युत परिघटनाओं को यांत्रिक परिघटनाओं में मैप करने के लिए किसी भी संख्या में सिस्टम का उपयोग किया जा सकता है, लेकिन आमतौर पर दो सिद्धांत प्रणालियों का उपयोग किया जाता है: [[प्रतिबाधा सादृश्य]] और [[गतिशीलता सादृश्य]]। प्रतिबाधा सादृश्य मानचित्र वोल्टेज को बल देता है जबकि गतिशीलता सादृश्य मानचित्र वर्तमान को बल देता है।


प्रतिबाधा सादृश्य [[विद्युत प्रतिबाधा]] और [[यांत्रिक प्रतिबाधा]] के बीच सादृश्य को संरक्षित करता है लेकिन नेटवर्क टोपोलॉजी को संरक्षित नहीं करता है। गतिशीलता सादृश्य नेटवर्क टोपोलॉजी को संरक्षित करता है लेकिन बाधाओं के बीच सादृश्य को संरक्षित नहीं करता है। दोनों चर के संयुग्म चर (थर्मोडायनामिक्स) को अनुरूप बनाकर सही ऊर्जा और शक्ति संबंधों को संरक्षित करते हैं।
==शारीरिक ऐनालाॅजी==
* [[फ्रांसिस क्रिक]] ने [[जागरूकता]] के अध्ययन के लिए दृश्य प्रणाली के अध्ययन को प्रॉक्सी के रूप में उपयोग किया जाता हैं।


==[[हाइड्रोलिक सादृश्य]]==
==औपचारिक ऐनालाॅजी==
* हाइड्रोलिक सादृश्य में, एक [[जल समाकलक]] [[ अभिन्न ]] का गणितीय संचालन कर सकता है।
* समान [[समीकरण]] का [[समाधान (समीकरण)]] समान होता है। -- [[रिचर्ड फेनमैन|रिवैरियेबल्ड फेनमैन]]
** उदाहरण के लिए, गुरुत्वाकर्षण और [[विद्युत]] चुंबकत्व के व्युत्क्रम-वर्ग नियमों को ज्यामितीय आधार पर एनालाॅजिकल समीकरणों द्वारा वर्णित किया जा सकता है, लगभग [[द्रव्यमान]] और आवेश (भौतिकी) के बारे में भौतिक विवरण की परवाह किए बिना किया जाता हैं।
** [[जनसंख्या पारिस्थितिकी]] में, विभेदक समीकरण उत्पन्न होते हैं जो [[यांत्रिकी]] में पाए जाने वाले समान होते हैं, चूंकि अलग-अलग व्याख्याओं के साथ इनका उपयोग करते हैं।<ref>Ginzburg and Colyvan 2004; Colyvan and Ginzburg 2010</ref>
* पुनरावृत्ति के लिए किसी स्थिति में समानता की आवश्यकता होती है, उदाहरण के लिए, [[आर्किमिडीज]] ने [[असंख्य]] संख्याओं की अवधारणा का उपयोग करके [[द सैंड रेकनर]] की गिनती की जाती हैं।


==शारीरिक उपमाएँ==
==गतिशील  ऐनालाॅजी (डायनैमिक एनालाॅजी)==
* [[फ्रांसिस क्रिक]] ने [[जागरूकता]] के अध्ययन के लिए दृश्य प्रणाली के अध्ययन को एक प्रॉक्सी के रूप में इस्तेमाल किया।
डायनैमिक एनालाॅजी सिस्टम मुख्य रूप से गतिशील समीकरणों की तुलना के माध्यम से विभिन्न ऊर्जा डोमेन में प्रणालियों के बीच एनालाॅजी स्थापित करती हैं। ऐसी कई विधियाँ हैं जिनसे ऐसी ऐनालाॅजी बनाई जा सकती हैं, अपितु सबसे उपयोगी विधि में से मुख्य है, इस प्रकार संयुग्म वैरियेबल (ऊष्मागतिकी) के जोड़े के बीच एनालाॅजी बनाना हैं। अर्थात् वैरियेबल्स का युग्म जिसका गुणनफल [[शक्ति (भौतिकी)]] है। ऐसा करने से डोमेन के बीच सही ऊर्जा प्रवाह सुरक्षित रहता है, जो किसी सिस्टम को एकीकृत संपूर्ण के रूप में मॉडलिंग करते समय उपयोगी सुविधा है। एकीकृत मॉडलिंग की आवश्यकता वाले सिस्टम के उदाहरण [[मेकाट्रोनिक्स]] और [[ऑडियो इलेक्ट्रॉनिक्स]] हैं।<ref>Busch-Vishniac, p. 18</ref>


==औपचारिक उपमाएँ==
ऐसी सबसे पहली एनालाॅजी [[जेम्स क्लर्क मैक्सवेल]] के कारण है, जिन्होंने 1873 में यांत्रिक बल को विद्युत वोल्टेज के साथ जोड़ा गया था। यह एनालाॅजी इतना व्यापक हो गया कि वोल्टेज के सोर्सों को आज भी [[वैद्युतवाहक बल]] के रूप में जाना जाता है। वोल्टेज का शक्ति संयुग्म [[विद्युत प्रवाह]] है, जो मैक्सवेल एनालाॅजी में, यांत्रिक [[वेग]] को मैप करता है। इस प्रकार विद्युत प्रतिबाधा वोल्टेज और धारा का अनुपात है, इसलिए एनालाॅजी द्वारा, यांत्रिक प्रतिबाधा बल और वेग का अनुपात है। प्रतिबाधा की अवधारणा को अन्य डोमेन तक बढ़ाया जा सकता है, उदाहरण के लिए ध्वनिकी और द्रव प्रवाह में यह दबाव और प्रवाह की दर का अनुपात है। सामान्यतः प्रतिबाधा प्रयास वैरियेबल और परिणामी प्रवाह वैरियेबल का अनुपात है। इस कारण मैक्सवेल एनालाॅजी को अधिकांशतः प्रतिबाधा एनालाॅजी के रूप में जाना जाता है, चूंकि मैक्सवेल की मृत्यु के कुछ समय बाद, [[ओलिवर हेविसाइड]] द्वारा 1886 तक प्रतिबाधा की अवधारणा की कल्पना नहीं की गई थी।<ref>{{multiref|Bishop, p. 8.4|Busch-Vishniac, p. 20|Smith, p. 1648|Martinsen & Grimnes, p. 287}}</ref>
<!--Needs to be filled-->
* समान [[समीकरण]]ों का [[समाधान (समीकरण)]] समान होता है। -- [[रिचर्ड फेनमैन]]
** उदाहरण के लिए, गुरुत्वाकर्षण और [[विद्युत]] चुंबकत्व के व्युत्क्रम-वर्ग नियमों को ज्यामितीय आधार पर अनुरूप समीकरणों द्वारा वर्णित किया जा सकता है, लगभग [[द्रव्यमान]] और आवेश (भौतिकी) के बारे में भौतिक विवरण की परवाह किए बिना।
** [[जनसंख्या पारिस्थितिकी]] में, विभेदक समीकरण उत्पन्न होते हैं जो [[यांत्रिकी]] में पाए जाने वाले समान होते हैं, हालांकि अलग-अलग व्याख्याओं के साथ।<ref>Ginzburg and Colyvan 2004; Colyvan and Ginzburg 2010</ref>
* पुनरावृत्ति के लिए किसी स्थिति में समानता की आवश्यकता होती है; उदाहरण के लिए, [[आर्किमिडीज]]़ ने [[असंख्य]] असंख्य की अवधारणा का उपयोग करके [[द सैंड रेकनर]] की गिनती की।


