मीट्रिक टेंसर (सामान्य सापेक्षता): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 15: Line 15:




सामान्य सापेक्षता में, मीट्रिक टेंसर (इस संदर्भ में अधिकांशत: इसे केवल मीट्रिक के रूप में संक्षिप्त किया जाता है) अध्ययन का मूल उद्देश्य है। मीट्रिक स्पेसटाइम की सभी ज्यामितीय और कारण संरचना को कैप्चर करता है, जिसका उपयोग समय, दूरी, आयतन, वक्रता, कोण और भविष्य और अतीत के पृथक्करण जैसी धारणाओं को परिभाषित करने के लिए किया जाता है।
 
'''सामान्य सापेक्षता में, मीट्रिक टेंसर''' (इस संदर्भ में अधिकांशत: इसे केवल मीट्रिक के रूप में संक्षिप्त किया जाता है) अध्ययन का मूल उद्देश्य है। मीट्रिक स्पेसटाइम की सभी ज्यामितीय और कारण संरचना को कैप्चर करता है, जिसका उपयोग समय, दूरी, आयतन, वक्रता, कोण और भविष्य और अतीत के पृथक्करण जैसी धारणाओं को परिभाषित करने के लिए किया जाता है।


सामान्य सापेक्षता में, मीट्रिक टेंसर गुरुत्वाकर्षण के मौलिक सिद्धांत में [[गुरुत्वाकर्षण क्षमता]] की भूमिका निभाता है, चूँकि संबंधित समीकरणों की भौतिक पदार्थ पूरी तरह से अलग है। <ref>For the details, see Section 2.11, ''The Metric Tensor and the Classical Gravitational Potential'', in {{cite book |last1=Chow |first1=Tai L. |title=Gravity, Black Holes, and the Very Early Universe: An Introduction to General Relativity and Cosmology |date=2008 |publisher=Springer |url=https://www.google.com/books/edition/Gravity_Black_Holes_and_the_Very_Early_U/fp9wrkMYHvMC?hl=en&gbpv=0}}</ref> गुटफ्रेंड और रेन का कहना है कि सामान्य सापेक्षता में गुरुत्वाकर्षण क्षमता को मीट्रिक टेंसर द्वारा दर्शाया जाता है।<ref>{{cite book |last1=Gutfreund |first1=Hanoch |last2=Renn |first2=Jürgen |title=The Road to Relativity: The History and Meaning of Einstein's "The Foundation of General Relativity", Featuring the Original Manuscript of Einstein's Masterpiece |date=2015 |publisher=Princeton University Press |page=75 |url=https://www.google.com/books/edition/The_Road_to_Relativity/fXGYDwAAQBAJ?hl=en&gbpv=0}}</ref>
सामान्य सापेक्षता में, मीट्रिक टेंसर गुरुत्वाकर्षण के मौलिक सिद्धांत में [[गुरुत्वाकर्षण क्षमता]] की भूमिका निभाता है, चूँकि संबंधित समीकरणों की भौतिक पदार्थ पूरी तरह से अलग है। <ref>For the details, see Section 2.11, ''The Metric Tensor and the Classical Gravitational Potential'', in {{cite book |last1=Chow |first1=Tai L. |title=Gravity, Black Holes, and the Very Early Universe: An Introduction to General Relativity and Cosmology |date=2008 |publisher=Springer |url=https://www.google.com/books/edition/Gravity_Black_Holes_and_the_Very_Early_U/fp9wrkMYHvMC?hl=en&gbpv=0}}</ref> गुटफ्रेंड और रेन का कहना है कि सामान्य सापेक्षता में गुरुत्वाकर्षण क्षमता को मीट्रिक टेंसर द्वारा दर्शाया जाता है।<ref>{{cite book |last1=Gutfreund |first1=Hanoch |last2=Renn |first2=Jürgen |title=The Road to Relativity: The History and Meaning of Einstein's "The Foundation of General Relativity", Featuring the Original Manuscript of Einstein's Masterpiece |date=2015 |publisher=Princeton University Press |page=75 |url=https://www.google.com/books/edition/The_Road_to_Relativity/fXGYDwAAQBAJ?hl=en&gbpv=0}}</ref>
Line 30: Line 31:
स्पष्ट रूप से, मीट्रिक टेंसर <math>M</math> के प्रत्येक स्पर्शरेखा स्थान पर सममित द्विरेखीय रूप है जो बिंदु से दूसरे बिंदु पर सहज (या भिन्न) विधि से भिन्न होता है। <math>M</math> में बिंदु x पर दो स्पर्शरेखा सदिश <math>u</math> और <math>v</math> दिए जाने पर, वास्तविक संख्या देने के लिए मीट्रिक का मूल्यांकन <math>u</math> और <math>v</math> पर किया जा सकता है:
स्पष्ट रूप से, मीट्रिक टेंसर <math>M</math> के प्रत्येक स्पर्शरेखा स्थान पर सममित द्विरेखीय रूप है जो बिंदु से दूसरे बिंदु पर सहज (या भिन्न) विधि से भिन्न होता है। <math>M</math> में बिंदु x पर दो स्पर्शरेखा सदिश <math>u</math> और <math>v</math> दिए जाने पर, वास्तविक संख्या देने के लिए मीट्रिक का मूल्यांकन <math>u</math> और <math>v</math> पर किया जा सकता है:
<math display="block">g_x(u,v) = g_x(v,u) \in \Reals.</math>
<math display="block">g_x(u,v) = g_x(v,u) \in \Reals.</math>
यह साधारण यूक्लिडियन स्पेस के डॉट उत्पाद का सामान्यीकरण है। यूक्लिडियन स्पेस के विपरीत - जहां डॉट उत्पाद सकारात्मक निश्चित है - मीट्रिक अनिश्चित है और प्रत्येक स्पर्शरेखा स्थान को मिन्कोव्स्की स्पेस की संरचना देता है।
यह साधारण यूक्लिडियन स्थान के डॉट उत्पाद का सामान्यीकरण है। यूक्लिडियन स्थान के विपरीत - जहां डॉट उत्पाद सकारात्मक निश्चित है - मीट्रिक अनिश्चित है और प्रत्येक स्पर्शरेखा स्थान को मिन्कोव्स्की स्थान की संरचना देता है।


