चर (गणित): Difference between revisions
No edit summary |
No edit summary |
||
(15 intermediate revisions by 3 users not shown) | |||
Line 8: | Line 8: | ||
गणित में,[[ लैटिन भाषा ]] में चर किसी भी [[ गणितीय वस्तु ]] के लिए एक [[ गणितीय प्रतीक ]] और प्लेसहोल्डर है। विशेष रूप से, चर , [[ संख्या ]], [[ वेक्टर (गणित) | वेक्टर]] , [[ मैट्रिक्स (गणित) | मैट्रिक्स]] , फ़ंक्शन और फ़ंक्शन की विवेचना , एक [[ सेट (गणित) | सेट]] , या सेट के [[ तत्व (गणित) | तत्व]] का प्रतिनिधित्व कर सकता है।<ref>[[#SW|Stover & Weisstein]].</ref> | गणित में,[[ लैटिन भाषा ]] में चर किसी भी [[ गणितीय वस्तु ]] के लिए एक [[ गणितीय प्रतीक ]] और प्लेसहोल्डर है। विशेष रूप से, चर , [[ संख्या ]], [[ वेक्टर (गणित) | वेक्टर]] , [[ मैट्रिक्स (गणित) | मैट्रिक्स]] , फ़ंक्शन और फ़ंक्शन की विवेचना , एक [[ सेट (गणित) | सेट]] , या सेट के [[ तत्व (गणित) | तत्व]] का प्रतिनिधित्व कर सकता है।<ref>[[#SW|Stover & Weisstein]].</ref> | ||
चरों के साथ बीजगणितीय संगणनाएँ जैसे कि वे स्पष्ट संख्याएँ हों, एक संगणना कई प्रकार की समस्याओं का समाधान करती हैं। उदाहरण के लिए, [[ द्विघात सूत्र | द्विघात सूत्र]] , द्विघात [[ समीकरण | समीकरण]] को गुणांकों के संख्यात्मक मानों को चरों के लिए प्रतिस्थापित करके | चरों के साथ बीजगणितीय संगणनाएँ जैसे कि वे स्पष्ट संख्याएँ हों, एक संगणना कई प्रकार की समस्याओं का समाधान करती हैं। उदाहरण के लिए, [[ द्विघात सूत्र | द्विघात सूत्र]] , द्विघात [[ समीकरण | समीकरण]] को गुणांकों के संख्यात्मक मानों को चरों के लिए प्रतिस्थापित करके समाधान करता है जो द्विघात सूत्र में उनका प्रतिनिधित्व करते हैं। [[ गणितीय तर्क | गणितीय विवेचना]] में, चर एक प्रतीक है जो सिद्धांत के एक अनिर्दिष्ट शब्द [[ मेटावेरिएबल | मेटावेरिएबल]] का प्रतिनिधित्व करता है, या सिद्धांत का एक मूल उद्देश्य है कि संभावित सरल व्याख्या को उल्लेख किए बिना परिवर्तन किया जाता है। | ||
==इतिहास== | ==इतिहास== | ||
[[ यूक्लिड ]] | प्राचीन कार्यों में [[ यूक्लिड |यूक्लिड]] के तत्वों जैसे,एकल अक्षर ज्यामितीय बिंदुओं और आकृतियों का उल्लेख करते हैं। 7वीं शतक में, [[ ब्रह्मगुप्त | ब्रह्मगुप्त]] ने ब्रह्मस्फुट सिद्धांत के द्वारा बीजगणितीय समीकरणों में अज्ञात को दर्शाने के लिए विभिन्न रंगों का प्रयोग किया। इस पुस्तक के एक खंड को "कई रंगों का समीकरण" कहा जाता है।<ref>{{Harvnb|Tabak|2014|page=[https://books.google.com/books?id=h-zRieb7VbwC&pg=PA40 40]}}.</ref> | ||
16वीं शतक के अंत में, फ़्राँस्वा विएते ने ज्ञात और अज्ञात संख्याओं को अक्षरों द्वारा दर्शाने का विचार प्रस्तावित किया, जिसे आजकल चर कहा जाता है, और उनके साथ गणना करने का विचार जैसे कि वे संख्याएँ हों - जिससे एक साधारण प्रतिस्थापन द्वारा परिणाम प्राप्त किया जा सके। विएते का सम्मेलन ज्ञात मूल्यों के लिए व्यंजन और अज्ञात के लिए स्वरों का उपयोग करना था।<ref>{{Harvnb|Fraleigh|1989|page=[https://archive.org/details/firstcourseinabs0000fral/page/276/mode/2up 276]}}.</ref> | |||
19वीं | 1637 में, रेने डेसकार्टेस ने x, y, और z द्वारा समीकरणों में अज्ञात का प्रतिनिधित्व करने के सम्मेलन का आविष्कार किया| और a, b, और c द्वारा जाना जाता है"।<ref>{{Harvnb|Sorell|2000|page=19}}.</ref> वियत के सम्मेलन के विपरीत, डेसकार्टेस 'अभी भी अधिकतम उपयोग में है| गणित में 1887 में, अक्षर x के इतिहास में वैज्ञानिक अमेरिकी लेख में चर्चा की गई थी।<ref>{{Cite book|url=https://books.google.com/books?id=moM9AQAAIAAJ|title=Scientific American|date=1887-09-03|publisher=Munn & Company|pages=148|language=en}}</ref> | ||
1660 दशक के प्रारम्भ में, [[ आइजैक न्यूटन | आइजैक न्यूटन]] और [[ गॉटफ्राइड विल्हेम लिबनिज़ो | गॉटफ्राइड विल्हेम लिबनिज़ो]] ने स्वतंत्र रूप से [[ बहुत छोता | बहुत छोता]] कलन विकसित किया, जिसमें अनिवार्य रूप से यह अध्ययन करना सम्मलित है कि कैसे एक चर मात्रा का अतिसूक्ष्म परिवर्तन दूसरी मात्रा के अनुरूप भिन्नता को प्रेरित करता है जो कि पहले चर का एक कार्य है। लगभग एक दशक बाद, [[ लियोनहार्ड यूलर | लियोनहार्ड यूलर]] ने [[ अतिसूक्ष्म कलन | अतिसूक्ष्म कलन]] की शब्दावली तय की,और एक फलन f, इसके चर x और इसके मान y के लिए संकेतन y = f(x) दर्शाया। 19वीं दशक के अंत तक, शब्द चर लगभग विशेष रूप से विवेचनाओं और कार्यों के मूल्यों को संदर्भित करता था। | |||
19वीं दशक के उत्तरार्ध में, ऐसा प्रतीत हुआ कि अतिसूक्ष्म कलन की नींव को स्पष्ट विरोधाभासों से निपटने के लिए पर्याप्त रूप से औपचारिकता नहीं दी गयी थी, जिसमे भिन्न-भिन्न कार्य [[ निरंतर कार्य | निरंतर कार्य]] नहीं करते हैं।इस समस्या का समाधान करने के लिए, [[ कार्ल वीयरस्ट्रास |कार्ल वीयरस्ट्रास]] ने एक नई औपचारिकता का प्रारम्भ किया, जिसमें औपचारिक की परिभाषा द्वारा [[ सीमा (गणित) | सीमा]] की सरल धारणा का परिवर्तन करना सम्मलित था।सीमा की पुरानी धारणा थी "जब चर x भिन्न होता है और a की ओर झुकता है, तो f(x) L की ओर झुकता है", "प्रवृत्त" की किसी भी त्रुटिहीन,परिभाषा के बिना। वेइरस्ट्रास ने इस वाक्य को सूत्र द्वारा प्रतिस्थापित किया | | |||