==गतिशील उपमाएँ==
शक्ति संयुग्म वैरियेबल को निर्दिष्ट करने से अभी भी अद्वितीय एनालाॅजी नहीं बनता है, ऐसे कई तरीके हैं जिनसे संयुग्म और ऐनालाॅजी निर्दिष्ट की जा सकती हैं। फ्लोयड ए. फायरस्टोन द्वारा 1933 में नई एनालाॅजी प्रस्तावित की गई थी जिसे अब गतिशीलता एनालाॅजी के रूप में जाना जाता है। इस एनालाॅजी में विद्युत प्रतिबाधा को यांत्रिक गतिशीलता (यांत्रिक प्रतिबाधा के विपरीत) के एनालाॅजिकल बनाया जाता है। फायरस्टोन का विचार एनालाॅजिकल वैरियेबल बनाना था जो तत्व में मापा जाता है, और एनालाॅजिकल वैरियेबल बनाना जो तत्व के माध्यम से प्रवाहित होता है। उदाहरण के लिए, परिवर्ती वोल्टेज वेग की एनालाॅजी है, और वैरियेबल धारा के माध्यम से बल की एनालाॅजी है। फायरस्टोन की एनालाॅजी में डोमेन के बीच कनवर्ट करते समय तत्व कनेक्शन की टोपोलॉजी को संरक्षित करने का लाभ होता है। 1955 में होरेस एम. ट्रेंट द्वारा थ्रू एंड अक्रॉस एनालाॅजी का संशोधित रूप प्रस्तावित किया गया था और यह थ्रू एंड अक्रॉस की आधुनिक समझ है।<ref>{{multiref|Bishop, p. 8.2|Smith, p. 1648|Busch-Vishniac, p. 19}}</ref>
गतिशील उपमाएँ सिस्टम गतिशील समीकरणों की तुलना के माध्यम से विभिन्न ऊर्जा डोमेन में प्रणालियों के बीच सादृश्य स्थापित करती हैं। ऐसे कई तरीके हैं जिनसे ऐसी उपमाएँ बनाई जा सकती हैं, लेकिन सबसे उपयोगी तरीकों में से एक है संयुग्म चर (थर्मोडायनामिक्स) के जोड़े के बीच सादृश्य बनाना। अर्थात् चरों का एक युग्म जिसका गुणनफल [[शक्ति (भौतिकी)]] है। ऐसा करने से डोमेन के बीच सही ऊर्जा प्रवाह सुरक्षित रहता है, जो किसी सिस्टम को एक एकीकृत संपूर्ण के रूप में मॉडलिंग करते समय एक उपयोगी सुविधा है। एकीकृत मॉडलिंग की आवश्यकता वाले सिस्टम के उदाहरण [[मेकाट्रोनिक्स]] और [[ऑडियो इलेक्ट्रॉनिक्स]] हैं।<ref>Busch-Vishniac, p. 18</ref>
ऐसी सबसे पहली सादृश्यता [[जेम्स क्लर्क मैक्सवेल]] के कारण है, जिन्होंने 1873 में यांत्रिक बल को विद्युत वोल्टेज के साथ जोड़ा था। यह सादृश्य इतना व्यापक हो गया कि वोल्टेज के स्रोतों को आज भी [[वैद्युतवाहक बल]] के रूप में जाना जाता है। वोल्टेज का शक्ति संयुग्म [[विद्युत प्रवाह]] है, जो मैक्सवेल सादृश्य में, यांत्रिक [[वेग]] को मैप करता है। विद्युत प्रतिबाधा वोल्टेज और करंट का अनुपात है, इसलिए सादृश्य द्वारा, यांत्रिक प्रतिबाधा बल और वेग का अनुपात है। प्रतिबाधा की अवधारणा को अन्य डोमेन तक बढ़ाया जा सकता है, उदाहरण के लिए ध्वनिकी और द्रव प्रवाह में यह दबाव और प्रवाह की दर का अनुपात है। सामान्य तौर पर, प्रतिबाधा एक प्रयास चर और परिणामी प्रवाह चर का अनुपात है। इस कारण से, मैक्सवेल सादृश्य को अक्सर प्रतिबाधा सादृश्य के रूप में जाना जाता है, हालांकि मैक्सवेल की मृत्यु के कुछ समय बाद, [[ओलिवर हेविसाइड]] द्वारा 1886 तक प्रतिबाधा की अवधारणा की कल्पना नहीं की गई थी।<ref>{{multiref|Bishop, p. 8.4|Busch-Vishniac, p. 20|Smith, p. 1648|Martinsen & Grimnes, p. 287}}</ref>
शक्ति संयुग्म चर को निर्दिष्ट करने से अभी भी एक अद्वितीय सादृश्य नहीं बनता है, ऐसे कई तरीके हैं जिनसे संयुग्म और उपमाएँ निर्दिष्ट की जा सकती हैं। फ्लोयड ए. फायरस्टोन द्वारा 1933 में एक नई सादृश्यता प्रस्तावित की गई थी जिसे अब गतिशीलता सादृश्य के रूप में जाना जाता है। इस सादृश्य में विद्युत प्रतिबाधा को यांत्रिक गतिशीलता (यांत्रिक प्रतिबाधा के विपरीत) के अनुरूप बनाया जाता है। फायरस्टोन का विचार अनुरूप चर बनाना था जो एक तत्व में मापा जाता है, और अनुरूप चर बनाना जो एक तत्व के माध्यम से प्रवाहित होता है। उदाहरण के लिए, परिवर्ती वोल्टेज वेग की सादृश्यता है, और चर धारा के माध्यम से बल की सादृश्यता है। फायरस्टोन की सादृश्यता में डोमेन के बीच कनवर्ट करते समय तत्व कनेक्शन की टोपोलॉजी को संरक्षित करने का लाभ होता है। 1955 में होरेस एम. ट्रेंट द्वारा थ्रू एंड अक्रॉस सादृश्य का एक संशोधित रूप प्रस्तावित किया गया था और यह थ्रू एंड अक्रॉस की आधुनिक समझ है।<ref>{{multiref|Bishop, p. 8.2|Smith, p. 1648|Busch-Vishniac, p. 19}}</ref>


{|class="wikitable"
{| class="wikitable"
|+Comparison of various power conjugate analogies for electrical, mechanical, rotational, and fluid flow domains
|+विद्युत, यांत्रिक, घूर्णी और द्रव प्रवाह डोमेन के लिए विभिन्न शक्ति संयुग्म उपमाओं की तुलना
|-
|-
!<ref>Busch-Vishniac, pp. 18-20</ref>!!Impedance analogy (Maxwell)!!Mobility analogy (Firestone)!!Through and across analogy (Trent)
!<ref>Busch-Vishniac, pp. 18-20</ref>!!प्रतिबाधा सादृश्य (मैक्सवेल)!!गतिशीलता सादृश्य (फायरस्टोन)!!सादृश्य के पार और पार (ट्रेंट)
|-
|-
!Effort or across power conjugates
!प्रयत्न या पार शक्ति संयुग्मित होती है
|''V'', ''F'', ''T'', ''p''||''V'', ''u'', ω, ''Q''||''V'', ''u'', ω, ''p''
|''V'', ''F'', ''T'', ''p''||''V'', ''u'', ω, ''Q''||''V'', ''u'', ω, ''p''
|-
|-
!Flow or through power conjugates
!प्रवाह या शक्ति संयुग्मों के माध्यम से
|''I'', ''u'', ω, ''Q''||''I'', ''F'', ''T'', ''p''||''I'', ''F'', ''T'', ''Q''
|''I'', ''u'', ω, ''Q''||''I'', ''F'', ''T'', ''p''||''I'', ''F'', ''T'', ''Q''
|}
|}
:कहाँ
:जहाँ
:V वोल्टेज है
:V वोल्टेज है।
:एफ बल है
:F बल है।
:T [[ टॉर्कः ]] है
:T [[ टॉर्कः |टॉर्कः]] है।
:पी [[दबाव]] है
:P [[दबाव]] है।
:I विद्युत धारा है
:I विद्युत धारा है।
:u वेग है
:u वेग है।
:ω [[कोणीय वेग]] है
:ω [[कोणीय वेग]] है।
:Q वॉल्यूमेट्रिक प्रवाह दर है
:Q वॉल्यूमेट्रिक प्रवाह दर है।


===समकक्षों की तालिका===
===समकक्षों की सूची===
{|class="wikitable"
{| class="wikitable"
|+Table of equivalents under the through and across system<ref>Olson, pp. 27-29</ref>
|+थ्रू और अक्रॉस सिस्टम के तहत समकक्षों की सूची<ref>Olson, pp. 27-29</ref>
|-
|-
!!!Through variable!!Across variable!!Energy storage 1!!Energy storage 2!!Energy dissipation
! !!वैरियेबल के द्वारा!!वैरियेबल के द्वारा!!ऊर्जा भण्डारण 1!!ऊर्जा भण्डारण 2!!ऊर्जा क्षय
|-
|-
!Electrical
!विद्युत
|Current (I)||Voltage (V)||Capacitor (C)||Inductor (L)||Resistor (R)
|धारा (I)||वोल्टेज (V)||संधारित्र (C)||रोधक (L)||अवरोध (R)
|-
|-
!Mechanical linear
!रैखिक यांत्रिकी
|Force (F)||Velocity (u)||Spring (K)||Mass (M)||Damper (B)
|बल (F)||वेग (u)||स्प्रिंग (K)||द्रव्यमान (M)||डैम्पर (B)
|-
|-
!Mechanical rotational
!घूर्णन यांत्रिकी
|Torque (T)||Angular velocity (ω)||Torsion spring (κ)||Moment of inertia (I)||Rotary damper
|घूर्णन बल (T)||कोणीय वेग (ω)||टार्सन स्प्रिंग (κ)||जड़त्व (I)||रोटरी डैम्पर
|-
|-
!Hydraulic
!हाइड्राॅलिक
|Volume flow||Pressure (p)||Tank||Mass||Valve
|वोल्टेज प्रवाह||दबाव (p)||टैंक||द्रव्यमान||वाल्व
|-
|-
|}
|}
 