==[[स्थानीय निर्देशांक]] और आव्यूह प्रतिनिधित्व==
==[[स्थानीय निर्देशांक]] और आव्यूह प्रतिनिधित्व==
Line 71: Line 72:
0 & 0 & 0 & 1
0 & 0 & 0 & 1
\end{pmatrix}</math>
\end{pmatrix}</math>
(एक वैकल्पिक सम्मेलन निर्देशांक t को ct से प्रतिस्थापित करता है, और <math>\eta</math> को मिंकोव्स्की स्पेस § मानक आधार के रूप में परिभाषित करता है।)
(एक वैकल्पिक सम्मेलन निर्देशांक t को ct से प्रतिस्थापित करता है, और <math>\eta</math> को मिंकोव्स्की स्थान § मानक आधार के रूप में परिभाषित करता है।)


[[गोलाकार निर्देशांक|वृत्ताकार निर्देशांक]] में <math>(t,r,\theta,\phi)</math>, समतल स्थान मीट्रिक का रूप ले लेता है
[[गोलाकार निर्देशांक|वृत्ताकार निर्देशांक]] में <math>(t,r,\theta,\phi)</math>, समतल स्थान मीट्रिक का रूप ले लेता है
Line 77: Line 78:
जहाँ  
जहाँ  
<math display="block">d\Omega^2 = d\theta^2 + \sin^2\theta\,d\phi^2</math>
<math display="block">d\Omega^2 = d\theta^2 + \sin^2\theta\,d\phi^2</math>
2-गोले पर मानक मीट्रिक है।
2-वृत्त पर मानक मीट्रिक है।