:<math>(\forall \epsilon >0) (\exists \eta >0) (\forall x) \;|x-a|<\eta \Rightarrow |L-f(x)|<\epsilon,</math> | :<math>(\forall \epsilon >0) (\exists \eta >0) (\forall x) \;|x-a|<\eta \Rightarrow |L-f(x)|<\epsilon,</math> | ||
जिसमें | जिसमें पाँच चरों में से किसी को भी भिन्न नहीं माना जाता है। | ||
स्थैतिक सूत्रीकरण ने चर की आधुनिक धारणा को जन्म दिया, जो केवल गणितीय वस्तु का प्रतिनिधित्व करने वाला एक प्रतीक है जो अज्ञात है, या दिए गए समूह के किसी भी तत्व द्वारा प्रतिस्थापित किया जा सकता है (जैसे, [[ वास्तविक संख्या |वास्तविक संख्या]] का समूह)। | |||
== संकेतन == | == संकेतन == | ||
चर को अधिकांश एक अक्षर द्वारा दर्शाया जाता है, जो प्रायः [[ लैटिन वर्णमाला |लैटिन वर्णमाला]] से होता है और [[ ग्रीक वर्णमाला | ग्रीक वर्णमाला]] से कम होता है, जो कि लोअरकेस या कैपिटल हो सकता है।पत्र के बाद एक सबस्क्रिप्ट हो सकता है: एक संख्या ({{math|''x''<sub>2</sub>}} के रूप में), एक अन्य चर ({{math|''x''<sub>''i''</sub>}}), एक शब्द या एक शब्द का संक्षिप्त नाम ({{math|''x''<sub>total</sub>}}) या एक गणितीय व्यंजक ({{math|''x''<sub>2''i'' + 1</sub>}}). [[ चर (कंप्यूटर विज्ञान) | (कंप्यूटर विज्ञान)]] के प्रभाव में, शुद्ध गणित में कुछ चर नामों में कई अक्षर और अंक होते हैं|रेने डेसकार्टेस (1596-1650) के बाद, वर्णमाला के प्रारम्भ में अक्षर जैसे a, b, c अधिकांश ज्ञात मूल्यों और मापदंडों के लिए उपयोग किए जाते हैं, और वर्णमाला के अंत में अक्षर जैसे (x, y, z) अज्ञात और कार्यों के चर के लिए उपयोग किये जाते है <ref name=E004>Edwards Art. 4</ref> मुद्रित गणित में, इटैलिक टाइपफेस में चर और स्थिरांक समूह करने का मानदंड है।<ref>{{Harvnb|Hosch|2010|page=[https://books.google.com/books?id=ad0P0elU1_0C&pg=PA71 71].}}</ref> | |||
उदाहरण के लिए, एक सामान्य द्विघात फलन को पारंपरिक रूप से इस प्रकार लिखा जाता है: <math display="inline">a x^2 + b x + c\,</math>, जहां a, b और c पैरामीटर हैं (जिन्हें स्थिरांक (गणित) भी कहा जाता है, क्योंकि वे स्थिर | |||
गणित की विशिष्ट शाखाओं और अनुप्रयोगों में | उदाहरण के लिए, एक सामान्य द्विघात फलन को पारंपरिक रूप से इस प्रकार लिखा जाता है: <math display="inline">a x^2 + b x + c\,</math>, जहां a, b और c पैरामीटर हैं (जिन्हें स्थिरांक (गणित) भी कहा जाता है, क्योंकि वे स्थिर फलन हैं), जबकि x फलन का चर है। इस फलन को निरूपित करने का एक अधिक स्पष्ट तरीका है <math display="inline">x\mapsto a x^2 + b x + c \,</math>, जो x की फलन-तर्क स्थिति और a, b और c की स्थिर स्थिति को स्पष्ट करता है। चूँकि c उस पद में आता है जो x का एक अचर फलन है, इसे अचर पद कहा जाता है।<ref>{{Harvnb|Foerster|2006|page=[https://archive.org/details/algebratrigonome00paul_0/page/18/mode/2up 18]}}.</ref> | ||
गणित की विशिष्ट शाखाओं और अनुप्रयोगों में चरों के लिए विशिष्ट नामकरण नामकरण परिपाटी होती है। अधिकांशतः समान भूमिकाओं या अर्थों वाले चर को लगातार अक्षर या अलग-अलग सबस्क्रिप्ट के साथ एक ही अक्षर सौंपा जाता है। उदाहरण के लिए, 3D निर्देशांक स्थान में तीन अक्षों को पारंपरिक रूप से x, y और z कहा जाता है। भौतिकी में, चर के नाम बड़े पैमाने पर उनके द्वारा वर्णित [[ भौतिक मात्रा | भौतिक मात्रा]] से निर्धारित होते हैं, लेकिन विभिन्न नामकरण परंपराएं सम्मिलित हैं। संभाव्यता और आंकड़ों मेंप्रायःएक परंपरा का पालन किया जाता है, यादृच्छिक चर के नामों के लिए एक्स, वाई, जेड का उपयोग करना, बेहतर परिभाषित मूल्यों का प्रतिनिधित्व करने वाले चर के लिए एक्स, वाई, जेड रखना। | |||
== विशिष्ट प्रकार के चर == | == विशिष्ट प्रकार के चर == | ||
चर के लिए एक ही गणितीय सूत्र में | चर के लिए एक ही गणितीय सूत्र में भिन्न -भिन्न भूमिकाएँ निभाना साधारण बात है, और उन्हें भिन्न करने के लिए नाम या क्वालिफायर दर्शाये गए हैं। उदाहरण के लिए, सामान्य [[ घन समीकरण ]] | ||
:<math>ax^3+bx^2+cx+d=0,</math> | :<math>ax^3+bx^2+cx+d=0,</math> | ||
पाँच चर होने के रूप में व्याख्या की गई है: चार, {{math|''a'', ''b'', ''c'', ''d''}}, जिन्हें संख्याएँ और पाँचवाँ चर माना जाता है, {{math|''x'',}} अज्ञात संख्या समझा जाता है। उन्हें | पाँच चर होने के रूप में व्याख्या की गई है: चार, {{math|''a'', ''b'', ''c'', ''d''}}, जिन्हें संख्याएँ और पाँचवाँ चर माना जाता है, {{math|''x'',}} अज्ञात संख्या समझा जाता है। उन्हें भिन्न करने के लिए, चर {{math|''x''}} अज्ञात कहा जाता है, और अन्य चरों को पैरामीटर या गुणांक, या कभी-कभी स्थिरांक कहा जाता है, चूंकि यह अंतिम शब्दावली एक समीकरण के लिए गलत है, और इस समीकरण के बाईं ओर परिभाषित फलन के लिए आरक्षित होना चाहिए। | ||