===हैमिल्टनियन वैरियेबल===
 
हैमिल्टनियन वैरियेबल, जिन्हें ऊर्जा वैरियेबल भी कहा जाता है, वे ऐसे वैरियेबल हैं, जो समय-व्युत्पन्न होने पर शक्ति संयुग्म वैरियेबल के समान होते हैं। हैमिल्टनियन वैरियेबल को इसलिए कहा जाता है क्योंकि ये वे वैरियेबल हैं जो सामान्यतः [[हैमिल्टनियन यांत्रिकी]] में दिखाई देते हैं। इस प्रकार विद्युत क्षेत्र में हैमिल्टनियन वैरियेबल विद्युत आवेश हैं ({{mvar|q}}) और [[ प्रवाह लिंकेज |प्रवाह लिंकेज]] ({{mvar|λ}}) क्योंकि
===हैमिल्टनियन चर===
हैमिल्टनियन चर, जिन्हें ऊर्जा चर भी कहा जाता है, वे चर हैं जो समय-व्युत्पन्न होने पर शक्ति संयुग्म चर के बराबर होते हैं। हैमिल्टनियन चर को इसलिए कहा जाता है क्योंकि ये वे चर हैं जो आमतौर पर [[हैमिल्टनियन यांत्रिकी]] में दिखाई देते हैं। विद्युत क्षेत्र में हैमिल्टनियन चर विद्युत आवेश हैं ({{mvar|q}}) और [[ प्रवाह लिंकेज ]] ({{mvar|λ}}) क्योंकि
:<math>\frac {d \lambda}{dt} = v </math> (फैराडे का प्रेरण का नियम), और <math>\frac {dq}{dt} = i.</math>
:<math>\frac {d \lambda}{dt} = v </math> (फैराडे का प्रेरण का नियम), और <math>\frac {dq}{dt} = i.</math>
ट्रांसलेशनल मैकेनिकल डोमेन में, हैमिल्टनियन चर दूरी [[विस्थापन (वेक्टर)]] हैं ({{mvar|x}}) और [[गति]] ({{mvar|p}}) क्योंकि
ट्रांसलेशनल यांत्रिक डोमेन में, हैमिल्टनियन वैरियेबल की दूरी [[विस्थापन (वेक्टर)|विस्थापन (सदिश)]] हैं ({{mvar|x}}) और [[गति]] ({{mvar|p}}) क्योंकि
:<math>\frac {dp}{dt} = F </math> (न्यूटन का दूसरा नियम|न्यूटन की गति का दूसरा नियम), और <math>\frac {dx}{dt} = u.</math>
:<math>\frac {dp}{dt} = F </math> (न्यूटन का दूसरा नियम|न्यूटन की गति का दूसरा नियम), और <math>\frac {dx}{dt} = u.</math>
अन्य उपमाओं और चरों के सेट के लिए एक संगत संबंध है।<ref>Busch-Vishniac, p. 21</ref> हैमिल्टनियन चर को ऊर्जा चर भी कहा जाता है। हैमिल्टनियन चर के संबंध में एक शक्ति संयुग्म चर का समाकलन ऊर्जा का एक माप है। उदाहरण के लिए,
अन्य उपमाओं और वैरियेबल्स के सेट के लिए संगत संबंध है।<ref>Busch-Vishniac, p. 21</ref> हैमिल्टनियन वैरियेबल को ऊर्जा वैरियेबल भी कहा जाता है। हैमिल्टनियन वैरियेबल के संबंध में शक्ति संयुग्म वैरियेबल का समाकलन ऊर्जा का माप है। उदाहरण के लिए,
:<math> \int F \, dx </math> और <math> \int u \, dp </math>
:<math> \int F \, dx </math> और <math> \int u \, dp </math>
दोनों ऊर्जा की अभिव्यक्ति हैं।<ref>Borutzky, pp. 27-28</ref>
यहाँ पर दोनों ऊर्जा की अभिव्यक्ति हैं।<ref>Borutzky, pp. 27-28</ref>
 
 
===व्यावहारिक उपयोग===
===व्यावहारिक उपयोग===
मैक्सवेल की सादृश्यता का उपयोग शुरू में केवल विद्युत घटनाओं को अधिक परिचित यांत्रिक शब्दों में समझाने में मदद के लिए किया गया था। फायरस्टोन, ट्रेंट और अन्य के काम ने इस क्षेत्र को काफी आगे बढ़ा दिया, और एक ही प्रणाली के रूप में कई ऊर्जा डोमेन की प्रणालियों का प्रतिनिधित्व करना चाहा। विशेष रूप से, डिजाइनरों ने एक इलेक्ट्रोमैकेनिकल सिस्टम के यांत्रिक भागों को विद्युत डोमेन में परिवर्तित करना शुरू कर दिया ताकि पूरे सिस्टम का विद्युत सर्किट के रूप में विश्लेषण किया जा सके। [[वन्नेवर बुश]] [[एनालॉग कंप्यूटर]] के विकास में इस तरह के मॉडलिंग के अग्रणी थे, और इस पद्धति की एक सुसंगत प्रस्तुति क्लिफोर्ड ए. निकल द्वारा 1925 के पेपर में प्रस्तुत की गई थी।<ref>Care, p. 76</ref>
मैक्सवेल की एनालाॅजी का उपयोग प्रारंभ में केवल विद्युत घटनाओं को अधिक परिचित यांत्रिक शब्दों में समझाने में सहायता के लिए किया गया था। फायरस्टोन, ट्रेंट और अन्य के काम ने इस क्षेत्र को अत्यधिक आगे बढ़ा दिया गया हैं, और इस प्रकार की प्रणाली के रूप में कई ऊर्जा डोमेन की प्रणालियों का प्रतिनिधित्व करना चाहते हैं। इस प्रकार विशेष रूप से, डिजाइनरों ने इलेक्ट्रोयांत्रिक सिस्टम के यांत्रिक भागों को विद्युत डोमेन में परिवर्तित करना प्रारंभ कर दिया जिससे कि पूरे सिस्टम का विद्युत परिपथ के रूप में विश्लेषण किया जा सके। [[वन्नेवर बुश]] [[एनालॉग कंप्यूटर]] के विकास में इस प्रकार के मॉडलिंग के अग्रणी थे, और इस पद्धति की सुसंगत प्रस्तुति क्लिफोर्ड ए. निकल द्वारा 1925 के पेपर में प्रस्तुत की गई थी।<ref>Care, p. 76</ref>
1950 के दशक के बाद से, [[ यांत्रिक फ़िल्टर ]] के निर्माताओं, विशेष रूप से [[कोलिन्स रेडियो]], ने इलेक्ट्रिकल इंजीनियरिंग में [[ फ़िल्टर डिज़ाइन ]] के अच्छी तरह से विकसित सिद्धांत को लेने और इसे मैकेनिकल सिस्टम पर लागू करने के लिए इन उपमाओं का व्यापक रूप से उपयोग किया। रेडियो अनुप्रयोगों के लिए आवश्यक फिल्टर की गुणवत्ता विद्युत घटकों के साथ प्राप्त नहीं की जा सकी। यांत्रिक भागों के साथ बेहतर गुणवत्ता वाले अनुनादक (उच्च [[क्यू कारक]]) बनाए जा सकते थे लेकिन मैकेनिकल इंजीनियरिंग में कोई समकक्ष फ़िल्टर सिद्धांत नहीं था। फिल्टर की समग्र प्रतिक्रिया की भविष्यवाणी करने के लिए सर्किट के यांत्रिक भागों, [[ट्रांसड्यूसर]] और विद्युत घटकों का एक संपूर्ण सिस्टम के रूप में विश्लेषण करना भी आवश्यक था।<ref>{{multiref|Taylor & Huang, p. 378|Carr, pp. 170–171}}</ref>
हैरी एफ. ओल्सन ने 1943 में पहली बार प्रकाशित अपनी पुस्तक डायनेमिक एनालॉग्स के साथ ऑडियो इलेक्ट्रॉनिक्स क्षेत्र में डायनेमिक एनालॉग्स के उपयोग को लोकप्रिय बनाने में मदद की।<ref>Libbey, p. 13</ref>
 
 
===गैर-शक्ति-संयुग्म उपमाएँ===
चुंबकीय सर्किट का एक सामान्य सादृश्य [[मैग्नेटोमोटिव बल]] (एमएमएफ) को वोल्टेज और [[चुंबकीय प्रवाह]] (φ) को विद्युत प्रवाह में मैप करता है। हालाँकि, mmf और φ शक्ति संयुग्म चर नहीं हैं। इनका उत्पाद शक्ति की इकाइयों में नहीं है और अनुपात, जिसे [[चुंबकीय अनिच्छा]] के रूप में जाना जाता है, ऊर्जा के अपव्यय की दर को नहीं मापता है इसलिए यह वास्तविक प्रतिबाधा नहीं है। जहां एक संगत सादृश्य की आवश्यकता होती है, एमएमएफ का उपयोग प्रयास चर के रूप में किया जा सकता है और dφ/dt (चुंबकीय प्रवाह के परिवर्तन की दर) तब प्रवाह चर होगा। इसे [[जाइरेटर-कैपेसिटर मॉडल]] के रूप में जाना जाता है।<ref>Hamill, p. 97</ref>
थर्मल डोमेन में व्यापक रूप से उपयोग की जाने वाली सादृश्यता प्रयास चर के रूप में तापमान अंतर और प्रवाह चर के रूप में थर्मल पावर को मैप करती है। फिर, ये शक्ति संयुग्म चर नहीं हैं, और अनुपात, जिसे थर्मल प्रतिरोध के रूप में जाना जाता है, वास्तव में जहां तक ​​ऊर्जा प्रवाह का संबंध है, प्रतिबाधा या विद्युत प्रतिरोध का सादृश्य नहीं है। एक संगत सादृश्य तापमान अंतर को प्रयास चर के रूप में और [[एन्ट्रापी]] प्रवाह दर को प्रवाह चर के रूप में ले सकता है।<ref>{{multiref|Busch-Vishniac, p. 19|Regtien, p. 21}}</ref>