===ब्लैक होल आव्यूह ===
===ब्लैक होल आव्यूह ===
Line 86: Line 87:
समतल स्थान मीट्रिक के अतिरिक्त सामान्य सापेक्षता में सबसे महत्वपूर्ण मीट्रिक श्वार्ज़स्चिल्ड मीट्रिक है जिसे स्थानीय निर्देशांक के सेट में दिया जा सकता है
समतल स्थान मीट्रिक के अतिरिक्त सामान्य सापेक्षता में सबसे महत्वपूर्ण मीट्रिक श्वार्ज़स्चिल्ड मीट्रिक है जिसे स्थानीय निर्देशांक के सेट में दिया जा सकता है
<math display="block">ds^2 = -\left(1 - \frac{2GM}{rc^2} \right) c^2 dt^2 + \left(1 - \frac{2GM}{rc^2} \right)^{-1} dr^2 + r^2 d\Omega^2</math>
<math display="block">ds^2 = -\left(1 - \frac{2GM}{rc^2} \right) c^2 dt^2 + \left(1 - \frac{2GM}{rc^2} \right)^{-1} dr^2 + r^2 d\Omega^2</math>
जहां, फिर से, <math>d\Omega^2</math> 2-गोले पर मानक मीट्रिक है। यहाँ, <math>G</math> गुरुत्वाकर्षण स्थिरांक है और <math>M</math> द्रव्यमान के आयामों वाला स्थिरांक है। इसकी व्युत्पत्ति यहाँ पाई जा सकती है। जैसे-जैसे <math>M</math> शून्य के समीप पहुंचता है, श्वार्ज़स्चिल्ड मीट्रिक मिन्कोव्स्की मीट्रिक के समीप पहुंचता है (मूल को छोड़कर जहां यह अपरिभाषित है)। इसी तरह, जब <math>r</math> अनंत तक जाता है, तो श्वार्ज़स्चिल्ड मीट्रिक मिन्कोव्स्की मीट्रिक के समीप पहुंचता है।
जहां, फिर से, <math>d\Omega^2</math> 2-वृत्त पर मानक मीट्रिक है। यहाँ, <math>G</math> गुरुत्वाकर्षण स्थिरांक है और <math>M</math> द्रव्यमान के आयामों वाला स्थिरांक है। इसकी व्युत्पत्ति यहाँ पाई जा सकती है। जैसे-जैसे <math>M</math> शून्य के समीप पहुंचता है, श्वार्ज़स्चिल्ड मीट्रिक मिन्कोव्स्की मीट्रिक के समीप पहुंचता है (मूल को छोड़कर जहां यह अपरिभाषित है)। इसी तरह, जब <math>r</math> अनंत तक जाता है, तो श्वार्ज़स्चिल्ड मीट्रिक मिन्कोव्स्की मीट्रिक के समीप पहुंचता है।


निर्देशांक के साथ
निर्देशांक के साथ
Line 100: Line 101:
====घूर्णन और आवेशित ब्लैक होल====
====घूर्णन और आवेशित ब्लैक होल====


श्वार्ज़स्चिल्ड समाधान ऐसी वस्तु मानता है जो अंतरिक्ष में घूम नहीं रही है और चार्ज नहीं की गई है। चार्ज का गणना लगाने के लिए, मीट्रिक को पहले की तरह आइंस्टीन क्षेत्र समीकरणों के साथ-साथ घुमावदार स्पेसटाइम में मैक्सवेल के समीकरणों को भी संतुष्ट करना होगा। आवेशित गैर-घूर्णन द्रव्यमान का वर्णन रीस्नर-नॉर्डस्ट्रॉम मीट्रिक द्वारा किया जाता है।
श्वार्ज़स्चिल्ड समाधान ऐसी वस्तु मानता है जो अंतरिक्ष में घूम नहीं रही है और चार्ज नहीं की गई है। चार्ज का गणना लगाने के लिए, मीट्रिक को पहले की तरह आइंस्टीन क्षेत्र समीकरणों के साथ-साथ घुमावदार स्पेसटाइम में मैक्सवेल के समीकरणों को भी संतुष्ट करना होता है। आवेशित गैर-घूर्णन द्रव्यमान का वर्णन रीस्नर-नॉर्डस्ट्रॉम मीट्रिक द्वारा किया जाता है।


घूमते हुए ब्लैक होल का वर्णन [[ केर मीट्रिक |केर मीट्रिक]] और केर-न्यूमैन मेट्रिक द्वारा किया जाता है।
घूमते हुए ब्लैक होल का वर्णन [[ केर मीट्रिक |केर मीट्रिक]] और केर-न्यूमैन मेट्रिक द्वारा किया जाता है।
Line 110: Line 111:


*अल्क्यूबिएरे मेट्रिक या अल्क्यूबिएरे मेट्रिक,
*अल्क्यूबिएरे मेट्रिक या अल्क्यूबिएरे मेट्रिक,
*डी [[सिटर स्पेस द्वारा]]/[[एंटी-डी सिटर स्पेस]] या एंटी-डी सिटर आव्यूह ,
*डी [[सिटर स्पेस द्वारा|सिटर स्थान द्वारा]]/[[एंटी-डी सिटर स्पेस|एंटी-डी सिटर]] स्थान या एंटी-डी सिटर आव्यूह ,
*फ़्रीडमैन-लेमैत्रे-रॉबर्टसन-वॉकर मीट्रिक,
*फ़्रीडमैन-लेमैत्रे-रॉबर्टसन-वॉकर मीट्रिक,
*[[आइसोट्रोपिक निर्देशांक]],
*[[आइसोट्रोपिक निर्देशांक]],
Line 167: Line 168:


{{tensors}}
{{tensors}}
[[Category: सामान्य सापेक्षता में टेंसर]] [[Category: भौतिकी में समय]]


[[Category: Machine Translated Page]]
[[Category:Articles using infobox templates with no data rows]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Collapse templates]]
[[Category:Created On 26/07/2023]]
[[Category:Created On 26/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:भौतिकी में समय]]
[[Category:सामान्य सापेक्षता में टेंसर]]

Latest revision as of 09:41, 22 August 2023


सामान्य सापेक्षता में स्पेसटाइम का मीट्रिक टेंसर एक आव्यूह के रूप में लिखा गया है


सामान्य सापेक्षता में, मीट्रिक टेंसर (इस संदर्भ में अधिकांशत: इसे केवल मीट्रिक के रूप में संक्षिप्त किया जाता है) अध्ययन का मूल उद्देश्य है। मीट्रिक स्पेसटाइम की सभी ज्यामितीय और कारण संरचना को कैप्चर करता है, जिसका उपयोग समय, दूरी, आयतन, वक्रता, कोण और भविष्य और अतीत के पृथक्करण जैसी धारणाओं को परिभाषित करने के लिए किया जाता है।

सामान्य सापेक्षता में, मीट्रिक टेंसर गुरुत्वाकर्षण के मौलिक सिद्धांत में गुरुत्वाकर्षण क्षमता की भूमिका निभाता है, चूँकि संबंधित समीकरणों की भौतिक पदार्थ पूरी तरह से अलग है। [1] गुटफ्रेंड और रेन का कहना है कि सामान्य सापेक्षता में गुरुत्वाकर्षण क्षमता को मीट्रिक टेंसर द्वारा दर्शाया जाता है।[2]


नोटेशन और परंपराएँ

यह आलेख मीट्रिक हस्ताक्षर के साथ काम करता है जो अधिकतर धनात्मक है (− + + +); साइन कन्वेंशन देखें. गुरुत्वाकर्षण स्थिरांक को स्पष्ट रखा जाएगा। यह आलेख आइंस्टीन सारांश सम्मेलन को नियोजित करता है, जहां बार-बार सूचकांकों को स्वचालित रूप से सारांशित किया जाता है।

परिभाषा

गणितीय रूप से स्पेसटाइम को चार-आयामी विभेदक मैनिफोल्ड द्वारा दर्शाया जाता है और मीट्रिक टेंसर को पर सहसंयोजक, दूसरी-डिग्री, सममित टेंसर के रूप में दिया जाता है, जिसे पारंपरिक रूप से द्वारा दर्शाया जाता है। इसके अतिरिक्त मीट्रिक को हस्ताक्षर (− + + +) के साथ नॉनडिजेनरेट होना आवश्यक है। इस तरह के मीट्रिक से सुसज्जित मैनिफोल्ड प्रकार का लोरेंत्ज़ियन मैनिफोल्ड है।

स्पष्ट रूप से, मीट्रिक टेंसर के प्रत्येक स्पर्शरेखा स्थान पर सममित द्विरेखीय रूप है जो बिंदु से दूसरे बिंदु पर सहज (या भिन्न) विधि से भिन्न होता है। में बिंदु x पर दो स्पर्शरेखा सदिश और दिए जाने पर, वास्तविक संख्या देने के लिए मीट्रिक का मूल्यांकन और पर किया जा सकता है:

यह साधारण यूक्लिडियन स्थान के डॉट उत्पाद का सामान्यीकरण है। यूक्लिडियन स्थान के विपरीत - जहां डॉट उत्पाद सकारात्मक निश्चित है - मीट्रिक अनिश्चित है और प्रत्येक स्पर्शरेखा स्थान को मिन्कोव्स्की स्थान की संरचना देता है।

स्थानीय निर्देशांक और आव्यूह प्रतिनिधित्व

भौतिक विज्ञानी समान्यत: स्थानीय निर्देशांक (अथार्त के कुछ स्थानीय पैच पर परिभाषित निर्देशांक) में काम करते हैं। स्थानीय निर्देशांक में (जहाँ सूचकांक है जो 0 से 3 तक चलता है) मीट्रिक को इस रूप में लिखा जा सकता है

कारक अदिश निर्देशांक क्षेत्रों के एक-रूप ग्रेडिएंट हैं। इस प्रकार मीट्रिक निर्देशांक के एक-रूप ग्रेडिएंट के टेंसर उत्पादों का रैखिक संयोजन है। गुणांक 16 वास्तविक-मूल्यवान फ़ंक्शंस का सेट है (चूंकि टेंसर टेंसर क्षेत्र है, जिसे स्पेसटाइम मैनिफोल्ड के सभी बिंदुओं पर परिभाषित किया गया है)। मीट्रिक सममित होने के लिए है
10 मुक्त गुणांक दे रहे हैं।

यदि स्थानीय निर्देशांक निर्दिष्ट हैं, या संदर्भ से समझे जाते हैं, तो मीट्रिक को प्रविष्टियों के साथ 4 × 4 सममित आव्यूह के रूप में लिखा जा सकता है। जो की गैर-अपघटनशीलता का अर्थ है कि यह आव्यूह गैर-एकवचन है (अर्थात इसमें गैर-लुप्त होने वाला निर्धारक है) जबकि g के लोरेंत्ज़ियन हस्ताक्षर का तात्पर्य है कि आव्यूह में ऋणात्मक और तीन आइजेनवैल्यू हैं। ध्यान दें कि भौतिक विज्ञानी अधिकांशतः इस आव्यूह या निर्देशांक को स्वयं मीट्रिक के रूप में संदर्भित करते हैं (चूँकि अमूर्त सूचकांक संकेतन देखें)।

मात्राओं को अतिसूक्ष्म समन्वय विस्थापन चार-सदिश के घटकों के रूप में माना जाता है (उपरोक्त समान नोटेशन के एक-रूपों के साथ भ्रमित नहीं होना चाहिए), मीट्रिक अतिसूक्ष्म रेखा तत्व के अपरिवर्तनीय वर्ग को निर्धारित करता है , जिसे अधिकांशतः अंतराल के रूप में जाना जाता है। अंतराल को अधिकांशतः दर्शाया जाता है

इस प्रकार अंतराल स्पेसटाइम की कारण संरचना के बारे में जानकारी प्रदान करता है। जब अंतराल समय-समान होता है और के निरपेक्ष मान का वर्गमूल वृद्धिशील उचित समय होता है। किसी विशाल वस्तु द्वारा केवल समय-समान अंतरालों को ही भौतिक रूप से पार किया जा सकता है। जब अंतराल प्रकाश जैसा होता है, और इसे केवल प्रकाश की गति से चलने वाली (द्रव्यमानहीन) चीजों द्वारा ही पार किया जा सकता है। जब अंतराल अंतरिक्ष जैसा होता है और का वर्गमूल वृद्धिशील उचित लंबाई के रूप में कार्य करता है। जैसे अंतरालों को पार नहीं किया जा सकता, क्योंकि वे उन घटनाओं को जोड़ते हैं जो दूसरे के प्रकाश शंकु के बाहर हैं। घटनाएँ कार्य-कारणात्मक रूप से तभी संबंधित हो सकती हैं जब वे एक-दूसरे के प्रकाश शंकु के अंदर हों।

मीट्रिक के घटक स्थानीय समन्वय प्रणाली की पसंद पर निर्भर करते हैं। निर्देशांक के परिवर्तन के अनुसार , मीट्रिक घटक रूपांतरित होते हैं