कार्यों के संदर्भ में, चर शब्द | कार्यों के संदर्भ में, चर शब्द सामान्यतः कार्यों की विवेचना को संदर्भित करता है। यह सामान्यतः एक वास्तविक चर के कार्य जैसे वाक्यों में होता है,{{math|''x''}} फलन का चर है {{math|1=''f'': ''x'' ↦ ''f''(''x'')}},{{math|''f''}} चर का एक कार्य है {{math|''x''}}(जिसका अर्थ है कि फलन की विवेचना को चर द्वारा संदर्भित किया जाता है {{math|''x''}}) | ||
उसी संदर्भ में, चर | उसी संदर्भ में, चर {{math|''x''}} जो से स्वतंत्र हैं स्थिर कार्यों को परिभाषित करते हैं और इसलिए स्थिर कहलाते हैं। उदाहरण के लिए, एकीकरण का स्थिरांक एक मनमाना स्थिर कार्य है जिसे अन्य प्रतिअवकलन प्राप्त करने के लिए एक विशेष प्रतिअवकलन में जोड़ा जाता है। क्योंकि [[ बहुपद ]] और बहुपद फलन के बीच मजबूत संबंध, स्थिरांक शब्द का प्रयोग बहुपद के गुणांकों को निरूपित करने के लिए किया जाता है, जो अनिश्चितों के निरंतर कार्य हैं। | ||
निरंतर कार्य के संक्षिप्त रूप के रूप में स्थिरांक का यह उपयोग गणित में शब्द के सामान्य अर्थ से | निरंतर कार्य के संक्षिप्त रूप के रूप में स्थिरांक का यह उपयोग गणित में शब्द के सामान्य अर्थ से भिन्न होना चाहिए। एक 'स्थिर', या '[[ गणितीय स्थिरांक ]]' एक अच्छी और स्पष्ट रूप से परिभाषित संख्या या अन्य गणितीय वस्तु है, उदाहरण के लिए, संख्या 0, 1, {{math|[[Pi|''π'']]}} और एक [[ समूह (गणित) | समूह]] का [[ पहचान तत्व ]]। चूंकि एक चर किसी भी गणितीय वस्तु का प्रतिनिधित्व कर सकता है, एक अक्षर जो एक स्थिरांक का प्रतिनिधित्व करता है उसे अधिकांश एक चर कहा जाता है। यह, विशेष रूप से, {{mvar|e}} तथा {{pi}}, तब भी जब वे यूलर की संख्या का प्रतिनिधित्व करते हैं और {{math|3.14159...}} | ||
चर के लिए अन्य विशिष्ट नाम हैं: | चर के लिए अन्य विशिष्ट नाम हैं: | ||
* अज्ञात एक समीकरण में एक चर है | * अज्ञात एक समीकरण में एक चर है जिसका समाधान करना होता है। | ||
* एक अनिश्चित (चर) एक प्रतीक है, जिसे | * एक अनिश्चित (चर) एक प्रतीक है, जिसे अधिकांश चर कहा जाता है, जो बहुपद या [[ औपचारिक शक्ति श्रृंखला ]] में प्रकट होता है। औपचारिक रूप से बोलते हुए, एक अनिश्चित एक चर नहीं है, लेकिन बहुपद अंगूठी या औपचारिक शक्ति श्रृंखला की अंगूठी में एक स्थिर है।चूंकि, बहुपद या शक्ति श्रृंखला और उनके द्वारा परिभाषित फलन के बीच मजबूत संबंध के कारण, कई लेखक अनिश्चित को एक विशेष प्रकार के चर के रूप में मानते हैं। | ||
* एक [[ पैरामीटर ]] एक मात्रा | * एक [[ पैरामीटर ]] एक मात्रा है जो किसी समस्या के इनपुट का एक हिस्सा है, और इस समस्या के पूरे समाधान के दौरान स्थिर रहता है। उदाहरण के लिए, [[ यांत्रिकी ]] में एक ठोस पिंड का द्रव्यमान और आकार उसकी गति के अध्ययन के लिए ''पैरामीटर'' होते हैं। [[ कंप्यूटर विज्ञान ]] में, ''पैरामीटर'' का एक अलग अर्थ होता है और यह किसी फ़ंक्शन की विवेचना को दर्शाता है। | ||
* [[ मुक्त चर और बाध्य चर ]] | * [[ मुक्त चर और बाध्य चर ]] | ||
* एक यादृच्छिक चर एक प्रकार का चर है जिसका प्रयोग संभाव्यता सिद्धांत और उसके अनुप्रयोगों में किया जाता है। | * एक यादृच्छिक चर एक प्रकार का चर है जिसका प्रयोग संभाव्यता सिद्धांत और उसके अनुप्रयोगों में किया जाता है। | ||
चर के ये सभी संप्रदाय शब्दार्थ प्रकृति के हैं, और उनके साथ गणना करने का | चर के ये सभी संप्रदाय शब्दार्थ प्रकृति के हैं, और उनके साथ गणना करने का उपाय ([[ वाक्यविन्यास (तर्क) | वाक्यविन्यास]]) सभी के लिए समान है। | ||
=== आश्रित और स्वतंत्र चर === | === आश्रित और स्वतंत्र चर === | ||
{{main| | {{main|आश्रित और स्वतंत्र चर | ||
[[ गणना ]] और भौतिकी और अन्य विज्ञानों में इसके अनुप्रयोग में, एक चर पर विचार करना | }} | ||
[[ गणना ]] और भौतिकी और अन्य विज्ञानों में इसके अनुप्रयोग में, एक चर पर विचार करना साधारण बात है, मान लीजिए {{math|''y''}}, जिनके संभावित मान दूसरे चर के मान पर निर्भर करते हैं, मान लीजिए {{math|''x''}}. गणितीय शब्दों में, आश्रित चर {{math|''y''}} एक फलन के मान का प्रतिनिधित्व करता है {{math|''x''}}. सूत्रों को सरल बनाने के लिए, आश्रित चर के लिए समान प्रतीक का उपयोग करना अधिकांश उपयोगी होता है {{math|''y''}} और फ़ंक्शन मैपिंग {{math|''x''}} पर {{math|''y''}}. उदाहरण के लिए, एक भौतिक प्रणाली की स्थिति मापन योग्य मात्राओं पर निर्भर करती है जैसे कि [[ दबाव ]], [[ तापमान ]], स्थानिक स्थिति, और ये सभी मात्राएँ तब बदलती हैं जब प्रणाली विकसित होती है, अर्थात वे समय के कार्य होते हैं। प्रणाली का वर्णन करने वाले सूत्रों में, इन मात्राओं को चरों द्वारा दर्शाया जाता है जो समय पर निर्भर होते हैं, और इस प्रकार समय के कार्यों के रूप में परोक्ष रूप से माने जाते हैं। | |||
इसलिए, एक सूत्र में, एक आश्रित चर एक चर है जो परोक्ष रूप से दूसरे चर का एक कार्य है। एक स्वतंत्र चर एक चर है जो निर्भर नहीं है।<ref>Edwards Art. 5</ref> | |||
एक चर के आश्रित या स्वतंत्र होने की संपत्ति अधिकांश दृष्टिकोण पर निर्भर करती है और आंतरिक नहीं होती है। उदाहरण के लिए, संकेतन में {{math|''f''(''x'', ''y'', ''z'')}}, तीन चर सभी स्वतंत्र हो सकते हैं और संकेतन तीन चरों के एक फलन का प्रतिनिधित्व करता है। दूसरी ओर, यदि {{math|''y''}} तथा {{math|''z''}} पर निर्भर {{math|''x''}} (आश्रित चर हैं) तो संकेतन एकल स्वतंत्र चर के एक कार्य का प्रतिनिधित्व करता है {{math|''x''}}.<ref>Edwards Art. 6</ref> | |||