1950 के दशक के पश्चात [[ यांत्रिक फ़िल्टर |यांत्रिक फ़िल्टर]] के निर्माताओं, विशेष रूप से [[कोलिन्स रेडियो]], ने इलेक्ट्रिकल इंजीनियरिंग में [[ फ़िल्टर डिज़ाइन |फ़िल्टर डिज़ाइन]] के अच्छी तरह से विकसित सिद्धांत को लेने और इसे यांत्रिक सिस्टम पर लागू करने के लिए इन उपमाओं का व्यापक रूप से उपयोग किया गया हैं। इस प्रकार रेडियो अनुप्रयोगों के लिए आवश्यक फिल्टर की गुणवत्ता विद्युत घटकों के साथ प्राप्त नहीं की जा सकती हैं। इसके आधार पर यांत्रिक भागों के साथ उत्तम गुणवत्ता वाले अनुनादक (उच्च [[क्यू कारक]]) बनाए जा सकते थे अपितु यांत्रिक इंजीनियरिंग में कोई समकक्ष फ़िल्टर सिद्धांत नहीं था। इस प्रकार फिल्टर की समग्र प्रतिक्रिया की भविष्यवाणी करने के लिए परिपथ के यांत्रिक भागों, [[ट्रांसड्यूसर]] और विद्युत घटकों का संपूर्ण सिस्टम के रूप में विश्लेषण करना भी आवश्यक था।<ref>{{multiref|Taylor & Huang, p. 378|Carr, pp. 170–171}}</ref>


हैरी एफ. ओल्सन ने 1943 में पहली बार प्रकाशित अपनी पुस्तक डायनेमिक एनालॉग्स के साथ ऑडियो इलेक्ट्रॉनिक्स क्षेत्र में डायनेमिक एनालॉग्स के उपयोग को लोकप्रिय बनाने में सहायता की गयी हैं।<ref>Libbey, p. 13</ref>
===गैर-शक्ति-संयुग्म ऐनालाॅजी===
चुंबकीय परिपथ का सामान्य एनालाॅजी [[मैग्नेटोमोटिव बल]] (एमएमएफ) को वोल्टेज और [[चुंबकीय प्रवाह]] (φ) को विद्युत प्रवाह में मैप करता है। चूंकि, mmf और φ शक्ति संयुग्म वैरियेबल नहीं हैं। इनका उत्पाद शक्ति की इकाइयों में नहीं है और अनुपात, जिसे [[चुंबकीय अनिच्छा]] के रूप में जाना जाता है, ऊर्जा के अपव्यय की दर को नहीं मापता है इसलिए यह वास्तविक प्रतिबाधा नहीं है। जहां संगत एनालाॅजी की आवश्यकता होती है, एमएमएफ का उपयोग प्रयास वैरियेबल के रूप में किया जा सकता है और dφ/dt (चुंबकीय प्रवाह के परिवर्तन की दर) तब प्रवाह वैरियेबल होगा। इसे [[जाइरेटर-कैपेसिटर मॉडल]] के रूप में जाना जाता है।<ref>Hamill, p. 97</ref>
थर्मल डोमेन में व्यापक रूप से उपयोग की जाने वाली एनालाॅजी प्रयास वैरियेबल के रूप में तापमान अंतर और प्रवाह वैरियेबल के रूप में थर्मल पावर को मैप करती है। फिर, ये शक्ति संयुग्म वैरियेबल नहीं हैं, और अनुपात, जिसे थर्मल प्रतिरोध के रूप में जाना जाता है, वास्तव में जहां तक ​​ऊर्जा प्रवाह का संबंध है, प्रतिबाधा या विद्युत प्रतिरोध का एनालाॅजी नहीं है। संगत एनालाॅजी तापमान अंतर को प्रयास वैरियेबल के रूप में और [[एन्ट्रापी]] प्रवाह दर को प्रवाह वैरियेबल के रूप में ले सकता है।<ref>{{multiref|Busch-Vishniac, p. 19|Regtien, p. 21}}</ref>
===सामान्यीकरण===
===सामान्यीकरण===
डायनेमिक मॉडल के कई अनुप्रयोग सिस्टम के सभी ऊर्जा डोमेन को एक विद्युत सर्किट में परिवर्तित करते हैं और फिर विद्युत डोमेन में संपूर्ण सिस्टम का विश्लेषण करने के लिए आगे बढ़ते हैं। हालाँकि, प्रतिनिधित्व के अधिक सामान्यीकृत तरीके हैं। ऐसा एक प्रतिनिधित्व [[ बांड ग्राफ ]]के उपयोग के माध्यम से है, जिसे 1960 में हेनरी एम. पेन्टर द्वारा पेश किया गया था। बॉन्ड ग्राफ़ के साथ बल-वोल्टेज सादृश्य (प्रतिबाधा सादृश्य) का उपयोग करना सामान्य है, लेकिन ऐसा करना कोई आवश्यकता नहीं है। इसी तरह ट्रेंट ने एक अलग प्रतिनिधित्व (रैखिक ग्राफ) का उपयोग किया और उसका प्रतिनिधित्व बल-वर्तमान सादृश्य (गतिशीलता सादृश्य) से जुड़ा हुआ है, लेकिन फिर से यह अनिवार्य नहीं है।<ref>Bishop, p. 8.8</ref>
डायनेमिक मॉडल के कई अनुप्रयोग सिस्टम के सभी ऊर्जा डोमेन को विद्युत परिपथ में परिवर्तित करते हैं और फिर विद्युत डोमेन में संपूर्ण सिस्टम का विश्लेषण करने के लिए आगे बढ़ते हैं। चूंकि, प्रतिनिधित्व के अधिक सामान्यीकृत तरीके हैं। ऐसा प्रतिनिधित्व [[ बांड ग्राफ |बांड ग्राफ]] के उपयोग के माध्यम से है, जिसे 1960 में हेनरी एम. पेन्टर द्वारा प्रस्तुत किया गया था। इस प्रकार बॉन्ड ग्राफ़ के साथ बल-वोल्टेज एनालाॅजी (प्रतिबाधा एनालाॅजी) का उपयोग करना सामान्य है, अपितु ऐसा करना कोई आवश्यकता नहीं है। इसी तरह ट्रेंट ने अलग प्रतिनिधित्व (रैखिक ग्राफ) का उपयोग किया और उसका प्रतिनिधित्व बल-वर्तमान एनालाॅजी (गतिशीलता एनालाॅजी) से जुड़ा हुआ है, अपितु फिर से यह अनिवार्य नहीं है।<ref>Bishop, p. 8.8</ref>
कुछ लेखक सामान्यीकरण के लिए डोमेन विशिष्ट शब्दावली के उपयोग को हतोत्साहित करते हैं। उदाहरण के लिए, क्योंकि गतिशील उपमाओं का अधिकांश सिद्धांत विद्युत सिद्धांत से उत्पन्न हुआ है, शक्ति संयुग्म चर को कभी-कभी वी-प्रकार और आई-प्रकार कहा जाता है, चाहे वे विद्युत क्षेत्र में क्रमशः वोल्टेज या करंट के एनालॉग हों। इसी तरह, हैमिल्टनियन चर को कभी-कभी सामान्यीकृत गति और सामान्यीकृत विस्थापन कहा जाता है, चाहे वे यांत्रिक डोमेन में गति या विस्थापन के अनुरूप हों।<ref>Borutzky, pp. 27-28</ref>


कुछ लेखक सामान्यीकरण के लिए डोमेन विशिष्ट शब्दावली के उपयोग को हतोत्साहित करते हैं। उदाहरण के लिए, क्योंकि गतिशील उपमाओं का अधिकांश सिद्धांत विद्युत सिद्धांत से उत्पन्न हुआ है, शक्ति संयुग्म वैरियेबल को कभी-कभी वी-प्रकार और आई-प्रकार कहा जाता है, चाहे वे विद्युत क्षेत्र में क्रमशः वोल्टेज या धारा के एनालॉग हों। इसी प्रकार हैमिल्टनियन वैरियेबल को कभी-कभी सामान्यीकृत गति और सामान्यीकृत विस्थापन कहा जाता है, चाहे वे यांत्रिक डोमेन में गति या विस्थापन के एनालाॅजिकल हों।<ref>Borutzky, pp. 27-28</ref>
==इलेक्ट्रॉनिक परिपथ ऐनालाॅजी==


==इलेक्ट्रॉनिक सर्किट उपमाएँ==
===हाइड्रोलिक एनालाॅजी===
 
विद्युत परिपथ का तरल या हाइड्रोलिक एनालाॅजी प्लंबिंग के संदर्भ में परिपथरी को सहज रूप से समझाने का प्रयास करता है, जहां पानी धातुओं के भीतर चार्ज के मोबाइल समुद्र के एनालाॅजिकल होता है, इस दबाव अंतर वोल्टेज के एनालाॅजिकल होता है, और पानी के प्रवाह दर विद्युत प्रवाह के एनालाॅजिकल होती है।
===हाइड्रोलिक सादृश्य===
विद्युत सर्किट का एक तरल या हाइड्रोलिक सादृश्य प्लंबिंग के संदर्भ में सर्किटरी को सहज रूप से समझाने का प्रयास करता है, जहां पानी धातुओं के भीतर चार्ज के मोबाइल समुद्र के अनुरूप होता है, दबाव अंतर वोल्टेज के अनुरूप होता है, और पानी की प्रवाह दर विद्युत प्रवाह के अनुरूप होती है।