गुण

सूचकांक परिवर्तन में मीट्रिक टेंसर महत्वपूर्ण भूमिका निभाता है। सूचकांक संकेतन में, मीट्रिक टेंसर के गुणांक अन्य टेंसरों के सहसंयोजक और विरोधाभासी घटकों के बीच लिंक प्रदान करते हैं। सहसंयोजक मीट्रिक टेन्सर गुणांक में से के साथ टेन्सर के कॉन्ट्रावेरिएंट इंडेक्स को अनुबंधित करने से सूचकांक को कम करने का प्रभाव पड़ता है

और इसी प्रकार विरोधाभासी मीट्रिक गुणांक सूचकांक को बढ़ाता है
सूचकांकों को बढ़ाने और घटाने की इस संपत्ति को मीट्रिक टेंसर घटकों पर प्रयुक्त करने से स्वयं गुण बन जाती है
एक विकर्ण मीट्रिक के लिए (जिसके लिए गुणांक ; अथार्त आधार वैक्टर दूसरे के लिए ओर्थोगोनल हैं), इसका तात्पर्य है कि मीट्रिक टेंसर का दिया गया सहसंयोजक गुणांक संबंधित विरोधाभासी गुणांक , आदि का व्युत्क्रम है।

उदाहरण

फ्लैट स्पेसटाइम

लोरेंत्ज़ियन मैनिफोल्ड का सबसे सरल उदाहरण फ्लैट स्पेसटाइम है, जिसे निर्देशांक और मीट्रिक के साथ R4 के रूप में दिया जा सकता है

ध्यान दें कि ये निर्देशांक वास्तव में संपूर्ण R4 को कवर करते हैं। समतल स्थान मीट्रिक (या मिन्कोव्स्की मीट्रिक) को अधिकांशत: प्रतीक η द्वारा दर्शाया जाता है और यह विशेष सापेक्षता में उपयोग किया जाने वाला मीट्रिक है। उपरोक्त निर्देशांक में, η का आव्यूह प्रतिनिधित्व है
(एक वैकल्पिक सम्मेलन निर्देशांक t को ct से प्रतिस्थापित करता है, और को मिंकोव्स्की स्थान § मानक आधार के रूप में परिभाषित करता है।)

वृत्ताकार निर्देशांक में , समतल स्थान मीट्रिक का रूप ले लेता है

जहाँ
2-वृत्त पर मानक मीट्रिक है।

ब्लैक होल आव्यूह

श्वार्ज़स्चिल्ड मीट्रिक अनावेशित, गैर-घूर्णन ब्लैक होल का वर्णन करता है। ऐसे आव्यूह भी हैं जो घूमने वाले और आवेशित ब्लैक होल का वर्णन करते हैं।

श्वार्ज़स्चिल्ड मीट्रिक

समतल स्थान मीट्रिक के अतिरिक्त सामान्य सापेक्षता में सबसे महत्वपूर्ण मीट्रिक श्वार्ज़स्चिल्ड मीट्रिक है जिसे स्थानीय निर्देशांक के सेट में दिया जा सकता है

जहां, फिर से, 2-वृत्त पर मानक मीट्रिक है। यहाँ, गुरुत्वाकर्षण स्थिरांक है और द्रव्यमान के आयामों वाला स्थिरांक है। इसकी व्युत्पत्ति यहाँ पाई जा सकती है। जैसे-जैसे शून्य के समीप पहुंचता है, श्वार्ज़स्चिल्ड मीट्रिक मिन्कोव्स्की मीट्रिक के समीप पहुंचता है (मूल को छोड़कर जहां यह अपरिभाषित है)। इसी तरह, जब अनंत तक जाता है, तो श्वार्ज़स्चिल्ड मीट्रिक मिन्कोव्स्की मीट्रिक के समीप पहुंचता है।

निर्देशांक के साथ

मीट्रिक को इस प्रकार लिखा जा सकता है
श्वार्ज़स्चिल्ड मीट्रिक के लिए निर्देशांक की कई अन्य प्रणालियाँ तैयार की गई हैं: एडिंगटन-फिंकेलस्टीन निर्देशांक, गुलस्ट्रैंड-पेनलेव निर्देशांक, क्रुस्कल-स्जेकेरेस निर्देशांक, और लेमेत्रे निर्देशांक।