=== उदाहरण === | === उदाहरण === | ||
यदि कोई | यदि कोई फलन f को वास्तविक संख्याओं से वास्तविक संख्याओं तक परिभाषित करता है | ||
:<math>f(x) = x^2+\sin(x+4)</math> | :<math>f(x) = x^2+\sin(x+4)</math> | ||
तब x एक चर है जो परिभाषित किए जा रहे | तब x एक चर है जो परिभाषित किए जा रहे फलन के एक फलन के तर्क के लिए खड़ा है, जो कि कोई भी वास्तविक संख्या हो सकती है। | ||
पहचान में | पहचान में | ||
Line 71: | Line 77: | ||
आदर्श गैस नियम का वर्णन करने वाले समीकरण पर विचार करें, | आदर्श गैस नियम का वर्णन करने वाले समीकरण पर विचार करें, | ||
<math display = block>PV = Nk_BT.</math> | <math display = block>PV = Nk_BT.</math> | ||
इस समीकरण को | इस समीकरण को सामान्यतः चार चर और एक स्थिरांक के रूप में व्याख्यायित किया जाएगा। स्थिरांक है <math>k_B</math>, [[ बोल्ट्जमान स्थिरांक ]]। चर में से एक, <math>N</math>, कणों की संख्या, एक धनात्मक पूर्णांक (और इसलिए एक असतत चर) है, जबकि अन्य तीन, <math>P, V</math> तथा <math>T</math>दबाव, आयतन और तापमान के लिए, निरंतर चर हैं। | ||
प्राप्त करने के लिए कोई इस समीकरण को पुनर्व्यवस्थित कर सकता है <math>P</math> अन्य चर के एक समारोह के रूप में, | प्राप्त करने के लिए कोई इस समीकरण को पुनर्व्यवस्थित कर सकता है <math>P</math> अन्य चर के एक समारोह के रूप में, | ||
<math display = block>P(V, N, T) = \frac{Nk_BT}{V}.</math> | <math display = block>P(V, N, T) = \frac{Nk_BT}{V}.</math> | ||
फिर <math>P</math>, अन्य चरों के एक फलन के रूप में, आश्रित चर है, जबकि इसके तर्क, <math>V, N</math> तथा <math>T</math>, स्वतंत्र चर हैं। कोई इस | फिर <math>P</math>, अन्य चरों के एक फलन के रूप में, आश्रित चर है, जबकि इसके तर्क, <math>V, N</math> तथा <math>T</math>, स्वतंत्र चर हैं। कोई इस फलन को अधिक औपचारिक रूप से देख सकता है और इसके डोमेन और रेंज के बारे में सोच सकता है: फ़ंक्शन नोटेशन में, यहां <math>P</math> एक फलन है<math>P: \mathbb{R}_{>0} \times \mathbb{N} \times \mathbb{R}_{>0} \rightarrow \mathbb{R}</math>. | ||
चूंकि, एक प्रयोग में, स्वतंत्र चरों में से किसी एक पर दबाव की निर्भरता को निर्धारित करने के लिए, एक चर को छोड़कर सभी को ठीक करना आवश्यक है, जैसे कि <math>T</math>. यह एक फ़ंक्शन देता है | |||
<math display = block>P(T) = \frac{Nk_BT}{V},</math> | <math display = block>P(T) = \frac{Nk_BT}{V},</math> | ||
अब | जहां अब <math>N</math> तथा <math>V</math> को भी स्थिरांक माना जाता है। गणितीय रूप से, यह पहले के फलन का आंशिक अनुप्रयोग बनाता है <math>P</math>. | ||
यह दर्शाता है कि कैसे स्वतंत्र चर और स्थिरांक काफी हद तक लिए गए दृष्टिकोण पर निर्भर हैं। कोई सम्मान भी कर सकता है <math>k_B</math> एक फ़ंक्शन प्राप्त करने के लिए एक चर के रूप में | यह दर्शाता है कि कैसे स्वतंत्र चर और स्थिरांक काफी हद तक लिए गए दृष्टिकोण पर निर्भर हैं। कोई सम्मान भी कर सकता है <math>k_B</math> एक फ़ंक्शन प्राप्त करने के लिए एक चर के रूप में | ||
Line 87: | Line 93: | ||
== मोडुली स्पेस == | == मोडुली स्पेस == | ||
{{See also | | {{See also |मोडुली रिक्त स्थान | ||
}} | |||
स्थिरांक और चरों को ध्यान में रखते हुए मॉड्यूली रिक्त स्थान की अवधारणा को जन्म दिया जा सकता है। उदाहरण के लिए, एक [[ परवलय ]] के समीकरण पर विचार करें, | स्थिरांक और चरों को ध्यान में रखते हुए मॉड्यूली रिक्त स्थान की अवधारणा को जन्म दिया जा सकता है। उदाहरण के लिए, एक [[ परवलय ]] के समीकरण पर विचार करें, | ||
<math display = block>y = ax^2 + bx + c,</math> | <math display = block>y = ax^2 + bx + c,</math> | ||
जहां <math>a, b, c, x</math> तथा <math>y</math> सभी वास्तविक माने जाते हैं। अंक का सेट <math>(x,y)</math> इस समीकरण को संतुष्ट करने वाले 2D तल में एक परवलय के ग्राफ का पता लगाता है। यहां, <math>a,b</math> तथा <math>c</math> स्थिरांक के रूप में माना जाता है, जो परवलय को निर्दिष्ट करते हैं, जबकि <math>x</math> तथा <math>y</math> चर हैं। | |||
फिर इसके | फिर इसके अतिरिक्त <math>a,b</math> तथा <math>c</math> चर के रूप में, हम देखते हैं कि 3-टुपल्स का प्रत्येक सेट <math>(a,b,c)</math> एक अलग परवलय से मेल खाता है। अर्थात्, वे 'परवलय के स्थान' पर निर्देशांक निर्दिष्ट करते हैं: इसे परवलयों के एक मापांक स्थान के रूप में जाना जाता है। | ||
==पारंपरिक चर नाम == | ==पारंपरिक चर नाम == | ||
<!-- Not a comprehensive list --> | <!-- Not a comprehensive list --> | ||
* | * ,''a'', ''b'', ''c'', ''d'' (कभी-कभी ई, एफ तक बढ़ाया जाता है) पैरामीटर या गुणांक के लिए | ||
* | * ''a''<sub>0</sub>, ''a''<sub>1</sub>, ''a''<sub>2</sub>,, ... उन स्थितियों के लिए जहां विशिष्ट अक्षर असुविधाजनक हैं | ||