===[[एनालॉग कंप्यूटर]]===
===[[एनालॉग कंप्यूटर]]===
इलेक्ट्रॉनिक सर्किट का उपयोग हवाई जहाज और परमाणु ऊर्जा संयंत्रों जैसे इंजीनियरिंग सिस्टम को मॉडल और अनुकरण करने के लिए किया जाता था, इससे पहले कि डिजिटल कंप्यूटर व्यावहारिक रूप से उपयोगी होने के लिए पर्याप्त तेज़ टर्न ओवर के साथ व्यापक रूप से उपलब्ध हो जाएं। सर्किट निर्माण समय को तेज़ करने के लिए एनालॉग कंप्यूटर नामक इलेक्ट्रॉनिक सर्किट उपकरणों का उपयोग किया गया था। हालाँकि [[उत्तर बमबारी]] जैसे एनालॉग कंप्यूटर में गणना में गियर और पुली भी शामिल हो सकते हैं।
इलेक्ट्रॉनिक परिपथ का उपयोग हवाई जहाज और परमाणु ऊर्जा संयंत्रों जैसे इंजीनियरिंग सिस्टम को मॉडल और अनुकरण करने के लिए किया जाता था, इससे पहले कि डिजिटल कंप्यूटर व्यावहारिक रूप से उपयोगी होने के लिए पर्याप्त तेज़ टर्न ओवर के साथ व्यापक रूप से उपलब्ध हो जाएं। इस प्रकार किसी परिपथ के निर्माण के समय को तेज़ करने के लिए एनालॉग कंप्यूटर नामक इलेक्ट्रॉनिक परिपथ उपकरणों का उपयोग किया गया था। चूंकि [[उत्तर बमबारी]] जैसे एनालॉग कंप्यूटर में गणना में गियर और पुली भी सम्मिलित हो सकते हैं।


उदाहरण हैं वोगेल और इवेल जिन्होंने 'एन इलेक्ट्रिकल एनालॉग ऑफ ए ट्रॉफिक पिरामिड' (1972, अध्याय 11, पृ. 105-121), एल्मोर एंड सैंड्स (1949) प्रकाशित किए, जिन्होंने परमाणु भौतिकी में अनुसंधान और मैनहट्टन प्रोजेक्ट के तहत किए गए तेज विद्युत क्षणकों के अध्ययन के लिए तैयार किए गए सर्किट प्रकाशित किए (हालांकि सुरक्षा कारणों से हथियार प्रौद्योगिकी के अनुप्रयोग वाले किसी भी सर्किट को शामिल नहीं किया गया था), और हॉवर्ड टी. ओडुम (1994) जिन्होंने सर्किट प्रकाशित किए। भू-जीवमंडल के कई पैमानों पर पारिस्थितिक-आर्थिक प्रणालियों को अनुरूप रूप से मॉडल करने के लिए तैयार किया गया।
उदाहरण हैं वोगेल और इवेल जिन्होंने 'एन इलेक्ट्रिकल एनालॉग ऑफ ए ट्रॉफिक पिरामिड' (1972, अध्याय 11, पृ. 105-121), एल्मोर एंड सैंड्स (1949) प्रकाशित किए, जिन्होंने परमाणु भौतिकी में अनुसंधान और मैनहट्टन प्रोजेक्ट के तहत किए गए तेज विद्युत क्षणकों के अध्ययन के लिए तैयार किए गए परिपथ प्रकाशित किए है। चूंकि सुरक्षा कारणों से हथियार प्रौद्योगिकी के अनुप्रयोग वाले किसी भी परिपथ को सम्मिलित नहीं किया गया था, और हॉवर्ड टी. ओडुम (1994) जिन्होंने परिपथ प्रकाशित किया गया हैं। इस प्रकार भू-जीवमंडल के कई पैमानों पर पारिस्थितिक-आर्थिक प्रणालियों को एनालाॅजिकल रूप से मॉडल करने के लिए तैयार किया गया है।


==दार्शनिक पहेली==
==दार्शनिक पहेली==
अनुरूप मॉडलिंग की प्रक्रिया में दार्शनिक कठिनाइयाँ हैं। जैसा कि स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ फिलॉसफी में बताया गया है,{{citation needed|date=June 2023}} यह सवाल है कि लक्ष्य प्रणाली के भौतिक/जैविक नियम लक्ष्य प्रणाली का प्रतिनिधित्व करने के लिए मनुष्यों द्वारा बनाए गए अनुरूप मॉडल से कैसे संबंधित हैं। हमारा मानना ​​है कि अनुरूप मॉडलों के निर्माण की प्रक्रिया हमें लक्ष्य प्रणाली को नियंत्रित करने वाले मूलभूत कानूनों तक पहुंच प्रदान करती है। हालाँकि, सख्ती से कहें तो हमारे पास केवल उन कानूनों का अनुभवजन्य ज्ञान है जो अनुरूप प्रणाली के लिए सही हैं, और यदि लक्ष्य प्रणाली के लिए समय स्थिरांक मानव के जीवन चक्र से बड़ा है (जैसा कि जियोबायोस्फीयर के मामले में) तो यह बहुत है किसी भी एक इंसान के लिए अपने जीवनकाल में लक्ष्य प्रणाली तक अपने मॉडल के कानूनों के विस्तार की वैधता को अनुभवजन्य रूप से सत्यापित करना मुश्किल है।
एनालाॅजिकल मॉडलिंग की प्रक्रिया में दार्शनिक कठिनाइयाँ हैं। जैसा कि स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ फिलॉसफी में बताया गया है, यह सवाल है कि टार्गेटेड सिस्टम के भौतिक/जैविक नियम टार्गेटेड सिस्टम का प्रतिनिधित्व करने के लिए मनुष्यों द्वारा बनाए गए एनालाॅजिकल मॉडल से कैसे संबंधित हैं। यहाँ पर हमारा मानना ​​है कि एनालाॅजिकल मॉडलों के निर्माण की प्रक्रिया हमें टार्गेटेड सिस्टम को नियंत्रित करने वाले मूलभूत नियमों तक पहुंच प्रदान करती है। चूंकि यदि हम यह कहें तो हमारे पास केवल उन नियमों का अनुभवजन्य ज्ञान है जो एनालाॅजिकल प्रणाली के लिए सही हैं, और यदि टार्गेटेड सिस्टम के लिए समय स्थिरांक मानव के जीवन चक्र से बड़ा है, जैसा कि जियोबायोस्फीयर की स्थिति में रहता हैं। इसके आधार पर यह बहुत है कि किसी भी इंसान के लिए अपने जीवनकाल में टार्गेटेड सिस्टम तक अपने मॉडल के नियमों के विस्तार की वैधता को अनुभवजन्य रूप से सत्यापित करना कठिन है।


==यह भी देखें==
==यह भी देखें==
Line 141: Line 130:
* मोनियाक
* मोनियाक
* रूपवाद
* रूपवाद
* [[आदर्श]]
* [[पैराडिग्ज्म]]
* [[हवा सुरंग]]
* [[वाइंड टनेल]]
{{div col end}}
{{div col end}}


Line 173: Line 162:
* [https://archive.org/details/TECA2004 Yeates, Lindsay B. (2004), "Comparative Cognitive Processes", pp.40-76 in L.B. Yeates, ''Thought Experimentation: A Cognitive Approach'',  Graduate Diploma in Arts (By Research) Dissertation, University of New South Wales, 2004.]
* [https://archive.org/details/TECA2004 Yeates, Lindsay B. (2004), "Comparative Cognitive Processes", pp.40-76 in L.B. Yeates, ''Thought Experimentation: A Cognitive Approach'',  Graduate Diploma in Arts (By Research) Dissertation, University of New South Wales, 2004.]
{{refend}}
{{refend}}
==अग्रिम पठन==
==अग्रिम पठन==
{{refbegin|30em}}
{{refbegin|30em}}
Line 185: Line 172:
* [http://setis.library.usyd.edu.au/stanford/entries/models-science/ Stanford Encyclopedia of Philosophy entry on Models in Science] {{Dead link|date=June 2023}}  
* [http://setis.library.usyd.edu.au/stanford/entries/models-science/ Stanford Encyclopedia of Philosophy entry on Models in Science] {{Dead link|date=June 2023}}  
* [http://holbert.faculty.asu.edu/analogy.html Interdisciplinary Electrical Analogies] {{Webarchive|url=https://web.archive.org/web/20100513022327/http://holbert.faculty.asu.edu/analogy.html |date=2010-05-13 }}
* [http://holbert.faculty.asu.edu/analogy.html Interdisciplinary Electrical Analogies] {{Webarchive|url=https://web.archive.org/web/20100513022327/http://holbert.faculty.asu.edu/analogy.html |date=2010-05-13 }}
[[Category: समानता]] [[Category: वैज्ञानिक मॉडल]] [[Category: अर्थ विज्ञान]]


[[Category: Machine Translated Page]]
[[Category:All articles with dead external links]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with dead external links from June 2023]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with unsourced statements from June 2023]]
[[Category:Created On 26/07/2023]]
[[Category:Created On 26/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:अर्थ विज्ञान]]
[[Category:वैज्ञानिक मॉडल]]
[[Category:समानता]]

Latest revision as of 17:24, 21 August 2023

एक साधारण आरएलसी परिपथ का यांत्रिक नेटवर्क आरेख #समानांतर आरएलसी परिपथ (ऊपर) और समकक्ष संरचना और व्यवहार (नीचे) के साथ विद्युत नेटवर्क, फिर, इसके लिए एनालॉग।

एनालॉग मॉडल वर्तमान समय की ऐसी घटना हैं जिसका उपयोग प्रतिनिधित्व करने के लिए किया जाता है, जिसे अधिकांशतः किसी अन्य अधिक समझने योग्य या विश्लेषण योग्य प्रणाली द्वारा उपयोग किया जाता हैं, जिसे टार्गेटेड सिस्टम कहा जाता है। इन्हें डायनैमिकल एनालाॅजी भी कहा जाता है।