घूर्णन और आवेशित ब्लैक होल

श्वार्ज़स्चिल्ड समाधान ऐसी वस्तु मानता है जो अंतरिक्ष में घूम नहीं रही है और चार्ज नहीं की गई है। चार्ज का गणना लगाने के लिए, मीट्रिक को पहले की तरह आइंस्टीन क्षेत्र समीकरणों के साथ-साथ घुमावदार स्पेसटाइम में मैक्सवेल के समीकरणों को भी संतुष्ट करना होता है। आवेशित गैर-घूर्णन द्रव्यमान का वर्णन रीस्नर-नॉर्डस्ट्रॉम मीट्रिक द्वारा किया जाता है।

घूमते हुए ब्लैक होल का वर्णन केर मीट्रिक और केर-न्यूमैन मेट्रिक द्वारा किया जाता है।

अन्य आव्यूह

अन्य उल्लेखनीय आव्यूह हैं:

उनमें से कुछ घटना क्षितिज के बिना हैं या गुरुत्वाकर्षण विलक्षणता के बिना हो सकते हैं।

आयतन

मीट्रिक g प्राकृतिक आयतन रूप (एक संकेत तक) को प्रेरित करता है, जिसका उपयोग कई गुना के क्षेत्र (गणित) को एकीकृत करने के लिए किया जा सकता है। स्थानीय निर्देशांक दिए गए मैनिफ़ोल्ड के लिए, वॉल्यूम फॉर्म लिखा जा सकता है

जहाँ दिए गए समन्वय प्रणाली के लिए मीट्रिक टेंसर के घटकों के आव्यूह का निर्धारक है।

वक्रता

मीट्रिक पूरी तरह से स्पेसटाइम की वक्रता को निर्धारित करता है। रीमैनियन ज्यामिति के मौलिक प्रमेय के अनुसार, किसी भी अर्ध-रीमैनियन मैनिफोल्ड पर अद्वितीय कनेक्शन होता है जो मीट्रिक के साथ संगत और मरोड़-मुक्त होता है। इस कनेक्शन को लेवी-सिविटा कनेक्शन कहा जाता है। इस कनेक्शन के क्रिस्टोफ़ेल प्रतीक सूत्र द्वारा स्थानीय निर्देशांक में मीट्रिक के आंशिक व्युत्पन्न के संदर्भ में दिए गए हैं

(जहाँ अल्पविराम सहसंयोजक व्युत्पन्नया संकेतन को दर्शाता है)।

स्पेसटाइम की वक्रता फिर रीमैन वक्रता टेंसर द्वारा दी जाती है जिसे लेवी-सिविटा कनेक्शन ∇ के संदर्भ में परिभाषित किया गया है। स्थानीय निर्देशांक में यह टेंसर इस प्रकार दिया जाता है:

तब वक्रता पूरी तरह से मीट्रिक और उसके डेरिवेटिव के संदर्भ में व्यक्त की जा सकती है।

आइंस्टीन के समीकरण

सामान्य सापेक्षता के मूल विचारों में से यह है कि मीट्रिक (और स्पेसटाइम की संबंधित ज्यामिति) स्पेसटाइम के पदार्थ और ऊर्जा पदार्थ द्वारा निर्धारित की जाती है। आइंस्टीन क्षेत्र समीकरण या आइंस्टीन क्षेत्र समीकरण:

जहां रिक्की वक्रता टेंसर
और अदिश वक्रता
मीट्रिक (और संबंधित वक्रता टेंसर) को तनाव-ऊर्जा टेंसर से संबंधित करें। यह टेंसर समीकरण मीट्रिक घटकों के लिए अरेखीय आंशिक अंतर समीकरणों का सम्मिश्र सेट है। आइंस्टीन के क्षेत्र समीकरणों का स्पष्ट समाधान खोजना बहुत कठिन है।

यह भी देखें

संदर्भ

  1. For the details, see Section 2.11, The Metric Tensor and the Classical Gravitational Potential, in Chow, Tai L. (2008). Gravity, Black Holes, and the Very Early Universe: An Introduction to General Relativity and Cosmology. Springer.
  2. Gutfreund, Hanoch; Renn, Jürgen (2015). The Road to Relativity: The History and Meaning of Einstein's "The Foundation of General Relativity", Featuring the Original Manuscript of Einstein's Masterpiece. Princeton University Press. p. 75.