* | * ''a<sub>i</sub>'' या ''u<sub>i</sub>'' किसी [[ क्रम | अनु क्रम]] के i-वें पद के लिए या किसी श्रृंखला के i-वें गुणांक के लिए | ||
* ई यूलर की संख्या के लिए | * ई यूलर की संख्या के लिए | ||
* f, g, h | * कार्यों के लिए f, g, h (जैसा कि <math>f(x)</math>) | ||
* मैं [[ काल्पनिक इकाई ]] के लिए | * मैं [[ काल्पनिक इकाई |काल्पनिक इकाई]] के लिए | ||
* i, j, k (कभी-कभी l या h) एक [[ अनुक्रमित परिवार ]], या इकाई वैक्टर में | * i, j, k (कभी-कभी l या h) एक [[ अनुक्रमित परिवार ]], या इकाई वैक्टर में भिन्न-भिन्न पूर्णांक या सूचकांक के लिए | ||
* | * l और w एक आकृति की लंबाई और चौड़ाई के लिए | ||
* l | * l एक रेखा के लिए भी, या संख्या सिद्धांत में एक [[ अभाज्य संख्या |अभाज्य संख्या]] के लिए जो p के बराबर नहीं है| | ||
* n (दूसरी पसंद के रूप में m के साथ) एक निश्चित पूर्णांक के लिए, जैसे कि वस्तुओं की गिनती या | * n (दूसरी पसंद के रूप में m के साथ) एक निश्चित पूर्णांक के लिए, जैसे कि वस्तुओं की गिनती या समीकरण की [[ डिग्री (बहुविकल्पी) | डिग्री]] | ||
* p एक अभाज्य संख्या या प्रायिकता के लिए | * p एक अभाज्य संख्या या प्रायिकता के लिए | ||
* | * एक प्रमुख शक्ति या भागफल के लिए q | ||
* r त्रिज्या के लिए, [[ शेष ]]फल या [[ सहसंबंध गुणांक ]] | * r त्रिज्या के लिए, [[ शेष ]]फल या [[ सहसंबंध गुणांक ]] | ||
* | * t[[ समय ]] के लिए | ||
* | * [[ यूक्लिडियन ज्यामिति |यूक्लिडियन ज्यामिति]] या संबंधित [[ अक्ष (गणित) |अक्ष]] में एक बिंदु के तीन [[ कार्तीय निर्देशांक | कार्तीय निर्देशांक]] के लिए x, y, z | ||
* z एक | * ''z'' एक जटिल संख्या के लिए, या आंकड़ों में एक [[ सामान्य वितरण ]] चर | ||
* α, β, γ, , [[ कोण माप ]] के लिए | * α, β, γ, , [[ कोण माप ]] के लिए | ||
* | * मनमाने ढंग से छोटी सकारात्मक संख्या के लिए ε (दूसरे विकल्प के रूप में δ के साथ)। | ||
* एक [[ eigenvalue ]] के लिए | * एक[[ eigenvalue | एजंवलुए]] के लिए | ||
* ( | * Σ (पूंजी सिग्मा) एक राशि के लिए, या σ (लोअरकेस सिग्मा) [[ मानक विचलन |मानक विचलन]] के लिए आंकड़ों में<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Sum|url=https://mathworld.wolfram.com/|access-date=2022-02-14|website=mathworld.wolfram.com|language=en}}</ref> | ||
* μ | * μ औसत के लिए | ||
==यह भी देखें== | ==यह भी देखें== | ||
Line 142: | Line 149: | ||
{{Refend}} | {{Refend}} | ||
{{DEFAULTSORT:Variable (mathematics)}} | {{DEFAULTSORT:Variable (mathematics)}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Variable (mathematics)]] | ||
[[Category:Created On 09/09/2022]] | [[Category:Articles with invalid date parameter in template|Variable (mathematics)]] | ||
[[Category:Articles with short description|Variable (mathematics)]] | |||
[[Category:CS1]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 09/09/2022|Variable (mathematics)]] | |||
[[Category:Machine Translated Page|Variable (mathematics)]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description|Variable (mathematics)]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Use mdy dates from November 2021|Variable (mathematics)]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:कलन|Variable (mathematics)]] | |||
[[Category:गणितीय तर्क|Variable (mathematics)]] | |||
[[Category:चर (गणित)| ]] | |||
[[Category:प्राथमिक गणित|Variable (mathematics)]] | |||
[[Category:बीजगणित|Variable (mathematics)]] | |||
[[Category:सिंटैक्स (तर्क)|Variable (mathematics)]] |
Latest revision as of 16:30, 3 December 2022
गणित में,लैटिन भाषा में चर किसी भी गणितीय वस्तु के लिए एक गणितीय प्रतीक और प्लेसहोल्डर है। विशेष रूप से, चर , संख्या , वेक्टर , मैट्रिक्स , फ़ंक्शन और फ़ंक्शन की विवेचना , एक सेट , या सेट के तत्व का प्रतिनिधित्व कर सकता है।[1]
चरों के साथ बीजगणितीय संगणनाएँ जैसे कि वे स्पष्ट संख्याएँ हों, एक संगणना कई प्रकार की समस्याओं का समाधान करती हैं। उदाहरण के लिए, द्विघात सूत्र , द्विघात समीकरण को गुणांकों के संख्यात्मक मानों को चरों के लिए प्रतिस्थापित करके समाधान करता है जो द्विघात सूत्र में उनका प्रतिनिधित्व करते हैं। गणितीय विवेचना में, चर एक प्रतीक है जो सिद्धांत के एक अनिर्दिष्ट शब्द मेटावेरिएबल का प्रतिनिधित्व करता है, या सिद्धांत का एक मूल उद्देश्य है कि संभावित सरल व्याख्या को उल्लेख किए बिना परिवर्तन किया जाता है।
इतिहास
प्राचीन कार्यों में यूक्लिड के तत्वों जैसे,एकल अक्षर ज्यामितीय बिंदुओं और आकृतियों का उल्लेख करते हैं। 7वीं शतक में, ब्रह्मगुप्त ने ब्रह्मस्फुट सिद्धांत के द्वारा बीजगणितीय समीकरणों में अज्ञात को दर्शाने के लिए विभिन्न रंगों का प्रयोग किया। इस पुस्तक के एक खंड को "कई रंगों का समीकरण" कहा जाता है।[2] 16वीं शतक के अंत में, फ़्राँस्वा विएते ने ज्ञात और अज्ञात संख्याओं को अक्षरों द्वारा दर्शाने का विचार प्रस्तावित किया, जिसे आजकल चर कहा जाता है, और उनके साथ गणना करने का विचार जैसे कि वे संख्याएँ हों - जिससे एक साधारण प्रतिस्थापन द्वारा परिणाम प्राप्त किया जा सके। विएते का सम्मेलन ज्ञात मूल्यों के लिए व्यंजन और अज्ञात के लिए स्वरों का उपयोग करना था।[3]