दो संवृत प्रणालियों (सिस्टम सिद्धांत) में एनालॉग प्रतिनिधित्व होता है, जिसे आप चित्र में देख सकते हैं। इस प्रकार यदि ब्लैक बॉक्स समरूपता का अनुप्रयोग करता हैं।

स्पष्टीकरण

किसी सरल प्रकार की एनालाॅजी वह प्रक्रिया है जो अपने साझा किए गए गुणों पर आधारित होती है,[1][2] और एनालाॅजी किसी विशेष विषय (समानता या सोर्स प्रणाली) के बारे में जानकारी को किसी अन्य विशेष विषय (टार्गेटेड सिस्टम) द्वारा प्रस्तुत करने की प्रक्रिया है।[3] इसके प्राथमिक डोमेन के कुछ विशेष पहलू को स्पष्ट करने के लिए या चयनित विशेषताओं को स्पष्ट करने के लिए उपयोग किया जाता हैं।[4]

एनालॉग मॉडल, जिन्हें एनालॉग या एनालॉग मॉडल भी कहा जाता है, उन एनालॉग सिस्टम की खोज करते हैं, जो वर्तमान समय का प्रतिनिधित्व करने के साधन के रूप में टार्गेटेड सिस्टम के साथ गुण साझा करते हैं। ऐसे सोर्स मुख्य रूप से सिस्टम का निर्माण करने में तथा अधिकांशतः व्यावहारिक होता है, जो टार्गेटेड सिस्टम से छोटे तथा तेज़ होते हैं, जिससे कि कोई टार्गेटेड सिस्टम व्यवहार के बारे में प्राथमिक और पिछला ज्ञान प्राप्त कर सके। इसलिए एनालॉग डिवाइस वे होते हैं जिनमें पदार्थ या संरचना में भिन्नता हो सकती है, अपितु गतिशील व्यवहार के गुण साझा होते हैं, जिसे ट्रुइट और रोजर्स के लिए पृष्ठ 1-3 पर देख सकते हैं।

गतिशील उपमाएँ विद्युत, यांत्रिक, ध्वनिक, चुंबकीय और इलेक्ट्रॉनिक प्रणालियों के बीच सादृश्य स्थापित करती हैं: पी. ओल्सन (1958),

उदाहरण के लिए, एनालॉग इलेक्ट्रॉनिक परिपथ में, कोई अंकगणितीय मात्रा का प्रतिनिधित्व करने के लिए वोल्टेज का उपयोग कर सकता है, ऑपरेशनल एंप्लीफायर तब अंकगणितीय संचालन जैसे जोड़, घटाव, गुणा और भाग का प्रतिनिधित्व करते हैं। कैलिब्रेशन की प्रक्रिया के माध्यम से इन छोटे या बड़े, धीमे या तेज़ सिस्टम को ऊपर या नीचे बढ़ाया जाता है, जिससे कि वे टार्गेटेड सिस्टम के कार्य करने की प्रक्रिया से मेल खा सकें, और इसलिए उन्हें टार्गेटेड सिस्टम के एनालॉग कहा जाता है। इस बार कैलिब्रेशन हो जाने के पश्चात मॉडेलर प्राथमिक प्रणाली और उसके एनालॉग के बीच व्यवहार में एक-से-एक पत्राचार की बात करते हैं। इस प्रकार के साथ प्रयोग करके दो प्रणालियों का व्यवहार निर्धारित किया जा सकता है।

एनालाॅजिकल मॉडल बनाना

एनालॉग मॉडल का तंत्र[5] ऐसे एनालाॅजिकल मॉडल बनाने के लिए कई अलग-अलग उपकरणों और प्रणालियों का उपयोग किया जा सकता है।[6]

कई महत्वपूर्ण खोजें तब की गईं जब वैज्ञानिकों ने अपना कार्य इस प्रकार से प्रारंभ किया जैसे मानो परमाणुओं, वायरस, विटामिन, हार्मोन और जीन के उनके सैद्धांतिक रूप से निर्धारित मॉडल का वास्तविक, वास्तविक दुनिया में पर्याप्त अस्तित्व हो। वे ऐसे आगे बढ़े मानो प्रत्येक काल्पनिक अवधारणा वास्तव में ठीक उसी रूप में अस्तित्व में हो जैसा कि उनकी सैद्धांतिक अटकलों ने रेखांकित किया था, और, एनालाॅजी के किसी भी दिखावे को त्यागते हुए, वे इस दृष्टिकोण के साथ आगे बढ़े कि सारवान, वास्तविक दुनिया बिल्कुल वैसी ही थी जैसी उन्होंने सैद्धांतिक रूप से इसका वर्णन किया था। इसके आधार पर गैसों के व्यवहार को समझने में सहायता के लिए उन्नत एनालॉग मॉडल पर विचार करें जो गैस कणों की कुछ सैद्धांतिक गतिविधियों और बिलियर्ड-बॉल की कुछ अवलोकनीय गतिविधियों के बीच संभावित संबंधों का सुझाव देता है। इस प्रकार अचिंस्टीन (1964, पृ.332) हमें यह याद दिलाते हैं कि, गैसों के बारे में इस उपयोगी विधियों से सोचने के अतिरिक्त, भौतिक विज्ञानी स्पष्ट रूप से मानते हैं कि अणुओं में, बिलियर्ड बाल्स में नहीं, हैं इस प्रकार इसमें गैसें सम्मिलित होती हैं — येट्स (2004, पृ.71, 73)

गणितीय गणनाओं को दर्शाने के लिए यांत्रिक उपकरण का उपयोग किया जा सकता है। उदाहरण के लिए, फिलिप्स हाइड्रोलिक कंप्यूटर मोनियाक ​​ने आर्थिक प्रणालियों (टार्गेटेड सिस्टम) को मॉडल करने के लिए पानी के प्रवाह का उपयोग किया जाता हैं, इस प्रकार इलेक्ट्रॉनिक परिपथ का उपयोग शारीरिक और पारिस्थितिक दोनों प्रणालियों का प्रतिनिधित्व करने के लिए किया जा सकता है। जब कोई मॉडल एनालॉग या डिजिटल कंप्यूटर पर चलाया जाता है तो इसे सिमुलेशन की प्रक्रिया के रूप में जाना जाता है।

यांत्रिक ऐनालाॅजी

विद्युत परिघटनाओं को यांत्रिक परिघटनाओं में मैप करने के लिए किसी भी संख्या में सिस्टम का उपयोग किया जा सकता है, अपितु सामान्यतः दो सिद्धांत प्रणालियों का उपयोग किया जाता है: इस प्रकार प्रतिबाधा एनालाॅजी और गतिशीलता एनालाॅजी इसके दो उदाहरण हैं। इसके आधार पर प्रतिबाधा एनालाॅजी मानचित्र वोल्टेज को बल देता है जबकि गतिशीलता एनालाॅजी मानचित्र वर्तमान को बल देता है।

प्रतिबाधा एनालाॅजी विद्युत प्रतिबाधा और यांत्रिक प्रतिबाधा के बीच एनालाॅजी को संरक्षित करता है, अपितु नेटवर्क टोपोलॉजी को संरक्षित नहीं करता है। गतिशीलता एनालाॅजी नेटवर्क टोपोलॉजी को संरक्षित करता है अपितु बाधाओं के बीच एनालाॅजी को संरक्षित नहीं करता है। इसके आधार पर दोनों वैरियेबल के संयुग्म वैरियेबल (ऊष्मागतिकी) को एनालाॅजिकल बनाकर सही ऊर्जा और शक्ति संबंधों को संरक्षित करते हैं।

हाइड्रोलिक एनालाॅजी

शारीरिक ऐनालाॅजी

औपचारिक ऐनालाॅजी

गतिशील ऐनालाॅजी (डायनैमिक एनालाॅजी)

डायनैमिक एनालाॅजी सिस्टम मुख्य रूप से गतिशील समीकरणों की तुलना के माध्यम से विभिन्न ऊर्जा डोमेन में प्रणालियों के बीच एनालाॅजी स्थापित करती हैं। ऐसी कई विधियाँ हैं जिनसे ऐसी ऐनालाॅजी बनाई जा सकती हैं, अपितु सबसे उपयोगी विधि में से मुख्य है, इस प्रकार संयुग्म वैरियेबल (ऊष्मागतिकी) के जोड़े के बीच एनालाॅजी बनाना हैं। अर्थात् वैरियेबल्स का युग्म जिसका गुणनफल शक्ति (भौतिकी) है। ऐसा करने से डोमेन के बीच सही ऊर्जा प्रवाह सुरक्षित रहता है, जो किसी सिस्टम को एकीकृत संपूर्ण के रूप में मॉडलिंग करते समय उपयोगी सुविधा है। एकीकृत मॉडलिंग की आवश्यकता वाले सिस्टम के उदाहरण मेकाट्रोनिक्स और ऑडियो इलेक्ट्रॉनिक्स हैं।[8]

ऐसी सबसे पहली एनालाॅजी जेम्स क्लर्क मैक्सवेल के कारण है, जिन्होंने 1873 में यांत्रिक बल को विद्युत वोल्टेज के साथ जोड़ा गया था। यह एनालाॅजी इतना व्यापक हो गया कि वोल्टेज के सोर्सों को आज भी वैद्युतवाहक बल के रूप में जाना जाता है। वोल्टेज का शक्ति संयुग्म विद्युत प्रवाह है, जो मैक्सवेल एनालाॅजी में, यांत्रिक वेग को मैप करता है। इस प्रकार विद्युत प्रतिबाधा वोल्टेज और धारा का अनुपात है, इसलिए एनालाॅजी द्वारा, यांत्रिक प्रतिबाधा बल और वेग का अनुपात है। प्रतिबाधा की अवधारणा को अन्य डोमेन तक बढ़ाया जा सकता है, उदाहरण के लिए ध्वनिकी और द्रव प्रवाह में यह दबाव और प्रवाह की दर का अनुपात है। सामान्यतः प्रतिबाधा प्रयास वैरियेबल और परिणामी प्रवाह वैरियेबल का अनुपात है। इस कारण मैक्सवेल एनालाॅजी को अधिकांशतः प्रतिबाधा एनालाॅजी के रूप में जाना जाता है, चूंकि मैक्सवेल की मृत्यु के कुछ समय बाद, ओलिवर हेविसाइड द्वारा 1886 तक प्रतिबाधा की अवधारणा की कल्पना नहीं की गई थी।[9]

शक्ति संयुग्म वैरियेबल को निर्दिष्ट करने से अभी भी अद्वितीय एनालाॅजी नहीं बनता है, ऐसे कई तरीके हैं जिनसे संयुग्म और ऐनालाॅजी निर्दिष्ट की जा सकती हैं। फ्लोयड ए. फायरस्टोन द्वारा 1933 में नई एनालाॅजी प्रस्तावित की गई थी जिसे अब गतिशीलता एनालाॅजी के रूप में जाना जाता है। इस एनालाॅजी में विद्युत प्रतिबाधा को यांत्रिक गतिशीलता (यांत्रिक प्रतिबाधा के विपरीत) के एनालाॅजिकल बनाया जाता है। फायरस्टोन का विचार एनालाॅजिकल वैरियेबल बनाना था जो तत्व में मापा जाता है, और एनालाॅजिकल वैरियेबल बनाना जो तत्व के माध्यम से प्रवाहित होता है। उदाहरण के लिए, परिवर्ती वोल्टेज वेग की एनालाॅजी है, और वैरियेबल धारा के माध्यम से बल की एनालाॅजी है। फायरस्टोन की एनालाॅजी में डोमेन के बीच कनवर्ट करते समय तत्व कनेक्शन की टोपोलॉजी को संरक्षित करने का लाभ होता है। 1955 में होरेस एम. ट्रेंट द्वारा थ्रू एंड अक्रॉस एनालाॅजी का संशोधित रूप प्रस्तावित किया गया था और यह थ्रू एंड अक्रॉस की आधुनिक समझ है।[10]

विद्युत, यांत्रिक, घूर्णी और द्रव प्रवाह डोमेन के लिए विभिन्न शक्ति संयुग्म उपमाओं की तुलना
[11] प्रतिबाधा सादृश्य (मैक्सवेल) गतिशीलता सादृश्य (फायरस्टोन) सादृश्य के पार और पार (ट्रेंट)
प्रयत्न या पार शक्ति संयुग्मित होती है V, F, T, p V, u, ω, Q V, u, ω, p
प्रवाह या शक्ति संयुग्मों के माध्यम से I, u, ω, Q I, F, T, p I, F, T, Q
जहाँ
V वोल्टेज है।
F बल है।
T टॉर्कः है।
P दबाव है।
I विद्युत धारा है।
u वेग है।
ω कोणीय वेग है।
Q वॉल्यूमेट्रिक प्रवाह दर है।

समकक्षों की सूची

थ्रू और अक्रॉस सिस्टम के तहत समकक्षों की सूची[12]
वैरियेबल के द्वारा वैरियेबल के द्वारा ऊर्जा भण्डारण 1 ऊर्जा भण्डारण 2 ऊर्जा क्षय
विद्युत धारा (I) वोल्टेज (V) संधारित्र (C) रोधक (L) अवरोध (R)
रैखिक यांत्रिकी बल (F) वेग (u) स्प्रिंग (K) द्रव्यमान (M) डैम्पर (B)
घूर्णन यांत्रिकी घूर्णन बल (T) कोणीय वेग (ω) टार्सन स्प्रिंग (κ) जड़त्व (I) रोटरी डैम्पर
हाइड्राॅलिक वोल्टेज प्रवाह दबाव (p) टैंक द्रव्यमान वाल्व

हैमिल्टनियन वैरियेबल

हैमिल्टनियन वैरियेबल, जिन्हें ऊर्जा वैरियेबल भी कहा जाता है, वे ऐसे वैरियेबल हैं, जो समय-व्युत्पन्न होने पर शक्ति संयुग्म वैरियेबल के समान होते हैं। हैमिल्टनियन वैरियेबल को इसलिए कहा जाता है क्योंकि ये वे वैरियेबल हैं जो सामान्यतः हैमिल्टनियन यांत्रिकी में दिखाई देते हैं। इस प्रकार विद्युत क्षेत्र में हैमिल्टनियन वैरियेबल विद्युत आवेश हैं (q) और प्रवाह लिंकेज (λ) क्योंकि

(फैराडे का प्रेरण का नियम), और

ट्रांसलेशनल यांत्रिक डोमेन में, हैमिल्टनियन वैरियेबल की दूरी विस्थापन (सदिश) हैं (x) और गति (p) क्योंकि

(न्यूटन का दूसरा नियम|न्यूटन की गति का दूसरा नियम), और

अन्य उपमाओं और वैरियेबल्स के सेट के लिए संगत संबंध है।[13] हैमिल्टनियन वैरियेबल को ऊर्जा वैरियेबल भी कहा जाता है। हैमिल्टनियन वैरियेबल के संबंध में शक्ति संयुग्म वैरियेबल का समाकलन ऊर्जा का माप है। उदाहरण के लिए,

और

यहाँ पर दोनों ऊर्जा की अभिव्यक्ति हैं।[14]

व्यावहारिक उपयोग

मैक्सवेल की एनालाॅजी का उपयोग प्रारंभ में केवल विद्युत घटनाओं को अधिक परिचित यांत्रिक शब्दों में समझाने में सहायता के लिए किया गया था। फायरस्टोन, ट्रेंट और अन्य के काम ने इस क्षेत्र को अत्यधिक आगे बढ़ा दिया गया हैं, और इस प्रकार की प्रणाली के रूप में कई ऊर्जा डोमेन की प्रणालियों का प्रतिनिधित्व करना चाहते हैं। इस प्रकार विशेष रूप से, डिजाइनरों ने इलेक्ट्रोयांत्रिक सिस्टम के यांत्रिक भागों को विद्युत डोमेन में परिवर्तित करना प्रारंभ कर दिया जिससे कि पूरे सिस्टम का विद्युत परिपथ के रूप में विश्लेषण किया जा सके। वन्नेवर बुश एनालॉग कंप्यूटर के विकास में इस प्रकार के मॉडलिंग के अग्रणी थे, और इस पद्धति की सुसंगत प्रस्तुति क्लिफोर्ड ए. निकल द्वारा 1925 के पेपर में प्रस्तुत की गई थी।[15]

1950 के दशक के पश्चात यांत्रिक फ़िल्टर के निर्माताओं, विशेष रूप से कोलिन्स रेडियो, ने इलेक्ट्रिकल इंजीनियरिंग में फ़िल्टर डिज़ाइन के अच्छी तरह से विकसित सिद्धांत को लेने और इसे यांत्रिक सिस्टम पर लागू करने के लिए इन उपमाओं का व्यापक रूप से उपयोग किया गया हैं। इस प्रकार रेडियो अनुप्रयोगों के लिए आवश्यक फिल्टर की गुणवत्ता विद्युत घटकों के साथ प्राप्त नहीं की जा सकती हैं। इसके आधार पर यांत्रिक भागों के साथ उत्तम गुणवत्ता वाले अनुनादक (उच्च क्यू कारक) बनाए जा सकते थे अपितु यांत्रिक इंजीनियरिंग में कोई समकक्ष फ़िल्टर सिद्धांत नहीं था। इस प्रकार फिल्टर की समग्र प्रतिक्रिया की भविष्यवाणी करने के लिए परिपथ के यांत्रिक भागों, ट्रांसड्यूसर और विद्युत घटकों का संपूर्ण सिस्टम के रूप में विश्लेषण करना भी आवश्यक था।[16]

हैरी एफ. ओल्सन ने 1943 में पहली बार प्रकाशित अपनी पुस्तक डायनेमिक एनालॉग्स के साथ ऑडियो इलेक्ट्रॉनिक्स क्षेत्र में डायनेमिक एनालॉग्स के उपयोग को लोकप्रिय बनाने में सहायता की गयी हैं।[17]