1637 में, रेने डेसकार्टेस ने x, y, और z द्वारा समीकरणों में अज्ञात का प्रतिनिधित्व करने के सम्मेलन का आविष्कार किया| और a, b, और c द्वारा जाना जाता है"।[4] वियत के सम्मेलन के विपरीत, डेसकार्टेस 'अभी भी अधिकतम उपयोग में है| गणित में 1887 में, अक्षर x के इतिहास में वैज्ञानिक अमेरिकी लेख में चर्चा की गई थी।[5]
1660 दशक के प्रारम्भ में, आइजैक न्यूटन और गॉटफ्राइड विल्हेम लिबनिज़ो ने स्वतंत्र रूप से बहुत छोता कलन विकसित किया, जिसमें अनिवार्य रूप से यह अध्ययन करना सम्मलित है कि कैसे एक चर मात्रा का अतिसूक्ष्म परिवर्तन दूसरी मात्रा के अनुरूप भिन्नता को प्रेरित करता है जो कि पहले चर का एक कार्य है। लगभग एक दशक बाद, लियोनहार्ड यूलर ने अतिसूक्ष्म कलन की शब्दावली तय की,और एक फलन f, इसके चर x और इसके मान y के लिए संकेतन y = f(x) दर्शाया। 19वीं दशक के अंत तक, शब्द चर लगभग विशेष रूप से विवेचनाओं और कार्यों के मूल्यों को संदर्भित करता था।
19वीं दशक के उत्तरार्ध में, ऐसा प्रतीत हुआ कि अतिसूक्ष्म कलन की नींव को स्पष्ट विरोधाभासों से निपटने के लिए पर्याप्त रूप से औपचारिकता नहीं दी गयी थी, जिसमे भिन्न-भिन्न कार्य निरंतर कार्य नहीं करते हैं।इस समस्या का समाधान करने के लिए, कार्ल वीयरस्ट्रास ने एक नई औपचारिकता का प्रारम्भ किया, जिसमें औपचारिक की परिभाषा द्वारा सीमा की सरल धारणा का परिवर्तन करना सम्मलित था।सीमा की पुरानी धारणा थी "जब चर x भिन्न होता है और a की ओर झुकता है, तो f(x) L की ओर झुकता है", "प्रवृत्त" की किसी भी त्रुटिहीन,परिभाषा के बिना। वेइरस्ट्रास ने इस वाक्य को सूत्र द्वारा प्रतिस्थापित किया |
जिसमें पाँच चरों में से किसी को भी भिन्न नहीं माना जाता है।
स्थैतिक सूत्रीकरण ने चर की आधुनिक धारणा को जन्म दिया, जो केवल गणितीय वस्तु का प्रतिनिधित्व करने वाला एक प्रतीक है जो अज्ञात है, या दिए गए समूह के किसी भी तत्व द्वारा प्रतिस्थापित किया जा सकता है (जैसे, वास्तविक संख्या का समूह)।
संकेतन
चर को अधिकांश एक अक्षर द्वारा दर्शाया जाता है, जो प्रायः लैटिन वर्णमाला से होता है और ग्रीक वर्णमाला से कम होता है, जो कि लोअरकेस या कैपिटल हो सकता है।पत्र के बाद एक सबस्क्रिप्ट हो सकता है: एक संख्या (x2 के रूप में), एक अन्य चर (xi), एक शब्द या एक शब्द का संक्षिप्त नाम (xtotal) या एक गणितीय व्यंजक (x2i + 1). (कंप्यूटर विज्ञान) के प्रभाव में, शुद्ध गणित में कुछ चर नामों में कई अक्षर और अंक होते हैं|रेने डेसकार्टेस (1596-1650) के बाद, वर्णमाला के प्रारम्भ में अक्षर जैसे a, b, c अधिकांश ज्ञात मूल्यों और मापदंडों के लिए उपयोग किए जाते हैं, और वर्णमाला के अंत में अक्षर जैसे (x, y, z) अज्ञात और कार्यों के चर के लिए उपयोग किये जाते है [6] मुद्रित गणित में, इटैलिक टाइपफेस में चर और स्थिरांक समूह करने का मानदंड है।[7]
उदाहरण के लिए, एक सामान्य द्विघात फलन को पारंपरिक रूप से इस प्रकार लिखा जाता है: , जहां a, b और c पैरामीटर हैं (जिन्हें स्थिरांक (गणित) भी कहा जाता है, क्योंकि वे स्थिर फलन हैं), जबकि x फलन का चर है। इस फलन को निरूपित करने का एक अधिक स्पष्ट तरीका है , जो x की फलन-तर्क स्थिति और a, b और c की स्थिर स्थिति को स्पष्ट करता है। चूँकि c उस पद में आता है जो x का एक अचर फलन है, इसे अचर पद कहा जाता है।[8] गणित की विशिष्ट शाखाओं और अनुप्रयोगों में चरों के लिए विशिष्ट नामकरण नामकरण परिपाटी होती है। अधिकांशतः समान भूमिकाओं या अर्थों वाले चर को लगातार अक्षर या अलग-अलग सबस्क्रिप्ट के साथ एक ही अक्षर सौंपा जाता है। उदाहरण के लिए, 3D निर्देशांक स्थान में तीन अक्षों को पारंपरिक रूप से x, y और z कहा जाता है। भौतिकी में, चर के नाम बड़े पैमाने पर उनके द्वारा वर्णित भौतिक मात्रा से निर्धारित होते हैं, लेकिन विभिन्न नामकरण परंपराएं सम्मिलित हैं। संभाव्यता और आंकड़ों मेंप्रायःएक परंपरा का पालन किया जाता है, यादृच्छिक चर के नामों के लिए एक्स, वाई, जेड का उपयोग करना, बेहतर परिभाषित मूल्यों का प्रतिनिधित्व करने वाले चर के लिए एक्स, वाई, जेड रखना।
विशिष्ट प्रकार के चर
चर के लिए एक ही गणितीय सूत्र में भिन्न -भिन्न भूमिकाएँ निभाना साधारण बात है, और उन्हें भिन्न करने के लिए नाम या क्वालिफायर दर्शाये गए हैं। उदाहरण के लिए, सामान्य घन समीकरण
पाँच चर होने के रूप में व्याख्या की गई है: चार, a, b, c, d, जिन्हें संख्याएँ और पाँचवाँ चर माना जाता है, x, अज्ञात संख्या समझा जाता है। उन्हें भिन्न करने के लिए, चर x अज्ञात कहा जाता है, और अन्य चरों को पैरामीटर या गुणांक, या कभी-कभी स्थिरांक कहा जाता है, चूंकि यह अंतिम शब्दावली एक समीकरण के लिए गलत है, और इस समीकरण के बाईं ओर परिभाषित फलन के लिए आरक्षित होना चाहिए।
कार्यों के संदर्भ में, चर शब्द सामान्यतः कार्यों की विवेचना को संदर्भित करता है। यह सामान्यतः एक वास्तविक चर के कार्य जैसे वाक्यों में होता है,x फलन का चर है f: x ↦ f(x),f चर का एक कार्य है x(जिसका अर्थ है कि फलन की विवेचना को चर द्वारा संदर्भित किया जाता है x)
उसी संदर्भ में, चर x जो से स्वतंत्र हैं स्थिर कार्यों को परिभाषित करते हैं और इसलिए स्थिर कहलाते हैं। उदाहरण के लिए, एकीकरण का स्थिरांक एक मनमाना स्थिर कार्य है जिसे अन्य प्रतिअवकलन प्राप्त करने के लिए एक विशेष प्रतिअवकलन में जोड़ा जाता है। क्योंकि बहुपद और बहुपद फलन के बीच मजबूत संबंध, स्थिरांक शब्द का प्रयोग बहुपद के गुणांकों को निरूपित करने के लिए किया जाता है, जो अनिश्चितों के निरंतर कार्य हैं।
निरंतर कार्य के संक्षिप्त रूप के रूप में स्थिरांक का यह उपयोग गणित में शब्द के सामान्य अर्थ से भिन्न होना चाहिए। एक 'स्थिर', या 'गणितीय स्थिरांक ' एक अच्छी और स्पष्ट रूप से परिभाषित संख्या या अन्य गणितीय वस्तु है, उदाहरण के लिए, संख्या 0, 1, π और एक समूह का पहचान तत्व । चूंकि एक चर किसी भी गणितीय वस्तु का प्रतिनिधित्व कर सकता है, एक अक्षर जो एक स्थिरांक का प्रतिनिधित्व करता है उसे अधिकांश एक चर कहा जाता है। यह, विशेष रूप से, e तथा π, तब भी जब वे यूलर की संख्या का प्रतिनिधित्व करते हैं और 3.14159... चर के लिए अन्य विशिष्ट नाम हैं:
- अज्ञात एक समीकरण में एक चर है जिसका समाधान करना होता है।
- एक अनिश्चित (चर) एक प्रतीक है, जिसे अधिकांश चर कहा जाता है, जो बहुपद या औपचारिक शक्ति श्रृंखला में प्रकट होता है। औपचारिक रूप से बोलते हुए, एक अनिश्चित एक चर नहीं है, लेकिन बहुपद अंगूठी या औपचारिक शक्ति श्रृंखला की अंगूठी में एक स्थिर है।चूंकि, बहुपद या शक्ति श्रृंखला और उनके द्वारा परिभाषित फलन के बीच मजबूत संबंध के कारण, कई लेखक अनिश्चित को एक विशेष प्रकार के चर के रूप में मानते हैं।
- एक पैरामीटर एक मात्रा है जो किसी समस्या के इनपुट का एक हिस्सा है, और इस समस्या के पूरे समाधान के दौरान स्थिर रहता है। उदाहरण के लिए, यांत्रिकी में एक ठोस पिंड का द्रव्यमान और आकार उसकी गति के अध्ययन के लिए पैरामीटर होते हैं। कंप्यूटर विज्ञान में, पैरामीटर का एक अलग अर्थ होता है और यह किसी फ़ंक्शन की विवेचना को दर्शाता है।
- मुक्त चर और बाध्य चर
- एक यादृच्छिक चर एक प्रकार का चर है जिसका प्रयोग संभाव्यता सिद्धांत और उसके अनुप्रयोगों में किया जाता है।
चर के ये सभी संप्रदाय शब्दार्थ प्रकृति के हैं, और उनके साथ गणना करने का उपाय ( वाक्यविन्यास) सभी के लिए समान है।
आश्रित और स्वतंत्र चर
गणना और भौतिकी और अन्य विज्ञानों में इसके अनुप्रयोग में, एक चर पर विचार करना साधारण बात है, मान लीजिए y, जिनके संभावित मान दूसरे चर के मान पर निर्भर करते हैं, मान लीजिए x. गणितीय शब्दों में, आश्रित चर y एक फलन के मान का प्रतिनिधित्व करता है x. सूत्रों को सरल बनाने के लिए, आश्रित चर के लिए समान प्रतीक का उपयोग करना अधिकांश उपयोगी होता है y और फ़ंक्शन मैपिंग x पर y. उदाहरण के लिए, एक भौतिक प्रणाली की स्थिति मापन योग्य मात्राओं पर निर्भर करती है जैसे कि दबाव , तापमान , स्थानिक स्थिति, और ये सभी मात्राएँ तब बदलती हैं जब प्रणाली विकसित होती है, अर्थात वे समय के कार्य होते हैं। प्रणाली का वर्णन करने वाले सूत्रों में, इन मात्राओं को चरों द्वारा दर्शाया जाता है जो समय पर निर्भर होते हैं, और इस प्रकार समय के कार्यों के रूप में परोक्ष रूप से माने जाते हैं।
इसलिए, एक सूत्र में, एक आश्रित चर एक चर है जो परोक्ष रूप से दूसरे चर का एक कार्य है। एक स्वतंत्र चर एक चर है जो निर्भर नहीं है।[9]
एक चर के आश्रित या स्वतंत्र होने की संपत्ति अधिकांश दृष्टिकोण पर निर्भर करती है और आंतरिक नहीं होती है। उदाहरण के लिए, संकेतन में f(x, y, z), तीन चर सभी स्वतंत्र हो सकते हैं और संकेतन तीन चरों के एक फलन का प्रतिनिधित्व करता है। दूसरी ओर, यदि y तथा z पर निर्भर x (आश्रित चर हैं) तो संकेतन एकल स्वतंत्र चर के एक कार्य का प्रतिनिधित्व करता है x.[10]
उदाहरण
यदि कोई फलन f को वास्तविक संख्याओं से वास्तविक संख्याओं तक परिभाषित करता है
तब x एक चर है जो परिभाषित किए जा रहे फलन के एक फलन के तर्क के लिए खड़ा है, जो कि कोई भी वास्तविक संख्या हो सकती है।
पहचान में
चर i एक योग चर है जो बारी-बारी से प्रत्येक पूर्णांक 1, 2, ..., n को निर्दिष्ट करता है (इसे 'सूचकांक' भी कहा जाता है क्योंकि इसकी भिन्नता मानों के असतत सेट से अधिक है) जबकि n एक पैरामीटर है (यह सूत्र के भीतर भिन्न नहीं है)।
बहुपद के सिद्धांत में, घात 2 वाले बहुपद को सामान्यतः ax . के रूप में दर्शाया जाता है2 + bx + c, जहां a, b और c को गुणांक कहा जाता है (उन्हें निश्चित माना जाता है, यानी, समस्या के पैरामीटर माना जाता है) जबकि x को एक चर कहा जाता है। अपने बहुपद फलन के लिए इस बहुपद का अध्ययन करते समय यह x फलन तर्क के लिए खड़ा होता है। अपने आप में एक वस्तु के रूप में बहुपद का अध्ययन करते समय, x को एक अनिश्चित माना जाता है, और अक्सर इस स्थिति को इंगित करने के लिए एक बड़े अक्षर के साथ लिखा जाएगा।
उदाहरण: आदर्श गैस नियम
आदर्श गैस नियम का वर्णन करने वाले समीकरण पर विचार करें,