गैर-शक्ति-संयुग्म ऐनालाॅजी

चुंबकीय परिपथ का सामान्य एनालाॅजी मैग्नेटोमोटिव बल (एमएमएफ) को वोल्टेज और चुंबकीय प्रवाह (φ) को विद्युत प्रवाह में मैप करता है। चूंकि, mmf और φ शक्ति संयुग्म वैरियेबल नहीं हैं। इनका उत्पाद शक्ति की इकाइयों में नहीं है और अनुपात, जिसे चुंबकीय अनिच्छा के रूप में जाना जाता है, ऊर्जा के अपव्यय की दर को नहीं मापता है इसलिए यह वास्तविक प्रतिबाधा नहीं है। जहां संगत एनालाॅजी की आवश्यकता होती है, एमएमएफ का उपयोग प्रयास वैरियेबल के रूप में किया जा सकता है और dφ/dt (चुंबकीय प्रवाह के परिवर्तन की दर) तब प्रवाह वैरियेबल होगा। इसे जाइरेटर-कैपेसिटर मॉडल के रूप में जाना जाता है।[18] थर्मल डोमेन में व्यापक रूप से उपयोग की जाने वाली एनालाॅजी प्रयास वैरियेबल के रूप में तापमान अंतर और प्रवाह वैरियेबल के रूप में थर्मल पावर को मैप करती है। फिर, ये शक्ति संयुग्म वैरियेबल नहीं हैं, और अनुपात, जिसे थर्मल प्रतिरोध के रूप में जाना जाता है, वास्तव में जहां तक ​​ऊर्जा प्रवाह का संबंध है, प्रतिबाधा या विद्युत प्रतिरोध का एनालाॅजी नहीं है। संगत एनालाॅजी तापमान अंतर को प्रयास वैरियेबल के रूप में और एन्ट्रापी प्रवाह दर को प्रवाह वैरियेबल के रूप में ले सकता है।[19]

सामान्यीकरण

डायनेमिक मॉडल के कई अनुप्रयोग सिस्टम के सभी ऊर्जा डोमेन को विद्युत परिपथ में परिवर्तित करते हैं और फिर विद्युत डोमेन में संपूर्ण सिस्टम का विश्लेषण करने के लिए आगे बढ़ते हैं। चूंकि, प्रतिनिधित्व के अधिक सामान्यीकृत तरीके हैं। ऐसा प्रतिनिधित्व बांड ग्राफ के उपयोग के माध्यम से है, जिसे 1960 में हेनरी एम. पेन्टर द्वारा प्रस्तुत किया गया था। इस प्रकार बॉन्ड ग्राफ़ के साथ बल-वोल्टेज एनालाॅजी (प्रतिबाधा एनालाॅजी) का उपयोग करना सामान्य है, अपितु ऐसा करना कोई आवश्यकता नहीं है। इसी तरह ट्रेंट ने अलग प्रतिनिधित्व (रैखिक ग्राफ) का उपयोग किया और उसका प्रतिनिधित्व बल-वर्तमान एनालाॅजी (गतिशीलता एनालाॅजी) से जुड़ा हुआ है, अपितु फिर से यह अनिवार्य नहीं है।[20]

कुछ लेखक सामान्यीकरण के लिए डोमेन विशिष्ट शब्दावली के उपयोग को हतोत्साहित करते हैं। उदाहरण के लिए, क्योंकि गतिशील उपमाओं का अधिकांश सिद्धांत विद्युत सिद्धांत से उत्पन्न हुआ है, शक्ति संयुग्म वैरियेबल को कभी-कभी वी-प्रकार और आई-प्रकार कहा जाता है, चाहे वे विद्युत क्षेत्र में क्रमशः वोल्टेज या धारा के एनालॉग हों। इसी प्रकार हैमिल्टनियन वैरियेबल को कभी-कभी सामान्यीकृत गति और सामान्यीकृत विस्थापन कहा जाता है, चाहे वे यांत्रिक डोमेन में गति या विस्थापन के एनालाॅजिकल हों।[21]

इलेक्ट्रॉनिक परिपथ ऐनालाॅजी

हाइड्रोलिक एनालाॅजी

विद्युत परिपथ का तरल या हाइड्रोलिक एनालाॅजी प्लंबिंग के संदर्भ में परिपथरी को सहज रूप से समझाने का प्रयास करता है, जहां पानी धातुओं के भीतर चार्ज के मोबाइल समुद्र के एनालाॅजिकल होता है, इस दबाव अंतर वोल्टेज के एनालाॅजिकल होता है, और पानी के प्रवाह दर विद्युत प्रवाह के एनालाॅजिकल होती है।

एनालॉग कंप्यूटर

इलेक्ट्रॉनिक परिपथ का उपयोग हवाई जहाज और परमाणु ऊर्जा संयंत्रों जैसे इंजीनियरिंग सिस्टम को मॉडल और अनुकरण करने के लिए किया जाता था, इससे पहले कि डिजिटल कंप्यूटर व्यावहारिक रूप से उपयोगी होने के लिए पर्याप्त तेज़ टर्न ओवर के साथ व्यापक रूप से उपलब्ध हो जाएं। इस प्रकार किसी परिपथ के निर्माण के समय को तेज़ करने के लिए एनालॉग कंप्यूटर नामक इलेक्ट्रॉनिक परिपथ उपकरणों का उपयोग किया गया था। चूंकि उत्तर बमबारी जैसे एनालॉग कंप्यूटर में गणना में गियर और पुली भी सम्मिलित हो सकते हैं।

उदाहरण हैं वोगेल और इवेल जिन्होंने 'एन इलेक्ट्रिकल एनालॉग ऑफ ए ट्रॉफिक पिरामिड' (1972, अध्याय 11, पृ. 105-121), एल्मोर एंड सैंड्स (1949) प्रकाशित किए, जिन्होंने परमाणु भौतिकी में अनुसंधान और मैनहट्टन प्रोजेक्ट के तहत किए गए तेज विद्युत क्षणकों के अध्ययन के लिए तैयार किए गए परिपथ प्रकाशित किए है। चूंकि सुरक्षा कारणों से हथियार प्रौद्योगिकी के अनुप्रयोग वाले किसी भी परिपथ को सम्मिलित नहीं किया गया था, और हॉवर्ड टी. ओडुम (1994) जिन्होंने परिपथ प्रकाशित किया गया हैं। इस प्रकार भू-जीवमंडल के कई पैमानों पर पारिस्थितिक-आर्थिक प्रणालियों को एनालाॅजिकल रूप से मॉडल करने के लिए तैयार किया गया है।

दार्शनिक पहेली

एनालाॅजिकल मॉडलिंग की प्रक्रिया में दार्शनिक कठिनाइयाँ हैं। जैसा कि स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ फिलॉसफी में बताया गया है, यह सवाल है कि टार्गेटेड सिस्टम के भौतिक/जैविक नियम टार्गेटेड सिस्टम का प्रतिनिधित्व करने के लिए मनुष्यों द्वारा बनाए गए एनालाॅजिकल मॉडल से कैसे संबंधित हैं। यहाँ पर हमारा मानना ​​है कि एनालाॅजिकल मॉडलों के निर्माण की प्रक्रिया हमें टार्गेटेड सिस्टम को नियंत्रित करने वाले मूलभूत नियमों तक पहुंच प्रदान करती है। चूंकि यदि हम यह कहें तो हमारे पास केवल उन नियमों का अनुभवजन्य ज्ञान है जो एनालाॅजिकल प्रणाली के लिए सही हैं, और यदि टार्गेटेड सिस्टम के लिए समय स्थिरांक मानव के जीवन चक्र से बड़ा है, जैसा कि जियोबायोस्फीयर की स्थिति में रहता हैं। इसके आधार पर यह बहुत है कि किसी भी इंसान के लिए अपने जीवनकाल में टार्गेटेड सिस्टम तक अपने मॉडल के नियमों के विस्तार की वैधता को अनुभवजन्य रूप से सत्यापित करना कठिन है।

यह भी देखें

संदर्भ

  1. Stanford Encyclopedia of Philosophy.[citation needed]
  2. Gentner, Dedre (1989), "Mechanisms of Analogical Learning", pp.199-241, in Stella Vosniadou and Andrew Ortony (eds.), Similarity and Analogical Reasoning, Cambridge: Cambridge University Press.
  3. "There is general agreement that analogical reasoning involves the transfer of relational information from a domain that already exists in memory (…source…) to the domain to be explained (…target…). Similarity is implicated in this process because a successful, useful analogy depends upon there being some sort of [perceived] similarity between the source domain and the target domain and because the perception of similarity is likely to play a major role in some of the key processes associated with analogical reasoning" (Vosniadou and Ortony, 1989, pp.6-7).
  4. Yeates (2004), p.71.
  5. Yeates (2004), p.73.
  6. "An analogue model describes specific relationships between selected components of the "original" by creating analogies with the relationships that are displayed by components in some other "secondary domain" of a totally different medium." (Yeates, 2004, p.72).
  7. Ginzburg and Colyvan 2004; Colyvan and Ginzburg 2010
  8. Busch-Vishniac, p. 18
  9. Bishop, p. 8.4
    • Busch-Vishniac, p. 20
    • Smith, p. 1648
    • Martinsen & Grimnes, p. 287

  10. Bishop, p. 8.2
    • Smith, p. 1648
    • Busch-Vishniac, p. 19

  11. Busch-Vishniac, pp. 18-20
  12. Olson, pp. 27-29
  13. Busch-Vishniac, p. 21
  14. Borutzky, pp. 27-28
  15. Care, p. 76
  16. Taylor & Huang, p. 378
    • Carr, pp. 170–171

  17. Libbey, p. 13
  18. Hamill, p. 97
  19. Busch-Vishniac, p. 19
    • Regtien, p. 21

  20. Bishop, p. 8.8
  21. Borutzky, pp. 27-28


ग्रन्थसूची

अग्रिम पठन


बाहरी संबंध