इस समीकरण को सामान्यतः चार चर और एक स्थिरांक के रूप में व्याख्यायित किया जाएगा। स्थिरांक है , बोल्ट्जमान स्थिरांक । चर में से एक, , कणों की संख्या, एक धनात्मक पूर्णांक (और इसलिए एक असतत चर) है, जबकि अन्य तीन, तथा दबाव, आयतन और तापमान के लिए, निरंतर चर हैं।
प्राप्त करने के लिए कोई इस समीकरण को पुनर्व्यवस्थित कर सकता है अन्य चर के एक समारोह के रूप में,
चूंकि, एक प्रयोग में, स्वतंत्र चरों में से किसी एक पर दबाव की निर्भरता को निर्धारित करने के लिए, एक चर को छोड़कर सभी को ठीक करना आवश्यक है, जैसे कि . यह एक फ़ंक्शन देता है
यह दर्शाता है कि कैसे स्वतंत्र चर और स्थिरांक काफी हद तक लिए गए दृष्टिकोण पर निर्भर हैं। कोई सम्मान भी कर सकता है एक फ़ंक्शन प्राप्त करने के लिए एक चर के रूप में
मोडुली स्पेस
स्थिरांक और चरों को ध्यान में रखते हुए मॉड्यूली रिक्त स्थान की अवधारणा को जन्म दिया जा सकता है। उदाहरण के लिए, एक परवलय के समीकरण पर विचार करें,
जहां तथा सभी वास्तविक माने जाते हैं। अंक का सेट इस समीकरण को संतुष्ट करने वाले 2D तल में एक परवलय के ग्राफ का पता लगाता है। यहां, तथा स्थिरांक के रूप में माना जाता है, जो परवलय को निर्दिष्ट करते हैं, जबकि तथा चर हैं।
फिर इसके अतिरिक्त तथा चर के रूप में, हम देखते हैं कि 3-टुपल्स का प्रत्येक सेट एक अलग परवलय से मेल खाता है। अर्थात्, वे 'परवलय के स्थान' पर निर्देशांक निर्दिष्ट करते हैं: इसे परवलयों के एक मापांक स्थान के रूप में जाना जाता है।
पारंपरिक चर नाम
- ,a, b, c, d (कभी-कभी ई, एफ तक बढ़ाया जाता है) पैरामीटर या गुणांक के लिए
- a0, a1, a2,, ... उन स्थितियों के लिए जहां विशिष्ट अक्षर असुविधाजनक हैं
- ai या ui किसी अनु क्रम के i-वें पद के लिए या किसी श्रृंखला के i-वें गुणांक के लिए
- ई यूलर की संख्या के लिए
- कार्यों के लिए f, g, h (जैसा कि )
- मैं काल्पनिक इकाई के लिए
- i, j, k (कभी-कभी l या h) एक अनुक्रमित परिवार , या इकाई वैक्टर में भिन्न-भिन्न पूर्णांक या सूचकांक के लिए
- l और w एक आकृति की लंबाई और चौड़ाई के लिए
- l एक रेखा के लिए भी, या संख्या सिद्धांत में एक अभाज्य संख्या के लिए जो p के बराबर नहीं है|
- n (दूसरी पसंद के रूप में m के साथ) एक निश्चित पूर्णांक के लिए, जैसे कि वस्तुओं की गिनती या समीकरण की डिग्री
- p एक अभाज्य संख्या या प्रायिकता के लिए
- एक प्रमुख शक्ति या भागफल के लिए q
- r त्रिज्या के लिए, शेष फल या सहसंबंध गुणांक
- tसमय के लिए
- यूक्लिडियन ज्यामिति या संबंधित अक्ष में एक बिंदु के तीन कार्तीय निर्देशांक के लिए x, y, z
- z एक जटिल संख्या के लिए, या आंकड़ों में एक सामान्य वितरण चर
- α, β, γ, , कोण माप के लिए
- मनमाने ढंग से छोटी सकारात्मक संख्या के लिए ε (दूसरे विकल्प के रूप में δ के साथ)।
- एक एजंवलुए के लिए
- Σ (पूंजी सिग्मा) एक राशि के लिए, या σ (लोअरकेस सिग्मा) मानक विचलन के लिए आंकड़ों में[11]
- μ औसत के लिए
यह भी देखें
संदर्भ
- ↑ Stover & Weisstein.
- ↑ Tabak 2014, p. 40.
- ↑ Fraleigh 1989, p. 276.
- ↑ Sorell 2000, p. 19.
- ↑ Scientific American (in English). Munn & Company. September 3, 1887. p. 148.
- ↑ Edwards Art. 4
- ↑ Hosch 2010, p. 71.
- ↑ Foerster 2006, p. 18.
- ↑ Edwards Art. 5
- ↑ Edwards Art. 6
- ↑ Weisstein, Eric W. "Sum". mathworld.wolfram.com (in English). Retrieved February 14, 2022.
ग्रन्थसूची
- Edwards, Joseph (1892). An Elementary Treatise on the Differential Calculus (2nd ed.). London: MacMillan and Co.
- Foerster, Paul A. (2006). Algebra and Trigonometry: Functions and Applications (classics ed.). Upper Saddle River, NJ: Prentice Hall. ISBN 978-0-13-165711-3.
- Fraleigh, John B. (1989). A First Course in Abstract Algebra (4th ed.). United States: Addison-Wesley. ISBN 978-0-201-52821-3.
- Hosch, William L., ed. (2010). The Britannica Guide to Algebra and Trigonometry. Britannica Educational Publishing. ISBN 978-1-61530-219-2.
- Menger, Karl (1954). "On Variables in Mathematics and in Natural Science". The British Journal for the Philosophy of Science. University of Chicago Press. 5 (18): 134–142. doi:10.1093/bjps/V.18.134. JSTOR 685170.
- Peregrin, Jaroslav (2000). "Variables in Natural Language: Where do they come from?" (PDF). In Böttner, Michael; Thümmel, Wolf (eds.). Variable-Free Semantics. Osnabrück Secolo. pp. 46–65. ISBN 978-3-929979-53-4.
- Quine, Willard V. (1960). "Variables Explained Away" (PDF). Proceedings of the American Philosophical Society. American Philosophical Society. 104 (3): 343–347. JSTOR 985250.
- Sorell, Tom (2000). Descartes: A Very Short Introduction. New York: Oxford University Press. ISBN 978-0-19-285409-4.
- Stover, Christopher; Weisstein, Eric W. "Variable". In Weisstein, Eric W. (ed.). Wolfram MathWorld. Wolfram Research. Retrieved November 22, 2021.
- Tabak, John (2014). Algebra: Sets, Symbols, and the Language of Thought. Infobase Publishing. ISBN 978-0-8160-6875-3.